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Motivation



3

Introduction
From cages to human environments

KUKA, https://www.kuka.com/en-ch/industries/automotive

Traditional view on robotics:

• Robots are locked up in cages

• No humans around

• Highly conditioned environment
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Introduction
From cages to human environments

New application areas where the traditional view isn’t valid any more:

• Robots working in a human-like environment or with natural products: 

→ variability and uncertainty in the environment or products

• Human collaborators close by

• Humans physically interacting with robots (jointly performing tasks)



1. Dealing with variations in the process

- Production line is less conditioned

- Product variations (natural, processes such as molding)

- Human interference/interaction

➔More complex and involved robot programming

2. Decreased development cost needed

- Smaller production series

- Rapid deployment
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Introduction
Seemingly conflicting goals when creating “robot apps”



Approach



Sense Plan Act
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Approach
Traditional : Sense-Plan-Act

Trajectories
Models of 

the environment

• Requires extensive calibration

• Once planned, there is no 

flexibility during execution.

(or at least, much coarser)
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Approach
Skill-based

• Plan in terms of “skills” or 

behaviors

• Reactive

• Avoid calibration issues:

• Local sensor measurements 

instead of global

• Often more robust

• Variable environments with 

human intervention/interaction

Plan SenseAct

Behaviors

Skills
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Example of skill-based approach
Force/Torque-based Assembly

Plan SenseAct



• Cheese decrusting application

• A local measurement of

3 distances :

(using laser distance sens.)

• High speed – high accuracy –

avoiding calibration errors
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Example of skill-based approach
Cheese decrusting

Accurate layer of

crust removed

Echord++ 3DSSC : KULeuven / FRS-Flexible Robotic Systems 

Plan SenseAct
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A constraint-based approach
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A constraint-based approach

First order
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A constraint-based approach

First order
𝑑𝑒
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A constraint-based approach
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eTaSL



Constraint-based task specification and control framework to describe these reactive
skills (behaviors)

• at each sample time (100 Hz→250 Hz), it optimizes the control velocity
of each robot joint subject to a number of constraints

• instantaneous optimization: we do not (yet) look ahead in time

• only considers kinematical model of the robot

→ we can still achieve high performance!

More information: https://etasl.pages.mech.kuleuven.be/ and E. Aertbeliën and J. De Schutter, Etasl/eTC: A 
Constraint-Based Task Specification Language and Robot Controller Using Expression Graphs, IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 2014
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eTaSL
expression graph based Task Specification Language

https://etasl.pages.mech.kuleuven.be/
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1126257&context=L&vid=Lirias&lang=en_US&tab=default_tab


• Constraints are described using expression graphs:

• Symbolic, graph-structure

• Not only scalar expressions

• Robot is described as a function of its joint variables

• Trajectory as a function of time

• Expressions can relate to sensor-input

• Simple language (LUA-based) where you can write down such 
expressions

• Controller is automatically generated:

• Evaluation

• Introspection

• Automatic differentiation for Jacobians (avoiding representational 
singularities)

19

eTaSL
expression graph based Task Specification Language
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Variables & Feature variables

(*)  J. De Schutter et al., “Constraint-based task specification and estimation for sensor-based robot systems in the presence 

of geometric uncertainty,” The Int. Journal of Robotics Research, vol. 26, no. 5, pp. 433–455, 2007.

iTaSC (*)
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Variables & Feature variables

(*)  J. De Schutter et al., “Constraint-based task specification and estimation for sensor-based robot systems in the presence 

of geometric uncertainty,” The Int. Journal of Robotics Research, vol. 26, no. 5, pp. 433–455, 2007.

iTaSC (*) eTaSL



Constraints can be related to:

• the task: desired trajectory, speed, contact force, distance, etc.

