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Abstract

When transporting goods, truck drivers may have to perform load trans-
fers between two vehicles at cross-dock or transfer locations. These trans-
fers create interdependencies between the routes of different truck drivers
and require careful temporal synchronization. The situation becomes even
more complex when driver schedules must comply with customer time win-
dows, working periods and regulatory resting requirements. Although the
scheduling of hours of service for truck drivers is a well-known problem,
existing algorithms cannot cope with interdependent routes. Successfully
accommodating this real-world characteristic demands the introduction of a
new, more general truck scheduling problem: The Truck Driver Scheduling
Problem with Interdependent Routes. This paper introduces a mathemat-
ical model and a label propagation algorithm to solve this new problem.
Experiments indicate that the algorithm can quickly schedule a large num-
ber of interdependent routes and outperforms a mathematical programming
approach. The algorithm produces valid schedules for multiple drivers and
thus becomes a foundation for future vehicle routing algorithms that address
interdependent routes and hours of service regulations.
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1. Introduction

During the daily execution of vehicle routes for logistic operations, the
drivers’ hours of service (HOS) must comply with certain legal requirements.
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For instance, most countries stipulate a maximum time for a driver to con-
tinuously operate a vehicle, after which a break must be scheduled. This is
not arbitrary, as drivers who do not take breaks for long periods compro-
mise the safety of roads. It is, therefore, crucial to take into account such
regulations when developing vehicle routing algorithms.

Additionally, recent increases in e-commerce activity have brought signif-
icant challenges to logistic chains, which must deliver products to ever more
demanding customers. This increased pressure on transportation companies
has motivated the use of cross-docks (Van Belle et al., 2012), or transfer loca-
tions (Mitrović-Minić & Laporte, 2006), where loads are transferred between
vehicles to reduce delivery times. Although useful, these operations incur
interdependencies between vehicle routes which complicate the development
of automated vehicle routing tools.

Goel (2009) introduced the main terminology for the Truck Driver Schedul-
ing Problem (TDSP), which is the name given to the scheduling of routes
while respecting HOS regulations. There is no singular definition for the
TDSP given that different geographical regions enforce different regulations.
The two most widely studied regulations in the literature are: the US-TDSP
for the United States of America (Goel & Kok, 2012) and the EU-TDSP for
the European Union (Goel, 2009). Despite their differences, all TDSP vari-
ants stipulate that drivers must take breaks at regular intervals.

In terms of HOS, we consider the EU regulations. Two basic regulatory
guidelines dictate the drivers’ HOS. Regulation (EC) No. 561/2006 (EU
Commission, 2006) concerns driving-related activities. It defines driving pe-
riods to be at most 4.5 hours of continuous driving time and defines breaks
to be 45-minute intervals which end a driving period. Additionally, the reg-
ulation limits the maximum driving time in a day to nine hours. Meanwhile,
directive 2002/15/EC (EU Commission, 2002) defines rules concerning the
accumulated working hours for both driving and service tasks (such as load-
ing and unloading) and limits a working period to at most six continuous
hours. A 30-minute break ends a working period. In this research, we con-
sider only a 45-minute break that ends both working and driving periods as
in other TDSP-related papers. The time horizon is a single working day for
each driver, thus only breaks must be scheduled. Neither split breaks nor
rest periods between days are considered.

Our research sets out to explore whether it is possible to extend the cur-
rent TDSP methods to schedule HOS for drivers with interdependent routes
while respecting specific time windows for their tasks. More specifically: is
it possible to quickly produce feasible schedules for a set of fixed and inter-
dependent truck routes? To answer this question, this paper introduces the
Truck Driver Scheduling Problem with Interdependent Routes (TDSP-IR).

The remainder of this paper is structured as follows. Section 2 reviews
the related literature. The TDSP-IR is formally defined in Section 3 together
with a mathematical programming formulation. Section 4 introduces a label
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propagation algorithm and its related operations. A complexity analysis of
the proposed algorithm is provided in Section 5. Computational results are
reported in Section 6, while Section 7 concludes the paper and offers some
directions for future research.

2. Related work

The literature relevant to the TDSP-IR can be divided into two main
areas. One deals with the family of TDSPs, whereas the other considers
vehicle routing problems with synchronization constraints. This section ex-
plores both of these areas in view of the TDSP-IR challenges.

2.1. The truck driver scheduling problem

The TDSP literature is incredibly rich and is typically categorized ac-
cording to the regulations being considered. Since our paper deals with
EU regulations, we refrain from reviewing studies that address other sets of
rules, such as the US, Canadian, or Australian regulations. For these cases,
the interested reader is referred to the research by Goel & Kok (2012), Goel
& Rousseau (2012) and Goel et al. (2012).

For the EU regulations, Goel (2009) introduced the first method to check
route feasibility in a week-long horizon that requires the scheduling of both
breaks and rest periods between days. A Label Propagation Algorithm (LPA)
performed significantly better on the scheduling problem compared to a
naive approach. Goel (2010) presented a detailed discussion concerning the
regulations of the EU-TDSP and introduced a new LPA that either finds a
feasible schedule or proves none exists. In both studies, the LPA was devised
as a feasibility check for Vehicle Routing Problems (VRPs) to ensure that
VRP solutions respect the European Union’s regulations.

The two aforementioned approaches assumed that breaks or rests can be
taken anywhere en-route. This is not necessarily true as drivers may have
to travel for quite some time before finding an appropriate parking space for
their vehicle. For the EU-TDSP, this could lead to breaching the regulations
expressed in (EC) No. 561/2006.

Kok et al. (2011) addressed the scheduling of truck drivers under EU
regulations, one working day (time horizon of 13 hours) and time-dependent
travel times. Similar to our problem settings, they considered breaks to be
restricted to customer locations. They solved the scheduling problem with a
MILP formulation and showed that execution times were short for practical
uses, even for time-dependent travel times.

Goel (2012) proposed a dynamic programming algorithm to create min-
imum duration schedules for the EU-TDSP when breaks are limited to cus-
tomer locations, but no polynomial-time bound on the algorithm’s worst-
case performance was provided. Goel’s dynamic programming approach is
actually very similar to LPAs in terms of how solutions are enumerated.
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Kleff (2019) introduced the first polynomial-time algorithm for the EU-
TDSP when breaks are restricted to customer locations. The proposed al-
gorithm is an LPA, but schedules are primarily represented using piecewise
linear functions. This is not a straightforward representation for our prob-
lem, despite its interesting results for the single-route TDSP.

In a broader study, Goel & Vidal (2013) set out to understand the im-
pact of HOS regulations on VRP solutions. They evaluated route feasibility
during heuristic search using LPAs available in the literature. In doing so,
it was possible to employ one implementation of a VRP metaheuristic that
could create a solution compliant with a specific set of regulations by simply
selecting the appropriate LPA. Their approach is important because it shows
that studying independent scheduling methods for truck drivers enables one
to apply those methods in general VRP algorithms, regardless of the type
of metaheuristic or solution representation. The scheduling algorithm works
as a “plug-and-play” modular component. Indeed, it is the previous success
of applying LPAs to solve TDSPs that has motivated us to investigate their
applicability to the TDSP-IR.

An overview of the research related to the TDSP is presented in Table 1.
The main characteristics of the scheduling problem are presented in the
columns: the objective (whether the algorithm must generate an optimal
or a feasible schedule), the regulation(s) incorporated, the number of time
windows per location and whether interdependent routes are considered.

Table 1: Summary of TDSP-related research.

Reference Objective Regulation Time windows

Opt. Feas. US EU CAN AUS Single Multiple Interdep.

Goel (2009) • • •
Goel (2010) • • •
Kok et al. (2011) • • •
Goel & Kok (2012) • • •
Goel & Rousseau (2012) • • •
Goel (2012) • • • •
Goel et al. (2012) • • •
Goel & Vidal (2013) • • • • • •
Kleff (2019) • • • • •
This work • • • •

Table 1 reveals some interesting patterns. First, most papers studied the
decision problem, rather than an optimization problem (such as minimiza-
tion of the route duration). Second, research has focused mainly on either
the US- or the EU-TDSP, probably because these regions have the greatest
share of truck-based transport lines. Third, greater attention was given to
the simpler case with a single time window per customer location. Finally,
no previous research related to the TDSP has considered interdependent
routes, even though there are many VRPs which take interdependencies
and task synchronization into account, as we will discuss in the following
section.
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2.2. Vehicle routing problems with task synchronization
A number of researchers have considered interdependent routes in gen-

eralizations of established vehicle routing problems. Dohn et al. (2011) de-
scribed the five most common types of temporal dependencies between tasks
in different routes. This paper addresses one of these temporal dependencies,
called minimum difference (detailed in Section 3.1).

Drexl (2013) reviewed vehicle routing problems with trailers and trans-
shipment including synchronization constraints. He concluded that only a
few papers have examined the interplay of HOS and interdependencies, while
none tackled the problem we consider in this paper.

Interdependence constraints have also been studied in transfer or trans-
shipment operations. Mitrović-Minić & Laporte (2006) introduced the Pickup
and Delivery Problem with Transshipment (PDPT). Contrary to usual pickup
and delivery problems, the PDPT allows the pickup and the delivery loca-
tion of a request to be served by different vehicles. An intermediate transfer
location may be employed which serves as a temporary storage where vehi-
cles are allowed to drop loads which can then be picked-up later by a second
vehicle. A clear interdependence arises here because a vehicle must first
unload at a transfer location before another vehicle can pick up the load.

The Vehicle Routing Problem with Cross-Docking (Van Belle et al., 2012)
is similar to the PDPT. In this version of the VRP, vehicles must collect
products from pickup locations, bring these products together at a cross-
dock and then deliver those products to another set of customers. Loads
may be transferred between vehicles at the cross-dock facility. Similar to
the PDPT, synchronization between vehicle routes may be required since
vehicles that collect loads at the cross-dock can only leave the facility once
all load transferring has finished, thus defining interdependencies between
several vehicle routes.

No previous research has considered specialized algorithms to schedule
truck drivers’ HOS in the PDPT or VRP with cross-docking. This is sur-
prising, given that when interdependencies exist, leaving the scheduling of
HOS to a post-routing process can lead to significant cascading effects that
render all routes infeasible. This is especially the case when there is a tight,
limited route duration. In such situations adding a single 45-minute break
to a route can cause disruptions, but not adding the mandatory breaks may
create legal issues for logistic companies.

Finally, despite some similarities with scheduling problems encountered
in airline, railway and bus transportation (Leung, 2004), the HOS regula-
tions present in truck transportation are different (Goel & Vidal, 2013). For
example, arrival and working times in road transportation are defined by
time windows, whereas the other cases are generally given by a timetable.
Therefore, we consider the study of HOS scheduling in VRPs with inter-
dependent routes and the development of fast algorithms for doing so to
address a scientific gap of significant practical relevance.
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3. The truck driver scheduling problem with interdependent routes

This section formally defines the Truck Driver Scheduling Problem with
Interdependent Routes and presents a MILP formulation. Examples and
characteristics of the TDSP-IR are also discussed.

3.1. Problem description

An instance of the TDSP-IR is defined over a set ofm fixed vehicle routes.
A vehicle route is a sequence of locations rk = (λ1, . . . , λ|rk|), k = 1, . . . ,m,
where |rk| denotes the number of locations in route rk. These routes are
represented as a graph G = (V,A), where V is the set of nodes representing
locations, while A is the set of arcs denoting temporal precedence constraints
between the nodes in V . The parameters of an instance and the decision
variables used throughout this paper are summarized in Table 2.

