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The Role of FLOWERING LOCUS C 
Relatives in Cereals
Alice Kennedy  and Koen Geuten *

Department of Biology, KU Leuven, Leuven, Belgium

FLOWERING LOCUS C (FLC) is one of the best characterized genes in plant research 
and is integral to vernalization-dependent flowering time regulation. Yet, despite the 
abundance of information on this gene and its relatives in Arabidopsis thaliana, the role 
FLC genes play in other species, in particular cereal crops and temperate grasses, remains 
elusive. This has been due in part to the comparative reduced availability of bioinformatic 
and mutant resources in cereals but also on the dominant effect in cereals of the 
VERNALIZATION (VRN) genes on the developmental process most associated with FLC 
in Arabidopsis. The strong effect of the VRN genes has led researchers to believe that 
the entire process of vernalization must have evolved separately in Arabidopsis and cereals. 
Yet, since the confirmation of the existence of FLC-like genes in monocots, new light has 
been shed on the roles these genes play in both vernalization and other mechanisms to 
fine tune development in response to specific environmental conditions. Comparisons of 
FLC gene function and their genetic and epigenetic regulation can now be made between 
Arabidopsis and cereals and how they overlap and diversify is coming into focus. With 
the advancement of genome editing techniques, further study on these genes is becoming 
increasingly easier, enabling us to investigate just how essential FLC-like genes are to 
modulating flowering time behavior in cereals.
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INTRODUCTION

FLOWERING LOCUS C (FLC) genes are a clade of MADS-box transcription factors in plants 
and are major regulators in many aspects of plant development. They are mostly associated 
with vernalization-regulated flowering but also have important roles in seed dormancy (Chen 
et  al., 2014; Chen and Penfield, 2018), ambient temperature regulated development 
(Balasubramanian et  al., 2006; Lee et  al., 2013), germination (Chiang et  al., 2009), as well 
as being associated with other processes like bud dormancy, circadian rhythm, water use 
efficiency, and indirect defense against herbivory (McKay et  al., 2003; Edwards et  al., 2006; 
Kumar et  al., 2016; Mohammadin et  al., 2017). In fact, there are over 500 FLC binding 
sites in the Arabidopsis thaliana (henceforth Arabidopsis) genome indicating that FLC is 
involved in much more than vernalization (Deng et  al., 2011). In flowering time regulation, 
FLC acts as a repressor protein and acts mainly by repressing the activation of key floral 
promoting genes such as FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION 
OF CONSTANS 1 (SOC1; Searle et  al., 2006; Deng et  al., 2011).
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The existence of FLC-like genes in cereals remained elusive 
for many years while the wealth of information on Arabidopsis 
FLC continued to accumulate. Many believed that FLC was 
restricted to eudicots and that monocot plants evolved separate 
mechanisms to regulate development and flowering time. 
However, a turning point came when it was concretely established 
through genome synteny analysis and phylogenetic 
reconstructions that FLC relatives did indeed exist in cereals 
(Ruelens et  al., 2013). In this pivotal publication, it was shown 
that a clade of genes within monocots were phylogenetically 
related to the FLC genes of Arabidopsis. Within this monocot 
FLC clade, there are two subclades: the OsMADS51 and 
OsMADS37 subclades, so called after the representation of 
these rice genes within each clade. The OsMADS51 subclade 
is subsequently divided into two groups: the ODDSOC1-like 
and ODDSOC2-like groups. The name “ODDSOC” came from 
their weak similarity to the flowering time gene SOC1 (Greenup 
et  al., 2010). Members of the ODDSOC2 clade of genes are 
the most characterized out of all FLC-like genes in monocots 
thus far. The details of these relationships and their relationship 
to the Arabidopsis FLC genes can be  seen in Figure  1. It must 
be noted that although the Arabidopsis and monocot FLC clades 
are related, it is likely that the ancestral gene function was 
partitioned differently within the groups. Therefore, direct 
comparisons of individual members across groups are not 
completely accurate.

Furthermore, FLC-like genes in cereals are Type II MADS-
domain proteins despite having previously been annotated as 
Type I  MADS-domain proteins, and have the typical MIKC 
protein structure (Zhao et  al., 2006; Schilling et  al., 2020).

Due to the advancement of genome sequencing technology, 
genetic mapping and genome editing methods, the nature of 
the function of FLC-like genes in cereals is coming into focus. 
Furthermore, avenues are now opening to further advance our 
knowledge on these genes which may reveal diversification of 
their function from their Arabidopsis homologs. This review 
aims to highlight the key findings over the last two decades of 
the role FLC relatives play in cereals and how progress made 
in biotechnology will further our understanding of the molecular 
control of plant development, perhaps leading us to utilize these 
genes as biotechnological tools for crop improvement.

EVIDENCE FOR CONSERVED 
FUNCTION: WHAT DO WE  ALREADY 
KNOW?

