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Abstract 

The Gurson-Tvergaard-Needleman (GTN) damage model is widely used to predict ductile 

failure initiation and propagation. However, the material-dependent parameters can show a 

significant spread when determined for the same steel grade material. Different calibration 

procedures and optimisation processes cause a significant variation in the obtained parameter 

values. Furthermore, there is no clear consensus on which parameters require calibration. In 

this study, the influence of the material-dependent parameters used to model the dynamic 

ductile fracture behaviour of X70 grade pipeline steel is investigated. A sensitivity analysis is 

performed on a finite element model of a Charpy V-Notch (CVN) specimen. Seven GTN model 

parameters are considered in a total of 70 simulations. A feedforward back-propagating 

artificial neural network (ANN) is constructed and trained using data obtained through the 

numerical simulations. A Connected Weights (CW) algorithm allows to determine the relative 

influence of each parameter on the fracture energy. It was observed that the void growth 

acceleration factor plays an important role with respect to the parameter influences. 

Remarkably, the mean nucleation strain, 
N  has the highest relative importance whilst the 

critical void volume fraction, cf  – which is considered as a crucial damage parameter – showed 

the smallest influence when the acceleration factor is low. On the contrary, when considering a 

high acceleration factor, cf  becomes the most influential parameter. Based on the obtained 

importance for each parameter, it is suggested that parameters 0f , cf , 
Ff , and Nf  should be 

selected for calibration in each individual application. Finally, the applied machine learning 

approach is used to predict the fracture energy for a given set of damage parameters for X70 

grade steel. It is observed that the trained neural network is able to provide a satisfactory 

approximation of the CVN fracture energy. 
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Nomenclature 

  

Acronyms  

AN Axisymmetric Notched 

ANN Artificial Neural Network 

AI Artificial Intelligence 

BTCM Battelle Two Curve Method 

CMOD Crack Mouth Opening Displacement 

CTOD Crack Tip Opening Displacement 

CVN Charpy V-Notch 

CW Connected Weights 

DWTT Drop Weight Tear Test 

G-T Gurson-Tvergaard 

GTN Gurson-Tvergaard-Needleman 

MSE Mean Square Error 

PE Predicted Energy 

PS Parameter Set 

RI Relative Importance 

SENT Single Edge Notch Test 

TE Target Energy 

  

Symbols  

f  Void volume fraction 

*f  Effective void volume fraction 

f  Evolution of void volume fraction 

0f  Initial void volume fraction 

cf  Critical void volume fraction 

Ff  Void volume fraction at failure 

Nf  Void volume fraction of void nucleating particles 

  Void growth acceleration factor 

n  Strain hardening exponent 

1q , 2q , 3q  Constitutive GTN damage parameters 

Ns  Standard deviation nucleation strain 

xyw  Connection weight between input and hidden neuron 

yzw  Connection weight between hidden and output neuron 

D , p  Cowper-Symonds coefficients 

E  Young’s modulus 

J  Fracture energy 

K  Strength coefficient 

R  Ratio of dynamic yield stress to static yield stress 

N  Mean value of nucleation strain 

pl  Plastic strain 
pl  Equivalent plastic strain 
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pl  Plastic strain rate 
pl

kk  Rate of plastic volume change 

pl

m  Equivalent plastic strain 

  Poisson ration 

eq  Equivalent stress 

hyd  Hydrostatic stress 

yld  Yield stress 

( )pl   Flow curve 

  Flow potential 

 

1 Introduction 

One of the major concerns in pipeline design is sufficient material resistance against running 

fractures. Ductile failure of pipelines can have catastrophic consequences and should be 

avoided at all cost. Fracture control plans provide recommendations for the minimum required 

toughness to arrest a long running ductile fracture. Since the 1960’s, extensive full-scale 

experiments were conducted by organisations such as the Battelle Memorial Institute in order 

to study fracture arrest in line pipes [1, 2]. Even though these tests closely approximate the 

conditions of an operational pipeline [3], they are too expensive and time-consuming for 

industrial applications [4]. Consequently, laboratory fracture tests were developed in order to 

estimate the crack propagation behaviour. The Charpy V-Notch (CVN) is a standardised impact 

test [5] which is still being used as an economical and relatively easy-to-perform experiment to 

determine the fracture toughness of a particular material. It is known that the CVN impact test 

can lead to non-conservative predictions when applied to high-grade steels. In that case, 

correction factors such as the modified Leis correction [6] should be implemented for each 

individual case when determining fracture toughness based on CVN-energy [7]. Based on full-

scale burst data and lab-scale experiments, empirical fracture arrest criteria such as the well-

established Battelle Two Curve Method (BTCM) [8] were introduced.  

Initially, brittle fracture was the primary concern during the design of gas transmission 

pipelines. Due to the high yield to tensile ratio and low strain hardening exponent, these high-

grade steels have a limited capacity to distribute plastic deformation away from the defect zone 

[9, 10]. This results in a limited strain hardening capacity leading to a reduced failure pressure. 

Due to the ductile nature of fracture propagation, a minimum fracture toughness is required 
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[11]. Therefore, in order to qualify for pipeline applications, a material must pass a CVN-energy 

absorption criterion [12].   

Experimental campaigns are often assisted by numerical simulations in order to facilitate the 

development and optimisation of new materials and products. Finite element methods have 

been used extensively to simulate dynamic ductile fracture propagation. Especially continuum 

damage models have been implemented in the recent years. The GTN damage model, which 

was developed during the early 1980’s, has proven to be an adequate tool for the prediction of 

ductile damage. With the implementation of the GTN model in ABAQUS software – as porous 

metal plasticity – the GTN model has grown to be a very popular and widely used damage 

model. Due to a limited number of damage parameters, the calibration procedure is more 

feasible in comparison to other damage models such as the Modified Bai-Wierzbicki (MBW) 

model [13]. However, there is no consensus on the optimal procedure for calibration of the 

material-dependent parameters. First, the type of calibration experiment often differs from 

study to study. The experiment type should be selected based on the stress state present in the 

application of interest in order to cover the range of present stress states. As such, common 

calibration tests are: the hydraulic bulge test [14], axisymmetric notched tensile tests [15, 16, 

17], smooth bar tensile tests [18] , and Single Edge Notch Tension (SENT) test [19, 20, 21]. 

Secondly, it is unclear which parameters should be calibrated and which parameters can be 

considered as a typical constant value. It is a common practice to calibrate one or more 

parameters and copy the remaining parameters as provided in literature in order to minimise 

the calibration effort [22]. Moreover, the selection of calibrated parameters and non-calibrated 

parameters in the available literature is inconsistent. For instance, the constitutive damage 

parameters of the GTN model – which will be discussed in section 2.2 – are often considered 

as typical constants whilst other investigations have indicated a dependence on the hardening 

behaviour [23]. Different calibration procedures can lead to a significant deviation for each 

parameter value even when considering the same steel grade [16, 17, 20]. Brinnel et al. have 

discussed the non-uniqueness of the GTN parameter sets and used a qualitative approach to 

analyse the parameter influence on the simulation results in order to propose a calibration 

scheme [24]. However, the influence of these different parameter sets for the same material and 

the relative influence of parameter variations on the fracture energy have not yet been 

quantified.  

