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Ghost Signals
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Abstract. Programs for multiprocessor machines commonly perform
busy-waiting for synchronization. We propose a separation logic using
so-called ghost signals to modularly verify termination of such programs
under fair scheduling. Intuitively spoken, ghost signals lift the runtime
concept of wait-notify synchronization to the verification level and allow
a thread to busy-wait for an event X while another thread promises to
trigger X.

1 Introduction

Programs for multiprocessor machines commonly perform busy-waiting for syn-
chronization [23,25]. In this paper, we propose a separation logic [26,33] to mod-
ularly verify termination of such programs under fair scheduling where some
threads busy-wait for other threads to trigger a certain event, e.g., setting a
memory flag. By modularly, we mean that we reason about each thread and
each function in isolation. That is, we do not reason about thread scheduling
or interleavings. We only consider these issues when proving the soundness of
our logic. Assuming fair scheduling is necessary since busy-waiting for an event
X only terminates if the thread responsible for the event is sufficiently often
scheduled to trigger X .

The approach we present in this paper to verify termination of busy-waiting
programs builds on two of our earlier works: (i) In [14] we proposed so-called
call permissions to verify termination of programs involving recursion and loops.
(ii) In [31, 32] we proposed a separation logic to verify termination of busy-
waiting for abrupt termination. We call said permissions iteration permissions
as, for simplicity, in this paper we focus on loops rather than on recursion. An
extension would, however, be straight-forward.

In order to prove that a busy-waiting loop terminates, we have to prove that
it performs only finitely many iterations. To do this, we choose a well-founded
set of degrees ∆, associate each iteration permission with a degree and start our
verification with a finite number of these permissions. We let each loop iteration
consume an iteration permission and allow to create new ones via weakening, i.e.,
replacing an iteration permission by finitely many of a lower degree. Then, we
show that the finite stock of iteration permissions in the system is monotonically
decreasing and strictly decreases with each loop iteration. The idea of using well-
founded orders to verify termination is well-known in the literature [6, 18, 24].

http://arxiv.org/abs/2010.11762v1
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However, the number of iterations that a busy-waiting loop performs typically
depends on the runtime scheduling. In such a case, starting with a fixed number
of iteration permissions and allowing weakening is not sufficient to prove ter-
mination. To overcome this limitation, we introduce ghost signals and wait per-
missions. This verification concept roughly corresponds to runtime wait -notify
synchronization where one party waits for an event to happen and the party
responsible for triggering the event notifies the waiting one when the event oc-
curred. Ghost signals and wait permissions allow a thread to wait for an event.

We choose a well-founded set of levels Levs and associate each signal with
one as well as with a boolean to indicate whether it is set or unset. When a
thread creates a signal, it is initially unset and the thread obtains a so-called
obligation [9, 10, 19, 20] to set the signal. Generally, an obligation requires the
thread holding the obligation to discharge it by performing a certain action. This
way, when a threat knows that some signal s has not been set, yet, while it does
not hold an obligation for s, it knows that another thread holds the obligation
and will eventually set s.

Just as with iteration permissions, we associate each wait permission with a
degree. Before a thread can wait for a signal s, it has to obtain a wait permission
for s, which consumes an iteration permission of a higher degree. A thread hold-
ing a wait permission of degree δ for an unset signal s can generate an iteration
permission of degree δ by waiting for s. We ensure that no thread (directly or
indirectly) waits for itself by requiring the level of s to be lower than the level
of each held obligation.

Ghost signals and permissions are ghost resources [16], i.e., resources that
only exist on the verification level and hence do not affect the program’s runtime
behaviour. In particular, setting a signal does not by definition correspond to
any runtime event. So, in order to use a signal s effectively, we have to prove an
invariant stating that s is set if and only if the event of interest has occurred.

We can prove that, assuming fair scheduling, in a verified program each signal
is waited-for only finitely often. This allows us to view a wait permission as the
finite collection of iteration permissions that will be generated by threads waiting
for it. We extend the above soundness argument by (i) not just considering
the stock of iteration permissions available at a certain point in time but also
(ii) the stock of future iteration permissions that will be created by waiting for
signals (via already available wait permissions). As above, this stock of iteration
permissions decreases with each loop iteration. Hence, we can prove that verified
programs terminate.

We start by gradually introducing the intuition behind our verification ap-
proach and the concepts we use. In § 2.1 and § 2.2, we introduce the aspects
related to verifying data-race-freedom and deadlock-freedom, respectively, which
are standard [5, 8, 14, 20]. In § 2.3, we introduce our approach for verifying ter-
mination of busy waiting. We continue in § 3 and § 4 by formally presenting the
language and the logic, respectively. In the latter, we define the proof system
and state the soundness theorem whose proof we outline in § 5. In § 6 we sketch
the verification of a realistic example program to demonstrate our approach’s
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usability and address fine grained concurrency in § 7. Further, we sketch an
extension of our logic that allows permission transfer between threads in § 8,
describe the available tool support in § 9, and discuss integrating higher-order
features in § 10. We conclude by comparing our approach to related work and
reflecting on it in § 11 and § 12.

2 Verifying Termination of Busy-Waiting in a Nutshell

When we try to verify termination of busy-waiting programs, multiple challenges
arise. Throughout this section, we describe these challenges and our approach to
overcome them. We will use the program presented in Fig. 1 as running example.
It shows two threads communicating via a shared memory cell x that is initialized
with 0 and protected by a mutex m. One thread sets x to 1 and the other thread
busy-waits for x to change its value.

We introduce our program logic gradually. In § 2.1 and § 2.2, we introduce
the aspects related to verifying data-race-freedom and deadlock-freedom, respec-
tively, which are standard [5, 8, 14, 20]. In § 2.3, we introduce our approach for
verifying termination of busy waiting.

let x := cons(0) in
let m :=new mutex in
fork (while (acquire m;

let y :=[x] in
release m;
y = 0)

do skip);
acquire m;
[x] := 1;
release m

Fig. 1: Minimal Example Program.