Arc set A is composed of two sets A = AP ∪AR such that AP ∩AR = ∅.
Arc set AR is the set of route arcs of type (i, j), i, j ∈ V , where nodes i and
j belong to the same route and node i directly precedes j. Each arc has an
associated weight tij , which is the travel time from node i to j. Meanwhile,
set AP contains precedence arcs between nodes in two different routes, that
is, they represent interdependence constraints of the type (u−, u+), u−, u+ ∈
V such that service at node u− must end before service at u+ can begin.
These arcs incur the minimum difference constraints (Dohn et al., 2011),
which are defined by Hu− + wu− ≤ Hu+ , where Hi is the time at which
service begins at node i ∈ V and wi is the service duration at node i.

For an instance to be valid, input graph G must be a directed acyclic
graph: arc set A cannot define cycles in G. This is always true because a
cycle creates a precedence between at least one node and itself, which can
never be resolved (Masson et al., 2013).

Set VO ⊂ V contains vertices ok and dk, which are the origin and desti-
nation nodes of the k-th route, respectively. Additionally, every node i ∈ V
has an associated time window [ei, li] indicating the earliest time ei and the
latest time li service may begin at this location, as well as a service duration
wi. For interdependent nodes (u−, u+) ∈ AP , the start of the time window
at u+ may vary according to the start of service at u−. Analogously, the
end of time window at u− may change according to the start of service at
u+. Time windows of nodes ok, dk ∈ VO define the time horizon Hk of each
route rk, where eok is the earliest start time and ldk is the latest end time.
For simplicity, we will assume the time horizons of all routes are the same
and denoted as H.

Each route rk must be completed by a single truck driver. The driver’s
schedule must not only comply with customer time windows, but also with
HOS regulations. In other words, a break of minimum length B must be
scheduled before the driver accumulates Mdrive or Mwork continuous driving
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or working time, respectively. A break is only allowed at customer loca-
tions after completing the service. However, this could easily be adapted to
consider breaks before service begins (Goel, 2012). Once a break has been
taken, both accumulated driving and working time are reset to zero and the
driver is allowed to drive and work an additional Mdrive and Mwork units
of time. Note that working time includes both driving times and service
duration at nodes. A route must not exceed the maximum duration Mdur,
which serves as the shift length of a driver. Finally, Mdaily restricts the to-
tal driving time in one day. For simplicity, we assume that any route in a
TDSP-IR instance does not exceed Mdaily. In our case, this can be trivially
verified in linear time before solving the problem.

Table 2: Notation used throughout the paper.

Instance parameters

n total number of nodes |V |
m total number of routes (or drivers)
i ∈ V a node to be visited
ok, dk ∈ VO origin and destination nodes of the k-th route
(i, j) ∈ AR set of route arcs (simple precedence arcs)
(u−, u+) ∈ AP set of interdependence arcs (u−, u+ ∈ V )
[ei, li] time window associated with node i ∈ V
wi service duration at node i ∈ V
tij travel time associated with arc (i, j) ∈ AR

H time horizon of all routes
Mdrive maximum continuous driving time
Mwork maximum continuous working time
Mdaily maximum daily driving time
Mdur maximum route duration
B minimum duration of a break period

Variables

Hi time at which service begins at node i
Di accumulated continuous driving time up to node i
Wi accumulated continuous working time up to node i
xi binary variable which equals 1 when a break is scheduled

immediately after service at node i and 0 otherwise

The goal of the TDSP-IR is to build a feasible schedule for each route that
complies with both customer time windows and HOS regulations. Therefore,
a solution method for this problem must provide both the starting time for
all routes and the breaks during those routes.

To better illustrate the problem definition, consider the instance in Fig-
ure 1 with m = 3 routes. Arc weights represent travel times while service
durations are wi = 3, ∀ i ∈ V . The only time windows relevant to the
example are those at nodes e and f . All other time windows are assumed
to be [0,H]. Interdependencies are (a−, a+), (c−, c+) ∈ AP .

Suppose the HOS regulations are Mdrive = 27,Mwork = 36,Mdaily = 50,
Mdur = 53 and B = 5, while the time horizon is H = 70. A schedule for each
route that complies with time windows, interdependence constraints, Mdrive,
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Mwork and Mdaily regulations, but exceeds Mdur for two routes is shown in
Figure 2(a). Gray squares denote the service duration at each node, blue
rectangles (D) denote driving periods, red rectangles (B) denote scheduled
breaks, while white rectangles (I) denote idle or waiting periods. All three
schedules begin their routes at time t = 0, which incurs unnecessary waiting
time. As a result, schedules for routes r1 and r2 are infeasible because they
have a total duration of 57 > Mdur and 58 > Mdur, respectively. Note that
the schedule in r1 has unnecessary waiting time at a+ even though this
location has no time window. This is due to the start time of service at a−.

Figure 1: A TDSP-IR instance. Solid arcs belong to set AR and dotted arcs to set AP .

o1 a+ b d1

o2 a− c− e d2

o3 f c+ d3

6 15 15

7 14 2 5

17 5 12

[47, 60]

[0, 20]

Figure 2: Example of two sets of schedules for a TDSP-IR instance.

t
0 51 5857 70

o1 D I a+ D b B D d1

o2 D a− D c− B D I e D d2

o3 D f B D c+ D d3

(a) Infeasible schedules beginning at time t = 0 (some durations exceed Mdur = 53).

t
0 5 9 53 58 62 70

o1 D a+ D b B D d1

o2 D a− D c− B D I e D d2

o3 D f B D I c+ D d3

(b) Feasible schedules with postponed starting times (all durations within Mdur = 53).

Modifying the start time of r2 to reduce the waiting time at e increases
the time spent waiting at a+ and the duration of r1 even further. Since
route r1 has no tight time windows, it is possible to completely remove the
idle time by postponing the start time of its service as much as possible.
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However, waiting in r2 cannot be completely eliminated because the time
window at f forbids route r3 to be postponed. Figure 2(b) presents three
feasible schedules with postponed starting times. All three routes have a
duration of 53.

3.2. Mathematical programming formulation

The TDSP-IR can be modeled as a MILP using the variables presented
in Table 2. The set of constraints is then written as follows:

Hj ≥ Hi + tij + wi + xiB, ∀ (i, j) ∈ AR (1)

ei ≤ Hi ≤ li, ∀ i ∈ V (2)

Hu− + wu− ≤ Hu+ , ∀ (u−, u+) ∈ AP (3)

Dj ≥ Di + tij − xiMdrive, ∀ (i, j) ∈ AR (4)

Dj ≥ tij , ∀ (i, j) ∈ A (5)

Wj ≥Wi + tij + wj − xiMwork, ∀ (i, j) ∈ AR (6)

Wj ≥ tij + wj , ∀ (i, j) ∈ AR (7)

0 ≤ Di ≤Mdrive, ∀ i ∈ V (8)

0 ≤Wi ≤Mwork, ∀ i ∈ V (9)

Hdk −Hok ≤Mdur, ∀ ok, dk ∈ VO (10)

xi ∈ {0, 1}, ∀ i ∈ V (11)

Constraints (1) update the start of service variables along a route in
accordance with the travel times, service times and breaks. Time window
compliance for every customer location is ensured by Constraints (2). Con-
straints (3) guarantee that for precedence pairs (u−, u+) ∈ AP , service at
node u− always ends before service at node u+ begins. For continuous driv-
ing and working time, Constraints (4)–(7) update the values according to
the sequence of nodes and are responsible for resetting the corresponding
variables whenever a break takes place. Constraints (8) and (9) ensure com-
pliance with maximum driving and working HOS. Constraints (10) guaran-
tee that the length of a route never exceeds the maximum duration. Finally,
Constraints (11) restrict x variables to assume only binary values.

Computational experiments indicated that the MILP formulation was
too slow for use in iterative algorithms for vehicle routing problems. There-
fore, we turned our attention to the development of a specialized approach
to solve the TDSP-IR.

4. Label propagation algorithm

Based on previous research for the TDSP, we propose a Label Propaga-
tion Algorithm (LPA): an iterative technique that propagates labels, here
representing a set of partial driver schedules, until a valid solution is either
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found or proven not to exist. For the single-route TDSP, all iterations prop-
agate labels from one node to the next within the same route. However, in
the TDSP-IR, iterations propagate information across multiple routes until
all of the routes are scheduled.

This section begins by providing an overview of the algorithm, high-
lighting its main components. A label is then formally defined in Section
4.2. Operations over labels and their enumeration process are detailed in
Sections 4.3 and 4.4, respectively. Section 4.5 describes the feasibility con-
ditions of labels. Section 4.6 presents an example of the LPA’s execution.
Finally, dominance criteria are presented in Section 4.7.

4.1. Algorithm overview

An overview of the LPA is shown in Algorithm 1, which receives as input
a TDSP-IR instance with graph G. The output is a boolean value indicating
whether the instance is feasible with respect to all the TDSP-IR constraints.

Algorithm 1 LPA

Input: TDSP-IR instance with graph G.
Output: Boolean value indicating whether the input instance is feasible.
1: TG ← toposort(G)

2: L0 ← initial label(G)

3: S ← push(S, L0)
4: feasible← false

5: while S 6= ∅ and not feasible do
6: S ← label enumeration(S, TG)
7: if L ∈ S is finished then
8: feasible← true

9: end if
10: end while
11: return feasible

Line 1 generates a topological order TG (Cormen et al., 2009) of the input
graph G. This order transforms the propagation across multiple routes into
a sequential propagation, as though there was only one route. Such an order
is necessary to define the precise sequence of propagations that respects the
interdependent tasks in set AP . In other words, order TG ensures that
whenever a node u+ from a pair (u−, u+) ∈ AP is to be processed, the
corresponding u− has already been processed. Since G is a directed acyclic
graph, it is always possible to obtain a topological order. An example of
this order for the graph in Figure 1 is:

TG = (a−, c−, e, d2, a+, b, d1, f, c+, d3)

Note that origin nodes are not included because they are assumed to be
the starting location for each route. Order TG is fixed and decided in this
step of the algorithm. Procedure toposort may be any valid topological sort
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algorithm, however certain characteristics may improve the performance of
the LPA (see Section 4.4).

Line 2 creates an initial label L0, which defines the beginning of the
propagation. This label is stored in stack S by pushing it to the top (line
3). The main loop spanning lines 5–10 calls the necessary procedure to
propagate labels. Procedure label enumeration generates labels by taking
a label from the top of S, propagating it over multiple iterations and storing
all the newly generated labels back into S. This procedure is fully described
in Section 4.4.

If some label in S reaches the end of the propagation – that is, reaches the
last node in TG – then it means a feasible solution exists (line 7). The variable
feasible is updated to true and the algorithm terminates. However, should
stack S become empty before any label reaches the last node in TG, then
the value of feasible remains false, indicating infeasibility.

4.2. Label definition

A label L stores information for a set of m partial schedules, one for each
route in the TDSP-IR. The variables in Table 2 are stored in each label L
and we denote them by L(Hi),L(Di),L(Wi),L(xi): the earliest start time of
service at node i, the continuous driving time up until node i, the continuous
working time up until node i and whether a break is scheduled immediately
after servicing node i. Recall that nodes are unique and always belong to a
single route.

Labels also store slack values L(Ski), which correspond to the accumu-
lated waiting time from every origin ok,∀k ∈ Φ(i) up to every node i. This is
based on the definition of total waiting time offered by Masson et al. (2013).
Here, Φ(i) denotes all the route indices k for which ok precedes node i in G.
For example, in the graph in Figure 1, Φ(e) = {2} because only o2 precedes
node e. Meanwhile, Φ(b) = {1, 2} because o1 clearly precedes node b, while
the path (o2, a−, a+, b) shows that o2 also precedes b. The slack is necessary
to indicate how much each route in the TDSP-IR can be postponed with-
out affecting any services. The slack is used in the dominance conditions
(Section 4.7) to avoid the removal of labels which contain a feasible solution
with respect to maximum route duration.

Moreover, labels store push values L(Pk). They indicate how much the
start time of service at ok, k = 1, . . . ,m, that is L(Hok), may be postponed
without causing route rk, or any other dependent routes, to become infea-
sible with respect to time windows.