FLCs Are Involved in Vernalization in 
Grasses
In cereals, the main determinants of vernalization-regulated 
flowering are the VERNALIZATION (VRN) genes VRN1, 
VRN2, and VRN3 (Yan et  al., 2003, 2004, 2006). Generally, 
vernalization results in the upregulation of the floral promoter 
VRN1 which downregulates the floral repressor VRN2, 
alleviating its repressive effect on the flowering promoter 
VRN3, an orthologue of FT (reviewed in Trevaskis et al., 2007; 

Distelfeld et al., 2009; Ream et al., 2012). VRN3 then positively 
regulates VRN1 expression resulting in a positive feedback 
loop which induces flowering. This feedback loop in general 
determines the flowering habit of cereals with mutations in 
any of these proteins leading to altered spring or winter 
growth habit (Yan et  al., 2004, 2006; Fu et  al., 2005). Yet, 
variation in vernalization response can still remain in cultivars 
which have shared alleles of these genes (Rizza et  al., 2016), 
opening up the potential for other genes to have functional 
significance in this process. The identification of FLC-like 
genes in cereal research remained elusive for many years 
leading to the conclusion that the vernalization pathway of 
Arabidopsis and cereals evolved completely separately (Yan 
et  al., 2004; Winfield et  al., 2009; Greenup et  al., 2010). 
Incorporating the finding that an FLC clade exists in monocots, 
it appears more likely that the ancestral species of dicots 
and monocots contained both FLC and AP1/VRN1-like genes, 
and each group was differentially recruited during the evolution 
of vernalization responsiveness. As AP1 retains a role in 
regulating flowering in Arabidopsis, so too do FLC homologs 
play a role in similar processes in cereals. This section aims 
to highlight these roles FLC-like genes play in the vernalization 
process and flowering time regulation in crop species.

FLOWERING LOCUS C homologs were described as being 
involved in vernalization in cereals almost 20  years ago where 
Trevaskis et  al. (2003) described TaMX23, a MADS-box gene 
repressed by vernalization in winter wheats. TaMX23 increases 
in abundance in early vegetative development and the effect 
of vernalization on TaMX23 expression depended on whether 
the cultivar was a spring or winter variety (Trevaskis et  al., 
2003). TaMX23 shares homology with both TaODDSOC2 (TaOS2; 
also known as TaAGL33) and TaAGL42 (Winfield et  al., 2009). 
Although it is more similar in sequence to TaAGL42, its reported 
expression pattern reflects that of TaOS2.

TaOS2 is the most described FLC-like gene in wheat so 
far. Like FLC, all three homeologs of TaOS2 are downregulated 
by vernalization and repression is maintained 2  weeks post-
vernalization (Winfield et al., 2009; Sharma et al., 2017; Appels 
et  al., 2018). In winter varieties, TaOS2 expression is initially 
high in leaf tissue and gradually declines throughout development 
as temperature decreases, yet its expression is constitutively 
low in spring lines, indicating that the function is cultivar-
dependent and relevant to the flowering habit of these lines 
(Winfield et al., 2009; Sharma et al., 2017). Creating premature 
stop codons using CRISPR/Cas9 gene editing in the D-homeolog 
revealed an effect of this gene on flowering time, as mutants 
flower 3  days earlier than wild type (Appels et  al., 2018). It 
is encouraging that a knockout of a single homeolog in hexaploid 
wheat reveals a phenotype. A 3-day alteration in flowering 
time is no mean feat in wheat breeding and can have great 
implications on yield in a region-specific manner. Validating 
this phenotype in the field will be  enlightening to discover 
whether the phenotype is maintained and in which environments 
are the greatest effects found. It is also possible that functional 
redundancy is at play and multiple mutations in all homeologs 
of TaOS2 might reveal more striking phenotypes to uncover 
the roles of these genes in flowering time regulation in wheat.
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A second FLC-like gene, TaAGL42 (or TaODDSOC1), has 
also been described as being regulated by vernalization in 
wheat (Winfield et  al., 2009; Sharma et  al., 2017); however, 
TaAGL42 is upregulated in winter cultivars and is downregulated 
or stably expressed in spring varieties. Additionally, TaAGL42 
expression was shown to increase rapidly in response to a 
sudden drop in temperature in two winter varieties, suggesting 
that this gene could be  involved in cold acclimation and 

tolerance in these lines (Winfield et  al., 2009). In conclusion, 
although the gene is cold-regulated in a variety-specific manner, 
the function of TaAGL42 remains unclear in wheat.