2.1 Verifying Data Race Freedom

The two threads both access the shared heap cell x. Due to non-deterministic
runtime scheduling, data races can occur if both try to access it simultaneously.
To prevent this, we protect x by a mutex m and synchronize accesses. In this
section, we introduce the aspects of our logic for verifying data-race-freedom;
they are standard [5, 8].

Specifications We use Hoare triples {A} c {λr.B(r)} [12] to specify the be-
haviour of a program c. Such a triple expresses that if we execute c in a state
that fulfils precondition A, then two properties hold: (i) c does not get stuck,
i.e., it either terminates or diverges. (ii) If c terminates and r denotes the value
returned by c, then postcondition B(r) holds in its final state.
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Proof System We define a proof relation ⊢ which ensures that whenever we can
prove ⊢ {A} c {λr.B(r)}, then no race condition occurs during the execution
of c. Fig. 2b presents some of the proof rules we use to define ⊢. The full set of
rules is presented in the appendix (cf. Fig. 9 and 10). Fig. 2a illustrates how we
can apply them to verify data race freedom of our minimal example. For now,
ignore the obligations chunks obs(O) and levels marked in grey in the verification
sketch. We are going to explain their use in the next subsection.

Accessing Heap Cells Our logic extends plain separation logic [26,33]. When we
allocate x by applying PR-Cons, we get a points-to chunk ℓx 7→ 0. It expresses
that heap location ℓx, which we store in x, points to the value 0. We can split
the chunk and give each half, i.e., [ 12 ]ℓx 7→ 0, to one thread [3, 4]. This allows
both to read x, cf. proof rule PR-ReadHeapLoc. However, in order to prevent
data races, we require threads to own the full chunk ℓx 7→ 0 to write x, cf.
PR-AssignToHeap.

Lock Invariants Splitting x’s points-to chunk does not work for the example
program since one thread requires write access. Hence, they have to share the
chunk and we must synchronize their accesses of x. We use the mutex m for
this. In order to specify which resources m protects, we associate it with a lock
invariant P . The mutex protects x whose value varies over time. Hence, we choose
the invariant P := ∃vx. ℓx 7→ vx which abstracts over the concrete value vx of x.

Ghost State & Ghost Proof Steps Directly after the creation of a mutex by proof
rule PR-NewMutex, it is uninitialized. That is, it has not been associated with
any lock invariant, yet. We must choose this invariant explicitly by performing
a proof step that consumes invariant P and binds it to m. This step does not
affect the resources in any way that would be relevant to the program’s runtime
behaviour. The resources that P describes still exist but their ownership has
been transferred to the mutex. Hence, we say that it changes the ghost state
and call it a ghost proof step. We express such steps in the form of a view shift
relation⇛ [17]. A view shift A⇛ B expresses that we can reach postcondition B

from precondition A by (i) drawing semantic conclusions or by (ii) manipulating
the ghost state. View shift rule VS-MutInit’ presented in Fig. 2b allows us
to initialize m with invariant P . The full set of rules we use to define ⇛ are
presented in the appendix (cf. Fig. 8).

Synchronization Since initializing m consumes lock invariant P , the shared heap
cell x becomes unavailable to both threads. In order to read or write x, a thread
must obtain the exclusive right to access x by acquiring m. The corresponding
proof rule PR-Acquire changes the mutex’s state from unlocked to locked and
produces the lock invariant P . When we releasem, we must apply PR-Release’,
which changes its state to unlocked and consumes P . That is, x becomes unavail-
able to the thread again, when it releases m. Mutex acquisition will not succeed
during runtime if some thread already holds the mutex. Hence, our proof rules
statically ensure that only one thread can access x at any time.
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{obs(∅)}
let x := cons(0) in let m :=new mutex in
∀ℓx, ℓm.
{obs(∅) ∗ ℓx 7→ 0 ∗ uninit(ℓm)}
init mutex; P := ∃vx. ℓx 7→ vx
{obs(∅) ∗mutex((ℓm, 0), P )}
fork ({obs(∅) ∗ [ 1

2
]mutex((ℓm, 0), P )}

while (acquire m

{obs({[(m, 0)]}) ∗ locked((m, 0), P, 1

2
) ∗ ∃vx. ℓx 7→ vx}

let y :=[x] in release m; y = 0
{obs(∅) ∗ [ 1

2
]mutex((m, 0), P )})

do skip);
{obs(∅) ∗ [ 1

2
]mutex((ℓm, 0), P )}

acquire m; [x] := 1;
{obs({[(m, 0)]}) ∗ locked((ℓm, 0), P,

1

2
) ∗ ℓx 7→ 1}

release m

{obs(∅) ∗ [ 1
2
]mutex((ℓm, 0), P )}

(a) Proof outline verifying data race and deadlock freedom. Hints on ghost proof steps
highlighted in red. Auxiliary abbreviations marked in brown.

PR-Cons

⊢ {True} cons(v) {λℓ. ℓ 7→ v}
PR-ReadHeapLoc

⊢ {[f ]ℓ 7→ v} [ℓ] {λr. r = v ∗ [f ]ℓ 7→ v}

PR-AssignToHeap

⊢ {ℓ 7→ } [ℓ] := v {ℓ 7→ v}
PR-NewMutex

⊢ {True} new mutex {λℓ.uninit(ℓ)}

PR-Acquire

∀o ∈ O. lev(m) <L lev(o)

⊢
{obs(O) ∗ [f ]mutex(m,P )}
acquire m.loc
{obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗ P}

PR-Release’

⊢
{obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗A}
release m.loc
{obs(O) ∗ [f ]mutex(m,P ) ∗ B}

PR-ViewShift
A⇛ A′ B′

⇛ B
⊢ {A′} c {B′}

⊢ {A} c {B}

PR-Fork
⊢ {obs(Of ) ∗ A} c {obs(∅)}

⊢ {obs(Om ⊎ Of ) ∗ A} fork c {obs(Om)}

VS-MutInit’

uninit(ℓ) ∗ P ⇛ mutex((ℓ, L), P )

VS-SemImp
∀H. consistentlh(H) ∧H �A A ⇒ H �A B

A⇛ B

(b) Proof rules and view shift rules for verification of data race and deadlock freedom.