The use of artificial intelligence (AI) in the fracture mechanics domain is gaining interest in 

recent years. The increasing complexity of constitutive relations in numerical material models 
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make it difficult to analyse the impact of the individual components. Data-driven approaches 

such as AI offer an efficient tool to assess complex non-linear relations. The use of a deep 

learning methodology as a predictive tool can result in a simplification of complex damage 

simulations which can be beneficial for industrial end-users. Furthermore, it gives the users the 

possibility of making existing systems smarter and more applicable [25]. The extensive 

investigation of Abendroth et al. [26] successfully implemented a neural network to identify 

the GTN damage variables. Using data from finite element simulations, a neural network was 

trained to fit global load-displacement curves. It was observed that a network with a relatively 

simple structure is able to show good performance when solving complex non-linear problems.  

In this study, the influence of the damage parameters on the fracture energy will be quantified 

in the case of X70 grade pipeline steel through a numerical investigation of a CVN impact 

experiment. A sensitivity analysis of the damage constants is performed to assess their influence 

on the predicted fracture toughness. A machine learning approach is applied in the form of an 

artificial neural network as to analyse the obtained simulation data. This study attempts to 

implement a machine learning based analysis in order to identify the relative parameter 

influence for the GTN damage model. Furthermore, the potential predictive capability of this 

approach is tested by analysing the neural network output for existing GTN parameter sets. 

Consequently, the Charpy fracture energy can be approximated without running a separate FE 

model.  

2 GTN Damage Model 

2.1 Background 

The process of ductile damage accumulation can be described using the three physical 

phenomena of nucleation, growth and coalescence of microscopic voids. Besides the pre-

existing voids that are present in the initial material matrix, new voids are initiated at material 

defects such as non-metallic inclusions. Two populations of voids can be considered: large 

particles that nucleate voids at small strains and small particles that nucleate voids at large 

strains [27]. Nucleation primarily occurs at second phase particles where cohesion forces are 

lower and decohesion of the particle-matrix interface creates voids [28]. Plastic deformation of 

the surrounding matrix material initiates the void growth process. The mechanisms of void 

nucleation and void growth induce a weakening effect which increases with growing plastic 

strain. When the voids reach a certain size threshold, they tend to coalesce and form micro 
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cracks. These microscopic cracks eventually lead to a macroscopic crack or link up with a 

nearby crack tip, leading to crack propagation and subsequent material failure [4]. The crack 

extends due to crack-void interactions which are described using the ligament length between 

the crack tip and a micro void [27]. Figure 1 gives an overview of the ductile damage 

accumulation using the discussed processes of void nucleation Figure 1 (a), void growth (b), 

and void coalescence (c) until final failure (d). 

 

Figure 1: Schematic representation of ductile damage accumulation: presence of initial voids (a), void 

growth and nucleation of new voids (b); further void growth and void coalescence (c), final 

coalescence of the voids with nearby crack (d). 

A widely accepted and used model to describe this ductile damage process is the GTN model. 

The fundaments of the GTN model were created by Gurson [29] which considered voids as 

spherical cavities. Based on the Von Mises yield stress, yld , Gurson proposed a rate-

independent yield condition as a function of the void volume fraction f . The resulting plastic 

flow potential of the material is presented as a function of the macroscopic stress and the void 

volume fraction. 

2

23
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2

eq hyd

yld yld

f f
 

 

   
 = + − − =      

   

      (1) 

The Gurson model was modified by Tvergaard [30, 31, 32], introducing constitutive material 

parameters 1q , 2q , and 3q  (with 
2

3 1q q= ). The adjusted plastic flow potential compensates the 

overestimation of failure strain in the Gurson model for low stress triaxiality conditions. 
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These fitting parameters define previously neglected void interactions. The Gurson-Tvergaard 

(G-T) model considers the decrease of the load carrying capacity of neighbouring voids as the 

stress distribution changes. However, due to the introduction of these fitting parameters, the 

micromechanical background of the G-T model becomes questionable [33]. 

Even though the Gurson model was adjusted to include void interactions, it still lacked a 

definition for void coalescence. Tvergaard and Needleman [32] implemented two new material 

parameters: critical void volume fraction cf , and void volume fraction at failure 
Ff . The 

threshold porosity cf  defines the onset of void coalescence and 
Ff  indicates the void fraction 

at final failure. This correction approximates the rapid loss of a materials’ load carrying capacity 

to an acceptable extent. The proposed rate-dependent yield function is similar to the G-T model 

but the void volume fraction was given a different definition. 
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where the effective void volume fraction *f  is a function of void volume fraction f  as defined 

in the G-T model. 
Ff  is the maximal attainable value for parameter f  or 

1

1
Ff q
= . The 

evolution of void volume fraction is a combination of growth of existing voids and strain-

controlled nucleation of new voids [27, 34, 35].  

= +growth nucleationf f f          (5) 

Or 
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where pl

kk  is the rate of plastic volume change, 
pl

m  is the equivalent plastic strain, Nf  is the 

volume fraction of void nucleating particles, 
Ns  is the standard deviation of the nucleation 

strain, Nf  is the volume fraction of nucleated voids, and 
N  is the mean value of the nucleation 

strain. Consequently, the GTN model has a total of 8 material parameters ( 1q , 2q , 0f , cf , 
Ff , 

Nf , 
N  and 

Ns ) that can describe the ductile damage behaviour of a material. The physical 

meaning and determination of these parameters is elaborated in following paragraph. 

2.2 Material constants and calibration 

Parameters 1q  and 2q  are constitutive values related to the hardening process of the matrix 

material. The typical values were determined by Tvergaard [36] and many researchers have 

applied these values as typical constant values when implementing the GTN damage model. 

However, several studies [36, 23, 37, 38] have reported on numerous dependencies of these q-

values on factors such as material hardening, void shape, plastic strain, etc. Nevertheless, the 

original values ( 1 1.5q = , 
2 1.0q =  and 2

3 1q q= ) determined by Tvergaard are generally used in 

the literature. However, these values were obtained considering perfect plastic behaviour. 

Therefore, this ideal approximation neglects hardening as well as time-dependent effects on the 

plastic material behaviour.  

The initial void volume fraction, 0f  for steels, can be approximated through Franklin’s formula 

which is related to the microstructure of the material [39]. In this case, the total void volume 

fraction of manganese and sulphide inclusions in the material matrix defines the relative 

density. 