Relatives of these genes have also been described in barley, 
where their identification came about as a result of a desire 
to characterize new genes responsive to vernalization. Through 
the analysis of homologs of TaMX23 (Trevaskis et  al., 2003), 
two genes were identified: one sharing homology to TaMX23 

FIGURE 1 | Phylogenetic relationships of all FLOWERING LOCUS C (FLC) genes annotated in cereals. A maximum likelihood phylogeny was generated using 
Geneious Pro v5.5.4 using MADS-box genes from eudicots and monocots. A reconstructed phylogeny containing only FLC and AP1 genes was drawn using 
InkScape. AP1 genes were used as an outgroup. Arabidopsis genes are highlighted in blue. A full version of the tree including all accession numbers can be found in 
Supplementary Figure S1.
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and another sharing homology with TaOS2 (Trevaskis et al., 2003; 
Winfield et  al., 2009; Greenup et  al., 2010). The two homologs 
were named HvODDSOC1 (HvOS1) and HvODDSOC2 (HvOS2), 
respectively, due to their weak sequence similarity to SOC1 
in Arabidopsis. HvOS1 expression increased in response to 
vernalization, consistent with its homolog in wheat (Winfield 
et  al., 2009). HvOS2 expression was repressed in response 
to vernalization in both the leaves and apices, and this 
repression was maintained post-vernalization (Greenup et al., 
2010). The expression of HvOS2 was also strongest in winter 
barley varieties pre-vernalization and was dramatically reduced 
upon exposure to prolonged cold, while expression remained 
low and constant in spring varieties. This highlights the 
importance of choice of cultivar when studying FLC homologs 
in cereals. Overexpressing HvOS2 in the spring barley resulted 
in delayed flowering in these lines, strongly suggesting that 
HvOS2 acts as a repressor of the floral transition. In contrast, 
no phenotype was observed for HvOS2 knockdown lines 
created using RNA interference (RNAi); however, this is to 
be  expected in a spring line where HvOS2 is low naturally 
and vernalization is not required. In a separate study, 
differences in the rate of reproductive development under 
insufficient vernalization conditions was also explained by 
a difference in HvOS2 expression levels between two winter 
varieties (Monteagudo et  al., 2019), further supporting the 
idea of HvOS2 as a vernalization-dependent regulator of 
the floral transition.

Aside from the crops themselves, research has been 
conducted on FLC-like genes in the model temperate grass 
Brachypodium distachyon (henceforth Brachypodium). In fact, 
Brachypodium was the organism chosen to first analyze the 
response of monocot FLC homologs to vernalization after 
they were first reported by Ruelens et  al. (2013). Three 
homologs were reported in Brachypodium: BdODDSOC1 
(BdOS1), BdODDSOC2 (BdOS2), and BdMADS37. BdOS1 
was shown to be  upregulated by vernalization, like its 
homologs TaAGL42 and HvOS1 in wheat and barley, 
respectively. BdOS2 expression is also consistent with its 
homologs in these species, as it is downregulated by 
vernalization (Ruelens et  al., 2013; Sharma et  al., 2017). 
There is also evidence to suggest that BdOS2 pre-vernalization 
expression levels determine the vernalization requirement 
of individual Brachypodium accessions, with winter accessions 
having higher pre-vernalization expression levels of BdOS2 
(Sharma et  al., 2017). Overexpression of BdOS2 led to a 
delay in flowering time under vernalized conditions in the 
facultative accession Bd21–3, with the delay comparative to 
wild type plants which were not vernalized. This suggests 
that overexpression of BdOS2 keeps Bd21–3 in a non-vernalized 
state. It was also reported that BdOS2 knockdown via RNAi 
influenced the flowering time of Bd21–3; however, we  and 
others have been unable to replicate these findings, calling 
these results into question. Attempts are currently being 
made to vigorously test the effect of low BdOS2 expression 
on flowering time regulation in Brachypodium, with most 
striking phenotypes expected in winter accessions, and not 
facultative lines like Bd21–3.

The third FLC homolog, BdMADS37, is also downregulated 
by vernalization and exists in a separate clade to the ODDSOC 
genes (Figure  1). No other reports about members of this 
gene group have been published since first described by 
Ruelens et  al. (2013); however, BdMADS37 appeared as a 
potential candidate for a QTL explaining the differences in 
flowering time and vernalization requirement between spring 
and winter accessions under specific environmental conditions 
(Bettgenhaeuser et  al., 2017). We  have identified a fourth 
FLC homolog in Brachypodium, BRADI4g30081 (Figure  1), 
a paralog of BdOS1 which appears to be a truncated duplication 
of BdOS1, and expression has been detected in response to 
cold in the microarray dataset of Priest et  al. (2014).

FLC and VRN1 Activities Are Entwined in 
Cereals
Much of what we  have learned about FLC-like genes so far 
comes from basic research on flowering time regulation and 
vernalization in cereals. Therefore, many of these findings 
have been related to or are based on descriptions of the 
activities of VRN1. So far, a relationship between VRN1 
and ODDSOC2 activity has been reported in wheat and its 
diploid relative Triticum monococcum, barley, and 
Brachypodium. In general, evidence exists to suggest that 
VRN1 is required to repress ODDSOC2 post-vernalization 
to enable rapid flowering.

In T. monococcum, it was observed that TmOS2 levels rose 
post-vernalization in mutant lines lacking functional TmVRN1 
while levels remained low in wild type lines. Analysis of TmOS2 
levels pre- and during vernalization showed that there was no 
difference in expression between wild type and mutant lines. 
It is only post-vernalization TmOS2 levels that are affected by 
TmVRN1 loss of function, suggesting that TmVRN1 is required 
to repress TmOS2 post-vernalization but not to reduce its 
activity initially (Greenup et  al., 2010).