To keep track of the propagation across multiple routes, every label
stores values L(ik), k = 1, . . . ,m denoting the last node scheduled in route
rk. Meanwhile, L(p) denotes the next node to be scheduled for this label
following the order TG. To clarify, consider the topological order of Figure 1:
TG = (a−, c−, e, d2, a+, b, d1, f, c+, d3). A label with L(p) = 3 holds values
L(i1) = o1, L(i2) = c− and L(i3) = o3. Then, TG[L(p)] provides the next
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node to be reached in the propagation of label L in the linear sequence.
Thus, for the example in Figure 1, the next propagation will be from c− to
e in route r2 given that TG[L(p)] = TG[3] = e.

The initial label L0 is defined as:

L0(p) = 1

L0(ik) = ok, k = 1, . . . ,m

L0(Hok) = L0(Dok) = L0(Wok) = 0, k = 1, . . . ,m

L0(Skok) = 0, k = 1, . . . ,m

L0(Pk) = lok , k = 1, . . . ,m

L0(xi) = 0, ∀ i ∈ V

4.3. Propagation operations

A propagation refers to a single move from a node i to j in one route rk.
This one move creates exactly two labels from L. The first, denoted Ldirect,
is a direct trip from i to j. The second, denoted Lbreak, contains a break
after service at node i before continuing on to j. The difference between the
two labels is that Ldirect(xi) = 0 and Lbreak(xi) = 1. All the other values in
these labels are computed according to standard operations that depend on
the value of variable xi.

Equations (12)–(18) describe the propagation operations. Value ẽj is
the earliest start time of service at j. It is ẽj = max{eu+ ,L(Hu−) + wu−} if
j = u+ for (u−, u+) ∈ AP and ẽj = ej otherwise. The first definition is used
to guarantee compliance with the interdependence constraints.

L(ik) = j (12)

L(p) = L(p) + 1 (13)

L(Hj) = max{ẽj ,L(Hi) + wi + L(xi) ·B + tij} (14)

L(Dj) = L(xi) · L(Di) + tij (15)

L(Wj) = L(xi) · (L(Wi) + wi) + tij (16)

Slack values are also propagated from i to j. Due to the interdependen-
cies, slack values propagate from all origins oz, z ∈ Φ(i) which precede node
i (and necessarily node j). Slack value L(Szi) is propagated from i to j by:

L(Szj) = L(Szi) + max{0, ẽj − (L(Hi) + wi + L(xi) ·B + tij)},∀z ∈ Φ(i)
(17)

If j = u+ in a pair (u−, u+) ∈ AP , then we must also consider the slack
from origins that precede the corresponding node u−:

L(Szu+) = min{L(Szu+),L(Szu−) + max{0,L(Hu+)− (L(Hu−) + wu−)}},∀z ∈ Φ(u−)
(18)
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Meanwhile, the push value is updated for each route where the origin
precedes j by:

L(Pz) = min{L(Pz),L(Szj) + lj − L(Hj)},∀z ∈ Φ(j) (19)

One label propagation has time complexity O(m) since it must consider
all z ∈ Φ(j), which can contain at most m elements. The memory con-
sumption of a label depends on both n and m. Variables L(Hi), L(Di),
L(Wi) and L(xi) are stored for every node in G, thus requiring O(n) mem-
ory. Meanwhile L(Pk) requires O(m) memory and L(Ski) requires O(nm)
memory. Hence a label requires O(nm) memory.

4.4. Label enumeration

Algorithm 2 describes the procedure label enumeration used in Al-
gorithm 1 to generate labels, that is, to propagate them iteratively. This
function is the main component of the LPA in terms of enumerating solu-
tions. It begins by taking one label from the top of stack S and pushing it to
queue Q. In line 2, r(i) provides the index of the route to which node i be-
longs: an index k in the range 1, . . . ,m. Index k is used so that Algorithm 2
propagates labels only for node sequences in rk.

Algorithm 2 label enumeration

Input: stack S, topological order TG
Output: updated stack S
1: L′ ← top(S)
2: k ← r(TG[L′(p)])
3: Q ← push(Q, L′)
4: while Q 6= ∅ do
5: L ← front(Q)
6: if r(T [L(p)]) = k then
7: Ldirect, Lbreak ← propagate(L, TG)
8: Q ← push(Q, Ldirect)

9: Q ← push(Q, Lbreak)

10: Q ← apply dominance(Q)
11: else
12: S ← push(S, L)
13: end if
14: end while
15: return S

The main loop of the algorithm (lines 4–14) is repeated so long as there
are labels in Q. In each iteration, a label L is removed from the queue.
Line 6 checks whether the next propagation of L considers the same route
rk as the previous ones. If this is true, then two labels Ldirect and Lbreak are
created from L in accordance with the operations described in Section 4.3.
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Both labels are pushed to the queue (lines 8–9) followed by a dominance
test (explained in Section 4.7) to remove redundant labels from Q (line 10).
However, if a route which differs from rk would be modified in the next
propagation, then label L is added to stack S instead of being propagated
(line 12). Once Q becomes empty, the algorithm terminates and returns S.
Note that a label is only pushed to either Q (lines 8–9) or S (line 12) if
it is feasible (see Section 4.5). An infeasible or dominated label is always
excluded from the propagation.

While Algorithm 1 applies Depth-First Search (DFS) by employing a
stack, Algorithm 2 applies Breadth-First Search (BFS) by employing a
queue. The idea is to benefit from the problem structure, trying to propagate
labels in one route using a BFS (Algorithm 2), which has been observed to
perform better than its DFS-counterpart (Goel, 2010). On the other hand,
our preliminary experiments showed that a DFS strategy performed better
when moving across routes in the propagation by decreasing memory usage
when solving large problem instances. Section 4.7 shows how this DFS-BFS
search strategy reduces the complexity of dominance tests.

The performance of this search strategy is, however, highly dependent
on the structure of the topological order. The order in TG should contain
sequences of nodes belonging to the same route that are as long as possible in
order to benefit from the BFS phase (lines 5–10). Otherwise, if neighboring
nodes in TG always belong to a different route, then the LPA becomes a full
DFS search, which tends to be inefficient for large instances. For this reason,
we describe how to obtain an efficient topological order in Appendix A.

None of the aforementioned measures reduces the theoretical complexity
of the LPA, however. They were simply observed to perform well.

4.5. Feasibility conditions

A label is considered feasible if it respects a number of conditions. Three
of these are Conditions (20)–(22), which must be respected for all route
indices k = 1, . . . ,m considering their last scheduled node L(ik), which we
will refer to as ik for simplicity.

L(Hik) ≤ lik (20)

L(Dik) ≤Mdrive (21)

L(Wik) ≤Mwork (22)

However, these conditions do not guarantee compliance with maximum
route duration. Unfortunately, the presence of interdependencies makes the
computation of route duration nontrivial. To guarantee compliance with
maximum route duration constraints, we associate every label L with a
Simple Temporal Problem (STP, Dechter et al. (1991)). Let us denote the
STP associated with label L as STP(L). A solution to STP(L) provides
valid start times for all drivers in the TDSP-IR instance. If no solution can
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be found, the (partial) schedules in L are infeasible with respect to maximum
route duration.

In the STP, a set of variables represents the moment in time when a
given action takes place. An auxiliary variable is created to represent the
origin of the time horizon t = 0. For simplicity, we will refer to this special
variable as 0. For the TDSP-IR, we associate a variable hi with every node
i ∈ V and variable h0 = 0 with the beginning of the time horizon. Based on
Masson et al. (2014), we define the associated STP(L) as:

hi − hj ≤ −wi − tij − L(xi) ·B, ∀(i, j) ∈ AR (23)

hu− − hu+ ≤ −wu− , ∀(u−, u+) ∈ AP (24)

h0 − hi ≤ −ei, ∀i ∈ V (25)

hi − h0 ≤ li, ∀i ∈ V (26)

hdk − hok ≤Mdur, ∀ok, dk ∈ VO (27)

Due to break scheduling, every label produces a unique STP by means of
Constraint (23). Dechter et al. (1991) showed that every STP can be written
as a distance graph, where vertices are variables and arcs are the constraints
between these variables. Thus, it is possible to solve the problem using
shortest path algorithms that accommodate negative cycles. For example,
the Bellman-Ford algorithm leads to a time complexity of O(n2), where n
is the number of nodes in the TDSP-IR instance. Dechter et al. (1991)
showed other properties of the STP: (i) if there is a negative cycle then the
problem is infeasible and (ii) if there is no negative cycle, then the STP is
called consistent and its shortest paths provide a valid schedule. For the
TDSP-IR, the resulting shortest distances in a consistent STP create valid
starting times for all truck drivers’ routes.

In summary, a label L is feasible if it respects Constraints (20)–(22) and
STP(L) is consistent. This is ensured for every new label in the LPA to
avoid propagating partial solutions which may already be proven infeasible.
However, a complete TDSP-IR solution is only obtained once a label L
reaches the last node in TG, in which case the starting time of service in
each location is set as L(Hi) = hi, ∀i ∈ V .

4.6. An example of the label propagation

The example in Figure 3 illustrates the execution of the algorithm, the
feasibility conditions and the interdependent routes. Suppose values Mdur =
16, Mdrive = 7 and B = 1. For simplicity, working time is ignored. Let us
assume the propagation order of the LPA is TG = (a−, b, d1, a+, c, d2). Figure
4 also depicts the execution of the label propagation using the proposed LPA
by showing the labels relative to the two routes at every iteration.

Breaks at the origin nodes have no effect on the solution, so these are
ignored. The label L0 starting in o1 and o2 (Figure 4(a)) is propagated to a−
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following the order TG, generating one label L which arrives at L(Ha−) = 5
(Figure 4(b)). A break must then be scheduled after a− since a direct trip
from a− to b would exceed the maximum continuous driving time Mdrive.
This results in a single feasible label reaching node b at L(Hb) = 20 (Figure
4(c)). Note the required waiting time enforced by the time window in b.
Then, two labels would reach destination d1, one with a break at a− and
another with an additional break at b (Figure 4(d)). For simplicity, we will
ignore the second label because it has no impact on our analysis. This leads
to a single label L reaching d1 at time L(Hd1) = 21, break L(xa−) = 1, nodes
L(i1) = d1, L(i2) = o2 and position L(p) = 4. Thus far STP(L) remains
consistent because route r1 can be postponed up to L(Ho1) = 5, making its
total duration L(Hd1)− L(Ho1) = 16 = Mdur.

Figure 3: A simple TDSP-IR instance with two routes.

o1 a− b d1

o2 a+ c d2

5 5 1

5 5 1

[20, 30]

[10, 15]

Next, by following the topological order, TG[L(p)] = a+, the propagation
begins in route r2 (Figure 4(e)). At this point in Algorithm 2, label L would
be pushed to S (line 12), returning to Algorithm 1 where a new call to
label enumeration would be made to propagate in r2.

