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Abstract12

Purpose: Robust optimization is a computational expensive process resulting in long13

plan computation times. This issue is especially critical for moving targets as these14

need a large number of uncertainty scenarios to robustly optimize their treatment15

plans. In this study, we propose a novel worst-case robust optimization algorithm,16

called dynamic minimax, that accelerates the conventional minimax optimization. Dy-17

namic minimax optimization aims at speeding up the plan optimization process by18

decreasing the number of evaluated scenarios in the optimization.19

Methods: For a given pool of scenarios (for instance 63 = 7 setup × 3 range × 320

breathing phases), the proposed dynamic minimax algorithm only considers a reduced21

number of candidate-worst scenarios, selected from the full 63 scenario set. These sce-22

narios are updated throughout the optimization by randomly sampling new scenarios23

according to a hidden variable P, called the ‘probability acceptance function’, which24

associates with each scenario the probability of it being selected as the worst case. By25

doing so, the algorithm favors scenarios that are mostly “active”, that is, frequently26

evaluated as the worst case. Additionally, unconsidered scenarios have the possibility27

to be re-considered, later on in the optimization, depending on the convergence towards28

a particular solution.29

The proposed algorithm was implemented in the open-source robust optimizer30

MIROpt and tested for six 4D-IMPT lung tumor patients with various tumor sizes31
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and motions. Treatment plans were evaluated by performing comprehensive robust-32

ness tests (simulating range errors, systematic setup errors and breathing motion) using33

the open-source Monte-Carlo dose engine MCsquare.34

Results: The dynamic minimax algorithm achieved an optimization time gain of 84%,35

on average. The dynamic minimax optimization results in a significantly noisier opti-36

mization process due to the fact that more scenarios are accessed in the optimization.37

However, the increased noise level does not harm the final quality of the plan. In fact,38

the plan quality is similar between dynamic and conventional minimax optimization39

with regards to target coverage and normal tissue sparing: on average, the difference40

in worst-case D95 is 0.2 Gy and the difference in mean lung dose and mean heart dose41

is 0.4 Gy and 0.1 Gy, respectively (evaluated in the nominal scenario).42

Conclusions: The proposed worst-case 4D-robust optimization algorithm achieves a43

significant optimization time gain of 84%, without compromising target coverage or44

normal tissue sparing.45

Keywords— proton therapy, robust optimization, minimax46
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I. Introduction47

The superior dose distributions produced by intensity-modulated proton therapy (IMPT) indicate48

a potential for improved patient outcome as compared to conventional X-ray radiotherapy.1, 2, 349

However, it is of critical importance that the IMPT treatment plan is made sufficiently robust50

in order to prevent an unacceptable deterioration of the treatment at the moment of delivery.51

Successful treatment planning strategies must therefore take into account treatment uncertainties52

such as tumor motion, setup and range errors.4, 5, 6, 7 In proton therapy treatment planning, the53

most effective way of handling these uncertainties is to simulate them during the plan optimization54

process. This approach has led to the development of robust optimization algorithms which provide55

an alternative to more conventional margin-based approaches.8, 9, 10, 1156

In general, the different robust optimization algorithms can be classified into two main groups:57

(1) probabilistic (or stochastic) optimization and (2) worst-case robust optimization.12, 13 Both58

groups aim at covering treatment uncertainties by simulating a discrete set of treatment uncer-59

tainty scenarios (i.e., realizations of specific combinations of treatment errors). However, the algo-60

rithms differ in the way in which the objective function is minimized. Probabilistic optimization61

algorithms minimize the expected value of the objective function. In contrast, in worst-case robust62

optimization, the worst-case scenario (the one with the highest objective function value) is chosen,63

at each iteration, to minimize the objective function.64

In this study, we focus on worst-case robust optimization. Different approaches for worst-case65

robust optimization have been proposed, depending on the way the worst-case scenario is defined.66