Similar to T. monococcum, HvOS2 expression is lowest in 
barley lines with dominant, active VRN1 alleles, consistent 
with the hypothesis that VRN1 represses OS2 in temperate 
cereals (Greenup et  al., 2010). Supporting this hypothesis, it 
was subsequently reported that HvVRN1 binds to the HvOS2 
promoter in the spring variety Golden Promise (Deng et  al., 
2015). Several HvVRN1 binding sites have also been identified 
throughout the HvOS2 locus (Monteagudo et  al., 2019).

Likewise, there is an antagonistic relationship between BdOS2 
and BdVRN1 expression patterns in Brachypodium. BdOS2 
expression is elevated in BdVRN1 knockdown lines (Woods 
et  al., 2016). As well as that, BdOS2 expression is elevated in 
lines overexpressing BdVRN2, associated with low BdVRN1 
expression and delayed flowering (Woods et  al., 2016). 
Interestingly, BdOS2 expression patterns are not significantly 
influenced by overexpression of BdVRN1 or knockdown of 
BdVRN2, indicating that the response of BdOS2 to BdVRN1 
expression is qualitative and not dosage dependent.

This relationship between VRN1 and ODDSOC2 is conserved 
in hexaploid wheat, where TaOS2 expression post-vernalization 
is linked to the nature of VRN1 alleles found in a given 
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cultivar (Dixon et al., 2019). This relationship has implications 
for flowering time behavior which will be  discussed in more 
detail in the next section.

ODDSOC2 and the Balancing Act of 
Vernalization and Ambient Temperature
Temperature is a key environmental signal which regulates 
many facets of plant development. Flowering time in both 
Arabidopsis and cereals is regulated by ambient temperature, 
with increasing temperatures generally resulting in earlier 
flowering times (McMaster and Wilhelm, 2003; Balasubramanian 
et  al., 2006; Ejaz and von Korff, 2017; Dixon et  al., 2018). 
Underlying this trait in Arabidopsis are the activities of FLC 
and its relative FLOWERING LOCUS M (FLM). FLM, like 
FLC, negatively regulates the floral transition, however, it is 
mostly involved in ambient temperature-dependent flowering 
(Balasubramanian et  al., 2006; Lee et  al., 2013; Posé et  al., 
2013). FLM functions as part of a repressor complex with 
another MADS-domain transcription factor, SHORT 
VEGETATIVE PHASE (SVP). This complex represses the 
activities of flowering promoters under cold temperatures to 
delay flowering and the stability of the complex and of the 
proteins themselves are affected by increasing temperature, 
reducing their repressive effects in warm conditions (Lee et al., 
2013; Posé et  al., 2013; Capovilla et  al., 2017). Temperature-
dependent alternative splicing of FLM is integral to this response, 
where the relative abundance of certain transcripts compared 
to others determines the flowering phenotype in response to 
temperature (Capovilla et  al., 2017; Lutz et  al., 2017).

High levels of FLC itself also results in thermal 
unresponsiveness, therefore, suggesting that FLC suppresses 
thermal induction of flowering (Balasubramanian et  al., 
2006). These findings could suggest that vernalization is 
the dominant process that must be realized to allow Arabidopsis 
to be  receptive to temperature, likely to prevent precocious 
flowering in winter.

In cereals, the activities of ODDSOC2 can also be  linked to 
ambient-temperature regulated flowering. ODDSOC2 has been 
shown to be  responsive to ambient temperature in both wheat 
and barley, which both show earlier flowering phenotypes in 
response to increasing temperature (McMaster and Wilhelm, 
2003; Ejaz and von Korff, 2017; Dixon et  al., 2018). In wheat, 
however, it was shown that certain cultivars exhibited delayed 
flowering in response to increasing ambient temperature (Dixon 
et  al., 2019). It was revealed that this trait arose from the 
incomplete vernalization of this cultivar, leading to the re-activation 
of floral repressors including VRN2 and TaOS2. The increase 
in TaOS2 expression was linked to the VRN1 alleles found in 
this specific cultivar, which were unable to maintain repression 
of TaOS2 after incomplete vernalization, explaining in part the 
delayed flowering phenotype (Dixon et  al., 2019).

HvOS2 was also shown to be responsive to ambient temperature 
in barley. HvOS2 expression increases under high temperature 
conditions, particularly under short day photoperiods – conditions 
which result in the slowest development of the shoot apex 
(Hemming et al., 2012; Ejaz and von Korff, 2017). Like TaOS2 

in wheat, the response of HvOS2 is influenced by the VRN1 
allele present in the variety analyzed, with lines with the 
winter Hvvrn1 allele having higher HvOS2 expression levels 
in response to high ambient temperature (Ejaz and von Korff, 
2017). Hvvrn1 itself is downregulated under high temperature 
conditions, highlighting further the negative correlation between 
VRN1 and OS2 expression in cereals. Plants overexpressing 
HvOS2 also exhibited delayed reproductive development under 
both cool and high temperatures while lines with a RNAi-
mediated knockdown of HvOS2 underwent more rapid 
reproductive growth at higher temperatures compared to wild 
type plants (Hemming et  al., 2012). This is reflective of 
phenotypes obtained when FLM expression is modified in 
Arabidopsis (Posé et  al., 2013).