One label reaches a+ with L(Ha+) = 5 (note that this label is simply
the propagation of the label upon d1 in r2). Once again, a break is needed
at a+ for feasibility reasons, resulting in a single label L reaching node c
at L(Hc) = 11 (Figure 4(f)). Although this label might initially appear
feasible, STP(L) is not consistent. This is due to the increase in elapsed
time from a+ to c which restricts the start time of service in route r1 to be
at most L(Ho1) = 4, so that service at c begins within the time window.
However, the duration of r1 then is at least L(Hd1) − L(Ho1) = 17 > Mdur

and thus an infeasible label.
In conclusion, the instance depicted in Figure 3 has no solution, but this

is not immediately obvious given that it depends not only on the interac-
tion between the two routes but also on the breaks that are scheduled in
each route. As the number of nodes, routes and interdependencies increase,
it becomes more challenging to decide the feasibility of an instance, thus
requiring a dedicated solution method such as the proposed LPA.
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Figure 4: How labels propagate across the routes in the graph of Figure 3. The dashed
purple line represents one label and its position with regard to each of the routes after
every propagation.

o1 a− b d1

o2 a+ c d2

(a) The algorithm starts with L0 at the
two origin locations: o1 and o2 respec-
tively in routes r1 and r2.

o1 a− b d1

o2 a+ c d2

(b) By following TG, the first propaga-
tion changes the label position relative
to only one route.

o1 a− b d1

o2 a+ c d2

(c) A new propagation in route r1 again
modifies the label for this route only.
For r2, the label has not been changed
yet.

o1 a− b d1

o2 a+ c d2

(d) Here, the blue line represents the sec-
ond label that would be created in the
propagation (but for simplicity purposes
it will be ignored).

o1 a− b d1

o2 a+ c d2

(e) The propagation in route r2 begins,
following the order TG.

o1 a− b d1

o2 a+ c d2

(f) The propagation reaches node c and
proves the instance infeasible.

4.7. Dominance conditions

A label L dominates another label L′ if Conditions (28)–(34) are satisfied.
A precondition to decide dominance is that both labels must be propagated
up to the same node in TG. In other words, L(p) = L′(p). This implies
L(ik) = L′(ik), k = 1, . . . ,m. For simplicity purposes, throughout the
remainder of this section we will adopt ik to denote the last scheduled node
in route rk for either L or L′. All conditions must simultaneously be true
for all routes rk, k = 1, . . . ,m.

L(Hik) ≤ L′(Hik) (28)

L(Dik) ≤ L′(Dik) (29)
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L(Wik) ≤ L′(Wik) (30)

L(Pk) ≥ L′(Pk) (31)

L(Szik) ≥ L′(Szik), ∀ z ∈ Φ(ik) (32)

L(Hu−) ≤ L′(Hu−), ∀ u− ∈ U−(L) (33)

L(Szu−) ≥ L′(Szu−), ∀ u− ∈ U−(L), z ∈ Φ(u−) (34)

where Φ(i) is the set defined in Section 4.2. Meanwhile, U−(L) is the set
of all u− locations that belong to a precedence pair (u−, u+) ∈ AP for
which u− has been scheduled in the partial solution L, while u+ has not
been scheduled. When considering the example in Figure 3, U−(L0) = ∅
for the initial label, but after propagating to a− it becomes U−(L) = {a−}
and remains like this until a+ is processed, whereupon the set once again
becomes U−(L) = ∅.

Conditions (28)–(31) are similar to the conditions for the TDSP (Goel,
2010). Condition (32) verifies slack with respect to all origins oz, z ∈ Φ(ik)
that precede node ik. This ensures that any postponement of rz’s start time
has at most as much impact on the service time at ik in L as in L′.

Conditions (33) and (34) compare the values of labels at interdependen-
cies which have not been fully scheduled yet. The intuition behind Condition
(33) is that arriving earlier at u− provides a greater degree of freedom to (i)
postpone service at u− without impacting u+ (considering Equation 12) and
(ii) choose a start time for service at u+ without incurring additional waiting
time at u+’s route (considering Equation 13). Meanwhile, Condition (34)
ensures that slack up to the interdependence points in L allow for a greater
degree of freedom than in L′ to postpone a route’s starting time of service
without affecting other routes connected together by these interdependence
points. Conditions (33) and (34) are both used to avoid the removal of fea-
sible solutions such as those illustrated in the examples in Appendices B.1
and B.2.

To improve efficiency, once a route rk has been fully scheduled (L(ik) = dk)
we may drop Conditions (29) and (30) for route rk. This is always true be-
cause Conditions (20)–(22) ensure label L is feasible in terms of working
and driving time for route rk. Since L(ik) = dk, no further propagations
will be performed in rk and so values L(Dik) and L(Wik) will remain fixed.
Thus, it is safe to drop Conditions (29) and (30) from the dominance tests
for route rk.

Then, Conditions (28)–(34) define label dominance. This is formally
stated in Lemma 1.

Lemma 1. Given two labels L and L′ with partial schedules for which Con-
ditions (28)–(34) are valid, then either L produces a feasible solution or
neither L nor L′ can produce a feasible solution.

Proof. Appendix C provides the proof.
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Finally, we will verify the asymptotic time complexity of the dominance
test. Conditions (28)–(31) require a constant number of operations for each
route index k, thus O(m) operations in total. Conditions (32), (33) and (34)
require O(m2), O(|AP |) and O(m|AP |) operations, respectively. Therefore,
a single dominance test has time complexityO(m2+m|AP |). In the proposed
LPA, dominance tests are only applied in Algorithm 2. This allows the
quadratic term O(m2) in Condition (32) to be reduced to O(m) since only
slack values from origins oz which precede nodes in rk are changed in a call
to Algorithm 2. Slack values to any nodes in routes rz, rz 6= rk remain
unchanged for all labels during one procedure call and do not need to be
tested. The complexity of the dominance test reduces to O(m|AP |).

5. Complexity analysis

In this section, we turn our attention towards analyzing the worst-case
time complexity of the LPA. We begin by presenting an analysis for the
general definition of the TDSP-IR in Section 5.1. Then, in Section 5.2, we
show how the complexity of the LPA may be reduced by dropping a single
constraint from the original problem.

5.1. Complexity of the algorithm

For the full time complexity of the LPA, we first note that a topological
sort may be obtained in strictly polynomial time (Cormen et al., 2009).
Since other operations are asymptotically worse, we ignore the complexity
of the sorting throughout the remainder of the analysis.

It is not clear how many labels can be dominated overall, or even in each
single propagation. The presence of multiple interdependencies makes this
analysis nontrivial. Thus, the best bound is the trivial one which considers
the worst case: that no label is dominated and all labels must be considered
while still comparing them all with one another to verify dominance.

There may be O(2n) possible solutions for the TDSP-IR. Every prop-
agation takes O(m) time and an STP consistency check takes O(n2), thus
in total O(2n(m+ n2)). We may have to compare each solution against all
other solutions every iteration to verify dominance, which requires O(22n)
dominance tests. Each dominance test takes O(m|AP |) using the DFS-BFS
propagation scheme, resulting in O(22nm|AP |). Hence, considering all steps,
the asymptotic complexity of the LPA is O(2n(m+ n2) + 4nm|AP |), which
can be simplified to O(4nm|AP |). Since n ≥ |AP | ≥ m − 1, we may also
denote the LPA’s final complexity as O(4nn2).

5.2. Complexity when disregarding maximum route duration

Abandoning compliance with maximum route duration may be interest-
ing for applications where drivers are allowed to work for long shifts. For

19



example, if all routes are performed within a time horizon of H = 13h (Kok
et al., 2011; Goel, 2012) and the maximum duration permitted per route is
Mdur = 13h, then the LPA only needs to decide where to schedule the breaks
in each route to comply with customer time windows and interdependencies.

In this case, setting departure times at origin locations to Hok = 0 is
always feasible. Variables L(Ski) and L(Pk) must be verified in dominance
tests due to the presence of maximum route duration constraints. When
these constraints can be ignored, it is possible to remove Conditions (31),
(32) and (34) from the dominance tests.

The impact of this change cannot be underestimated. Eliminating the
aforementioned conditions enables one to turn each label propagation into
an O(1) time operation. Label dominance is reduced to verifying Conditions
(28)–(30) and (33) with a total complexity of O(m+ |AP |). The structure of
the LPA further reduces this complexity to O(|AP |) (by applying dominance
only in Algorithm 2). Additionally, it is not necessary to verify consistency
with the STP, since no duration exists. The overall complexity is thus
reduced to O(4n|AP |).

6. Computational experiments

Computational experiments are devised to evaluate the scalability of the
LPA. Since there are no TDSP-IR instances available, we generated instances
using an insertion heuristic for the PDPT executed over modified instances
from Sampaio et al. (2020). The modifications are detailed in Appendix
D.1. The resulting TDSP-IR instances had characteristics which lie within
the following ranges: 4 ≤ n ≤ 300, 1 ≤ m ≤ 19 and 0 ≤ |AP | ≤ 34.

In accordance with EU regulations, parameter values are set as follows:
Mdrive = 4h30, Mwork = 6h00,Mdaily = 9h00 and B = 0h45. The time hori-
zon H = 13h is the same across all instances and all routes. To show the
impact of maximum route duration when solving the problem, we ran ex-
periments varying the shift length of the truck drivers so that they were
assigned a short shift of Mdur = 8h21 (respecting the Belgian law specifying
7h36 of work plus a 45-minute break), a medium shift of Mdur = 10h or a
long shift of Mdur = 13h (or no maximum duration).

Results of the LPA are compared against those of the MILP formula-
tion, which was executed without an objective function and seeks only to
generate a feasible schedule. The entire approach was implemented in C++

and compiled using GNU g++ version 7.5 in an Ubuntu 20.04 LTS operating
system. Experiments were carried out on an Intel Xeon E5-2660 at 2.6 GHz
with 160 GB of RAM. The MILP was implemented using the C++ API of
Gurobi 9 with default settings and single-thread mode.

First, we inspect the performance of the algorithms over all instances in
Section 6.1. The results considering only feasible TDSP-IR instances are re-
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ported in Section 6.2. Finally, an analysis of a naive algorithm’s performance
is presented in Section 6.3.

6.1. Performance over all instances

Figure 5 illustrates the execution times in milliseconds (ms) for both the
LPA and the MILP for each shift length. The execution times are the average
per run according to the total number of interdependencies in a TDSP-IR
instance: the cardinality of set AP , which influences many of the asymptotic
operation complexities for the LPA and is directly related to the number of
routes and nodes (see Appendix D.2). Over all PDPT instances, a total of
67 million executions of the LPA and MILP were performed. Appendix D.3
provides detailed results for these experiments.

Figure 5: Average computation times of the LPA and MILP.
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The experiments indicate that the LPA almost always outperforms the
MILP. This is particularly true for instances with |AP | ≤ 25, for which
differences in average computation times significantly favor the LPA. For
instances with |AP | ≥ 25 the execution times present a greater variation for
the LPA, often incurring an increase in average computation times. This is
not surprising, since an increase in the cardinality of set AP is associated
with an increase in the number of nodes or the number of routes in the
TDSP-IR instance.

Additionally, varying the maximum route duration has an impact on
the average execution time. Both the MILP and LPA require more time to
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solve TDSP-IR instances as the maximum duration increases. At first, this
may seem counter-intuitive given that we showed in Section 5.2 that the
worst-case complexity of the LPA reduces when the duration constraints
are dropped. However, the number of feasible positions to schedule breaks
increases with duration, since routes become less temporally constrained.
Similarly, the number of nodes that can feasibly fit into a TDSP-IR in-
stance is larger, further increasing the number of possible break locations
and therefore the difficulty of solving these instances.

In terms of total execution time to solve all 67 million instances, the
LPA required 148 minutes, while the MILP took 2840 minutes – almost
20 times longer than the LPA. This further confirms that if the purpose
of these scheduling algorithms is to iteratively solve multiple instances of
the TDSP-IR in a VRP heuristic similar to (Goel & Vidal, 2013), using
the LPA will provide a major advantage concerning the VRP heuristic’s
observed computation time when compared to using the MILP approach.

Even though we report results for instances with |AP | ≥ 25, we should
consider how realistic instances containing multiple routes connected by 25–
30 interdependent tasks are. This is not only a theoretical challenge, but
one of major practical consequences given that any delay or disruption with
respect to one customer’s service may initiate significant cascading effects
that render all routes infeasible. Indeed, our own preliminary experiments
with real-world data have shown that a Belgian transportation company
rarely has more than six routes connected by |AP | ≤ 10 interdependencies.

In summary, for applications that impose a limit of |AP | ≤ 25 (for prac-
tical reasons), our results show the LPA is a safe choice. However, even
when this limit may not exist the LPA is expected to present better runtime
performance on average than the MILP approach.