For instance, in voxel-wise worst-case optimization, the worst-case scenario is defined by considering67

the worst-case value for each individual voxel, among all scenarios (i.e., high dose in organ-at-risk68

voxels and low dose in the target voxels).8, 9 However, this approach results in a non-physical and69

potentially overly conservative solution.10, 14 For this reason, Fredriksson et. al introduced the70

so-called ‘minimax’ optimization where, for each uncertainty scenario, the objective function is71

computed for all voxels simultaneously.10 Minimax optimization for IMPT treatment plans have72

shown to yield clinically acceptable target coverage, in the presence of treatment uncertainties, for73

a variety of tumor locations.15, 16 The main drawback of both minimax and voxel-wise worst-case74

optimization is their computationally expensive nature, both in terms of the plan computation75

time and memory consumption. This is due to the following two main issues: first, dose-influence76
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matrices must be computed and stored for each treatment uncertainty scenario and second, dose77

distributions must be re-evaluated, at each iteration, for all scenarios defined within the uncertainty78

set. Because the uncertainty sources (such as tumor motion, setup error and range errors) are79

usually handled in a mutually independent way, moving targets are especially resource demanding,80

as their increased number of uncertainty sources amount to a large number of scenarios. This limits81

the potential of minimax optimization as a standard clinical tool and prevents its applicability in82

online-adaptive workflows.1783

An example of an approach that aims at reducing the plan computation time is to reduce the84

number of uncertainty scenarios, with the goal of limiting the number of scenario evaluations during85

optimization. To this end, in a previous study, a planning strategy was proposed that pre-selects86

a reduced set of relevant uncertainty scenarios, resulting in a significant plan computation time87

gain.18 In contrast, in this study, the full pre-defined uncertainty set is maintained, but we propose88

an approximate ‘dynamic’ minimax algorithm that deals with the inherently long optimization89

time of the conventional minimax optimization algorithm. We focus on accelerating minimax90

optimization by considering only a reduced set of scenarios, selected from the full uncertainty set.91

This reduced set is then dynamically updated throughout the optimization process, in order to92

retain only those scenarios that are mostly active in guiding the optimization solution. The present93

study aims to address the feasibility of this dynamic minimax optimization and analyses the time94

gain with respect to conventional minimax. In order to illustrate the proposed method, six lung95

cancer patients with various tumor sizes and motions are used.96

II. Material and Methods97

In this section, first, the conventional minimax optimization algorithm is formalized, followed by98

a detailed presentation of the proposed dynamic minimax optimization algorithm. Afterwards, an99

overview is given of the optimization software and patient data used for the testing and evaluation100

of the respective methods.101

II.. MATERIAL AND METHODS
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II.A. Conventional Minimax Optimization102

By representing S as the pre-defined set of uncertainty scenarios s, conventional minimax opti-103

mization is typically formulated as:104

min
w

max
s
{fobj(d(w, s))} (1)105

s.t.

w ≥ 0

s ∈ S,
106

107

with fobj as the objective function, d the dose distribution and w the optimization variables (i.e.,108

the spot weights) which are constrained to allow only positive solutions. The conventional minimax109

algorithm is characterized by the following three steps performed at each iteration of optimization:110

(1) the dose distribution is computed for all scenarios s in S with the objective function fobj111

evaluated in each of the scenarios, (2) the worst-case scenario is selected as the scenario in which112

the objective function attains its highest value and (3) the spot weights w are updated by minimizing113

the objective function of the current worst-case scenario.114

II.B. Dynamic Minimax Optimization115

The proposed algorithm differs from the conventional minimax optimization algorithm by de-116

composing the pre-defined uncertainty set S into two scenario pools: (1) an ‘active pool’ SA of117

candidate-worst scenarios (the pool size of SA is denoted as NA) and (2) a ‘dead pool’ SD contain-118

ing the leftover scenarios (the number of dead pool scenarios is denoted as ND). Hence, the union119

of both pools is equal to S (SA ∪ SD = S). From this point onward, we denote the active pool120

scenarios and dead pool scenarios as ‘active scenarios’ and ‘dead scenarios’, respectively. The idea121

is to identify the scenarios that are mostly used in guiding the optimization solution and include122

these scenarios into the active pool SA. Subsequently, at each iteration, only the active scenarios123

(s ∈ SA) are considered. Hence, the dynamic minimax algorithm can be re-formulated as follows:124

min
w

max
s
{fobj(d(w, s))}125

s.t.