• the robot platform and its limitations in 

terms of reachable/allowable joint positions, 

velocities

(specified using URDF)

• the environment: e.g. avoiding collisions

and self collisions

• interaction with humans (physcial or cognitive)
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eTaSL
expression graph based Task Specification Language

*

20 dof8 dof7 dof 33 dof 100 dof

*



• constraints can be conflicting:

• priorities

• soft constraints & weights

• and can be equality or inequality constraints (e.g. collision constraint)

• explicit time

• task function expressions within the constraints:

• a trajectory can be specified a mix of trajectories with time-varying 
weights

• eTaSL perfectly deals with tracking errors
(automatically generates feedforward control term!)
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eTaSL
expression graph based Task Specification Language



Geometric constraints
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Geometric constraints

Tools to model geometric constraints:

• Facilitated by the use of feature 

variables

• Distances between convex objects using

the GJK-algorithm (*)

• Library for typical geometrical distances

and angles.

(*) Gilbert, E. G., Johnson, D. W., & Keerthi, S. S. (1988). A fast procedure for computing the distance between complex objects in three-

dimensional space. IEEE Journal on Robotics and Automation, 4(2), 193-203.
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Flexible trajectories
- Linear combination of basis functions 𝐵𝑖

(in function of feature variabels 𝑓𝑖
and progress 𝑠)

𝑇 𝑠, 𝑓1, … , 𝑓𝑛 = 𝑇𝑚𝑒𝑎𝑛 𝑠 +෍

𝑖

𝑓𝑖 𝐵𝑖(𝑠)

- Basis functions can be 

- Pre-defined ( Gaussians, B-splines,…)

- Generated by programming-by-

demonstration

- Soft constraints on the feature variables
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Flexible trajectories
- Linear combination of basis functions 𝐵𝑖

(in function of feature variabels 𝑓𝑖
and progress 𝑠)

𝑇 𝑠, 𝑓1, … , 𝑓𝑛 = 𝑇𝑚𝑒𝑎𝑛 𝑠 +෍

𝑖

𝑓𝑖 𝐵𝑖(𝑠)

- The progress 𝑠 is modeled separately and

is related to time via a soft position or

velocity constraint
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Reactively modeling grasp and contact

C. Vergara, S. Iregui et al. Generating Reactive Approach Motions Towards Allowable Manifolds

using Generalized Trajectories from Demonstrations, IROS 2020
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Reactively modeling grasp and contact
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• Impose constraints “in the future”

• (local) collisions can be 

implemented by adding virtual 

“tools“

• reactive

Flexible trajectories & grasp modeling



Sensor related constraints



A generalized way to include sensors using a admittance control strategy:

• model of the sensor measurement

• sensor measurement

• target value
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Sensor-related constraints
Admittance constraints
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Sensor-related constraints
Force/Torque for assembly



37

Sensor-related constraints
distance sensors



Added value of eTaSL:

• generating robot trajectory based on 
model built from sensor readings 

• trajectory control (feedback + 
feedforward)

• automatic pitch control to keep laser 
sensor measurements within range

• compensation of time delays in control 
loop

• automatic speed reduction to keep 
joint velocities within limits

• smooth and fast transition between
approach/retract and cutting trajectory
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Combining constraints

Echord++ 3DSSC : KULeuven / FRS-Flexible Robotic Systems 



• Impedance =  conflicting position

and force constraint

* Need not necessarily the same reference point!

* Often used in shared control

39

Sensor-related constraints
Conflicting admittance and position constraints

F

x



• Skin with 400 cells 

that measure both 

distance and force.

• Defined behavior 

along a trajectory 

and away from 

that trajectory.

• Trajectory adapts 

itself to the 

information from 

vision.

40

Sensor-related constraints
Skin 
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Sensor-related constraints
Force/Torque for contour following

Movie by Flexible Robotic systems (FRS, https://www.frsrobotics.com/ 

No pre-programmed positions,

the robot is automatically 

adapting to the contour.

A constraint formulation similar to 

the task frame formalism (*)

Can still be combined with other

Non-task frame related constraints

H. Bruyninckx and J. De Schutter, 

"Specification of force-controlled actions in the 

"task frame formalism"-a synthesis," in IEEE 

Transactions on Robotics and Automation, vol. 

12, no. 4, pp. 581-589, 1996



Modeling human motion



Why?