6.2. Performance over feasible instances

Some intriguing behavior is encountered when exploring the performance
of the two algorithms for only the feasible TDSP-IR instances. The av-
erage execution time for these instances is shown in Figure 6. The LPA
always requires substantially shorter computation times to prove the fea-
sibility compared to proving the infeasibility of an instance. By contrast,
the MILP demonstrates the opposite behavior. As a result, the execution
time of the LPA exhibits slower growth, while execution times for the MILP
exhibit a more steep growth compared to those in Figure 5. Moreover, the
graphs show that route duration has less of an impact on the performance for
feasible TDSP-IR instances, although some variation can still be observed.
Appendix D.3 provides detailed results for these experiments.

In terms of the total computation time, the LPA solved all feasible
TDSP-IR instances in 56 minutes, while the MILP required 1031 minutes.
Therefore, the LPA remains almost 20 times faster than the MILP.
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The computational effort required by the LPA depends on the number
of propagated labels. Meanwhile, the number of labels that need to be
propagated to prove infeasibility depends not only on the size of the instance,
but also on the topological order. If two nodes which create a conflict are at
the beginning of TG, then infeasibility is detected quickly. However, when
these nodes are located towards the end of TG, the number of propagations
can grow significantly, increasing the computational burden. Indeed, all
instances which require long computation times of the LPA contain hundreds
of nodes and |AP | ≥ 18 interdependencies. Thus, there is a large probability
that conflicts will take many propagations to be detected due to the long
topological order in these instances.

Note that identifying the conflicting nodes and deciding the best topo-
logical order in advance are nontrivial tasks and remain as an open question.
Meanwhile, proving feasibility only requires finding one solution and can be
achieved much faster by the LPA, as demonstrated by Figure 6.

Figure 6: Average execution times of the LPA and MILP for feasible TDSP-IR instances.
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6.3. Comparison to a naive scheduling method

To understand both the importance of considering the interdependen-
cies when scheduling breaks and the TDSP-IR instances’ difficulty, we have
implemented a naive algorithm inspired by Goel (2009). In contrast to the
LPA, which is a multi-label algorithm, the naive approach uses only one
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label and schedules each route independently with breaks as late as possi-
ble. Once a schedule for each route has been generated, feasibility is verified
using the STP described in Section 4.5.

Table 3 shows the percentage of feasible solutions found by the naive
method compared to both the LPA and the MILP (both of which find 100%
of the solutions). The accuracy ratio is based on all feasible instances for
which |AP | ≤ q, for a given value q ≥ 0. The single-route TDSP is encoun-
tered when q = 0, while q ≥ 1 refers strictly to TDSP-IR instances. Results
are grouped according to their maximum duration Mdur as this parameter
has some influence over the degree of difficulty of the instances. Given that
the execution times of the naive algorithm were always below 0.1 ms, we do
not report them in the table.

Table 3: Ratio (%) of feasible solutions found by the scheduling algorithms.

Duration Mdur

Algorithm |AP | 8h21 10h 13h
LPA/MILP all 100.00 100.00 100.00

Naive



= 0 81.59 84.62 86.81
≤ 1 77.67 80.16 82.07
≤ 2 75.21 76.56 78.61
≤ 3 73.31 74.05 75.56
≤ 4 71.61 71.28 73.10
≤ 5 69.98 68.95 70.46
≤ 30 52.06 44.63 39.67

The ratios for the single-route case (|AP | = 0) are similar to those re-
ported by Goel (2010) for routes containing between 6 and 7 customers. The
average number of locations in our instances was 12, but the scheduling was
also arguably simpler by considering only one working day. Therefore, the
results for the single-route case are within the expected ratios, and even in
this simple case the naive approach misses many feasible solutions.

Once instances with one interdependent task are considered (|AP | = 1),
the ratios of the naive method already drop by 4%. Further increases in
the size of AP always decrease the solution ratios of the naive approach.
When accounting for the more complex and large instances (AP ≤ 30), the
ratios drop to no more than 52%, but reach as little as 39% of the feasible
solutions found. These ratios clearly demonstrate how problematic it is to
ignore interdependencies when scheduling the drivers’ HOS.

Additionally, for small sizes of |AP | it is easier for the naive algorithm to
find solutions for longer time horizons due to routes which are less restricted
when it comes to positioning breaks. However, once the size exceeds the
|AP | ≥ 4 threshold, the naive algorithm finds fewer feasible solutions when
the time horizon increases as this is also related to an increase in the number
of nodes and routes requiring the careful scheduling of breaks.
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Finally, the results in Table 3 demonstrate the importance of consider-
ing the interplay between interdependencies and the scheduling of breaks
for truck drivers. If the algorithms described in this paper are to be used
in VRP solvers, it is undesirable to employ feasibility tests that miss 20%
of the feasible solutions (AP = 0), let alone 50% of them. Therefore, it
is worth considering that the LPA presented a good trade-off between ex-
ecution time and feasibility ratio and can thus be used to quickly answer
decision questions regarding TDSP-IR instances for real-world applications.

7. Conclusion and future work

Research concerning the Truck Driver Scheduling Problem had, until
now, mainly focused on the scheduling of independent routes. This sets
limitations for real-world applications since solution techniques for problems
such as the Pickup and Delivery Problem with Transshipments could not
effectively guarantee compliance with hours of service regulations due to the
presence of interdependent routes.

The research reported in this paper has successfully closed this gap by
introducing a Mixed Integer Programming formulation and a Label Propaga-
tion Algorithm capable of scheduling interdependent routes while respecting
a set of EU regulations for truck drivers. One major advantage of the pro-
posed Label Propagation Algorithm is that it can be easily applied to any
vehicle routing solver that addresses minimum difference interdependencies.

Many interesting scientific challenges remain open. An obvious question
relates to the theoretical complexity of the Truck Driver Scheduling Problem
with Interdependent Routes. Is the problem solvable in polynomial time?
Additionally, are there speedup techniques for the search or faster ways to
prove an instance infeasible? Is it possible to quickly solve an optimization
version of the problem? What is the impact of including split breaks, rest
periods and other EU-related regulations?

From a broader perspective, one may consider the impact that hours
of service regulations have on the use of transfer locations and cross-docks
in logistic applications. It should be expected that within a longer time
horizon, it is preferable for routes of limited duration to utilize transfers to
partially serve more requests in order to make the most of otherwise useless
trips. However, this remains an open research topic.

Acknowledgments

This research is part of the KU Leuven Institute for AI (Leuven.AI).
The project received financial support from the Strategic Basic Research
project Data-driven logistics (S007318N) funded by the Research Foundation
Flanders (FWO), and from the Flemish Government under the Artificiële
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APPENDICES

A. Dedicated topological order

This appendix describes the topological sorting algorithm applied in the
toposort function from Algorithm 1. The idea is to benefit from the struc-
ture of the problem to achieve shorter execution times for the LPA, while
having no proven impact on the theoretical worst-case complexity of the
algorithm.

A.1. Impact of topological order

To understand the impact of a specific topological order, consider the
instance with m = 2 routes depicted in Figure 7. Assume that Mdrive = 7,
B = 1 and consider T 1

G = (a, b−, c, e, b+, f, d2, d1). For simplicity, route du-
ration and working times are ignored.

Algorithm 1 starts with initial label L0 and calls Algorithm 2 which in
turn uses the label enumeration function. This function follows T 1

G and
propagates labels in route r1 until node c is reached. The next propagation
(to e) refers to route r2, in which case Algorithm 2 terminates and returns to
Algorithm 1 for the next iteration. Thus, upon scheduling c there are three
non-dominated labels in the expansion – L1, L2 and L3 – which have no
break scheduled, a break after a, and a break after b−, respectively. Table 4
reports the values of these labels. Note that the expansion up to c generated
four labels, but the label with two breaks (after a and b−) is dominated by L3
(and thus removed from the search).

As for the other dominance tests, label L1 cannot dominate any other
label because it requires more driving time. Label L2 has less available slack
and push than the others, but visits c earlier than L3. Finally, label L3
visits c later than any other label, but with the least driving time.

Continuing the propagation, each of the three labels previously expanded
up to c in route r1 are now expanded from L1(i2) = L2(i2) = L3(i2) = o2 un-
til the destination node d2. The propagation generates three non-dominated
labels (break at e, break at b+, and break at both) for each one of the three
labels up to d1 (enumerating the valid combination of breaks in every route).
Note that no break at all is infeasible. Thus, the total number of labels upon
reaching d2 is nine.

Now consider a different topological order, such that d1 is reached before
the propagation in r2 begins, that is, T 2

G = (a, b−, c, d1, e, b+, f, d2). The
same three non-dominated labels are generated up to node c. Expanding
them up to d1 generates a total of six new labels (for each of the three
labels up to c, it either breaks after c or has a direct trip to d1). However,
expanding L1 and L2 without a break after c are both infeasible, thus only
four feasible and consistent labels remain. Let us denote these labels L4

28



(break at c), L5 (break at b−), L6 (break at a and c), and L7 (break at b−
and c). Table 5 reports their values.

Figure 7: Instance to demonstrate the differences incurred by topological order.

o1 a b− c d1

o2 e b+ d2

2 2 1 5

3 4 6

[7, 10]

[0, 6]

Table 4: Three labels in the expansion with T 1
G up to c.

Lab. p i1 i2 Hc Dc P1 S1c

L1 4 c o2 8 5 6 3
L2 4 c o2 8 3 5 2
L3 4 c o2 9 1 6 3

Table 5: Four labels in the expansion with T 2
G up to d1.

Lab. p i1 i2 Hd1 Dd1 P1 S1d1

L4 5 d1 o2 14 1 6 3
L5 5 d1 o2 14 6 6 3
L6 5 d1 o2 14 5 5 2
L7 5 d1 o2 15 5 6 3

Looking closely at dominance tests, we note that label L4 dominates L5,
L6 and L7. Therefore, when the propagation from o2 until d2 begins for route
r2, only one non-dominated label remains (L4). As with the first topological
order, upon reaching d2 three non-dominated schedules were generated per
label that reached, in this case, d1. Since there was only one label at d1, the
total number of labels upon reaching d2 is three. The reduction is therefore
two-thirds when compared to the first topological order.

A.2. Procedure for the dedicated topological order

To obtain a topological order TG, we propose the following procedure.
Associate with each route rk a value δk that contains the total number of
u+ nodes belonging to route rk (recall that by definition u+ belongs to a
pair (u−, u+) ∈ AP ). Furthermore, let |rk| denote the number of locations
in the k-th route and ρk a penalty value, which is initialized with a value of
zero for all routes.

Our procedure begins by sorting routes in ascending order of δk. Ties
are broken by descending order of |rk|. Then, the procedure takes the first
route after sorting, denoted rz (the route with the smallest δz), and adds as
many nodes as possible from this route to the topological order TG. Nodes
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from rz are no longer included either when dz is added to the order (the
route ends) or when a node u+ is reached for which the corresponding u−
has not been added to the order. In the latter case, ρz is increased by
one unit. Whenever a u− node is included in TG, take the route ry of the
corresponding u+ node and decrease the values δy and ρy by one unit. Once
nodes of a route cannot be added to the order, re-sort routes in ascending
order of ρk, then ascending order of δk, and finally descending order of |rk|.
When a destination dk is added to TG, route rk is no longer considered.

In this way, whenever a route rz has no unresolved dependencies (δz = 0)
it is preferred for inclusion in the topological order. By adding as many
nodes of only one route as possible, many routes will be completed one after
the other, thereby avoiding back-and-forth propagations between different
routes. Meanwhile, penalties ρ are used to avoid cases in which a mutual
dependency could cause an infinite loop in the sorting function, such as in
Figure 8.