{
w ≥ 0

s ∈ SA.
126

127

The active scenarios (s ∈ SA) are probabilistically selected, based on an auxiliary variable P , the128

so-called ‘acceptance probability set’ P = {Ps | s ∈ S } which associates with each scenario the129
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probability that it might be evaluated as the worst case.1 P serves a similar role to the acceptance130

probability function commonly found in simulated annealing optimization schedules.19 Because P131

plays a key role in the dynamic minimax algorithm, we explain in the following two paragraphs (1)132

how P is updated over time and (2) how active scenarios are subsequently selected from P .133

II.B.1. Acceptance probability set P134

At each iteration, the acceptance probability P is updated by performing two steps. In the first135

step, the value Ps of the current worst-case scenario (s = sworst) is incremented by a factor α(t):136

Ps(t) = Ps(t− 1) + α(t) if s = sworst, (2)137

followed by a re-normalization of P :138

Ps(t) = Ps(t)×
1

1 + α(t)
∀ s ∈ S, (3)139

with t the iteration number and α(t) a global time-varying parameter. Following simulated anneal-140

ing optimization, α(t) is chosen to decay over time and is defined as α(t) = 1/t. In doing so, P141

gradually reduces its sensitivity to fluctuations in the optimization process (so-called optimization142

noise). In the second step, the values Ps of the current dead scenarios (s ∈ SD) are incremented143

by a factor α(t)/ND:144

Ps(t) = Ps(t− 1) +
α(t)

ND
∀ s ∈ SD(t), (4)145

again followed by a re-normalization of P :146

Ps(t) = Ps(t)×
1

1 + α(t)
∀ s ∈ S. (5)147

Step 2 is performed in order to add the possibility that yet unconsidered (i.e., dead) scenarios may148

become active at a later point in the optimization. In Eq. 4, α(t) is weighted by the size of the149

dead pool, ensuring that a worst-case evaluation (Eq. 2) weights more than its absence from the150

active pool. The re-normalization steps of P (Eqs. 3 and 5) are necessary to maintain at all times,151

a total probability mass of 1 (see Section II.B.2.). Additionally, they serve to effectively reduce the152

values of inactive scenarios (that is, scenarios present in the active pool but not contributing to the153

optimization) so that these can eventually be discarded.154

1It must be noted that this scenario ‘probability’ Ps does not bear a resemblance with the uncertainty
probability of the scenario, typically used in probabilistic optimization.

II.. MATERIAL AND METHODS
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II.B.2. Active pool SA155

Throughout the optimization process, the active pool scenarios are selected by randomly sampling156

(without replacement), NA number of scenarios according to their probabilities specified in P . In157

other words, each scenario can only be drawn once, with the probabilities in P normalized after158

each draw, in order to maintain a probability mass of 1.159

In practice, the active pool is updated at discrete points during the optimization process (in160

our case at an iteration interval of ∆t = 10). At the start, P is initialized by assigning a uniform161

probability distribution with no scenarios left unconsidered (i.e., all scenarios s ∈ S are evaluated).162

After the first active pool update, the active pool size is set to its reduced size and active scenarios163

will be selected using the method described above. Furthermore, because some planning objectives164

(typically the OAR dose constraints) are evaluated in the nominal scenario only, the nominal165

scenario is always included active pool throughout the entire optimization process.166

In general, the dynamic minimax algorithm is characterized by the size of the active pool167

NA, which is a user-defined parameter. In Section III., we will investigate how the choice of NA168

influences the resulting optimization process.169

II.C. Optimization Software170

The proposed dynamic minimax algorithm was implemented in the open-source treatment plan-171

ning system MIROpt, coded in Matlab (MathWorks, Natick, United States).20, 21 MIROpt uses172

the open-source Monte Carlo dose engine MCsquare for its dose calculations (MCsquare has been173

validated for clinical practice from commissioning measurements).22, 23 Dose calculations are per-174

formed with 105 ions per spot on a 2×2×2 mm3 dose grid and the spot weights are optimized175

using a gradient descent algorithm. Constraints on the optimization variable (spot weights w) are176

handled by a simple projection method, that is, negative values of w are projected to the admissible177

solution space by setting their values to zero. In order to compare the optimization times of the dif-178

ferent optimization algorithms, the maximum number of iterations obtained from the conventional179

minimax optimization is subsequently used in the dynamic minimax optimizations.180