Fig. 2: Verifying data race and deadlock freedom. Obligations chunks and levels
marked in grey. Ignore them while reading § 2.1. Obligations and levels will be
introduced in § 2.2.
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2.2 Verifying Deadlock Freedom

Obligations During runtime, any attempt to acquire m will block if another
thread already holds the mutex until this thread releases m again. If it does
not release m, the thread trying to acquire m can never proceed with its execu-
tion. We use so-called obligations [9, 10, 19, 20] to prevent this. These are ghost
resources [16], i.e., resources that do not exist during runtime and can hence
not influence a program’s runtime behaviour. They carry, however, information
relevant to the program’s verification. Generally, holding an obligation requires
a thread to discharge it by performing a certain action. Whenever a thread ac-
quires m we generate an obligation to release it and releasing m discharges this
obligation, cf. proof rules PR-Acquire and PR-Release’ presented in Fig. 2b.
We describe which obligations a thread holds by bundling them into obligations
chunks obs(O), cf. Fig. 2a (obs chunks marked in grey). Consequently, obs(∅)
asserts that a thread does not hold any obligations. We can prove deadlock-
freedom of a program c by proving that it discharges all its obligations, i.e., by
proving ⊢ {obs(∅)} c {obs(∅)}.

Whenever a thread forks a new thread, it can transfer ownership of resources
to the newly forked thread, cf. PR-Fork. In particular, the forking thread can
pass some of its obligations to the new thread. However, in order to prevent
threads from dropping obligations via dummy forks, we only allow forking if the
forked thread provably discharges all its obligations.

Levels It is not always straight-forward to see that a mutex will be released even-
tually. Consider a program with two mutexes m1,m2 and two threads. Let one
thread execute acquire m1; acquire m2; release m2; release m1; and the other
acquire m2; acquire m1; release m1; release m2;. Both threads’ execution can
get stuck as both mutexes’ release depends on successful acquisition. To prevent
such wait cycles, we choose a partially ordered set of levels Levs and associate
every mutex with a level. In the example program, we choose 0 for m, cf. Fig. 2a
(levels marked in grey). Additionally, we only allow a thread to acquire a mutex
if its level is smaller than the level of each held obligation, cf. PR-Acquire.
This also prevents any thread from attempting to acquire mutexes twice, e.g.,
acquire m; acquire m.

2.3 Verifying Termination

The approach we present in this paper to verify termination of busy-waiting
programs builds on two of our earlier works: (i) In [14] we proposed so-called
call permissions to verify termination of programs involving recursion and loops.
(ii) In [31, 32] we proposed a separation logic to verify termination of busy-
waiting for abrupt termination. We call said permissions iteration permissions
as, for simplicity, in this paper we focus on loops rather than on recursion. An
extension would, however, be straight-forward.
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{obs(∅) ∗ itperm(1)}
let x := cons(0) in let m :=new mutex in new signal;
∀ℓx, ℓm, ids.
{

obs({[(ids, 1)]}) ∗ itperm(1) ∗ ℓx 7→ 0 ∗ uninit(ℓm) ∗ signal((ids, 1),False)
}

s := (ids, 1), mut := (ℓm, 0), P := ∃vx. ℓx 7→ vx ∗ signal(s, vx 6= 0)
{obs({[s]}) ∗ itperm(1) ∗mutex(mut, P )}
new waitPerm;
{obs({[s]}) ∗ wperm(ids, 0) ∗mutex(mut, P )}
fork ({obs(∅) ∗ wperm(ids, 0) ∗ [

1

2
]mutex(mut, P )}

while (acquire m

∀vx.
{obs({[mut]}) ∗ wperm(ids, 0) ∗ ℓx 7→ vx ∗ signal(s, vx 6= 0) ∗ locked(mut, P, 1

2
)}

let y :=[x] in
release m + release view shift

{obs(∅) ∗ wperm(ids, 0) ∗ ℓx 7→ vx ∗ signal(s, vx 6= 0)}
wait
{(vx = 0 ↔ itperm(0)) ∗ obs(∅) ∗ wperm(ids, 0) ∗ P};

y = 0
{obs(∅) ∗ (vx = 0 → itperm(0) ∗ wperm(ids, 0) ∗ [ 12 ]mutex(mut, P ))}

do skip);
{obs(∅)}

{obs({[s]}) ∗ [ 1
2
]mutex(mut, P )} lev(mut) < lev(s)

acquire m; [x] := 1; set signal;
{obs({[mut]}) ∗ locked(mut, P, 1

2
) ∗ ℓx 7→ 1 ∗ signal(s,True)}

release m

{obs(∅) ∗ [ 1
2
]mutex(mut, P )}

{obs(∅)}

(a) Proof outline verifying termination. Hints on ghost proof steps highlighted in red.
Auxiliary abbreviations marked in brown.

PR-While

⊢
{

I
}

cb







λb. (b = True ∨ b = False)
∗ (b → itperm(δ) ∗ I)
∗ (¬b → B)







⊢ {I} while cb do skip {B}

VS-WaitPerm
δ′ <∆ δ

itperm(δ)⇛ wperm(id, δ′)

PR-Release
obs(O) ∗ A⇛ obs(O) ∗ P ∗B

⊢
{obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗ A}
release m.loc
{obs(O) ∗ [f ]mutex(m,P ) ∗B}

VS-Wait
∀o ∈ O. lev(s) <L lev(o)

obs(O) ∗ wperm(s.id, δ) ∗ signal(s, b)
⇛ obs(O) ∗ wperm(s.id, δ) ∗ signal(s, b)

∗ (¬b ↔ itperm(τ, δ))

VS-WeakPerm
δ′ <∆ δ N ∈ N

itperm(δ)⇛∗
1,...,N

itperm(δ′)

VS-NewSignal

obs(O)⇛ ∃id. obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal
obs(O ⊎ {[s]}) ∗ signal(s, )
⇛ obs(O) ∗ signal(s,True)

VS-MutInit
¬mentionsPerms(P )

uninit(ℓ) ∗ P ⇛ mutex((ℓ, L), P )

(b) Proof rules and view shift rules for termination verification.