This example shows the reasoning behind penalty ρk when using the
specific toposort described in the paper. A mutual dependency is depicted
in Figure 8, where δ1 = 1 and δ2 = 1. Sorting these routes has two possible
outcomes. The first case begins with r1, which can add nodes to the order up
to a− (inclusive), reducing δ2 = 0. Re-sorting the routes makes r2 the next
to be processed. Finally, adding all nodes in r2 and then completing r1 ends
the topological order. Alternatively, if r2 is the first route, the procedure can
only add o2 before reaching an unresolved dependency. Re-sorting routes
without penalty ρk does not change anything since no δk value was modified.
If a penalty is included in the sorting and increased once a+ is reached, route
r1 will be preferred after the re-sorting step.

Figure 8: An instance depicting mutual dependencies.

o1 a− b+ d1

o2 a+ b− d2

The proposed sorting is clearly more complex than a simple topological
sorting. However, its computational cost is compensated for by the observed
performance gains. In terms of runtime complexity, the initial sorting of
routes takes O(m logm) with a standard sorting algorithm. In the worst
case, the algorithm may have to re-sort routes after each node insertion,
thus leading to an overall complexity of O(nm logm).

B. Detailed examples

Sections B.1 and B.2 present examples to help justify label dominance
Conditions (33) and (34). The variables used are those listed in Table 2
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unless otherwise stated.

B.1. Example for dominance Condition (33)

To help clarify Condition (33), consider Figure 9. Suppose Mdrive = 15,
Mdur = 30, B = 1, and TG = (a, b, c−, e, d1, f, c+, d2). A break is required
in r1 at some point before c−. When scheduling r1, the algorithm reaches
node e with two labels L1 and L2. For L1(xa) = 1 (break after a), whereas
for L2(xb) = 1 (break after b). The variables for both labels when L1(i1) =
L2(i1) = e are detailed in Table 6.

Figure 9: A TDSP-IR instance highlighting the necessity for Condition (33).

o1 a b c− e d1

o2 f c+ d2

3 2 11 1 1

3 10 9

[0, 8] [10, 20] [28, 40]

[0, 4]

Table 6: Two non-dominated labels at node e for the example in Figure 9

Lab. p i1 i2 He De P1 S1e

L1 4 e o2 28 14 5 10
L2 4 e o2 28 12 5 10

All variables are identical, except for De. A break after b appears to
be the best schedule since it serves e at the same time for both L1 and L2
and keeps the same P1 and S1e values, but with less driving time. Without
further investigation, one could simply say that if L1 is feasible, then L2
must also be feasible, and it is therefore only necessary to propagate L2.

However, let us consider what happens when propagation continues until
the end of TG. Normally, the propagation from e to d1 would generate
two labels for each label upon e, making for a total of 4 labels. Since it
is unnecessary to schedule a break after e, we ignore the labels for which
xe = 1 and consider only labels L1 and L2 with a direct trip from e to d1.
After that, further propagations continue in r2.

A break is required after c+ to comply with driving regulations Mdrive.
Considering label L1, route r2 will have a waiting time of 7 at c+ because
L1(Hc−) = 21. Meanwhile, for L2 there is a waiting time of 8 units because
L2(Hc−) = 22. Note that including the break after c+ as required, that is
setting L1(xc+) = L2(xc+) = 1 changes the arrival times L1(Hd2) = 31 and
L2(Hd2) = 32. Due to node f , the driver in route r2 cannot depart from o2
later than at time Ho1 = 1 and therefore the duration of route r2 in label L1

31



is feasible, while in L2 it is not. In other words, while STP(L1) is consistent,
STP(L2) has a negative cycle and is thus inconsistent.

The problem in this example is that L1(He) = L2(He). In other words,
the two drivers begin service at node e at the same time, due to the waiting
time at e. The only difference between variables in L1 and L2 is the start
time of service at node c−. However, upon scheduling e, the information
from c− would not be considered anymore in dominance tests unless we
include Condition (33).

B.2. Example for dominance Condition (34)

By way of example, consider Figure 10. Suppose Mdrive = 12, Mdur = 15,
B = 1 and TG = (a−, d1, b, a+, c−, e−, d2, c+, e+, f, d3). It is self-evident that
no break is required in route r1, while a break is required in r2 at either
b, a+, c− or e−. Let L1 be the label with a break scheduled after b, L2 the
label with a break at a+, L3 the label with a break at c−, and L4 the label
with a break at e−. Consider their expansion up to d2. Table 7 reports the
values for each label.

Figure 10: A TDSP-IR instance showing the need for Condition (34).

o1 a− d1

o2 b a+ c− e− d2

o3 c+ e+ f d3

4 10

2 1 1 6 4

4 6 3 1

[6, 20][0, 5] [13, 20]

[0, 16]

Table 7: Labels active upon reaching node d2.

Lab. p i1 i2 i3 Hd2
Dd2

P1 P2 S2c− S2d2
S1d2

L1 7 d1 d2 o3 17 12 9 3 1 2 2
L2 7 d1 d2 o3 17 11 8 3 1 2 1
L3 7 d1 d2 o3 17 10 8 3 2 2 1
L4 7 d1 d2 o3 18 4 9 3 2 3 2

At first, the only valid dominance is L3 over L2, because L3 requires
less driving time up to d2 while the remaining values are the same as for
L2. Thus, L2 is no longer considered. As for the other labels, L3 does not
dominate L1 because it has less slack S1d2 . Label L4 cannot dominate the
other two labels because it arrives later at d2.

Due to time windows, all labels serve requests c− and e− at the same
time: L1(Hc−) = L3(Hc−) = L4(Hc−) = 6 and L(He−)1 = L(He−)3 =
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L(He−)4 = 13. However, if we ignore values Dd2 (because route r2 has been
concluded), there are two new dominances: L1 over L3 and L1 over L4.
Note that L1 over L3 is only valid if Condition (34) is not included in the
dominance test. Moreover, label L4 was only removed by ignoring variable
Dd2 , which would otherwise be propagated unnecessarily until the end.

Consider the expansion of r3, which can only have a break scheduled
after c+ (a break after e+ is infeasible due to the time window at f). After
expanding label L1 (the only one remaining), we discover that STP(L1) is
not consistent, because route r2 needs to be postponed such that service at
L1(Hc−) = 7. However, this would require service at L1(Hf ) = 16 > lf .
Therefore, the conclusion would be that this instance is infeasible.

If we include Condition (34), label L3 is not removed. Indeed, following
the same steps as before shows that L3 is consistent because route r2 is
feasible with L3(Hc−) = 6.

C. Proof of Lemma 1

This Appendix presents the detailed proof that the label dominance Con-
ditions (28)–(34) only remove labels for which another label exists that can
produce a feasible schedule, should one exist. The variables used are those
in the main body of the paper, unless otherwise stated. For simplicity, we
denote the latest scheduled node in any route rk (L(ik) = L′(ik)) as ik.

Proof. Let us define two labels L and L′. As an initial hypothesis,
suppose L dominates L′. Then, we must show that any future modification
in L′ will impact all the m schedules at least as much as L.

Consider any route index k = 1, . . . ,m. Conditions (28)–(31) assure
that: L(Hik) ≤ L′(Hik),L(Dik) ≤ L′(Dik),L(Wik) ≤ L′(Wik), and L(Pk) ≥ L′(Pk).
Suppose L(Hik) = L′(Hik). If L′ can create a feasible schedule for rk, then
L must also create a feasible schedule for this route since it requires fewer
resources (Dik and Wik) to reach the same location (ik) at the same time
(Hik), while having more opportunities to postpone the start time (Pk).
This is also true when L(Hik) < L′(Hik) since it is possible to purposefully
postpone the service at ik in label L such that L(Hik) = L′(Hik).

For Condition (32), we verify that all slack from origins oz, z ∈ Φ(ik)
up to ik are at least as large for L as they are for L′ to ensure compliance
with maximum route duration. This guarantees that any postponement to
the start time of a route in L will impact other routes at least as much as
the same postponement in L′.

Suppose the start time of service at origin oz has to be shifted forward
in time by αz. In other words, the start times at oz, L(Hoz) and L′(Hoz)
will be modified. This shift causes the following variable updates:

L(Hoz)←L(Hoz) + αz
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L′(Hoz)←L′(Hoz) + αz

which implies L(Hik) in route rk will be shifted because origin oz precedes
node ik (z ∈ Φ(ik)). The incurred shift is given by:

L(Hik)←L(Hik) + max{0, αz −min{L(Pz),L(Szik)}}
L′(Hik)←L′(Hik) + max{0, αz −min{L′(Pz),L′(Szik)}}

Define µik = max{0, αz − min{L(Pz),L(Szik)}} as the shift in L(Hik)
(analogously for L′ we define µ′ik). Then, if µik ≤ µ′ik , it follows that
min{L(Pz),L′(Szik)} ≥ min{L′(Pz),L(Szik)}. From the initial hypothesis
that L dominates L′, it is true that L(Pk) ≥ L′(Pk) and that L(Szik) ≥ L′(Szik),
thus the inequality min{L(Pz),L(Szik)} ≥ min{L′(Pz),L′(Szik)} holds. Since
αz is a constant value, the resulting shift in ik must respect the relation
L(Hik) + µik ≤ L′(Hik) + µ′ik . Alternatively, µik > µ′ik would imply that
min{L(Pz),L(Szik)} > min{L′(Pz),L′(Szik)}. Thus, either Condition (31)
or Condition (32) fails and no dominance can be established, contradicting
our initial hypothesis.

Condition (33) similarly checks the impact that a postponement on a
service u− in route rk may have on route rz (rk 6= rz) which has not been
scheduled up to the corresponding u+ (for (u−, u+) ∈ AP ). In other words,
there is no information concerning the slack, push, or service times at u+.
Since service time L(Hu+) may be defined by either its direct predecessors
or by L(Hu−), two distinct scenarios arise when analyzing this condition.

First, suppose that upon evaluating node u+ the algorithm finds the ar-
rival time at u+, here denoted by Eu+ , to be Eu+ < L(Hu−). This means
that there is a waiting time at u+, which is computed by (L(Hu−) + wu−)− Eu+ .
Clearly, for the same value Eu+ , the amount of waiting time increases propor-
tional to L(Hu−). Thus, unnecessary waiting time in route rz is minimized
whenever L(Hu−) is minimized. By contrast, suppose Eu+ > L(Hu−). In
this case, no waiting occurs at node u+ and the proof focuses on the slack
from origin ok to node u+ in route rz. The increase in slack may include the
term L(Hu+) − (L(Hu−) + wu−) (Equation 18), which is maximized when-
ever L(Hu−) is minimum for the same value L(Hu+). However, this is not
yet known when verifying Condition (33).

Hence, to guarantee minimum mandatory waiting time or maximum
slack (both which contribute to ensuring maximum route duration), labels
with minimum service time at u− ∈ U−(L) nodes must be propagated until
the corresponding u+ node is scheduled to generate complete information.
Otherwise, a dominance could fail as per the example illustrated in Appendix
B.1.

Condition (34) complements Condition (33) with the basic idea that if
the labels have everything else equal, then it is necessary to look at the
slack up to any given interdependent task u− for which we do not know
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the start time of service at u+. Essentially, for any origin oz in routes rz
that precede u− (that is, index z ∈ Φ(u−)), the impact of postponing Hoz

on the start time of service at u− should be minimal in order to establish
dominance. Thus, if service in oz, Hoz is postponed by αz, we have the
following expressions:

L(Hu−)←L(Hu−) + max{0, αz −min{L(Pz),L(Szu−}}
L′(Hu−)←L′(Hu−) + max{0, αz −min{L′(Pz),L′(Szu−}}

The proof continues in a similar way to what has been done for the
general slack rule in Condition (32), except that in this case we look at
slack up to all u− ∈ U−(L) nodes, instead of looking at the latest scheduled
node in each route. This clearly leads to a valid requirement that whenever
Condition (34) is respected then, all else being equal, any postponement
in routes preceding nodes u− will impact the respective u+ service in L no
more than in L′.