A quadratic objective function is used to penalize deviations from the pre-defined treatment181

planning objectives. As would be performed conventionally in clinical practice, only the target182

planning objectives were handled robustly (i.e., evaluated for all considered uncertainty scenarios)183
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whilst the OAR objectives were evaluated in the nominal scenario only. Plan optimization was184

performed on a 256GB RAM system with a 2x8 Core Intel Xeon processor (E5-2667 v3) @3.20185

GHz.186

For the dynamic minimax optimizations, both the objective functions in the ‘approximate’ (=187

proxy) worst-case scenario (i.e., the worst-case scenario evaluated only for the active pool scenarios)188

and the ‘exact’ worst-case scenario (i.e., evaluated for all uncertainty scenarios) will be reported189

in the results Section III. The former is, from this point onward, denoted as the ‘proxy worst-case190

scenario’ and the latter as the ‘exact worst-case scenario’. Generally, in the dynamic minimax191

optimization, the exact worst-case scenario is unavailable as not all uncertainty scenarios are eval-192

uated at each iteration. However, in order to compare the different methods, additional dynamic193

minimax optimizations are performed where all uncertainty scenarios are evaluated, storing the194

objective function in the exact worst-case scenario as well.195

II.D. Robustness Evaluation196

The robustness of all resulting plans was evaluated with MCsquare, by using a comprehensive197

approach in which the dose distribution is recomputed on a set of 250 treatment error evaluation198

scenarios. These evaluation scenarios include effects of systematic setup errors, range errors and199

respiratory motion.24 Setup errors and range errors are sampled from normal distributions with200

a standard deviation of 2 mm and 1.6%,25 respectively, whilst respiratory motion is modeled by201

recomputing the dose on each breathing phase CT and accumulating the dose on the reference (time-202

averaged mid-position (MidP)) CT.26 A 90% confidence interval is generated in the dosimetric space203

by discarding the 10% worst scenarios (based on the target D95) of the above-mentioned 250 error204

scenarios.24 The number of protons is selected in order to reach a statistical uncertainty of 1%.205

For the dosimetric plan evaluations, the target DVH metrics (CTV D95 and CTV D5) are206

calculated in the worst-case evaluation scenario, i.e., the scenario where the lowest target coverage207

is realized (based on CTV D95), within the 90% confidence interval generated using the method208

mentioned above. In the results section (Section III.), this worst-case evaluation scenario will be209

referred to as the ‘tested worst-case scenario’, in order to draw a distinction between the worst-case210

scenarios used throughout the optimization process (i.e., the proxy and exact worst-case scenarios)211

and the worst-case scenario used for the robustness evaluation (i.e., the tested worst-case scenario).212

The CTV bandwidths (BW) at the D95 and D5 dose levels, are calculated within the same 90%213

II.. MATERIAL AND METHODS
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confidence interval. In other words, the BW represents the difference in dose between the tested214

best-case and tested worst-case scenario, at a given dose level. The OAR DVH metrics will be215

calculated in the nominal scenario only, meaning that the dose distribution is recomputed on the216

nominal planning CT with a statistical uncertainty of 1%.217

II.E. Patient Cases218

Six lung tumor patients were chosen to test the proposed optimization algorithm, as their treatment219

planning typically involves a large number of optimization scenarios, causing long plan optimization220

times. Patient data were characterized by a 4D-CT image set, binned in ten breathing phases,221

evenly spaced in time. All patients presented a single tumor volume, delineated on the MidP-222

CT. The main features of the patient cohort are summarized in Table 1. All patients had a223

dose prescription of 60 Gy to the clinical-target-volume (CTV) with target coverage considered224

acceptable if 95% of the CTV received more than 95% of the prescribed dose (= 57 Gy), whilst no225

more than 5% of the CTV received over 105% of the prescribed dose (= 63 Gy), for the worst-case226

scenario.227

All treatment plans used the MidP-CT as the nominal planning CT which was created with228

the open-source platform OpenReggui.26, 27 Treatment plans were optimized using uncertainty229

scenarios that contain setup errors, range errors and respiratory motion. Similar to other studies,230

uncertainty parameters were chosen as combinations of 5 mm setup errors in the three directions231