Fig. 3: Verifying termination.
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Iteration Permissions In order to prove termination we need to prove that loops
perform only finitely many iterations. Fig. 3b shows the proof and view shift
rules we use and Fig. 3a presents our termination verification of the minimal
example. We will now explain their use. Consider the rule PR-While. We only
consider busy-waiting loops of the formwhile cb do skip, where cb is a command
whose result controls the loop and skip is a no-op. We start our verification
with a finite number of iteration permissions. Each loop iteration consumes one
of these permissions. We have to prove that the condition cb returns a boolean
value to prevent the execution from getting stuck. As the loop busy-waits while
cb yields True, we must prove that, in this case, it preserves some invariant I and
that we have an additional iteration permission for the iteration to consume.

To avoid the need of fixing the number of needed permissions at the beginning
of a verification, we allow to generate finitely many permissions by weakening, cf.
view shift rule VS-WeakPerm. We choose a well-founded set of degrees ∆ and
associate each permission with one. Weakening allows us to replace one iteration
permission of degree δ by finitely many of a lower degree δ′. The idea of using
well-founded orders to verify termination is well-known in the literature [6,18,24].

Ghost Signals & Wait Permissions How many iterations a busy-waiting loop
performs often depends on the concrete runtime scheduling as in the minimal
example. In such a case, starting with a fixed number of iteration permissions
and allowing weakening is not sufficient to prove termination. To overcome this
limitation, we introduce ghost signals and wait permissions. This verification
concept roughly corresponds to runtime wait -notify synchronization where one
party waits for an event to happen and the party responsible for triggering the
event notifies the waiting one when the event occurred. Ghost signals and wait
permissions allow a thread to wait for an event, e.g., x to be set, in a similar
manner.

Just like permissions, ghost signals are ghost resources. We associate each
signal with a unique ID and a boolean b ∈ B = {True,False}. We can create a
signal via a view shift with VS-NewSignal. Initially, the signal is unset, i.e.,
associated with False. Creating a signal automatically creates an obligation to
set the signal. In our termination verification proof, the main thread holds this
obligation and will eventually discharge it by setting the signal when it sets x.

We associate each wait permission with a signal ID and a degree. A wait
permission for some signal s enables a thread to wait until s is set. By applying
VS-WaitPerm, we can replace an iteration permission by a wait permission of
a lower degree. Rule VS-Wait allows a thread holding a signal s and a wait
permission for s of degree δ to generate an iteration permission of degree δ. The
thread can use this iteration permission to justify another loop iteration.

In our termination verification, both threads share the created signal via
the lock invariant P . The main thread eventually sets the signal and the busy-
waiting thread uses it and the wait permission it holds to justify loop iterations
until s is set. However, the latter thread actually loops until x is set. So, in order
to use the ghost signal effectively, we have to prove an invariant stating that the
signal is consistent with the event we wait for, i.e., we need to prove that s is
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associated with True if and only if x has been set. We fix this as part of the lock
invariant P .

Furthermore, we need to ensure that threads do not wait for themselves.
Hence, we associate every signal with a level and only allow a thread to wait for
s if its level is lower than the level of each held obligation, cf. VS-Wait. In our
example, the main thread acquires the mutex m while it holds the obligation
for s and sets s while still holding m. The lock invariant stating consistency
between s and x makes this necessary. Hence, we choose the level of m to be
lower than the level of s as required by PR-Acquire. This, however, means that
the forked thread can only wait for s (i.e. apply VS-Wait) after it discharged
the obligation for m. We solve this by allowing a view shift when releasing m

that takes place after the obligation for m has been discharged but before the
mutex’s lock invariant P is consumed. In the verification outline, this view shift
is marked as release view shift.

So far we allowed threads to share arbitrary resources via lock invariants.
However, this becomes problematic when permissions are involved. Consider a
non-terminating program with two infinitely looping threads t1 and t2 sharing
a signal s. t1 holds the obligation for s and hence cannot wait for it. In each
iteration t2 can wait for s and thereby create two iteration permissions of which it
transfers one through the lock invariant to t1. This way, both threads can justify
their infinite loop and t1 essentially busy-waits for itself to set s. We prevent
such inconsistencies by prohibiting lock invariants from mentioning permissions
and restrict VS-MutInit’ accordingly. The new view shift rule VS-MutInit is
presented in Fig. 3b.

Note that if we could prophesy ahead of time how many times we would need
to busy-wait before the signal s was set, we could just use the weakening ruleVS-

WeakPerm. Consider any execution of any program verified using our proof
rules and the graph depicting its control flow at runtime, i.e., the graph where
each path represents the execution of a particular thread including ghost steps
corresponding to view shifts, e.g., creating a signal and waiting. We call this a
program order graph. From the perspective of a path in this graph that only waits
for signals that are waited for only finitely often, a wait permission is effectively

an encapsulated prophecy: wperm(ids, δ) =∗1,...,N
itperm(δ) where N is the

number of times s will be waited for (or 0 if s is waited for infinitely often).
By this interpretation of wait permissions, the stock of iteration permissions on
such a path decreases at each loop iteration. It is not possible that a signal is
waited for infinitely often. Indeed, suppose some signals S∞ are. Take smin ∈ S∞

with minimal level. Then the path that carries the obligation for smin waits only
for signals that are waited for finitely often. By the above argument, it is a
finite path. This contradicts the fact that it carries an obligation that is never
discharged. Notice that the above argument relies on the property that every
nonempty set of levels has a minimal element. For this reason, for termination
verification we require that Levs is not just partially ordered, but also well-
founded.
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3 Language

In this section and the next, we present our approach formally. In this section,
we define the programming language; in § 4 we define the proof system. We state
the soundness theorem and outline our soundness proof in § 5.

We consider a simple imperative programming language with support for
multi-threading, shared memory and synchronization via mutexes. Fig. 4 presents
its syntax and semantics. For its definition we assume (i) an infinite set of pro-
gram variables x ∈ X , (ii) an infinite set of heap locations ℓ ∈ Locs, (iii) a set of
values v ∈ Values which includes heap locations, booleans B = {True,False} and
the unit value tt , (iv) a set of operations op ∈ Ops and (v) an infinite, totally
ordered and well-founded set of thread IDs θ ∈ Θ.