0

0.001
0.054 %

%
f S

Mn

 
 − 

 
         (7) 

However, this equation does not consider other non-metallic inclusions (> 1 m ) besides 

manganese and sulphide oxides that can be attributed to the effective initial void volume 

fraction. Alternatively, the investigation of Xia et al. [40] indicated that 0f  does not necessarily 

represent an observable physical parameter and should be fitted to experimental data. 
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The critical void volume fraction, cf , is considered as a crucial parameter since it indicates the 

onset of void coalescence. In other words, cf  determines the point at which void volume growth 

is accelerated by factor  . 

1

1
C

F C

f
q

f f


 − 
 =

−
          (8)

Parameter cf  is often obtained through numerical calibration or is determined from unit cell 

calculations [41]. The void volume fraction at failure, 
Ff , indicates the fraction of voids at 

final failure. Parameter 
Ff  can be calibrated by combining experimental and numerical data. 

Another approach determines solely 
Ff  through a microstructure analysis by quantifying the 

present void fractions at final material failure [42, 43].  

Parameters Nf , 
N , and 

Ns  related to void nucleation and yield locus, were first determined 

by Chu and Needleman [34], and Tvergaard [36]. The void volume fraction of nucleated voids, 

Nf , gives the fraction of newly nucleating voids, not considering the voids that are present in 

the initial state. Similar to the constitutive parameters, the values for the mean value and 

standard deviation of the nucleation strain are often considered as typical constants ( 0.3N = , 

0.1Ns = ).  

In the literature, a wide variety of calibration experiments and optimisation procedures can be 

found for the material-dependent parameters. Generally, a series of experiments is conducted 

and numerical models are created to fit the parameters as good as possible to the experimental 

data [44, 45, 46, 47, 48, 49]. Other – less conventional – methods implement complex 

subroutines or artificial neural networks [26, 50]. The damage parameter sets that are used 

during this study, were adopted from studies using traditional inverse material characterisation 

procedures that combine experimental results with numerical fitting.  

Most common experiments applied as calibration method for the GTN model are the 

Axisymmetric Notched (AN) tensile bar, the Single Edge Notch Tension (SENT) test, and 

Compact Tension (CT) test. Based on the obtained experimental data, a stress-strain or load-

displacement curve is constructed. Numerical models of the calibration experiments are created 

and the material-dependent parameters are iteratively adjusted until a good agreement is found 

between the numerical and experimental data. This process is often automated and implemented 
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as a subroutine or updating finite element code as to speed up the optimisation process. Figure 

2 shows a calibration procedure using numerical simulations to adjust a certain parameter to fit 

with experimental data. It should be noted that the shown graph is randomly generated and 

solely serves the purpose of explaining the fitting procedure. 

However, there is no consistency in the selection of parameters that should be calibrated and 

what optimisation procedure that should applied. In most cases, 
Cf  is optimised whilst other 

parameters are copied from other published studies in the literature. Parameters such as the 

initial void volume fraction, 0f , the void volume fraction at failure, 
Ff , and the void volume 

fraction of newly nucleated voids, Nf , are calibrated using different approaches as mentioned 

in the introduction. In some cases, 0f  is calculated using Franklin’s formula, in other cases it 

is obtained through unit cell calculation or it is calibrated using experimental data. Parameter 

Ff  can be determined through a microstructure analysis or through an optimisation process 

using experimental and numerical data. Parameter Nf  can be assumed to be equal to the value 

determined in the initial studies conducted by Needleman and Tvergaard [32], it can be 

calibrated, or it can be estimated from the volume fraction of small particles (< 1μm) such as 

precipitated iron carbides (Fe3C). 

 

Figure 2: A parameter is adjusted to fit experimental data as a commonly used calibration procedure 

for the material-dependent GTN parameters, randomised data was used to clarify the example. 

Multiple published studies have reported on the calibration of X70 grade steel for the GTN 

damage model. In each investigation, a set of damage parameters was identified. Four parameter 

sets (PS) were selected from the literature and are used as reference in this study. PS1 [16] and 
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PS3 [17] were obtained through AN tensile bars experiments while PS2 [19] and PS4 [20, 21] 

were obtained through SENT experiments. It is worth noting that even though in some cases 

the same calibration experiment was conducted, for each study a parameter set was determined. 

Variations could be caused by differences in the parameter optimisation procedure. Automated 

procedures implement algorithms to iteratively determine the GTN constant values. A different 

selection of algorithm and/or their internal parameters such as stopping tolerance and objective 

function can result in different calibration results. For example, the study by Rahimidehgolan 

et al. [44] showed that for different objective functions, different parameter values were 

obtained. However, extensive comparative studies on the influence of different optimisation 

algorithms and their respective parameters on the identified values are scarce. At this point it is 

still unclear if these varying parameter sets also result in a significant deviation of the energy 

prediction. Furthermore, in every study, different parameters were selected for calibration.  

Summarising, the GTN parameters for a material can be determined in different ways: 

calibrating using a combined numerical-experimental approach, assuming a classic value as 

determined in the literature, calculating using a formula, or assume a variable relationship. 

Table 1 gives an overview on how each damage parameter was obtained in the reference sets 

that are considered during this investigation. It should be noted that for the nucleation 

parameters for PS3, the limit case of 0Nf =  was selected. Consequently, in case of PS3, 

parameters 
N  and 

Ns  are not considered as they don’t yield any physical meaning. 

Table 1: Overview of determination methodology for all GTN parameters for X70 grade steel.  

C: Calibrated, CV: Classic Value, F: Formula, and V: Variable. 

  Test 
Mesh 

[mm] 
𝒒𝟏 𝒒𝟐 𝒇𝟎 𝒇𝑪 𝒇𝑭 𝒇𝑵 𝜺𝑵 𝒔𝑵 

PS1 AN 0.15 CV CV C C C C C CV 

PS2 SENT 0.15 CV CV F C C C CV CV 

PS3 AN 1 CV CV F C C - - - 

PS4 SENT 0.25 F F C V F F CV CV 

The values of the GTN damage parameter in each parameter set are presented in Table 2. To 

visualise the value range, the minimum and maximum values for each parameter are plotted in 

Figure 3.  
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Table 2: An overview of the absolute values of the determined GTN parameters used for X70 grade 

steel taken from the literature which are used as the reference sets in this study. 

  𝒒𝟏 𝒒𝟐 𝒇𝟎 𝒇𝑪 𝒇𝑭 𝒇𝑵 𝜺𝑵 𝒔𝑵 

PS1 1.5 1 0.000401 0.001517 0.5 0.067143 0.8 0.1 

PS2 1.5 1 0.000125 0.015 0.32 0.0004 0.3 0.1 

PS3 1.5 1 0.00015 0.00074 0.18 0.0 - - 

PS4 1.43 0.95 0.002 0.025-

0.050 0.19 0.00018 0.3 0.1 

 

 

Figure 3: Visualisation of the large value range for the GTN parameters such as 𝑓𝐹 and 𝜀𝑁 which can 

be found in the literature for X70 grade pipeline steel. 