Taken together, this evidence suggests that ODDSOC2 
functions in winter cereal varieties to repress the reproductive 
transition under warm temperatures until the vernalization 
requirement is completely saturated. It can be  speculated that 
this is an adaptation to prevent precocious flowering during 
the winter should a brief period of warmth occur. Interestingly, 
this ecologically significant process is linked to FLC gene activity 
across both Arabidopsis and cereals; however, unlike FLM, the 
mode of action of ODDSOC2 remains unknown. There is no 
evidence so far to suggest that ODDSOC2 is alternatively spliced 
to influence this process. It is also unknown whether this 
increase in ODDSOC2 expression occurs in varieties which 
can be induced to flower using warm temperatures and short-day 
conditions (Evans, 1987). Regardless, parallels can be  drawn 
on the roles these FLC genes play in fine-tuning flowering 
time in a temperature-specific manner in both Arabidopsis 
and cereals.

A summary of the roles FLC genes play in vernalization, 
ambient temperature, and their relationship to VRN1 are outlined 
in Figure  2 and Table  1.

FLC Is Relevant Outside of Temperate 
Cereals
Rice and maize diverged from the Pooideae roughly 64 
million years ago and their flowering times are regulated 
in different ways to the temperate cereals (Wang et  al., 
2015). Reflective of the tropical regions in which they evolved, 
these species have no vernalization requirement and flowering 
is promoted by short day photoperiods. Nonetheless, both 
rice and maize contain FLC homologs which have been 
shown to regulate flowering time. OsMADS51, a homolog 
of ODDSOC1, acts as a flowering promoter under short 
days in rice (subsp. Japonica; Kim et  al., 2007). Knockout 
of this protein correlates with the downregulation of AP1 
and FT homologs, which may explain the mode of action 
of this protein. In maize, ZmMADS69 acts as a flowering 
promoter under both long and short days, and is thought 
to have been a target of selection to expand the cultivation 
zone of maize (Liang et al., 2019). Therefore, despite paucity 
of information on FLC-like genes in cereals, it is clear that 
flowering time regulation is a fundamental feature of these 
genes across the cereals.
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Epigenetic Regulation of FLC-Like Genes 
in Cereals
The epigenetic regulation of FLC in Arabidopsis is well 
described and FLC can be  considered a model gene for 
the study of epigenetics in general (Whittaker and Dean, 
2017). FLC activity is regulated through the chromatin 
environment at the FLC locus and via RNA-mediated silencing 
mechanisms. Chromatin modification to promote FLC activity 
is regulated mainly through the actions of the FRIGIDA 
(FRI) complex (FRI-C). The FRI-C increases levels of active 
chromatin markers, such as H3K36me3 and H3K4me3, 
through the recruitment of chromatin modification proteins 
(Choi et al., 2011; Li et al., 2018). These markers are targeted 
during vernalization, where they are removed, and replaced 
with H3K9me3 and H3K27me3, resulting in a silenced 
chromatin state (Bastow et  al., 2004; Finnegan and Dennis, 
2007; Angel et  al., 2011; Whittaker and Dean, 2017). The 
accumulation of chromatin silencing markers is mediated 
by the PHD-PRC2 complex (Plant Homeodomain-Polycomb 
Repression Complex 2; Wood et al., 2006; De Lucia et al., 2008).

Silencing of FLC is additionally associated with the action 
of long non-coding RNAs (lncRNAs) and components of the 
autonomous pathway (Sheldon et al., 2000; Ietswaart et al., 2012; 
Whittaker and Dean, 2017). RNA binding proteins of the 

autonomous pathway function to process COOLAIR, a set of 
lncRNAs transcribed antisense of FLC (Swiezewski et al., 2009; 
Hornyik et al., 2010; Whittaker and Dean, 2017). The significance 
of these lncRNAs in the regulation of vernalization remains 
controversial (Helliwell et  al., 2011; Luo et  al., 2019); however, 
much data have been gathered to indicate a functional if not 
essential role. The physical association of COOLAIR with FLC 
chromatin is associated with the reduction of H3K36me3 and 
H3K4me3, rendering the chromatin inactive (Csorba et  al., 
2014; Fang et al., 2020). COOLAIR is also induced by vernalization 
to assist with the inactivation of FLC (Swiezewski et  al., 2009; 
Kim and Sung, 2017). The silencing of FLC is associated with 
two other lncRNAs, COLDWRAP and COLDAIR, which recruit 
the PHD-PRC2 complex to specific chromatin regions 
(Heo and Sung, 2011; Kim and Sung, 2017).