The language contains standard sets of pure expressions Exps and (poten-
tially) side-effectful commands Cmds , cf. Fig. 4b. The latter includes commands
for heap allocation and manipulation, forking and loops. We define physical
heaps [14] (as opposed to logical heaps [14] presented in the next section) as a
finite set of physical resource chunks, cf. Fig. 4c. A points-to chunk ℓ 7→ v ex-
presses that heap location ℓ points to value v [14,33]. Moreover, we have chunks
to represent unlocked and locked mutexes.

We represent a program state by a physical heap and a thread pool, which we
define as a partial function mapping a finite number of thread IDs to threads,
cf. Fig. 4d. Thread IDs are unique and never reused. Hence, we represent run-
ning threads by commands and terminated ones by term instead of removing
threads from the pool. We define the operational semantics of our language in
terms of two small-step reduction relations:  st for single threads and  tp for
thread pools, cf. Fig. 4e and 4f. Since expressions are pure and their evaluation is
deterministic (cf. Def. 13 in appendix) we identify closed expressions with their
ascribed value. (i) h, c  st h

′, c′, T expresses that heap h and command c are
reduced in a single step to h′ and c′ and that this thread forks a set of threads T .
This set is either empty or a singleton as no step forks more than one thread.

(ii) h, P
θ
 tp h′, P ′ expresses that heap h and thread pool P are reduced in a

single step to h′ and P ′. ID θ identifies the thread reduced in this step.

As thread scheduling is non-deterministic, so is our thread pool reduction
relation tp. Consider the minimal example presented in the previous section in
Fig. 1. It does not terminate if the main thread is never scheduled after the new
thread was forked. Hence, our verification approach relies on the assumption
of fair scheduling. That is, we assume that every thread is always eventually
scheduled while it remains running. Further, we represent program executions by
sequences of reduction steps. As we primarily consider infinite sequences in this
paper, we define reduction sequences to be infinite to simplify our terminology.

Definition 1 (Reduction Sequence). Let (hi)i∈N and (Pi)i∈N be infinite se-
quences of physical heaps and thread pools, respectively. We call (hi, Pi)i∈N a
reduction sequence if there exists a sequence of thread IDs (θi)i∈N such that

hi, Pi
θi
 tp hi+1, Pi+1 holds for every i ∈ N.
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Definition 2 (Fairness). We call a reduction sequence (hi, Pi)i∈N fair iff for
all i ∈ N and θ ∈ dom(Pi) with Pi(θ) 6= term there exists some k ≥ i with

hk, Pk
θ
 tp hk+1, Pk+1.

4 Logic

In this section we formalize the logic we sketched in § 2. Fig. 5 defines the
assertions we use to express which resources a thread holds. For the definition
we assume (i) an infinite set of ghost signal IDs id ∈ ID and (ii) infinite, partially
ordered and well-founded sets of levels L ∈ Levs and degrees δ ∈ ∆. We denote
the latter sets’ order relations by <L and <∆, respectively. We define ghost
resources as described in § 2, cf. Fig. 5b, and the syntax of our assertion language
to match the presented verification sketches, cf. Fig. 5c 1.

We define logical heaps and logical resources [14] in Fig. 5d. These concepts
correspond to physical heaps and physical resources but additionally encom-
pass ghost resources and ownership. For instance, logical resources include sig-
nal chunks and initialized mutex chunks are associated with a lock invariant.
Rather than being a set of resources, logical heaps map logical resources to frac-
tions. This allows us to express which portion of a resource a thread owns. We
interpret assertions in terms of a model relation, cf. Fig. 5e. H �A a expresses
that assertion a holds with respect to logical heap H . Further, we define various
predicates to characterize a heap’s contents.

Definition 3 (Logical Heap Predicates). We call a logical heap H complete
and write completelh(H) if it contains exactly one obligations chunk, i.e., if there
exist a bag of obligations O with H(obslRes(O)) = 1 and if there does not exist
any bag of obligations O′ with O 6= O′ and H(obslRes(O

′)) > 0.
We call a logical heap H finite and write finitelh(H) if it contains only finitely

many resources, i.e., if the set {rl ∈ Rlog | H(rl) > 0} is finite.

We already presented the most important rules that we use to define our proof
relation and view shift relation in Fig. 2b and 3b in § 2 (excluding auxiliary rules
VS-MutInit’ and PR-Release’). We present the full collection of proof rules
and view shift rules in the appendix.

Definition 4 (View Shift & Proof Relations). We define a view shift rela-
tion ⇛ ⊂ A×A and a proof relation ⊢ ⊂ A×Cmds× (Values → A) according
to the rules presented in Fig. 8, 9 and 10 presented in the appendix. We state the
provability of a Hoare triple in the form of ⊢ {A} c {λr.B(r)} where r captures
the value returned by c. To simplify the notation, we omit the result value if it
is clear from the context or irrelevant.

1 That is, we define the set of assertions A as the least fixpoint of F where F (A) =
{True,False}∪{¬a | a ∈ A}∪{a1∧a2 | a1, a2 ∈ A}∪· · ·∪{

∨

A′ | A′ ⊆ A}∪ . . . . Since
F is a monotonic function over a complete lattice, it has a least fixpoint according
to the Knaster-Tarski theorem [35].
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x ∈ X : Program variables ℓ ∈ Locs : Heap locations op ∈ Ops : Operations
v ∈ Values ⊇ {tt} ∪ B ∪ Locs : Values θ ∈ Θ : Thread IDs

(a) Assumed sets and variables. X , Locs, Θ infinite. Θ totally ordered and well-founded.

e ∈ Exps ::= x | v | e = e | ¬e | op(ē)
c ∈ Cmds ::= e | while c do skip | fork c | let x := c in c | if c then c |

cons(e) | [e] | [e] := e | new mutex | acquire e | release e
E ∈ EvalCtxts ::= if � then c | let x :=� in c

(b) Syntax.

rp ∈ Rphys ::= ℓ 7→ v | unlockedpRes(ℓ) | lockedpRes(ℓ)

h ∈ Heapsphys := Pfin(R
phys)

locspRes(h) := {ℓ ∈ Locs | unlockedpRes(ℓ) ∈ h ∨ lockedpRes(ℓ) ∈ h ∨ ∃v. ℓ 7→ v ∈ h}

(c) Physical resources & heaps.