(left-right, anterior-posterior and superior-inferior), ±3% range error and maximum inhale and232

exhale breathing phases, generating an uncertainty set of 63 scenarios (= 7 setup error scenarios233

× 3 range error scenarios × 3 breathing phases).6, 8, 10, 28 Setup and range errors are modeled by234

rigidly shifting the CT image and uniformly scaling the CT mass densities (obtained from the CT235

image), respectively. All treatment plans were designed using a configuration of three co-planar236

beams, delivered via IMPT with the pencil beam scanning (PBS) technique (see Table 1).237
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Table 1: Patient characteristics.

Patient CTV size Motion Amplitude Tumor position Beam angles

LR AP SI
[cm3] [mm] [mm] [mm] [◦]

P1 152.6 4.2 2.1 3.1 RML 0, 270, 310
P2 107.7 3.1 2.9 3.7 LLL 90,135, 180
P3 41.3 1.4 2.9 0.8 RUL 180, 225, 270
P4 70.3 0.8 1.2 0.5 LUL 90, 135, 180
P5 109.6 2.2 1.8 6.6 RUL 180, 225, 270
P6 249.7 2.1 2.5 10.6 RLL 180, 225, 270

Tumor motion amplitude (in left-right (LR), anterior-posterior (AP) and superior-inferior
(SI) directions). Tumor positions (right-middle lobe (RML), left-lower lobe (LLL), right-
upper lobe (RUL), right-lower lobe (RLL) and left-upper lobe (LUL)).

III. Results238

In this section, the performance of dynamic minimax optimization algorithm is compared to the239

conventional minimax optimization. As mentioned in Section II., the conventional minimax al-240

gorithm evaluates, at each iteration, all 63 scenarios in the uncertainty set. Because the dynamic241

minimax is characterized by the parameter NA, we present the results for two different choices of242

NA, that is, NA = 15 and a more extreme case of NA = 5. The performance of the optimizations will243

be assessed by the achieved time-gain and the resulting plan quality. The plan quality is measured244

first, according to the value of the worst-case objective function value throughout the optimization245

process (so-called optimization curve) and second, from the dosimetric metrics (target coverage,246

robustness and OAR sparing) obtained after performing comprehensive robustness evaluations (see247

Section II.D.).248

III.A. Optimization Data Results249

Table 2 reports the plan optimization times, together with the final (worst-case) objective function250

value f . For the dynamic minimax optimization, the final objective function values fproxy and251

fexact are reported, which represent the objective function evaluated in the proxy worst-case and252

the exact worst-case scenario, respectively (see Section II.C.). Because the conventional minimax253

optimization evaluates, by default, all uncertainty scenarios, its final worst-case objective function254

III.. RESULTS
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value is denoted as fexact in Table 2. Results show that the dynamic minimax algorithm achieved255

an average time gain of 84% and 67%, for the 5 and 15 active pool size optimizations, respectively.256

The final objective function values of the different optimization methods are similar in magnitude257

for all test cases, with only a small difference between fproxy and fexact.258

In Fig. 1 (top and middle panels), the optimization curves of the three optimizations (conven-259

tional minimax, NA = 15 and NA = 5 dynamic minimax) are compared. All optimizations follow260

a similar trend but with the NA = 5 optimization lying below the conventional throughout the261

entire optimization process. The NA = 5 optimization does appear to be significantly the noisiest.262

Fig. 1 (middle) shows that the proxy worst-case optimization curve of the NA = 5 optimization263

deviates slightly from the exact worst-case optimization curve during an early stage but reaches264

similar values near the end of the optimization process.265

Fig. 1 (bottom) shows the number of iterations that a scenario (ordered from 1 to 63) is selected266

as the worst case. Although mostly similar, the conventional minimax optimization accessed the267

least amount of scenarios, in order to reach its final solution. In contrast, the dynamic minimax268

optimizations use a larger number of rarely accessed scenarios with the bigger pool size matching269

closely the conventional minimax optimization.270

Table 2: Plan optimization time, final worst-case objective function values fproxy (evaluated
only for the active pool scenarios) and fexact (evaluated for all scenarios). Plans of each pa-
tient (P1-6) were obtained using the conventional minimax optimization (Ref.) and dynamic
minimax optimization algorithms with pool sizes of NA=5 and NA=15. The average time
reductions (in %) are reported at the bottom.