It can be observed that parameters 0f , 
Cf , 

Ff , Nf , and 
N  show a significant relative spread 

with up to 50% of possible variation for a material-dependent parameter when considering the 

same material. Thus, for X70 grade pipeline steel material, there is a considerable spread of 

GTN damage parameter values available in the literature. It should be investigated if this also 

results in a deviation of fracture toughness prediction. Therefore, the relative influence of each 

damage variable should be investigated. Once the parameters with a significant influence are 

identified, a statement on the application of the GTN damage model for X70 grade steel can be 

substantiated. In the next section, a sensitivity analysis is performed in order to assess the 

importance of each damage parameter – within the available range reported in the literature for 

X70 grade steel– with respect to the resulting fracture toughness. As parameter Ns  does not 

show any variation, it is not included in the sensitivity analysis. 
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3 Artificial Neural Network (ANN) 

The development of Artificial Intelligence (AI) was initiated by Turing in 1950 [51] and has 

been a subject of extensive research ever since. Although the concept of intelligence and 

consciousness of AI are still up for debate [52], the current AI tools have become a practical 

and efficient tool for data analysis. More specifically, machine learning, has provided data 

science with the possibility of processing complex and non-linear data. Deep learning is a subset 

of machine learning which uses a biologically-inspired neural network containing multiple 

layers of algorithms in order to interpret data relations. An ANN consists out of multiple layers 

each containing a set of neurons. The concept of a neuron structure is based on the perceptron 

model of Rosenblatt [53] performing a binary classification of data. However, a neuron uses 

mathematical functions such as the sigmoid function [54] to grade data inside the binary range 

of 0 and 1. Several investigations have successfully implemented machine learning techniques 

in the field of fracture and damage mechanics using a dataset obtained from FE simulations [26, 

50]. These studies have shown that AI-based methods can present satisfactory predictions as 

well as aid and complement iterative FE modelling campaigns.   

In this study, a multilayer perceptron neural network is constructed as a method to determine 

the relative influences of every material-dependent parameter on the Charpy energy, J , as a 

measure of fracture toughness. Matlab software [55] is used to develop a neural network 

consisting out of three layers: an input layer containing seven neurons, a hidden layer containing 

eight neurons, and an output layer containing one neuron. The seven considered parameters are 

used as input variables whilst the corresponding energy values – obtained through the numerical 

simulations – are considered as the output of the network. The optimal number of neurons that 

should be used in the hidden layer is still debatable [56, 57]. Currently, multiple rules of thumb 

have been proposed but no general consensus has been reached. For networks consisting out of 

one hidden layer, in most cases an arbitrary number of hidden neurons is selected. In this study, 

ten hidden neurons were used as it is the default proposed amount by Matlab and no 

performance anomalies were encountered. A schematic overview of the complete network 

structure is presented in Figure 4. 
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Figure 4: Visualisation of the constructed the multi-layered artificial neural network with seven 

neurons in the input layer, eight neurons in the hidden layer, and one neuron in the output layer. 

Each neuron in a layer is connected to every neuron in previous layers. In other words, the input 

of every neuron in a layer is the sum of every output of every neuron in previous layers. A 

weight is assigned to all connections between neurons. The relative weighted sum is obtained 

by applying a sigmoid function which keeps the activation values of the neuron in the range 

between 0 and 1. If the activation of a neuron reaches a certain threshold – referred to as the 

bias value – the neuron has a meaningful value and is activated. Initially, all weights and biases 

are randomly generated. By minimising a defined cost function, these weights and biases are 

optimised. In this study, a mean square error cost function (mse) is defined. Using a back-

propagation methodology, based on the gradient descent approach, the cost function is 

minimised and an optimised neural network is obtained. 

( )
2

1

1 N

i

i

mse e
N =

=            (9) 

The relative influence of each variable is determined by assessing the calibrated connection 

weights using the Connection Weights (CW) methodology [58]. Other frequently used methods 

such as the Garson algorithm have shown to be less performant and are therefore not considered 

during this investigation [59]. The Relative Importance (𝑅𝐼) of each parameter can be analysed 

based on the obtained connection weights in the neural network. The CW algorithm uses the 

sum of product for all weights between the input neurons and hidden neurons, and between the 

hidden layer and output neuron. 
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where 𝑅𝐼 indicates the relative importance of input variable x as a sum of product of the 

respective weights (w) between the input layer neurons (x) hidden layer neurons (y), and hidden 

layer neurons with output neurons (z). 

The data obtained from the series of conducted simulations were used to train the network based 

on the Levenberg-Marquardt algorithm [60, 61] which is used to solve the non-linear least 

squares cost function. All datasets are shuffled randomly as to prevent the training process to 

be biased. In this study, 70% of the dataset was used for training whilst the validation and testing 

procedure each used 15% of the dataset. In contrast to the training procedure, the validation 

procedure does not change the connection weights but measures the quality of the generalisation 

of the network and to halt training when generalisation stop improving. Similar to validation 

procedure, the testing procedure does not change internal weights but provides an independent 

measure of the performance during and after training. Based on these results, the neural network 

can be retrained or can be restructured by adjusting the number of neurons in the hidden layer. 

In this case, the number of hidden neurons is determined by performing multiple training 

procedures for ANN’s with different number of hidden neurons. The optimal number of hidden 

neurons is selected based on the lowest remaining error. Consequently, the calibrated network 

can indicate the sensitivity of the output variable to changes of each input variable. This 

sensitivity is used to analyse the importance of the material-dependent parameters of the GTN 

damage model for X70 grade steel. Finally, the trained ANN should be able to predict a fracture 

energy value for a given GTN parameter set. Therefore, the considered reference sets are used 

to validate the prediction performance of the network. It is important to note that the reference 

sets were eliminated from the training data in order to avoid a biased prediction. 

4 Material Properties 

During this study, X70 grade pipeline steel is used to investigate the damage parameter 

influence. The considered mechanical properties are obtained from the literature [16, 17]. An 

isotropic hardening relation is used to describe the plasticity behaviour in the post-necking 

region. Plastic behaviour is considered constant throughout this investigation in order to assess 

the sensitivity of each material-dependent parameter in the GTN model without the influence 

of the hardening behaviour. Dynamic material response is considered using the Cowper-
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Symonds overstress power law. This relation takes the strain rate dependency into account by 

defining the equivalent plastic strain rate  pl  as:  

( ) = −1
ppl D R           (11) 

In this equation, D  and P are referred to as the Cowper-Symonds coefficients. Neither 

anisotropy nor adiabatic heating effects were considered throughout this investigation. Table 3 

gives an overview of the mechanical properties for X70 grade steel that were implemented for 

the numerical investigation. 