In conclusion, whenever Conditions (28)–(34) are satisfied for labels L
and L′, either L produces a feasible schedule or neither L nor L′ can produce
a feasible solution. Therefore, if L dominates L′, then L′ can be removed
from the set of labels without incurring any loss of feasible solutions.

D. Supplementary results

This appendix provides additional information for the computational
results, including the specific modifications to standard PDPT instances in
the literature, additional graphs and detailed tables.

D.1. Modifications to Sampaio et al. (2020) instances

The instances for the Pickup and Delivery Problem with Transshipment
proposed by Sampaio et al. (2020) were modified in our experiments to
better fit our experimental settings. The original instances considered a
time horizon of no more than H = 5h, which is short for our purposes.
However, given that the instances were large (100–200 nodes) and readily
available, we opted to modify them instead of creating new instances for the
TDSP-IR experiments.

The modifications were restricted to: time horizon, time windows, and
service times for customer locations. The time horizon of all instances was
increased to H = 13h to fit our scenario. This extension of the time horizon
forced us to also modify the time windows of the requests so that they
could be served throughout the entire period. We employed the following
procedure: given a request (p, d) for a pickup node p and delivery node d,
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associated with time windows [ep, lp] and [ed, ld], we shift the original time
windows by

ep = ep +R

lp = lp +R

ed = ed +R

ld = ld +R

where R is a random integer in the interval [0, 600]. In this way, the requests
of the original instances are spread over the longer time horizon, while still
taking into account their original values.

Service times of 5 minutes were added to every customer location (and
transfer operation) since the original instances assumed a value of zero for
them. In our case, they are directly related to the working hours.

Finally, following Sampaio et al. (2020) we assume that every unit of
travel time equals 1 minute. Thus, all times in the instances are represented
as minutes for simplicity.

D.2. Graphs

Figure 11: Growth of average number of nodes in G with respect to the number of inter-
dependencies in TDSP-IR instances.
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Figure 12: Growth of average number of routes in G with respect to the number of
interdependencies in TDSP-IR instances.
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D.3. Tables

The tables in this appendix present detailed execution times for both
the LPA and the MILP. Tables 8, 9 and 10 report results over all TDSP-IR
instances and for maximum route durations of Mdur = 8h21, Mdur = 10h
and Mdur = 13h, respectively. Similarly, Tables 11, 12 and 13 report re-
sults only over the feasible TDSP-IR instances. For each table, we report
the minimum, average (and standard deviation), and maximum recorded
running times of the scheduling algorithms according to the number of in-
terdependencies |AP |.
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Table 8: Detailed runtimes over all instances for each algorithm (Mdur = 8h21).

LPA MILP

|AP | min avg ± sd max min avg ± sd max
0 0.00 0.01 ± 0.01 1.58 0.15 0.56 ± 0.23 24.73
1 0.00 0.01 ± 0.01 1.56 0.20 0.94 ± 0.33 22.85
2 0.00 0.01 ± 0.02 1.84 0.27 1.23 ± 0.45 28.12
3 0.00 0.01 ± 0.02 0.98 0.34 1.50 ± 0.56 23.50
4 0.00 0.02 ± 0.03 1.94 0.41 1.78 ± 0.68 26.28
5 0.00 0.02 ± 0.04 2.48 0.42 2.05 ± 0.82 27.44
6 0.00 0.02 ± 0.06 3.85 0.50 2.37 ± 0.96 28.90
7 0.00 0.03 ± 0.08 3.91 0.55 2.63 ± 1.05 30.39
8 0.00 0.04 ± 0.10 11.74 0.60 2.84 ± 1.13 26.89
9 0.00 0.04 ± 0.17 18.29 0.62 3.09 ± 1.23 30.69
10 0.00 0.05 ± 0.22 25.62 0.71 3.34 ± 1.30 29.84
11 0.00 0.07 ± 0.36 52.85 0.79 3.55 ± 1.38 32.23
12 0.00 0.07 ± 0.37 75.30 0.85 3.77 ± 1.48 32.41
13 0.00 0.09 ± 0.72 434.82 0.84 3.98 ± 1.56 33.11
14 0.00 0.10 ± 0.67 90.32 0.83 4.13 ± 1.61 33.84
15 0.00 0.11 ± 0.76 318.41 0.89 4.33 ± 1.71 35.41
16 0.00 0.14 ± 0.93 197.39 0.90 4.58 ± 1.81 33.61
17 0.00 0.17 ± 1.18 467.68 1.05 4.75 ± 1.88 33.44
18 0.00 0.18 ± 1.09 124.55 1.14 4.93 ± 1.94 35.74
19 0.00 0.20 ± 1.91 502.41 1.17 5.09 ± 2.00 36.52
20 0.00 0.20 ± 1.45 172.63 1.13 5.20 ± 1.96 34.75
21 0.00 0.33 ± 2.76 325.98 1.20 5.33 ± 2.04 29.73
22 0.00 0.23 ± 1.60 156.20 1.22 5.43 ± 2.09 34.82
23 0.00 0.31 ± 2.44 234.93 1.26 5.63 ± 2.17 36.90
24 0.00 0.37 ± 3.17 303.73 1.41 5.81 ± 2.19 36.99
25 0.00 0.52 ± 7.56 671.35 1.41 6.04 ± 2.42 38.65
26 0.00 0.71 ± 8.71 936.48 1.50 6.07 ± 2.25 36.79
27 0.00 0.88 ± 6.44 218.54 1.53 6.17 ± 2.22 34.52
28 0.00 0.92 ± 9.48 658.02 1.56 6.23 ± 2.30 28.33
29 0.00 1.13 ± 10.65 636.57 1.60 6.20 ± 2.31 28.45
30 0.00 2.76 ± 24.43 1237.14 1.63 6.37 ± 2.60 24.62
31 0.00 3.40 ± 20.44 583.35 1.69 6.29 ± 2.46 17.04
32 0.00 5.04 ± 14.18 49.12 5.35 7.78 ± 3.56 13.98
33 0.00 0.42 ± 1.86 14.59 5.60 6.64 ± 3.00 29.64

Table 9: Detailed runtimes over all instances for each algorithm (Mdur = 10h).

LPA MILP

|AP | min avg ± sd max min avg ± sd max
0 0.00 0.01 ± 0.01 1.55 0.14 0.62 ± 0.38 25.87
1 0.00 0.01 ± 0.02 1.61 0.20 1.10 ± 0.61 25.95
2 0.00 0.02 ± 0.03 1.60 0.27 1.46 ± 0.82 27.88
3 0.00 0.03 ± 0.04 1.05 0.30 1.77 ± 1.00 27.13
4 0.00 0.04 ± 0.05 1.90 0.41 2.22 ± 1.28 29.56
5 0.00 0.05 ± 0.07 2.45 0.46 2.54 ± 1.42 32.47
6 0.00 0.06 ± 0.11 7.14 0.49 2.84 ± 1.62 30.52
7 0.00 0.08 ± 0.16 19.08 0.63 3.23 ± 1.84 66.65
8 0.00 0.11 ± 0.33 39.02 0.65 3.55 ± 2.06 32.71
9 0.00 0.13 ± 0.36 30.58 0.71 3.88 ± 2.24 35.63
10 0.00 0.15 ± 0.46 34.43 0.75 4.07 ± 2.37 33.29
11 0.00 0.17 ± 0.56 74.56 0.78 4.32 ± 2.48 35.45
12 0.00 0.22 ± 1.12 119.38 0.87 4.55 ± 2.59 37.96
13 0.00 0.28 ± 1.50 186.71 0.93 4.84 ± 2.74 35.39
14 0.00 0.30 ± 1.47 141.59 0.81 5.04 ± 2.78 53.60
15 0.00 0.35 ± 1.75 183.17 0.97 5.24 ± 2.90 41.79
16 0.00 0.40 ± 1.92 247.39 1.02 5.46 ± 3.02 52.75
17 0.00 0.47 ± 3.53 701.92 1.08 5.61 ± 3.09 39.60
18 0.00 0.80 ± 10.00 1993.29 1.07 5.84 ± 3.20 41.61
19 0.00 0.94 ± 9.13 1294.59 1.08 5.99 ± 3.24 39.04
20 0.00 0.74 ± 4.75 395.94 1.25 6.22 ± 3.32 38.58
21 0.00 0.97 ± 7.55 563.25 1.34 6.30 ± 3.39 38.63
22 0.00 0.92 ± 6.56 781.82 1.37 6.38 ± 3.38 34.62
23 0.00 1.01 ± 11.32 1514.07 1.39 6.43 ± 3.45 37.91
24 0.00 0.89 ± 6.58 416.41 1.42 6.51 ± 3.45 30.25
25 0.00 1.17 ± 8.17 321.05 1.47 6.64 ± 3.38 39.08
26 0.00 0.95 ± 6.56 263.35 1.52 6.94 ± 3.57 38.46
27 0.00 1.81 ± 10.93 500.18 1.55 7.24 ± 3.54 29.91
28 0.00 1.29 ± 8.84 599.67 1.62 7.40 ± 3.51 35.81
29 0.00 3.06 ± 21.02 814.51 1.71 7.66 ± 3.86 39.63
30 0.00 1.92 ± 12.13 318.29 1.79 7.32 ± 3.31 39.94
31 0.00 6.20 ± 26.94 624.27 1.80 7.22 ± 3.42 17.41
32 0.00 1.92 ± 7.47 196.63 1.92 8.34 ± 4.10 24.21
33 0.00 0.72 ± 3.17 43.17 2.03 7.06 ± 2.77 15.96
34 0.00 1.50 ± 5.18 41.19 2.11 7.51 ± 2.95 16.11
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Table 10: Detailed runtimes over all instances for each algorithm (Mdur = 13h).

LPA MILP

|AP | min avg ± sd max min avg ± sd max
0 0.00 0.01 ± 0.01 1.62 0.15 0.56 ± 0.45 22.43
1 0.00 0.03 ± 0.02 2.01 0.20 1.32 ± 0.79 21.94
2 0.00 0.04 ± 0.03 1.07 0.28 1.82 ± 1.04 27.16
3 0.00 0.06 ± 0.04 3.43 0.37 2.44 ± 1.42 27.52
4 0.00 0.07 ± 0.06 0.68 0.41 2.78 ± 1.64 29.01
5 0.00 0.09 ± 0.08 1.98 0.42 3.22 ± 1.83 28.15
6 0.00 0.13 ± 0.11 2.49 0.45 3.73 ± 2.13 30.74
7 0.00 0.17 ± 0.15 5.60 0.61 4.25 ± 2.40 32.07
8 0.00 0.21 ± 0.21 13.28 0.67 4.68 ± 2.61 32.87
9 0.00 0.25 ± 0.26 18.67 0.78 5.11 ± 2.74 34.03
10 0.00 0.29 ± 0.29 18.55 0.76 5.48 ± 2.93 33.77
11 0.00 0.34 ± 0.38 22.83 0.85 5.83 ± 3.06 35.35
12 0.00 0.41 ± 0.65 28.49 0.96 6.11 ± 3.20 34.06
13 0.00 0.47 ± 0.99 77.45 1.03 6.44 ± 3.28 35.45
14 0.00 0.53 ± 1.17 79.47 0.95 6.69 ± 3.46 36.87
15 0.00 0.62 ± 1.64 84.49 1.07 7.13 ± 3.68 37.36
16 0.00 0.63 ± 1.57 116.94 1.07 7.16 ± 3.63 36.97
17 0.00 0.73 ± 1.83 143.59 1.10 7.45 ± 3.76 37.89
18 0.00 0.93 ± 2.68 90.30 1.15 7.88 ± 3.89 37.93
19 0.00 0.99 ± 2.61 258.38 1.23 8.16 ± 4.01 38.55
20 0.00 1.13 ± 3.25 201.66 1.27 8.50 ± 4.08 38.98
21 0.00 1.30 ± 4.46 258.34 1.28 8.59 ± 4.10 38.18
22 0.00 1.46 ± 6.59 369.20 1.40 8.42 ± 4.13 37.90
23 0.00 2.24 ± 11.12 399.18 1.48 8.66 ± 4.21 38.33
24 0.00 2.96 ± 16.62 414.53 1.49 9.03 ± 4.16 38.50
25 0.00 3.21 ± 21.10 1150.30 1.47 8.73 ± 3.88 34.96
26 0.00 3.55 ± 35.45 1126.43 1.48 8.91 ± 3.74 33.25
27 0.00 3.56 ± 21.23 689.95 1.58 9.06 ± 3.62 19.21
28 0.00 6.17 ± 33.18 526.44 1.83 8.67 ± 3.33 34.24
29 0.00 9.38 ± 59.35 958.84 1.87 8.14 ± 3.70 33.57
30 0.00 7.07 ± 52.51 732.06 1.94 8.17 ± 3.58 15.83
31 0.00 1.05 ± 1.71 12.47 1.91 9.00 ± 3.17 14.83
32 0.79 0.87 ± 0.09 0.99 6.20 11.75 ± 3.80 14.83

Table 11: Detailed runtimes over feasible instances for each algorithm (Mdur = 8h21).