Optimization time [min] Final fexact Final fproxy

Ref. NA=15 NA=5 Ref. NA=15 NA=5 NA=15 NA=5

P1 513 170 85 1.55 1.45 1.27 1.43 1.08
P2 396 142 72 0.74 0.63 0.69 0.61 0.55
P3 167 47 22 1.96 1.79 2.24 1.78 1.63
P4 219 79 32 2.97 2.57 3.02 2.50 1.71
P5 409 152 83 1.02 0.98 1.07 0.93 0.73
P6 758 213 107 6.0 5.3 4.8 5.3 4.4

∆Avg. -67% -84%
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III.B. Dosimetric Results271

Table 3 and Table 4 show the target and OAR DVH metrics for the obtained treatment plans.272

Target coverage metrics (D95 and D5) are calculated in the tested worst-case scenario whilst the273

OAR metrics are calculated in the nominal scenario only (see Section II.D.). Furthermore, the274

average difference between the value in the reference plan (obtained using conventional minimax275

optimization algorithm) with plans optimized using the dynamic minimax algorithms is shown for276

each metric.277

On average, equal target coverage (worst-case CTV D95) is obtained between the conventional278

minimax and NA = 15 dynamic minimax optimization. The NA = 5 dynamic minimax optimiza-279

tion improved worst-case CTV D95 slightly by 0.2 Gy, on average, with respect to the reference280

plans. OAR dose is similar between all studied plans (average difference of mean lung dose of281

only 0.2 Gy and 0.4 Gy between the conventional minimax and NA = 15 and NA = 5 dynamic282

minimax optimizations, respectively and difference in mean esophagus dose of -0.1 Gy and 0.1 Gy,283

respectively).284

Fig. 2 displays the dose distribution together with the corresponding DVHs for each optimiza-285

tion method. Results indicate similar dose profiles between all plans with isodose lines that nearly286

coincide. This similarity translates to DVHs that have a similar sensitivity to the treatment errors287

(indicated by the CTV BWs in Table 3) and matching OAR DVH curves.288

III.. RESULTS
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Table 3: Target coverage metrics (CTV D95 and D5) and robustness metrics (CTV band-
width (BW) at the D95 and D5 dose level) for plans of all patients (P1-6), obtained using
conventional minimax (Ref.) and dynamic minimax optimization with pool sizes of NA=5
and NA=15. CTV D95 and D5 are computed in the tested worst-case scenario.

CTV

Worst-case D95 [Gy] Worst-case D5 [Gy]

Ref. NA=15 NA=5 Ref. NA=15 NA=5

P1 57.0 56.9 57.3 62.8 62.4 62.4
P2 57.6 57.6 57.3 61.8 61.8 61.7
P3 58.0 57.9 58.5 62.6 62.6 61.9
P4 58.2 58.3 58.6 62.1 62.1 62.4
P5 58.3 58.4 58.5 61.7 61.7 61.6
P6 57.2 57.4 57.2 64.2 63.6 63.6

∆Avg. 0.0 +0.2 -0.2 -0.3

BW at D95 [Gy] BW at D5 [Gy]

Ref. NA=15 NA=5 Ref. NA=15 NA=5

P1 1.9 1.8 1.5 1.1 0.9 1.0
P2 1.1 0.9 0.9 0.9 0.8 0.8
P3 0.6 0.8 0.3 1.1 1.2 1.4
P4 0.6 0.6 0.4 1.0 1.0 1.4
P5 0.6 0.5 0.4 0.6 0.7 0.5
P6 1.6 1.5 1.7 1.6 1.6 1.6

∆Avg. -0.1 -0.2 0.0 +0.1

Table 4: Organ-at-risk DVH metrics (lung, esophagus and heart) for plans of all patients
(P1-6), obtained using conventional minimax (Ref.) and dynamic minimax optimization
with pool sizes of NA=5 and NA=15. Metrics have been computed in the nominal scenario.