Table 3: Mechanical properties for X70 grade steels as found in the literature [16, 17]. 

 

  X70 

Young’s modulus E  210 GPa  

Poisson’s ratio   0.3  

Isotropic hardening ( ) ( )   = +
n

pl pl
yld K  

485yld = MPa  

795K = MPa  

= 0.13n  

Strain rate effect 
D  
𝑝 

55  

5  
 

 

The plastic material behaviour of X70 grade steel that has been used to obtain parameter sets, 

i.e. PS1, PS2, PS3, and PS4, is largely the same, as can be seen in Figure 5. Therefore, the 

plastic input data is not considered as a variable during this investigation. Furthermore, this 

study focusses on the identification of the most influential GTN damage parameters with 

respect to the predicted fracture energy. The effect of different plastic behaviour is reduced by 

keeping the plastic material input constant throughout the investigation. 
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Figure 5: True stress-strain curves used for PS1, PS2, PS3, and PS4 parameter sets for X70 grade 

steel taken from the literature. 

5 Numerical Model 

5.1 Loading and Boundary Conditions 

The GTN damage model is implemented in a 3D finite element model using ABAQUS software 

[62] and linear C3D8R elements with reduced integration. A CVN specimen model is 

constructed and the damage parameters are introduced accordingly. Due to the symmetry of the 

CVN test, only one half of the specimen is modelled which results in a reduction of the 

computational effort. The anvil and striker are modelled as analytical rigid bodies since their 

stiffness is assumed to be significantly higher than the stiffness of the specimen. An initial 

velocity of 5.5 m/s and a mass of 19.8 kg are assigned to the reference point of the striker [63]. 

The loading conditions, boundary conditions and meshing strategy are visualised in Figure 6. 
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Figure 6: Visualisation of the constructed 3D finite element model of a CVN specimen with 

corresponding dimensions, boundary conditions, and meshing strategy. 

5.2 Meshing Strategy 

It is well known that the mesh size plays an important role when implementing the GTN model. 

If a material law includes softening behaviour, the strain field becomes discontinuous near the 

softening condition and strain tends to concentrate in a small zone – called strain localisation 

[64]. As strain localisation occurs, the heft of the energy released is proportional to the cell 

dimension orientated perpendicular to the crack propagation. The element size perpendicular to 

the crack propagation direction, as indicated in Figure 6, should therefore be selected based on 

the local fracture process of a particular material. Consequently, the element size is a 

characteristic length that should be regarded as a material property.  
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It has been observed that the determination of this characteristic length is somewhat arbitrary 

as the cell height has the double role of the RVE (Representative Volume Element) and 

dimension of the strain localisation zone. In practice, once an element size is chosen, the 

nucleation parameters and coalescence parameters need to be tuned.  

In this work, the characteristic element length for X70 ranges between 0.15 mm and 0.25 mm 

for the gross of the considered reference sets [16, 17, 19, 20, 21]. The influence of the mesh 

size over this range has been investigated which resulted in a maximum of 3.5% deviation in 

fracture energy. Subsequently, an element size of 0.2 mm in the fracture region is applied as it 

showed the most consistent results. As the influence on fracture energy within the considered 

element size range is rather limited, the element size is fixed to 0.2 mm and is not considered 

as a GTN parameter. A structured partitioning strategy was implemented to obtain uniform 

elements in the fracture region and no changes to the meshing strategy were made throughout 

the investigation.     

5.3 Sensitivity Analysis Using ANN 

In order to assess which parameters, play a major role in the fracture energy prediction as well 

as fracture surfaces, a series of simulations are conducted. As PS1 shows best agreement with 

experimental data [65], this set is selected as the reference set throughout the complete analysis. 

Every parameter is varied within its value range according to the four reference sets taken from 

the literature, i.e. PS1 to PS4 as tabulated in Table 2, whilst the remaining parameters are kept 

constant. This way, the complete realistic range for all considered parameters is covered and 

the influence of each parameter can be assessed. An overview of all conducted simulations and 

their respective parameter sets is given in Table 4.  
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Table 4: An overview of the performed simulations and their respective parameter values. 

Simulation 
number 𝒒𝟏 𝒒𝟐 𝒇𝟎 𝒇𝑪 𝒇𝑭 𝒇𝑵 𝜺𝑵 

Reference 1.5 1.0 0.000401 0.001517 0.5 0.067143 0.8 
1 1.43 1.0 0.000401 0.001517 0.5 0.067143 0.8 
2 1.444 1.0 0.000401 0.001517 0.5 0.067143 0.8 
3 1.458 1.0 0.000401 0.001517 0.5 0.067143 0.8 
4 1.472 1.0 0.000401 0.001517 0.5 0.067143 0.8 
5 1.486 1.0 0.000401 0.001517 0.5 0.067143 0.8 
6 1.5 0.95 0.000401 0.001517 0.5 0.067143 0.8 
7 1.5 0.96 0.000401 0.001517 0.5 0.067143 0.8 
8 1.5 0.97 0.000401 0.001517 0.5 0.067143 0.8 
9 1.5 0.98 0.000401 0.001517 0.5 0.067143 0.8 
10 1.5 0.99 0.000401 0.001517 0.5 0.067143 0.8 
11 1.5 1.0 0.00125 0.001517 0.5 0.067143 0.8 
12 1.5 1.0 0.000875 0.001517 0.5 0.067143 0.8 
13 1.5 1.0 0.0005 0.001517 0.5 0.067143 0.8 
14 1.5 1.0 0.000125 0.001517 0.5 0.067143 0.8 
15 1.5 1.0 0.000401 0.00074 0.5 0.067143 0.8 
16 1.5 1.0 0.000401 0.010592 0.5 0.067143 0.8 
17 1.5 1.0 0.000401 0.020444 0.5 0.067143 0.8 
18 1.5 1.0 0.000401 0.030296 0.5 0.067143 0.8 
19 1.5 1.0 0.000401 0.040148 0.5 0.067143 0.8 
20 1.5 1.0 0.000401 0.05 0.5 0.067143 0.8 
21 1.5 1.0 0.000401 0.001517 0.18 0.067143 0.8 
22 1.5 1.0 0.000401 0.001517 0.244 0.067143 0.8 
23 1.5 1.0 0.000401 0.001517 0.308 0.067143 0.8 
24 1.5 1.0 0.000401 0.001517 0.372 0.067143 0.8 
25 1.5 1.0 0.000401 0.001517 0.436 0.067143 0.8 
26 1.5 1.0 0.000401 0.001517 0.5 0 0.8 
27 1.5 1.0 0.000401 0.001517 0.5 0.013429 0.8 
28 1.5 1.0 0.000401 0.001517 0.5 0.026857 0.8 
29 1.5 1.0 0.000401 0.001517 0.5 0.040286 0.8 
30 1.5 1.0 0.000401 0.001517 0.5 0.053714 0.8 
31 1.5 1.0 0.000401 0.001517 0.5 0.067143 0.3 
32 1.5 1.0 0.000401 0.001517 0.5 0.067143 0.4 
33 1.5 1.0 0.000401 0.001517 0.5 0.067143 0.5 
34 1.5 1.0 0.000401 0.001517 0.5 0.067143 0.6 
35 1.5 1.0 0.000401 0.001517 0.5 0.067143 0.7 

 

It has been reported by Brinnel et al. that parameter Cf  shows an increased influence on the 

fracture behaviour for larger values of factor   (i.e. larger than 3) [24]. In order to consider 

possible interaction effects, additional simulations were performed with values for   between 

3.8 and 4.6.  
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Table 5: Additional simulations to include possible interaction effects. 