• For use in programming-by-demonstration:

 For rapid deployment

• To anticipate and predict human motion in the neighborhood of the robot

• For shared control

44

Modeling human motion

a modeling approach for reactive control and constraints.



45

Demonstration of tasks

Kinesthetic teaching

- ensure feasibility

- less calibration efforts needed

- use previous demonstrations to facilitate

- more disturbance forces 

Passive observation:

• feasibility is not guaranteed

• less disturbed demonstrations

Demonstrate task 

segments

while recording:

- poses

- wrenches



• we learn a trajectory and its allowable 

variations from demonstrations using a 

generative probabilistic approach: 

Probabilistic Principal Component Analysis  

(PPCA)

• combine with (model-based) constraint-based 

task specification

• to support the demonstration

• to add constraints for the task execution
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Programming by demonstration
and combining this with constraint-based task specification

small variations

larger variations

correlation of the variations along the path
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PbD for the assembly of solenoids: demonstrations
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PbD for the assembly of solenoids: guided demonstrations
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PbD for the assembly of solenoids : execution
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Tasks with an approach & contact-phase:

bier opening
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Tasks with an approach & contact phase:

contour following
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Tasks with an approach & contact phase:

contour following
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Tasks with an approach & contact phase:

contour following
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Tasks with an approach & contact phase:

contour following



Conclusion



1. Dealing with variations in the process

- Production line is less conditioned

- Product variations (natural, processes such as molding)

- Human interference/interaction

➔More complex and involved robot programming

2. Decreased development cost needed

- Smaller production series

- Rapid deployment
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Conclusion
Seemingly conflicting goals when creating “robot apps”
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KU Leuven, Factory-in-a-day, EU-FP7 2013-2017
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KU Leuven, Factory-in-a-day, EU-FP7 2013-2017
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KU Leuven, Factory-in-a-day, EU-FP7 2013-2017
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KU Leuven, Factory-in-a-day, EU-FP7 2013-2017



Available software
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eTaSL Software

The separation of specification and controller 

implementation

Specifications can be manipulated and assembled 

(even on-the fly if needed)

Layered approach:

• eTaSL is a library.

• a Python driver for quick prototyping

• ROS/OROCOS-RTT/eTaSL for more complete 

robot applications.

Libraries for all different types of constraints

https://etasl.pages.gitlab.kuleuven.be/

https://etasl.pages.gitlab.kuleuven.be/


• https://etasl.pages.gitlab.kuleuven.be/
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eTaSL Software

https://etasl.pages.gitlab.kuleuven.be/


https://etasl.pages.gitlab.kuleuven.be/

• Two types of tutorials available:

• 1. Python notebooks (via Binder )
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eTaSL Software

https://etasl.pages.gitlab.kuleuven.be/
https://mybinder.org/


https://etasl.pages.gitlab.kuleuven.be/

• Two types of tutorials available:

• 2. Full robot application example

and template using 

ROS/Orocos/eTaSL

(Directly supporting:  simulation, UR10,

Kinova Gen 3, Franka Emika-Panda, KUKA-iiwa)
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eTaSL Software

https://etasl.pages.gitlab.kuleuven.be/


https://etasl.pages.gitlab.kuleuven.be/

• Show-case of examples:

https://etasl.pages.gitlab.kuleuven.be/showcase.html
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eTaSL Software

https://etasl.pages.gitlab.kuleuven.be/
https://etasl.pages.gitlab.kuleuven.be/showcase.html


69

Erwin Aertbeliën

Cristian Vergara

Yudha Pane

Joris De Schutter

Santiago Iregui

Acknowledgements

A list of publications related to this presentation:

https://etasl.pages.gitlab.kuleuven.be/pub.html

https://etasl.pages.gitlab.kuleuven.be/pub.html


70

Acknowledgements

The Robotics research group of KU Leuven is a 

core lab of Flanders Make

EU-FP7 Robohow.cog

EU-FP7 Factory-in-a-day

EU-FP7 Echord++ - 3D Smart Sense and 

Control

Flanders Make project

FINROP

Flanders Make project

MULTI-ROB

Flanders Make project

PROUD