P ∈ TP := Θ ⇀fin (Cmds ∪ {term}).
∅tp : Θ ⇀fin (Cmds ∪ {term}), dom(∅tp) = ∅.
+tp : TP × {C ⊂ Cmds | |C| ≤ 1} → TP
P +tp ∅ := P,
P +tp{c} := P [θnew := c] for θnew := min(Θ \ dom(P )).

(d) Thread pools. Θ denotes a set of thread IDs and term a terminated thread.

h, c st h
′, c′, T

h,E[c] st h
′, E[c′], T

h, fork c st h, tt, {c} h, if True then c st h, c

h, if False then c st h, tt h, let x := v in c st h, c[v/x]

h,while c do skip st h, if c then while c do skip

ℓ 6∈ locspRes(h)

h, cons(v) st h ∪ {ℓ 7→ v}, ℓ

ℓ 7→ v ∈ h

h, [ℓ] st h, v

h ⊔ {ℓ 7→ v′}, [ℓ] := v  st h ⊔ {ℓ 7→ v}, tt

ℓ 6∈ locspRes(h)

h,new mutex st h ∪ {unlockedpRes(ℓ)}, ℓ

h ⊔ {unlockedpRes(ℓ)},acquire ℓ st h ⊔ {lockedpRes(ℓ)}, tt

h ⊔ {lockedpRes(ℓ)}, release ℓ st h ⊔ {unlockedpRes(ℓ)}, tt

(e) Single thread reduction rules.

P (θ) = c h, c st h
′, c′, T

h, P
θ
 tp h′, P [θ := c′] +tp T

P (θ) = v

h, P
θ
 tp h, P [θ := term]

(f) Thread pool reduction rules

Fig. 4: Language definition.
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In § 2 we verified the termination of the minimal example by proving that it
discharges all its obligations (while starting with no obligations and a single iter-
ation permission). The following theorem states that this verification approach
is sound.

Theorem 1 (Soundness). Let ⊢ {obs(∅) ∗
i=1,...,N

∗ itperm(δi)} c {obs(∅)} hold.

There exists no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅ and
P0 = {(θ0, c)} for any choice of θ0.

5 Soundness

We already sketched the high-level intuition behind our soundness argument in
§ 2.3. In this section, we go into more detail, provide the most important lemmas
we need to prove our soundness theorem 1, sketch their proofs and finally prove
the soundness theorem itself. A detailed soundness proof and all definitions can
be found in the appendix and in the technical report [27].

Bridging the Gap During runtime, all threads share one physical heap where
every thread is free to access every resource. This does not reflect the notions
of ownership and lock invariants which we maintain on the verification level. It
also does not allow us to restrict actions based on levels, e.g., only allowing the
acquisition of a mutex m if its level is lower than the levels of all held obligations.
Hence: (i) We annotate every thread by a logical heap to express which resources
it owns (including ghost resources) and thereby obtain an annotated thread pool.
(ii) We represent the program state by an annotated heap that keeps track of lock
invariants and levels. In particular, we associate unlocked mutexes with logical
heaps to represent the resources they protect. Since annotated heaps keep track
of levels, they also keep track of signals. We denote annotated thread pools and
heaps by P a and ha, respectively.

We define annotated versions  atp and  ast of the relations  tp and  st,
respectively. The annotated reduction semantics we thereby obtain needs to
reflect ghost proof steps implemented by view shifts. Hence, we define  atp in
terms of two relations: (i) ghost for ghost steps and (i) real for actual program
execution steps. The annotated semantics ensure that a reduction gets stuck if
a thread violates any of the restrictions formulated by our proof rules. Fig. 6
presents three of the rules that we use to define these relations. The upper two
rules show that a loop iteration consumes an iteration permission and that the
reduction gets stuck if the looping thread does not own one. The lower rule shows
that a thread can generate iteration permissions by waiting for an unset signal,
but only if the signal’s level is lower than the level of each held obligation. We
see that these rules comply with PR-While and VS-Wait.

Interpreting Hoare Triples We interpret program specifications {A} c {B}
in terms of a model relation �H {A} c {B} and an auxiliary safety relation
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id ∈ ID : Signal IDs L ∈ Levs : Levels δ ∈ ∆ : Degrees b ∈ B : Booleans

(a) Assumed sets and variables. ID, Levs, ∆ infinite. Levs, ∆ partially ordered and
well-founded.

s ∈ S := ID × Levs Ω := ID ×∆ Λ := ∆ o ∈ O := (Locs ∪ ID)× Levs
(id, L).id := id (ℓ, L).loc := ℓ lev(( , L)) := L

(b) Ghost resources: Ghost signals S , wait/ iteration permissions Ω/ Λ, obligations O.

f ∈ F := {f ∈ Q | 0 < f ≤ 1} A ⊆ A O ∈ Bags(O) b ∈ B Index set I

a ∈ A ::= True | False | ¬a | a ∧ a | a ∨ a | a ∗ a | [f ]ℓ 7→ v |
∨

A
| uninit(ℓ) | [f ]mutex((ℓ,L), a) | locked((ℓ, L), a, f)
| signal((id, L), b) | obs(O) | wperm(id, δ) | itperm(δ)

a1 → a2 := ¬a1 ∨ a2 a1 ↔ a2 := (a1 → a2) ∧ (a2 → a1)
∃i ∈ I. a(i) :=

∨

{a(i) | i ∈ I} ∀i ∈ I. a(i) := ¬∃i ∈ I.¬a(i)

(c) Assertion syntax. We omit quantification domain I when it is clear from the context.

rl ∈ Rlog ::= ℓ 7→ v | signallRes((id, L), b) | uninitlRes(ℓ) | mutexlRes((ℓ, L), a)
| lockedlRes((ℓ,L), a, f) | obslRes(O) | wpermlRes(id, δ) | itpermlRes(δ)

H ∈ Heaps log := Rlog → {q ∈ Q | q ≥ 0}
∅log ∈ Heaps log : 7→ 0

{rl1, . . . , r
l
n} :=

{

rli 7→ 1
x 7→ 0 if x 6∈ {rl1, . . . , r

l
n}

(H1 +H2)(r
l) := H1(r

l) +H2(r
l)

(q ·H)(rl) := q · (H(rl))

(d) Logical resources and heaps.