Simulation 
number 𝒒𝟏 𝒒𝟐 𝒇𝟎 𝒇𝑪 𝒇𝑭 𝒇𝑵 𝜺𝑵 

Reference 1.43 0.95 0.002 0.05 0.19 0.00018 0.3 
36 1.444 0.95 0.002 0.05 0.19 0.00018 0.3 
37 1.458 0.95 0.002 0.05 0.19 0.00018 0.3 
38 1.472 0.95 0.002 0.05 0.19 0.00018 0.3 
39 1.486 0.95 0.002 0.05 0.19 0.00018 0.3 
40 1.5 0.95 0.002 0.05 0.19 0.00018 0.3 
41 1.43 0.96 0.002 0.05 0.19 0.00018 0.3 
42 1.43 0.97 0.002 0.05 0.19 0.00018 0.3 
43 1.43 0.98 0.002 0.05 0.19 0.00018 0.3 
44 1.43 0.99 0.002 0.05 0.19 0.00018 0.3 
45 1.43 1 0.002 0.05 0.19 0.00018 0.3 
46 1.43 0.95 0.000125 0.05 0.19 0.00018 0.3 
47 1.43 0.95 0.0005 0.05 0.19 0.00018 0.3 
48 1.43 0.95 0.000875 0.05 0.19 0.00018 0.3 
49 1.43 0.95 0.00125 0.05 0.19 0.00018 0.3 
50 1.43 0.95 0.001625 0.05 0.19 0.00018 0.3 
51 1.43 0.95 0.002 0.00074 0.19 0.00018 0.3 
52 1.43 0.95 0.002 0.010592 0.19 0.00018 0.3 
53 1.43 0.95 0.002 0.020444 0.19 0.00018 0.3 
54 1.43 0.95 0.002 0.030296 0.19 0.00018 0.3 
55 1.43 0.95 0.002 0.040148 0.19 0.00018 0.3 
56 1.43 0.95 0.002 0.05 0.18 0.00018 0.3 
57 1.43 0.95 0.002 0.05 0.244 0.00018 0.3 
58 1.43 0.95 0.002 0.05 0.308 0.00018 0.3 
59 1.43 0.95 0.002 0.05 0.372 0.00018 0.3 
60 1.43 0.95 0.002 0.05 0.436 0.00018 0.3 
61 1.43 0.95 0.002 0.05 0.5 0.00018 0.3 
62 1.43 0.95 0.002 0.05 0.19 0 0.3 
63 1.43 0.95 0.002 0.05 0.19 0.013429 0.3 
64 1.43 0.95 0.002 0.05 0.19 0.026857 0.3 
65 1.43 0.95 0.002 0.05 0.19 0.040286 0.3 
66 1.43 0.95 0.002 0.05 0.19 0.053714 0.3 
67 1.43 0.95 0.002 0.05 0.19 0.067143 0.3 
68 1.43 0.95 0.002 0.05 0.19 0.00018 0.4 
69 1.43 0.95 0.002 0.05 0.19 0.00018 0.5 
70 1.43 0.95 0.002 0.05 0.19 0.00018 0.6 

 

Consequently, the total dataset for ANN optimisation consist out of 70 unique input sets with 

corresponding energy values. Data is shuffled and partitioned in a training fraction (70%), a 

validation fraction (15%), and testing fraction (15%). 

6 Results and Discussion 

As can be observed from the summarised results in Figure 7, there is a significant deviation in 

the predicted fracture energy. The energy values obtained using PS1 and PS4 show the best 

agreement with experimental data [65]. This interesting observation suggests that the parameter 

variation in the different parameter sets for the same material, X70 grade steel in this study, can 
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have a significant influence on the prediction of fracture toughness. According to the energy 

results plotted in Figure 7a, the deviations are from 10% underestimation for PS3 to 32% 

overestimation for PS2. Figure 7b shows, as discussed in section 5.2, that the energy variance 

due to mesh size adjustments between 0.15 mm and 0.25 mm is limited. 

  

Figure 7: Fracture energy behaviour of different reference parameter sets for X70 grade steel, as 

tabulated in Table 2, taken from the literature (a), and energy variations due to mesh size (b) . 

Furthermore, the simulated fracture surfaces show noticeable differences for each reference 

parameter set. As can be seen in Figure 8, the obtained fracture surfaces for PS3 and PS4 show 

a fracture surface in which a large section of elements is split off from the fracture plane. Since 

all models are conducted using the exact same mesh, these results suggest that certain damage 

parameters have a considerable influence on the fracture surface along with the fracture energy. 

 

Figure 8: Obtained fracture surfaces at a striker displacement of 15 mm for the considered GTN 

parameter sets. 
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As to quantify differences in the observed fracture surfaces, more fracture mechanics 

parameters such as Crack Tip Opening Displacement (CTOD), Crack Mouth Opening 

Displacement (CMOD) and Lateral Expansion at the moment of crack initiation are plotted in 

Figure 9. It is clear that for each model the CTOD, CMOD, and Lateral Expansion indicate 

different conditions at the fracture initiation. Therefore, it can be stated the variations in damage 

parameters are significantly influencing the material state at the onset of fracture, thus resulting 

in different fracture surfaces. 

 

Figure 9: Values for CTOD, CMOD and Lateral Expansion at the point of fracture initiation for each 

reference parameter set. 

Based on the data obtained through the series of numerical simulations, it can be noted that 

most parameters have a minimal influence on the fracture surface. However, the void volume 

fraction at failure, 
Ff , and the mean value of the nucleation strain, 𝜀𝑁, show a significant 

influence. In Table 6, an overview is given of the obtained fracture surfaces for the variation in 

values for Ff  and N . Changes in the observed surfaces can be explained through fracture 

parameters such as CMOD, CTOD and Lateral Expansion at the moment of crack initiation. 