Lung Esophagus Heart

V20 [%] Dmean [Gy] Dmean [Gy] V40 [%]

Ref. NA=15 NA=5 Ref. NA=15 NA=5 Ref. NA=15 NA=5 Ref. NA=15 NA=5

P1 26.4 26.5 28.3 13.5 13.6 14.1 2.0 2.0 2.1 3.2 3.3 3.4
P2 26.9 27.2 27.8 13.5 13.6 13.9 5.4 5.5 5.7 3.8 3.9 4.0
P3 13.4 13.4 13.6 7.0 7.0 7.2 4.8 4.8 5.0 0.0 0.0 0.0
P4 19.0 19.1 19.4 9.7 9.8 10.0 2.1 2.1 2.2 0.0 0.0 0.0
P5 21.9 22.1 22.4 10.6 10.8 10.9 7.9 8.0 8.3 1.1 1.2 1.2
P6 30.0 31.6 31.6 16.0 16.6 16.6 20.3 19.7 19.7 3.3 3.4 3.4

∆Avg. +0.4 +0.9 +0.2 +0.4 -0.1 +0.1 +0.1 +0.1
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Figure 1: Comparison of conventional minimax and dynamic minimax optimizations (results
of patient P1 are displayed). The top and middle panels show the progression of the (worst-
case) objective function value throughout the optimization (top: pool size of NA=15 and
middle: pool size of NA=5). For the dynamic minimax optimization, the proxy worst-case
objective function fproxy is displayed in red, whilst the exact worst-case objective function
fexact is displayed in blue. The bottom panel shows the number of iterations (= counts) that
each scenario is evaluated as the worst case. The magnitude of the uncertainties is shown for
the most counted scenarios. The uncertainties are displayed as follows: setup error (x,y,z)
in mm in the left-right x, anterior-posterior y and superior-inferior z directions, range error
and breathing phase (MidP, max inhale or max exhale).

III.. RESULTS
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Figure 2: The left column shows the dose distributions for plans obtained using conventional
minimax optimization and dynamic minimax optimization with pool sizes of NA=5 and
NA=15 for patient P1. In each figure, the CTV is indicated in white. The right column
shows the corresponding DVHs with the CTV-DVH band representing the evaluations in
the considered evaluation scenarios (see Section II.D.).

Last edited February 12, 2020 III.. RESULTS



page 14 Gregory Buti

IV. Discussion289

In minimax optimization, only the current worst-case scenario is used to guide the optimization290

solution. In the meantime, as noted by Fredriksson et. al,14 minimax algorithms tend to neglect291

so-called ‘easy’ scenarios, that is, scenarios where there is little conflict between organ sparing292

and target coverage in the objective function. Hence, a substantial amount of computation time293

and resources are potentially wasted on scenario evaluations that are rarely the worst case. Fig.294

1 (bottom) illustrates this feature of minimax optimization by showing that the optimizer only295

accesses a fraction of the full uncertainty set in order to reach its final solution. This suggests that296

the majority of scenarios produce either comparable dose distributions or produce dose distributions297

where the planning objectives are consistently well respected. Fredriksson argues that disregarding298

‘easy’ scenarios is one of the main disadvantages of the minimax algorithm when comparing it299

to other classes of robust optimization algorithms.14 In fact, it is exactly this drawback that the300

dynamic minimax algorithm attempts to address. By relying on the sparsity of active scenarios in301

the solution space, fewer scenarios are needed whilst still preserving most of the information of the302

full problem. In doing so, the computational cost of an iteration is significantly reduced (in other303

words, the number of scenario evaluations performed at each iteration is reduced), resulting in an304

accelerated optimization process (a time gain of up to 84% is obtained).305

The optimization curves in Section III.A. show that by reducing the size of the active pool306

NA, the optimization noise level increases. Fundamentally, worst-case robust optimization is in-307

herently a noisy optimization process. This is explained by the fact that different optimization308

scenarios are used throughout the optimization as a result of the discontinuous max operator (see309