H �A True

H 6�A False

H �A ¬a if H 6�A a
H �A a1 ∧ a2 if H �A a1 ∧H �A a2

H �A a1 ∨ a2 if H �A a1 ∨H �A a2

H �A a1 ∗ a2 if ∃H1,H2 ∈ Heaps log. H = H1 +H2 ∧H1 �A a1 ∧H2 �A a2

H �A [f ]ℓ 7→ v if H(ℓ 7→ v) ≥ f
H �A

∨

A if ∃a ∈ A. H �A a
H �A [f ]uninit(ℓ) if H(uninitlRes(ℓ)) ≥ f
H �A [f ]mutex(m,P ) if H(mutexlRes(m,P )) ≥ f
H �A [f ]locked(m,P, fu) if H(lockedlRes(m,P, fu)) ≥ f
H �A [f ]signal(s, b) if H(signallRes(s, b)) ≥ f
H �A obs(O) if H(obslRes(O)) ≥ 1
H �A wperm(id, δ) if H(wpermlRes(id, δ)) ≥ 1
H �A itperm(δ) if H(itpermlRes(δ)) ≥ 1

(e) Assertion model relation. H 6�A a expresses that H �A a does not hold.

Fig. 5: Assertions.
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ha,H,while c do skip ast h
a,H, if c then (consumeItPerm;while c do skip)

ha,H + {itpermlRes(δ)}, consumeItPerm ast h
a,H, tt

signalaRes(s,False) ∈ ha P a(θ) = (H, c)
H(wpermlRes(s.id, δ)) ≥ 1 H(obslRes(O)) ≥ 1 ∀o ∈ O. lev(s) <L lev(O)

ha, P a θ
 ghost h

a, P a[θ := (H + {itpermlRes(δ)}, c)]

Fig. 6: Example reduction rules for annotated reduction semantics. Auxiliary
command consumeItPerm expresses consumption of an iteration permission.

safe(H, c). Intuitively, a command c is safe under a logical heap H if H provides
the necessary resources so that for every execution of c, there is a corresponding
annotated execution of c that does not get stuck. We write: (i) annottp(P

a, P ) to
express that P a is an annotated version of P . (ii) ha ∼ah ph h to express that ha is
compatible with h. (iii) And consistentconf(h

a, P a) to express that the annotated
machine configuration (ha, P a) is consistent in the sense that ha is compatible
with the logical heap H containing all resources owned by threads in P a or
protected by unlocked locks in ha and that heap locations in H are unique.

Definition 5 (Safety). We define the safety predicate safe ⊆ Heaps log ×Cmds
coinductively as the greatest solution (with respect to ⊆) of the following equation:

safe(H, c)
⇐⇒

completelh(H) →
∀P, P ′. ∀θ ∈ dom(P ). ∀h, h′. ∀P a. ∀ha.

consistentconf(h
a, P a) ∧ ha ∼ah ph h ∧

P (θ) = c ∧ P a(θ) = (H, c) ∧ annottp(P
a, P ) ∧ h, P

θ
 tp h

′, P ′ →
∃PG, P a′. ∃hG, ha′.

ha, P a
θ

 ∗
ghost h

G, PG ∧ hG, PG θ
 real h

a′, P a′ ∧ annottp(P
a′, P ′) ∧

ha′ ∼ah ph h
′ ∧

∀(Hf , cf ) ∈ range(P a′) \ range(P a). safe(Hf , cf ).

Definition 6 (Hoare Triple Model Relation). We define the model relation
for Hoare triples �H ⊂ A× Cmds × (Values → A) such that:

�H {A} c {λr.B(r)}
⇐⇒

∀HF . ∀E. (∀v. ∀HB. HB �A B(v) → safe(HB +HF , E[v]))
→ ∀HA. HA �A A → safe(HA +HF , E[c])

We can instantiate context E in above definition to let x :=� in tt, which
yields the consequent safe(HA + HF , let x := c in tt). Note that this implies
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safe(HA +HF , c). Further, every specification we can derive in our proof system
also holds in our model.

Lemma 1 (Hoare Triple Soundness). Let ⊢ {A} c {B} hold; then also
�H {A} c {B} holds.

Proof. Proof by induction on the derivation of ⊢ {A} c {B}.

Constructing Annotated Executions Given a command c which provably dis-
charges all obligations and a fair reduction sequence for c, we can construct a
corresponding annotated reduction sequence (ha

i , P
a
i )i∈N. This is a useful tool to

analyse program executions as (ha
i , P

a
i )i∈N carries much more information than

the original sequence, e.g., which obligations and permissions a thread holds.
Note that our definition of fairness forbids (ha

i , P
a
i )i∈N to perform ghost steps

forever and that we use ha ∼ah lh H to express that ha is compatible with H .

Definition 7 (Fairness of Annotated Reduction Sequences). We call an
annotated reduction sequence (ha

i , P
a
i )i∈N fair iff for all i ∈ N and θ ∈ dom(P a

i )
with P a

i (θ).cmd 6= term there exists some k ≥ i with

ha
k, P

a
k

θ
 real h

a
k+1, P

a
k+1.

Lemma 2 (Construction of Annotated Reduction Sequences). Suppose
we can prove �H {A} c {obs(∅)}. Let HA be a logical heap with HA �A A and
completelh(HA) and ha

0 an annotated heap with ha
0 ∼ah lh HA. Let (hi, Pi)i∈N be a

fair plain reduction sequence with ha
0 ∼ah ph h0 and P0 = {(θ0, c)} for some thread

ID θ0 and command c.
Then, there exists a fair annotated reduction sequence (ha

i , P
a
i )i∈N with P a =

{(θ0, (HA, c))} and consistentconf(h
a
i , P

a
i ) for all i ∈ N.