Due to the relatively recent discovery of FLC-like genes in 
cereals, no research has been done to test whether FRI or the 
FRI-C functions in cereal plants. Studies have shown that 
homologs of the various FRI-C components can be  detected 
in monocots (Choi et  al., 2011) and rice FRI-like genes form 
distinct clades with Arabidopsis FRI-like genes (Michaels et  al., 
2004). According to the plant genome database EnsemblPlants, 
25 and 13 proteins have been annotated as FRI-like for Triticum 
aestivum (cv. Chinese Spring) and Hordeum vulgare (cv. Morex), 
respectively. Homologs can also be identified for Brachypodium 
distachyon (9), Oryza sativa subsp. japonica (12), Sorghum bicolor 
(10), Triticum dicoccoides (16), Triticum turgidum (15), and 
Zea mays (13). It is possible that these uncharacterized proteins 
may act as scaffold proteins similar to FRI but for other 
pathways and functions.

In Arabidopsis, FLC is silenced during vernalization via 
a series of histone modifications by the PHD-PRC2 complex 
(De Lucia et  al., 2008). The utilization of this complex in 
plants as a method to regulate vernalization-dependent 
flowering is conserved across Arabidopsis and cereals. The 
major regulator of vernalization in cereals, VRN1, acts as 
a promoter of flowering, rather than a repressor like FLC. 
Before vernalization, H3K27me3 repressive marks are 
deposited at the VRN1 locus in wheat and barley (Oliver 
et  al., 2009; Diallo et  al., 2012). During vernalization, 
H3K27me3 decreases while the active markers H3K4me3 
and H3K36me3 increase (Oliver et  al., 2009; Diallo et  al., 
2012). The same mode of epigenetic regulation of VRN1 
is conserved in Brachypodium, and is regulated by ENHANCER 
OF ZESTE-LIKE 1 (EZL1), a homolog of CURLY LEAF 
(CLF), and a methyltransferase in the PRC2 complex in 
Arabidopsis (Lomax et  al., 2018). VRN3/FT is also regulated 
in the same way in wheat and Brachypodium (Oliver et al., 2009; 
Huan et  al., 2018).

Recruitment of the PRC2 to epigenetically regulate the 
vernalization response evolved in both Arabidopsis and cereals. 
However, the nature of the chromatin modifiers deposited 
at FLC and VRN1 is different due to their nature as a repressor 
and promoter, respectively. Therefore, this recruitment likely 
evolved after the independent evolution of the vernalization 
response pathway in monocots and dicots. Yet, some evidence 
exists to suggest that FLC-like genes are also regulated by 

FIGURE 2 | The role of FLC genes in the response to temperature in 
temperate cereals with a vernalization requirement. Vernalization represses 
the activities of floral repressors ODDSOC2 and VRN2, while promoting the 
upregulation of VRN1. VRN1 is required to maintain the repression of 
ODDSOC2 and VRN2 while promoting the flowering time gene FT, creating a 
positive feedback loop to lock in the floral transition. Warm ambient 
temperature during the vernalization process results in the upregulation of 
floral repressors to coordinate reproductive development with the most 
optimal environmental conditions. Dashed arrow implies function not 
confirmed. MADS37 and ODDSOC1 are included but their function is still 
unknown. Created with www.BioRender.com.
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the PRC2  in a similar manner to FLC in Arabidopsis. To 
analyze the effect of vernalization on histone modifications 
at HvOS2 in barley, H3K27me3 marks were analyzed at the 
presumed transcriptional start site of HvOS2 in plants with 
or without 7  weeks of vernalization (Greenup et  al., 2010). 
There was no significant difference in H3K27 trimethylation 
at this region indicating that perhaps repression of HvOS2 
post-vernalization is regulated in a different way to FLC. The 
region tested by Greenup et  al. begins ~100  bp upstream of 
the transcriptional start site (TSS). Although H3K27me3 
deposits increase during vernalization at the TSS of FLC in 
Arabidopsis, the greatest increase is at the exon 1/intron 1 
junction termed the “nucleation region” (Bastow et  al., 2004; 
Finnegan and Dennis, 2007; Yuan et  al., 2016). On return 
to warmth, H3K27me3 spreads from the nucleation region 
across the FLC locus. Future experiments targeting other 
regions within the HvOS2 locus could reveal more similarities 
in the epigenetic regulation of both FLC and HvOS2. Regulation 
via other markers such as H3K9me3 or H3 acetylation levels 
could be  investigated, as these markers are also involved in 
FLC regulation.

In contrast to barley, BdOS2 in Brachypodium showed high 
levels of H3K27me3 after vernalization in both spring and 
winter accessions (Sharma et al., 2017). H3K27me3 was enriched 
at the BdOS2 locus after vernalization for Bd21 and BdTR3C 
– spring and winter accessions, respectively, and the enrichment 
was maintained 1-week post-vernalization. For the winter allele 
of BdOS2 in BdTR3C, H3K27me3 can be  found spanning the 
entire locus post-vernalization. The extensive methylation marks 

of H3K27  in the locus of BdTR3C compared to Bd21 may 
explain the mechanism as to how BdOS2 is stably repressed 
in the winter but not spring accession. It is possible that in 
strong winter varieties, FLC genes have evolved increasingly 
stringent or more complex methods of silencing to ensure 
flowering time is synchronized most optimally with the 
environment (Shindo et  al., 2006; Hepworth et  al., 2020). 
Analysis of winter varieties of FLC homologs in other cereal 
crops may reveal that the epigenetic regulation of FLC-like 
genes is more conserved than currently realized.