LPA MILP

|AP | min avg ± sd max min avg ± sd max
0 0.01 0.01 ± 0.01 1.58 0.24 0.55 ± 0.40 24.73
1 0.01 0.04 ± 0.01 1.56 0.37 1.54 ± 0.65 21.59
2 0.01 0.06 ± 0.02 1.84 0.42 2.23 ± 0.72 28.12
3 0.02 0.07 ± 0.02 0.93 0.43 2.82 ± 0.78 23.50
4 0.02 0.09 ± 0.03 1.94 0.85 3.41 ± 0.96 26.28
5 0.02 0.12 ± 0.04 2.48 1.10 4.02 ± 1.07 21.64
6 0.04 0.15 ± 0.06 3.85 1.66 4.75 ± 1.19 28.90
7 0.05 0.18 ± 0.06 2.92 2.13 5.30 ± 1.20 30.39
8 0.05 0.21 ± 0.08 3.22 2.43 5.69 ± 1.20 14.82
9 0.07 0.26 ± 0.14 6.56 2.79 6.25 ± 1.34 30.69
10 0.08 0.30 ± 0.20 6.64 2.91 6.60 ± 1.36 29.84
11 0.06 0.36 ± 0.27 10.36 2.98 7.03 ± 1.41 32.23
12 0.09 0.39 ± 0.24 28.03 3.96 7.60 ± 1.38 32.41
13 0.10 0.44 ± 0.36 18.43 3.84 7.99 ± 1.43 33.11
14 0.12 0.47 ± 0.25 6.73 3.53 8.30 ± 1.50 33.84
15 0.15 0.51 ± 0.36 33.08 4.18 8.75 ± 1.59 35.41
16 0.15 0.58 ± 0.32 18.95 4.46 9.16 ± 1.57 33.61
17 0.16 0.64 ± 0.49 33.23 4.94 9.59 ± 1.55 33.44
18 0.16 0.69 ± 0.42 16.22 5.26 9.95 ± 1.57 35.74
19 0.16 0.75 ± 0.91 88.27 5.38 10.17 ± 1.48 36.52
20 0.25 0.78 ± 0.62 33.98 5.57 10.24 ± 1.55 34.75
21 0.29 1.46 ± 4.84 132.71 5.83 10.65 ± 1.56 21.89
22 0.30 1.00 ± 1.68 75.24 6.10 10.97 ± 1.55 34.82
23 0.31 1.09 ± 1.66 78.37 6.61 11.46 ± 1.75 36.90
24 0.37 1.35 ± 2.21 31.36 6.68 11.79 ± 1.86 36.99
25 0.46 1.48 ± 4.63 108.52 7.62 12.63 ± 2.03 38.65
26 0.48 2.27 ± 10.02 144.44 7.89 12.31 ± 1.92 36.79
27 0.52 1.99 ± 5.70 142.83 8.69 11.94 ± 1.67 34.52
28 0.54 1.23 ± 1.40 28.64 8.74 12.04 ± 1.63 19.93
29 0.64 1.92 ± 4.18 62.36 8.70 12.54 ± 1.81 19.38
30 0.64 1.78 ± 3.36 45.40 9.34 13.19 ± 1.82 17.30
31 0.79 0.96 ± 0.10 1.63 10.18 13.17 ± 1.20 17.04
32 0.88 0.95 ± 0.05 1.01 12.07 13.54 ± 0.83 13.98
33 0.97 1.01 ± 0.04 1.08 14.29 14.54 ± 0.19 14.78
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Table 12: Detailed runtimes over feasible instances for each algorithm (Mdur = 10h).

LPA MILP

|AP | min avg ± sd max min avg ± sd max
0 0.01 0.02 ± 0.01 1.55 0.24 0.64 ± 0.55 25.87
1 0.01 0.05 ± 0.02 1.61 0.37 1.95 ± 0.87 25.95
2 0.01 0.07 ± 0.02 1.60 0.40 2.67 ± 0.98 27.88
3 0.02 0.09 ± 0.03 0.97 0.54 3.44 ± 1.09 27.13
4 0.03 0.12 ± 0.04 1.90 0.66 4.24 ± 1.31 29.56
5 0.04 0.15 ± 0.06 2.45 1.03 4.81 ± 1.39 32.47
6 0.05 0.19 ± 0.09 2.12 1.09 5.53 ± 1.50 30.52
7 0.05 0.24 ± 0.11 4.84 1.95 6.29 ± 1.63 30.85
8 0.05 0.30 ± 0.15 6.52 2.09 7.00 ± 1.74 32.71
9 0.05 0.35 ± 0.17 7.97 2.57 7.69 ± 1.79 35.63
10 0.05 0.39 ± 0.18 7.57 2.96 8.16 ± 1.88 33.29
11 0.09 0.45 ± 0.25 17.45 3.28 8.56 ± 1.92 35.45
12 0.11 0.50 ± 0.28 26.89 3.49 9.02 ± 1.93 37.96
13 0.12 0.59 ± 0.50 19.00 3.64 9.49 ± 1.90 35.39
14 0.11 0.62 ± 0.64 75.03 3.52 9.71 ± 1.93 35.82
15 0.12 0.69 ± 0.65 42.45 3.76 10.16 ± 2.02 41.79
16 0.13 0.74 ± 0.73 56.32 4.11 10.39 ± 2.05 40.69
17 0.15 0.82 ± 1.09 47.25 4.33 10.79 ± 2.09 39.60
18 0.24 0.91 ± 2.28 182.04 5.38 11.11 ± 2.18 41.61
19 0.23 1.14 ± 3.65 135.63 4.80 11.23 ± 2.11 39.04
20 0.26 1.01 ± 2.48 225.64 5.38 11.54 ± 2.07 38.58
21 0.28 1.16 ± 2.36 97.66 6.44 11.73 ± 1.89 38.63
22 0.31 1.25 ± 2.73 105.53 6.56 12.07 ± 1.97 34.62
23 0.32 1.21 ± 2.09 71.89 6.54 12.25 ± 2.00 37.91
24 0.35 1.27 ± 2.21 93.63 6.64 12.41 ± 2.15 24.59
25 0.43 1.08 ± 1.07 35.25 7.07 12.42 ± 2.52 39.08
26 0.43 1.39 ± 1.96 34.30 7.99 13.27 ± 2.72 38.46
27 0.46 1.32 ± 3.36 80.57 7.56 13.03 ± 2.08 23.61
28 0.53 1.31 ± 2.51 40.84 8.49 13.44 ± 1.84 35.81
29 0.62 1.38 ± 3.97 84.23 9.50 14.13 ± 2.01 39.63
30 0.68 1.38 ± 2.39 42.78 9.11 13.87 ± 1.61 39.94
31 0.70 1.49 ± 2.66 42.15 9.48 14.50 ± 1.58 17.41
32 0.79 1.80 ± 4.92 57.72 12.02 15.59 ± 1.34 24.21
33 0.87 1.31 ± 2.14 16.15 12.16 14.03 ± 0.65 15.96
34 0.88 1.16 ± 1.48 15.84 12.59 14.13 ± 0.83 16.11

Table 13: Detailed runtimes over feasible instances for each algorithm (Mdur = 13h).

LPA MILP

|AP | min avg ± sd max min avg ± sd max
0 0.00 0.01 ± 0.01 1.62 0.15 0.56 ± 0.45 22.43
1 0.00 0.03 ± 0.02 2.01 0.20 1.32 ± 0.79 21.94
2 0.00 0.04 ± 0.03 1.07 0.28 1.82 ± 1.04 27.16
3 0.00 0.06 ± 0.04 3.43 0.37 2.44 ± 1.42 27.52
4 0.00 0.07 ± 0.06 0.68 0.41 2.78 ± 1.64 29.01
5 0.00 0.09 ± 0.08 1.98 0.42 3.22 ± 1.83 28.15
6 0.00 0.13 ± 0.11 2.49 0.45 3.73 ± 2.13 30.74
7 0.00 0.17 ± 0.15 5.60 0.61 4.25 ± 2.40 32.07
8 0.00 0.21 ± 0.21 13.28 0.67 4.68 ± 2.61 32.87
9 0.00 0.25 ± 0.26 18.67 0.78 5.11 ± 2.74 34.03
10 0.00 0.29 ± 0.29 18.55 0.76 5.48 ± 2.93 33.77
11 0.00 0.34 ± 0.38 22.83 0.85 5.83 ± 3.06 35.35
12 0.00 0.41 ± 0.65 28.49 0.96 6.11 ± 3.20 34.06
13 0.00 0.47 ± 0.99 77.45 1.03 6.44 ± 3.28 35.45
14 0.00 0.53 ± 1.17 79.47 0.95 6.69 ± 3.46 36.87
15 0.00 0.62 ± 1.64 84.49 1.07 7.13 ± 3.68 37.36
16 0.00 0.63 ± 1.57 116.94 1.07 7.16 ± 3.63 36.97
17 0.00 0.73 ± 1.83 143.59 1.10 7.45 ± 3.76 37.89
18 0.00 0.93 ± 2.68 90.30 1.15 7.88 ± 3.89 37.93
19 0.00 0.99 ± 2.61 258.38 1.23 8.16 ± 4.01 38.55
20 0.00 1.13 ± 3.25 201.66 1.27 8.50 ± 4.08 38.98
21 0.00 1.30 ± 4.46 258.34 1.28 8.59 ± 4.10 38.18
22 0.00 1.46 ± 6.59 369.20 1.40 8.42 ± 4.13 37.90
23 0.00 2.24 ± 11.12 399.18 1.48 8.66 ± 4.21 38.33
24 0.00 2.96 ± 16.62 414.53 1.49 9.03 ± 4.16 38.50
25 0.00 3.21 ± 21.10 1150.30 1.47 8.73 ± 3.88 34.96
26 0.00 3.55 ± 35.45 1126.43 1.48 8.91 ± 3.74 33.25
27 0.00 3.56 ± 21.23 689.95 1.58 9.06 ± 3.62 19.21
28 0.00 6.17 ± 33.18 526.44 1.83 8.67 ± 3.33 34.24
29 0.00 9.38 ± 59.35 958.84 1.87 8.14 ± 3.70 33.57
30 0.00 7.07 ± 52.51 732.06 1.94 8.17 ± 3.58 15.83
31 0.00 1.05 ± 1.71 12.47 1.91 9.00 ± 3.17 14.83
32 0.79 0.87 ± 0.09 0.99 6.20 11.75 ± 3.80 14.83
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