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1 Introduction

Osteoarthritis (OA) is a worldwide disease that occurs in joints causing irreversible damage to
cartilage and other joint tissues. The knee is particularly vulnerable to OA, and millions of people,
regardless of gender, geographical location, and race, suffer from knee OA. When the disease reaches
the late stages, patients have to undergo a total knee replacement (TKR) surgery to avoid disability.
For society, direct and indirect costs of OA are notably high, and for instance, OA is one of the
five most expensive healthcare expenditures in Europe [1]. In the United States, the burden of knee
OA is also huge, and TKR surgeries annually cost over 10 billion dollars [2]. If knee OA could be
detected at an early stage, its progression might be slowed down, thereby yielding significant benefits
at personal and societal levels [3].

Radiographs, affordable and widely available in primary care, are sufficiently informative for knee
OA severity diagnosis. However, the process of visual assessment of radiographs is rather tedious, and
as a result, various Deep Learning (DL) based methods for automatic diagnosis of knee OA severity
have recently been developed [4–6]. The primary drawback of these methods is their dependency on
large amounts of annotations, which are expensive in terms of cost and time to collect.

In this paper, we introduce Semixup, a novel Semi-Supervised Learning (SSL) method, which we
apply for automatic diagnosis of the knee OA severity in an annotation-efficient manner. This
extended abstract is a short version of [7].

2 Method

2.1 Data

Our datasets were from the Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study
(MOST) patient cohorts. While OAI data were used for training and validation, MOST data were
used for an independent testing. Bilateral posterior-anterior knee radiographs in those datasets were
acquired in fixed flexion using Synaflexer® positioning frame and 10° beam angle. All available
radiographs from all the follow-ups in the OAI were utilized. In the MOST dataset, we applied similar
strategy, but excluded the images acquired with 5° or 15° beam angle as well as the ones without the
Osteoarthritis Research Society International (OARSI) scores. We used the Kellgren Lawrence (KL)
grading [8] as a reference standard to assess the severity of knee OA. The KL system classifies OA in
5 levels, where 0 indicates no signs of OA, 1 – doubtful OA, 2 – early OA, 3 – moderate OA, and 4 –
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end stage OA. After the data selection phase, we obtained 39,902 and 3,445 knee images for training
and independent evaluation phases, respectively.

For training and model selection, we formed 4 settings of annotation data: 50, 100, 500, and 1000
samples with annotation per KL grade, each of which has 6 unannotated data settings: 1×, 2×, . . . ,
6× more samples without annotation. Thus, in total, we had 24 data settings for SSL methods. In
addition, we gathered all annotated data in the OAI to form a large data setting for training a SL
model.

2.2 Siamese Architecture

We designed a Siamese DL architecture for all SL and SSL methods [7]. The main component in
the model is 3× 3 convolutional blocks of a 3× 3 convolutional layer, an instance normalization,
and a LeakyRELU activation. The network has 4 subsampling layers separating groups of 3 × 3
convolutional blocks, and in the bottleneck, it produces a feature map of 16×16 for a given 128×128
input image in each branch of the model. Each of the feature maps is compressed into 1× 1 feature
by a pooling layer. Finally, we concatenate the features from each of the branches and use a fully
connected layer to predict the KL grades.

To extract the left and right knee sides for our Siamese network, we closely followed [6], except that
we performed a tighter crop with the size 110mm× 110mm instead of 130mm× 130mm and used
a mean of 0.5 and a standard deviation of 0.5 instead of extracting them from OAI data. As a result,
we obtained pairs of 128× 128-pixel images (0.37mm pixel spacing).

2.3 Semixup

The core idea of our method is to enforce continuous predictions within and out of the data manifold
M. As such, explicitly enforce the smoothness of predictions within the data manifold Ex‖JM‖2F ,
where JM denotes the Jacobian along the data manifoldM and ‖ · ‖F is the Frobenius norm. To
achieve this, we use consistency regularization, which widely used in the SSL domain [9], and thus
minimize:

Ex∼p(x)ET,T ′∼p(τ) ‖fθ(Tx)− fθ(T ′x)‖22 , (1)

where fθ is our model with learnable parameters θ, p(x) is the distribution of annotated and unanno-
tated data, and p(τ) is the distribution of stochastic transformations.