Brachypodium has also been shown to encode lncRNAs, 
similar to COOLAIR, which target FLC-like genes for 
downregulation during vernalization (Jiao et  al., 2019). Two 
high confidence lncRNAs were detected for BdOS2, while one 
lncRNA could be  detected for BdOS1. These lncRNAs were 
termed BdCOOLAIR1 and BdCOOLAIR2 for BdOS1 and BdOS2, 
respectively, as although they are not homologous to the 
AtCOOLAIR sequence, their position relative to their sense 
counterparts is similar. Expression of these lncRNAs is induced 
by vernalization, and their induction is significantly higher in 
a winter accession compared to a facultative accession, while 
their expression is absent in a spring accession. Knockdown 
of BdCOOLAIR2 via RNAi also affects the rate of silencing 
of BdOS2 in BdTR3C, though it is not essential for the complete 
silencing of BdOS2 (Jiao et al., 2019). This information suggests 
that lncRNAs complement the mechanisms which silence FLC-
like genes in grasses, in a similar fashion to FLC regulation 
in Arabidopsis, although this mode of regulation is accession 
dependent. In addition, lncRNAs have been annotated for FLC 

TABLE 1 | Overview of FLC gene function in cereals.

Species Gene Observation Citation

Brachypodium distachyon BdOS1 Upregulated by vernalization Ruelens et al. (2013)
BdOS2 Downregulated by vernalization Ruelens et al. (2013); Sharma et al. (2017)

Negatively regulated by VRN1 Woods et al. (2016)
BdMADS37 Downregulated by vernalization Ruelens et al. (2013)

Hordeum vulgare HvOS1 Induced by ABA and JA

Role in seed development

Kapazoglou et al. (2012)

Upregulated by vernalization Greenup et al. (2010)
Downregulated by high temperature Hemming et al. (2012)

HvOS2 Induced by JA

Role in seed development

Kapazoglou et al. (2012)

Downregulated by vernalization

Negatively regulated by VRN1

Regulates cell elongation

Greenup et al. (2010)

VRN1 binds to its promoter Deng et al. (2015)
Possible negative regulator of early reproductive 
development

Hemming et al. (2012); Monteagudo et al. (2019)

Upregulated under high ambient temperature Hemming et al. (2012); Ejaz and von Korff (2017)
Oryza sativa OsMADS51 Short-day flowering promoter Kim et al. (2007)
Triticum aestivum TaAGL33/TaOS2 Downregulated by vernalization Winfield et al. (2009); Sharma et al. (2017); 

Appels et al. (2018)
Knockout of D-homeolog causes earlier flowering Appels et al. (2018)
Upregulated under high ambient temperature Dixon et al. (2019)

TaAGL42/TaMX23/TaOS1 Upregulated in response to cold Winfield et al. (2009); Sharma et al. (2017)
Gradual increase in expression throughout development Trevaskis et al. (2003); Winfield et al. (2009)

Triticum monococcum TmODDSOC2 Negatively regulated by VRN1 Greenup et al. (2010)
Zea mays ZmMADS69 Flowering promoter Liang et al. (2019)
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genes in 6 other grass species, including wheat, although these 
still need to be  experimentally verified.

DIVERSIFICATION OF FLC FUNCTION IN 
CROPS

Although thoroughly studied for its involvement in vernalization-
dependent regulation of flowering time, FLC function is implicated 
in many other aspects of plant growth and development. Analysis 
of expression levels of FLC-like genes in cereals during 
development and under various experimental treatments also 
suggests that homologs of FLC play diverse roles in cereal 
physiology. For example, in the early gene expression experiments 
of Zhao et  al. (2006), it was shown that at least one of the 
genes analyzed is expressed at, at least, one of the various life 
stages and in at least one of the various tissue types throughout 
wheat development. Expression can be  detected from initial 
embryo imbibition to seed development post-anthesis while 
other genes are predominantly expressed in roots.