As observed in Table 6, variations in the void volume fraction at failure, Ff , and the mean 

value of the nucleation strain, N , introduce disparities in the fracture surfaces.  Adjusting these 

variables results in an inconsistent and irregular fracture surface. A small value for parameter 

Ff  indicates a small void volume fraction required to initiate element failure. Based on the 

respective void growth and void nucleation parameters, element failure can be reached 

prematurely. Low values for Ff  can result in a deviating crack path, especially due to failure 

of the critical elements around the notch tip leading to a cascade effect of failing elements. On 
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the other hand, reducing 
N  lowers the effective plastic strain at which secondary voids 

nucleate which accelerates local element failure. Thus, less plastic deformation is required to 

initiate failure and a local strain peak can result in an aberrant fracture surface with resulting 

torn-off element groups. It appears that the model sensitivity to local phenomena and 

aberrations such as singularities occurring during the finite element simulations increases for 

low values of parameters 
Ff  and 

N . 

Table 6: Effect of the material-dependent parameters on the resulting fracture surface at a striker 

displacement of 15 mm in case of 3  . 

 Min Parameter Value Mean Parameter Value Max Parameter Value 

𝒇𝑭 

   

𝜺𝑵 

   

The fracture energy for all numerical simulations are summarised in Figure 10. Once each 

damage parameter is varied within its value range, the absolute variation of the fracture energy 

can be analysed. As two reference sets are considered for the cases of 3   and 3   the 

results are split up with respect to each reference. It is observed that, for the same X70 steel 

grade the deviation in fracture energy can show large variations. 

• 3  : 

Resulting fracture energy varies approximately between -25% and +15% relative to the 

considered reference – in this case PS1. This indicates that there is a possible spread of 

40% in the predicted fracture energy for the same X70 grade pipeline steel. This large 

spread of fracture energy predictions can mainly be attributed to parameters 1q  and Ff
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. Even though cf  is often considered as crucial for the GTN material model, it presents 

the smallest spread on the obtained fracture energy.  

• 3   

Similar to previous situation, variations of fracture energy are large. With a deviation 

of approximately -60% up to +30%, the spread is even larger. However, the parameters 

causing the variation are different than in the case of 3  .        

 

Figure 10: Absolute influence of each GTN parameter over the complete parameter range of X70 

grade steel. 

However, the relative sensitivity of the fracture toughness with respect to each variable cannot 

be determined based on this graph since it only considers the absolute energy deviation. Due to 

the different value ranges, no parameter is changed with the same amount. By considering the 

size of the actual value ranges, the relative influence for each damage parameter can be 

determined. In order to obtain the relative influence, an artificial neural network is constructed 

and numerical data of the simulation series is used to train the system. The dataset used for 

training of the ANN consists out of the combined simulation data for the cases of 3   and 

3  . 

The weights of the connection between neurons are a measure for the sensitivity of the output 

variable with respect to each input variable. Thus, by assessing the calibrated weight values of 

the ANN connections, the relative influence for each damage parameter can be determined. 

After training and validation, the constructed ANN found a strong relation between the input 
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variables and the output energy. By plotting the remaining error for the network as a function 

of the number of hidden neurons, the optimal number of hidden neurons can be validated. 

Figure 11 shows that for a network with 8 hidden neurons, the remaining Mean Squared Error 

(MSE) after training and testing is the lowest.  

 

Figure 11: Remaining MSE during training and testing as a function of the number of hidden neurons. 

 

The process of determining the relative influence is repeated three times: for the situation of 

3  , 3  , and combined 3   & 3  . As the interaction effects have shown increasing 

parameter influences for varying   values, it is required to assess the changes in relative 

importance. Figure 12 shows the performance of the neural networks optimised using the 

simulation data obtained in the cases of 3  (Figure 12a) and 3   (Figure 12c). The MSE is 

plotted as a function of each epoch. One epoch represents a period in which the complete data 

set was fed through the neural network. In these networks each dataset consists out of 35 input 

sets with corresponding target energy values and are divided into a training fraction (70%), a 

validation fraction (15%), and a testing fraction (15%). The remaining MSE’s for both networks 

are 12.71 J and 11.61 J respectively. This is a deviation of approximately 6% with respect to 

the reference values. Also, it can be observed that each network found a strong relation between 

the target energy value and corresponding energy values obtained throughout the training, 
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validation, and testing procedure for both cases 3   (Figure 12b) and 3   (Figure 12d). 

Subsequently, the relative importance for each parameter is determined.  

 

Figure 12: Performance analysis and regression analysis of the ANN's for 3  (a, b) and 3   (c, d) 

during training, validation, and testing. 

Figure 13 shows that there are critical changes in the relative importance between the two 

considered cases. It can be observed that in case of 3  , parameter n  is the dominant 

parameter whilst, Cf  – which is often considered as a crucial parameter – has the lowest relative 

importance. However, for the case of 3  , Cf  becomes the most influential parameter and 

the importance of n  is greatly reduced. Remarkably, 0f  and Ff  are the only parameters that 

show a high importance in both cases. 
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Figure 13: Relative importance for cases of 3   and 3  . 

It is important to consider the interaction effects between nucleation parameters Nf  and 
N . 

Similar to the observations of Brinnel et al. [24] – were parameter 
N  only showed a large 

influence if parameter Nf  has a significant value – in this case, 
N  shows a large influence 

because of the high importance of Nf . This suggest that, due to the interactions, parameter Nf  

is the controlling factor for the influence of the nucleation parameters.   

Ultimately, all data is combined in order to assess the resulting total relative influence for both 

3   & 3   cases combined. Subsequently, the total dataset consists out of 70 unique input 

sets with corresponding energy values. Figure 14 visualises the relation found between the 

predicted fracture energy (PE) by the network and the expected target energy (TE) as extracted 

from each simulation.  
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Figure 14: Relation between the predicted energy by the ANN and the target fracture energy during 

training, validation, and testing. 

Figure 15 shows the training process by plotting the residual error for each epoch. Training 

stopped after 22 epochs, returning an optimal network configuration after 17 epochs with an 

absolute MSE of 17.48 Joules which is a deviation of approximately 8% with respect to the 

considered references.  
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Figure 15: Performance of trained ANN is presented using the remaining MSE after each epoch, a low 

final MSE indicates a good ANN performance. 

Applying the CW algorithm allows to derive the relative importance from the calibrated 

connection weights for each input variable. Figure 16 gives an overview of the obtained 

influence for each material parameter with respect to the fracture energy. It is observed that 0f  

and 
Cf  show the highest relative contributions. Whilst 2q  and 

N  show the lowest 

contributions. In other words, adjusting parameters 0f  and 
Cf  with the same amount will lead 

to a large but similar deviation in fracture energy. This data allows to compare the influence of 

each damage parameter with each other. Adjusting parameters 1q  and Ff  with the same amount 

will yield approximately the same results in terms of the obtained fracture energy. On the other 

hand, adjusting the value of 1q  will have approximately four times more effect on the final 

energy value. Furthermore – based on this data – parameter 0f  can be considered as important 

as critical parameter Cf .  
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Figure 16: Relative influence of the material-dependent GTN parameters on the fracture energy. 