To generate the out-of-manifold samples, we utilize mixup [10], which generates new samples by
creating a convex combination of two arbitrary samples xi, xj with a coefficient λ ∼ Beta(α, α):

xmix = Mixλ(xi, xj) = λxi + (1− λ)xj . (2)

Here, we also use the consistency regularization, but enforce consistency between the predictions
on the augmented version of the sample, and the one, which is outside the manifold, but in a close
proximity to it. This is achieved by making sure that the original sample’s visual appearance is still
dominant (i.e., λ > 0.5). Formally, we target to minimize:

Eλ∼Beta(α,α)Ex,x′∼p(x)ET∼p(τ) ‖fθ(Mixλ(x, x′))− fθ(Tx)‖22 . (3)

Our final regularization term is the interpolation consistency (IC) [11], which also relies on mixup,
and it encourages a linear behavior of the model’s predictions with linear change of the input. We
note that from the other regularizers, we obtain almost all the ingredients needed to compute IC term:

Eλ∼Beta(α,α)Exi,xj∼p(x) ‖Mixλ(fθ(xi), fθ(xj))− fθ(xmix)‖22 . (4)

In Semixup, for any pair of samples with or without label xi and xj , we apply 2 random augmentations
T and T ′ to xi, and then compute xmix = Mixλ(Txi, xj) and pmix = Mixλ(fθ(Txi), fθ(xj))
with λ > 0.5. To this end, we minimize the unsupervised loss that is a linear combination of
the in-manifold term ‖fθ(Txi)− fθ(T ′xi)‖22, the out-of-manifold terms ‖fθ(xmix)− fθ(Txi)‖22,
‖fθ(xmix)− fθ(T ′xi)‖22, and the interpolation term ‖fθ(xmix)− pmix‖22. With respect to annotated
data, we simply applied mixup on them, and used cross-entropy as described in [10].
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2.4 Statistical Analyses

To measure the performance of predicting KL grading, we utilized balanced multi-class accuracy
(BA), quadratic Cohen kappa score (KC), and mean square error (MSE). Besides, we investigated the
ability of early knee OA detection (KL≥ 2) by receiver operating characteristic (ROC) curves, area
under the ROC curve (AUC), precision-recall (PR) curves, and average precision (AP). For statistical
analyses, we used the Wilcoxon signed-rank test [12].

3 Experiments

We compared Semixup to interpolation consistency training (ICT) [11], Π model [9], and Mix-
Match [13]. All the SL and SSL methods were trained using the same Siamese network presented
in 2.2 and augmented by an identical set of transformation settings. The training was done on OAI
data, and testing on MOST data.

Results in Figure 1 shows that Semixup significantly outperformed the SSL baselines throughout
the annotated data settings, expect for the case of 50 annotated samples per KL grade. The fully
supervised model achieved a BA of 70.9 ± 0.8, which is a state-of-the-art (SOTA) performance.
However, it required the large data setting with 31, 902 annotated samples. Semixup reached BAs of
69.7± 0.8 and 71± 0.8 with 500 and 1000 annotated images per KL grade, respectively. Statistical
analyses showed that the fully supervised model is insignificantly different from the 2 SSL models,
having p = 0.054 and p = 0.368, respectively. Finally, Figures 1 and Table 1 consistently show that
Semixup performed closely to the SL model in various metrics on the KL grade prediction as well as
the early knee OA detection task while requiring over 6 times less annotated samples.
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Figure 1: Performance comparisons between Semixup and the baseline methods on the MOST dataset. SL (full
OAI) indicates the performance of the SL model trained on the full OAI dataset. (a) SL+ indicates the SL model,
* and ** indicate the statistically significant difference (p < 0.05 and p < 0.001, respectively). (b) + (c) Early
knee OA detection (KL≥ 2).

Table 1: Comparison of our best models trained with Semixup against our well-tuned SL model
trained on full OAI data.

Method # annotations KC MSE AUC (KL ≥ 2) AP (KL ≥ 2)

Semixup

250 0.708 1.080 0.880 0.861
[0.692, 0.724] [1.000, 1.022] [0.869, 0.891] [0.849, 0.872]

500 0.789 0.810 0.933 0.916
[0.776, 0.801] [0.764, 0.860] [0.926, 0.940] [0.906, 0.925]

2,500 0.877 0.442 0.967 0.956
[0.870, 0.884] [0.416, 0.466] [0.962, 0.972] [0.950, 0.962]

5,000 0.878 0.458 0.972 0.959
[0.870, 0.885] [0.430, 0.487] [0.968, 0.976] [0.953, 0.965]

SL (full OAI) 31,922 0.881 0.440 0.974 0.963
[0.873, 0.889] [0.414, 0.471] [0.969, 0.978] [0.958, 0.969]

4 Conclusion

We present a novel SSL method – Semixup, which achieves high performance in the task of automatic
knee osteoarthritis grading from plain radiographs while being still annotation-efficient. As such,
we empirically show that our method requires 6 times less annotations compared to a well-tuned SL
model.
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5 Broader Impact

DL-based methods are criticized for being data-greedy, which makes small- and medium-scale
companies being less competitive compared to the large ones. Our work shows that one can use novel
techniques and decrease the requirements for annotated data by a large margin. We hope that the
results presented in this paper will be of value to practitioners who aim to develop DL systems for
medical imaging applications and beyond.
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