Curiously, in the dataset of both Zhao et  al. (2006) and 
Schilling et al. (2020), TaAGL41 could not be detected at significant 
levels but could be  detected by Sharma et  al. (2017) for several 
cultivars. Further analysis using the Wheat Expression Browser 
(Ramírez-González et al., 2018) indicates that TaAGL41 is indeed 
expressed throughout development but the extent of its expression 
is cultivar-specific. This could suggest a role for this gene in 
fine tuning development in a cultivar-specific manner. The Wheat 
Expression Browser highlights that TaAGL41 is downregulated 
by cold in the spring cultivar Manitou (Li et  al., 2015), yet the 
main stimulus which affected TaAGL41 across the dataset was 
infection by the wheat yellow rust pathogen Puccinia striiformis 
f. sp. Tritici (Dobon et  al., 2016). Expression of two other high 
confidence FLC homologs in wheat, TaFLC.4A1 and TaFLC.4A2, 
could not be  detected at significant levels in the developmental 
time course analyzed by Schilling et al. (2020), and their expression 
does not change considerably across the different varieties available 
on the Wheat Expression Browser. Rather, these genes appear 
to be  mainly influenced by drought stress (Liu et  al., 2015; 
Ramírez-González et al., 2018). The relationship between flowering 
time and stress adaptation is complex and the molecular 
mechanisms determining this relationship are still not fully 
understood; however, a link between flowering time regulators 
and stress is found in plants (reviewed in Kazan and Lyons, 
2016). It is possible that FLC-like genes not only play roles 
regulating development but also that their function has diversified 
to fine tune other developmental and growth processes. This 
reflects findings in the Brassicaceae that although the core 
function of FLC across species is the regulation of flowering 
time, different members of the FLC clade have been recruited 
for species-specific roles typically within stress response pathways 
(Mateos et al., 2017). Further investigation into these expression 
patterns as well as generation of knockout mutants may reveal 
a novel role for these genes in stress response pathways in cereals.

Additionally, HvOS2 has been shown to negatively influence 
cell length and, therefore, leaf, internode, and spike length 
(Greenup et al., 2010). The data suggest that HvOS2 downregulation 

by vernalization allows the process of stem elongation and bolting 
as secondary regulation of the reproductive process.

As well as being expressed during seed development stages 
in wheat, FLC-like genes have been implicated in seed 
development in barley. HvOS1 and HvOS2 are differentially 
expressed in cultivars of different seed size and at different 
stages of seed development (Kapazoglou et  al., 2012). Analysis 
of their expression patterns revealed that HvOS1 expression 
is induced more substantially in early seed development in 
cultivars with large seeds, while HvOS2 levels are significantly 
higher in later developmental stages in cultivars with small 
seeds. This pattern could suggest an association between the 
expression of FLC genes and seed size in barley and that each 
gene is important for different stages of development – either 
endosperm cellularization or seed maturation. Additionally, 
both genes contained the endosperm-specific element GCN4 in 
their promoters, along with elements for responses to abscisic 
acid, an important phytohormone for seed maturation as well 
as abiotic stress (Takaiwa et  al., 1996; Finkelstein et  al., 2002; 
Kapazoglou et  al., 2012). Taken together, these data implicate 
a role of FLC homologs in seed development and suggest that 
perhaps there is an association between them and seed size. 
An association study including more cultivars with a variety 
of seed sizes could be  undertaken to fully determine whether 
FLC-like genes regulate this important agronomic trait.

Outside of the temperate cereals, ZmAGL19, an FLC homolog 
in maize, is targeted by OPAQUE11, a central regulator of 
endosperm development and nutrient metabolism (Feng et  al., 
2018). OPAQUE11 is specifically expressed in the endosperm 
and positively regulates ZmAGL19 expression, suggesting that 
ZmAGL19 might be  part of the seed development regulation 
process in maize.

FUTURE DIRECTIONS

Much has been learned about the roles FLC genes play in 
cereals, mostly indirectly through the study of flowering time 
in these species. The scientific community is now able to study 
FLC genes further due to the dramatically improved genetic 
resources available. Reference genome assemblies are now 
available for several hexaploid wheat cultivars, as well as 
tetraploid wheat, diploid progenitor species, and 2- and 6-row 
barley (Ling et  al., 2013; Fox et  al., 2014; Luo et  al., 2017; 
Mascher et  al., 2017; Appels et  al., 2018; Maccaferri et  al., 
2019). Genes are also annotated to include SNP variations 
which can be  easily identified using the online platform 
EnsemblPlants. Identifying homologs and SNP-variants across 
cultivars has never been easier for researchers without 
bioinformatics training. Access to tools such as these will 
increase the pace at which genes are identified and studied, 
increasing the potential to finally characterize the once enigmatic 
FLC gene family.

Additionally, populations of mutant plants have been created 
for widespread use in both hexaploid and tetraploid wheat and 
barley (Krasileva et  al., 2017; Schreiber et  al., 2019). TILLING 
lines containing homeolog-specific mutations in genes of interest 
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can be  ordered and crossed, creating specific combinations to 
study gene function and redundancy. In a more targeted approach, 
protocols for wheat transformation and mutation via virus-
induced gene silencing and CRISPR/Cas9 are available (see 
wheat-training.com for resources). In combination with speed 
breeding, it is possible to fully characterize the effect of mutations 
in both model and crop plants in considerably less time (Watson 
et  al., 2018). At this moment in time, comparable resources 
to the model plant Arabidopsis from which most of our information 
on FLC genes comes from are available. This review also 
highlights how relevant Brachypodium is as a model for basic 
and translational research for temperate cereals and that research 
using this small grass will continue to be  a valuable option to 
study FLC genes. It is possible within the next few years that 
we will see a greater increase in FLC-related knowledge outside 
of Arabidopsis. The availability of these resources provides hope 
that much more knowledge can be  gained on FLC function 
in cereals in years to come.
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