Summarised, the data presented in Figure 16, suggests there are two parameters ( 0f  and 
Cf ) 

with a dominant influence, three parameters ( 1q , 
Ff , and Nf ) with a medium influence, and 

two parameters ( 2q  and 
N ) with a low influence on the fracture energy. However, in this study 

Ff  and 
N  have shown influence on both the fracture surface appearance as well as on the 

energy prediction thus requiring additional consideration. Table 7 summarises the obtained 

relative influences for all considered cases. Based on the observed parameter contributions it is 

suggested that parameters 0f , 
Cf , 

Ff , and Nf  require careful consideration. Practically, this 

implicates that these parameters should be determined for each individual application of the 

GTN damage model..   

Table 7: Overview of obtained relative importance for each parameter with corresponding rank, 1 

being the highest importance and 7 being the lowest importance. 

  𝒒𝟏 𝒒𝟐 𝒇𝟎 𝒇𝑪 𝒇𝑭 𝒇𝑵 𝜺𝑵 
3   -0.58 -0.30 -3.27 0.09 3.16 -2.64 3.83 

Rank 6 5 2 7 3 4 1 

3   -0.18 -1.26 -1.74 3.45 1.82 -0.68 0.42 
Rank 7 4 3 1 2 5 6 

Combined -1.31 -0.18 -2.25 2.48 1.11 -0.82 0.32 
Rank 3 7 2 1 4 5 6 
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Also, note that for one of the most influential material parameters observed in this investigation, 

0f , there is no consistent way of determining its correct value. As mentioned in previous 

sections, this material parameter can be calibrated, calculated or obtained from the literature. 

It is fair to state that the different investigations reporting on the GTN material parameters for 

X70 grade steel, result in a deviating fracture toughness prediction. One of the possible 

explanations for the difference in damage parameter sets is the use of different calibration 

procedures and optimisation processes. This indicates the importance of selecting the 

calibration and optimisation procedure according to the relevant stress states in the application 

of interest. 

Besides extracting the relative importance for each input parameter, the trained ANN allows to 

make predications using a given input parameter set. As a means of validation, the reference 

sets PS1, PS2, PS3, and PS4 are fed to the network which resulted in a predicted fracture energy. 

Figure 17 shows the ANN energy prediction and target energy value obtained from simulations. 

It is observed that the ANN is able to approximate the energy values within 10% of the target 

value.  

 

Figure 17: Predictions of ANN for each considered reference parameter set for the GTN damage 

model. 
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This data suggest that it is possible to have obtain satisfactory approximations of the CVN 

energy using the trained ANN for a random input set. It is important to note that this statement 

is only valid if the random input set only considers input values within the respective parameter 

value ranges. Using this machine learning approach, an initial guess for the fracture energy can 

be made without running a new finite element model. Of course, the constrains and mechanical 

background of the GTN damage still has to be respected when implementing the random input 

parameter set. Inverting this trained ANN using optimisation algorithms would allow to 

generate an GTN input set for a desired energy value. However, this procedure falls outside the 

scope of this investigation. 
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7 Conclusions 
 

In this investigation, the influences of the GTN damage parameters were quantified in the case 

of X70 grade pipeline steel. Relative influences of the constitutive parameters    and   , initial 

void volume fraction, 0f , critical void volume fraction, cf , void volume fraction at failure, 
Ff

, void volume fraction of nucleated voids,  Nf , and the mean value of the nucleation strain, 
N

, were determined through a machine learning based approach. An ANN was trained and 

optimised using the data obtained from finite element simulations. Using the CW algorithm, 

relative importance for each considered material parameter was be derived. The use of an 

artificial neural network in this work has shown to be a performant tool in assessing a complex 

non-linear problem. With a relatively limited data set, it was possible to calibrate and train an 

artificial neural network with an acceptable residual mean square error. Furthermore, the ANN 

can be applied to generate acceptable energy predictions for new GTN parameter sets.  

It was observed that in this case study, parameter 
Cf  is the most influential parameter regarding 

the fracture energy. In most cases, this variable is considered as a critical parameter that should 

be calibrated for each individual case. However, when considering the case of 3  , Cf  yields 

the lowest influence relative to the other damage parameters. In this case, parameter 
N  shows 

the highest importance. Since the distribution of the nucleation strain cannot be determined 

practically, it is often assumed to have a typical value. In some cases, it is adjusted to fit 

numerical data with experimental results. Consequently, the numerical fracture energy can be 

easily adjusted to fit the experimental with relatively limited changes to parameter N . 

However, the importance N  cannot be evaluated individually due to the interaction effects 

between the nucleation parameters. Based on the data, it is suggested that the importance of Nf  

is the controlling factor for the importance of the nucleation parameters. It should also be noted 

that 0f  is the sole parameter that maintains its importance throughout the range of  . 

The predictive performance GTN damage model is highly dependent on material parameters 

that can be obtained from the literature and adjusted if necessary to fit the required behaviour. 

Moreover, if the parameter is to be calibrated, a calibration procedure should be selected based 

on the stress conditions present in the desired application. Also, the acceleration of the void 

volume growth with factor   should be considered. The obtained data shows that the relative 

importance for each parameter is highly dependent on  .  
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The GTN damage model is widely accepted and used as a damage model to simulate ductile 

fracture propagation. It is implemented in a variety of software packages and model parameters 

are available in literature for an extensive set of materials. However, this investigation shows 

that the material-dependent parameters in the literature should be used with the necessary 

caution:  

The material-dependent parameters should be determined in a consistent way. In this study, 

critical parameter 
Cf  showed the least relative influence on the fracture energy in case of 3 

. As 
Cf , in some cases, is the only calibrated damage parameter,  numerical fracture behaviour 

can easily be fitted with experimental data by applying small adjustments to the most influential 

parameters ( 0f , 
Ff , Nf , and 

N ). In general, based on the results obtained in this study, it is 

suggested to validate or calibrate parameters 0f , 
Cf , 

Ff , and Nf  for each individual 

application as these variables have shown significant influence with respect to the fracture 

energy. 

Future research using AI in fracture mechanics investigations yields a lot of potential towards 

fracture predictions. The procedure applied in this study allowed to determine the relative 

importance of each parameter and showed promising results regarding its predictive 

performance. It is shown that a shallow neural network is able to produce acceptable energy 

predictions for a given GTN input set. This type of network can be inverted in order to reverse 

the process which would result in a new GTN input set for a required energy value. In the future, 

AI procedures could be applied to facilitate the calibration procedure of existing damage 

models.  
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