Eq. 1). Additionally, the projection method (see Section II.C.), to handle constraints on the op-310

timization variables (the spot weights), also adds noise to the optimization. In addition to the311

above-mentioned noise sources, the dynamic minimax algorithm, will add optimization noise by312

regularly changing the possible optimization scenarios throughout the optimization process. This313

effect will be more pronounced for smaller active pool sizes, which change their composition more314

frequently. The additional noise level produced by the dynamic minimax algorithm is exemplified in315

Fig. 1 (bottom). As shown, optimizations with smaller pool sizes will explore an increased number316

of scenarios in the solution space. By increasing the pool size slightly (to NA = 15), the noise is317

reduced to a level comparable in magnitude to the conventional minimax optimization. However,318

as the results of Section III.B. indicate, the increased optimization noise level does not harm the319
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final quality of the treatment plans. In fact, results indicate that a noisy optimization trajectory in320

the solution space might be advantageous in order to further explore and eventually find a better321

solution; this is an approach commonly employed in simulated annealing and stochastic gradient322

descent optimization schedules.323

The dynamic minimax algorithm was tested for 4D-robust optimization of lung tumor cases324

with motion. Moving lung tumor cases typically present difficulties in terms of generating robust325

treatment plans with acceptable plan quality, hence these cases where chosen to test the proposed326

method. The dynamic minimax optimization could be applied to 3D-robust optimization, however,327

the time-gain is expected to be less significant since 3D-robust optimization typically uses less328

uncertainty scenarios for its optimization.329

In order to further validate the optimality of the proposed the pool size, the algorithm should330

be tested for a wider set of patient cases. For instance, in highly complex cases (i.e., large tumor331

motion with considerable conflicts among the planning objectives), it is recommended to employ332

a more conservative approach by using a larger the active pool size. This would guarantee that333

important scenarios are not missed throughout the optimization. Based on the results of the present334

study, by using a pool size of 15, almost equal results are obtained as for the conventional minimax335

whilst still achieving a significant plan optimization time gain of 67%. As a future perspective,336

instead of a fixed pool size, an adaptive pool size could be considered which could identify the337

necessary number of active pool scenarios. By adapting the active pool size over time, such an338

adaptive dynamic minimax algorithm should be able to handle automatically those cases where339

numerous scenarios contribute equally in the optimization.340

It must be noted that this study only focuses on reducing the optimization time and does not341

deal with other computational aspects (such as the memory consumption) of minimax optimization.342

In particular, the computation of the beamlet dose-influence matrices gives a large contribution343

to the overall plan computation time (especially for Monte Carlo-based dose computations). The344

following solutions exist that can reduce the dose computation time and which could potentially be345

used in conjunction with the dynamic minimax optimization: first, the number of beamlet dose-346

influence matrices can be reduced by performing a pre-selection of relevant uncertainty scenarios,18347

and second, a hybrid Monte Carlo-pencil beam dose optimizer can be used to accelerate the plan348

computation time with Monte-Carlo like accuracy.21349
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V. Conclusions350

In minimax optimization, the dose distributions must be evaluated for all uncertainty scenarios351

in order to evaluate their respective objective functions. As a result, the plan optimization time352

linearly scales with the number of pre-defined uncertainty scenarios. Especially for lung tumor353

patients, which need a large number of scenarios to robustly optimize their treatment plans, the354

associated computational burden may cause excessive plan computation times. This issue limits355

the use of robust optimization in the clinical environment.356

In this study, we propose an approximate worst-case robust optimization algorithm that ac-357

celerates minimax optimization. The proposed dynamic minimax algorithm relies on the fact that358

minimax algorithms neglect so-called ‘easy’ scenarios where there is little conflict among the plan-359

ning objectives. Therefore, instead of evaluating all scenarios in the pre-defined uncertainty set,360

only a reduced set of active pool scenarios is considered. Following stochastic annealing optimiza-361

tion schedules, these active scenarios are updated according to a variable called the ‘acceptance362

probability set’. This variable expresses the probability that a scenario might be evaluated as the363

worst case. By doing so, only the scenarios that are contributing most to the optimization, at that364

moment, will be retained and accessible in order to guide the optimization solution. The proposed365

method was applied to 4D-robust minimax optimization and tested for six moving lung tumor366

cases. Results show that, on average, an optimization time gain of up to 84% is achieved without367

compromising either target robustness or normal tissue sparing.368
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