Proof. We can construct the annotated reduction sequence inductively from the
plain reduction sequence.

Program Order Graph In the remainder of this section, we prove that programs
where every thread discharges all obligations terminate. For this, we need to anal-
yse each thread’s control flow, i.e., the subsequence of execution steps belonging
to the thread. We do this by taking a sequence (hi, Pi)i∈N representing a program
execution, constructing an annotation (ha

i , P
a
i )i∈N carrying additional informa-

tion and then analysing its program order graph G((ha
i , P

a
i )i∈N) which represents

the execution’s control flow. The graph has the form G((ha
i , P

a
i )i∈N) = (N, E) for

E ⊂ (N×Θ×N r×N) where N r is the set of (annotated) reduction rule names.

Every node i ∈ N represents the ith reduction step, i.e. ha
i , P

a
i

θ
 atp ha

i+1, P
a
i+1.

Consider an edge (i, θ, n, j) ∈ E between two nodes i, j. n describes the combi-
nation of reduction rules applied in step i. The edge expresses one of two things:
(i) Either, steps i and j belong to the same thread θ and j denotes the first
scheduling of θ after i. (ii) Or, step i forks the new thread θ and j is the first
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time θ is scheduled. A path in this graph represents the control flow of a directly
related line of threads, i.e., parent, child, etc. In case the reduction sequence
(ha

i , P
a
i )i∈N is clear from the context, we denote the graph by G to simplify the

notation.

Signal Capacity Threads can wait for signals to generate iteration permissions
and thereby justify loop iterations. Consider some path p in a program order
graph that represents the execution of some thread (and potentially some direct
descendants) in a verified program.We prove that p is finite by (i) considering the
stock of held iteration permissions and of future iteration permissions created
via waiting and (ii) proving that this stock decreases. To do this, we need a
notion that precisely captures these future iteration permissions. As a first step,
we consider those signals that are waited for only finitely often along p. To each
such signal s, we assign a capacity at every node i on p, i.e., sigCapp(i), which
is the bag of iteration permissions that will be created by waiting for s after i

along the remaining suffix of p.
For the following definition, note that we represent paths in a program order

graph by subsgraphs and that S∞
G denotes the set of signals waited for infinitely

often within a subgraph G. Further, waitEdgesG(s) denotes the set of edges
(a, θ, n, b) in G where a represents a wait step. We call these edges wait edges. For
any edge, itpermsG((a, θ, n, b)) denotes the bag of iteration permissions generated
by step a.

Definition 8 (Signal Capacity). Let (ha
i , P

a
i )i∈N be a fair annotated reduction

sequence and G = (V,E) be a subgraph of the sequence’s program order graph.
We define the function sigCapG : (S \ S∞

G ) × N → Bagsfin(Λ) mapping signals
and indices to bags of iteration permissions as follows:

sigCapG(s, i) := ⊎
(a,θ,n,b)∈waitEdgesG(s)

a≥ i

itpermsG((a, θ, n, b)).

We call sigCapG(s, i) the capacity of signal s at index i.

Consider any path p representing some thread’s execution on which no signal
is waited for infinitely often. For every node i on p, we consider the stock of
iteration permissions that are either held by the thread in step i or that will be
created along the rest of the path. We can prove that this stock of permissions
decreases at each loop iteration and that p must hence be finite.

Lemma 3. Let G((ha
i , P

a
i )i∈N) be a program order graph and let p = (V,E) be

a path in G with S∞
p = ∅. For every θ ∈ dom(P a

0 ) let P a
0 (θ).heap be finite and

complete. Then, p is finite.

Proof (Sketch). Assume p is infinite. We prove a contradiction by assigning a
finite capacity to every node along the path. Let θi be the ID of the thread
reduced in step i.
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Consider the function nodeCap : V → Bagsfin(Λ) defined as

nodeCap(i) := itPermslh(P
a
i .heap) ⊎ ⊎

id∈ {id′ | (id′, )∈waitPermslh(P
a
i
.heap)}

L∈Levs

sigCapp((id, L), i).

where itPermslh : Heaps log → Bags(Λ) and waitPermslh : Heaps log → Bags(Ω)
map any logical heap to the bag of contained iteration and wait permissions.

For every i ∈ V , the capacity of node i, i.e., nodeCap(i), is the union of two
finite iteration permission bags: (i) To the left itPermslh(P

a
i .heap) captures all

iteration permissions held by θi in step i. (ii) To the right⊎ sigCapp((id, L), i)

captures all iteration permissions that will be created along the suffix of p that
starts at node i by waiting for signals for which thread θi already holds a wait
permission (id, δ) in step i.

Note that for every i ∈ V , the bag of iteration permissions returned by
nodeCap(i) is indeed finite. All initial thread-local heaps are finite. Consequently,
itPermslh(P

a
0 .heap) and waitPermslh(P

a
0 .heap) are finite. Our annotated semantics

preserves this finiteness and hence itPermslh(P
a
i .heap) and waitPermslh(P

a
i .heap)

are finite as well. Since signal IDs are unique, for every fixed choice of i and id,
there is at most one level L, for which sigCapp((id, L), i) 6= ∅. By assumption,
along p all signals are waited for only finitely often, i.e., S∞

p = ∅. Hence, also

the big union⊎ sigCapp((id, L), i) is defined and finite.

The well-founded partial order <∆⊆ Λ×Λ induces a well-founded partial or-
der ≺Λ ⊂ Bagsfin(Λ)×Bagsfin(Λ) for finite iteration permission bags [6]. Consider
the sequence (nodeCap(i))i∈V . Since every element is a finite bag of iteration per-
missions, we can order it by ≺Λ. We can prove that nodeCap is monotonically
decreasing and that nodeCap(j) ≺Λ nodeCap(i) holds for edges (i, θ, n, j) cor-
responding to a loop iteration consuming an iteration permission. We can also
prove that every infinite path, such as p, contains infinitely many such edges.
Hence, (nodeCap(i))i∈V is an infinitely descending chain. This contradicts the
well-foundedness of ≺Λ.

We proceed to prove that no signals are waited for infinitely often.

Lemma 4. Let (ha
i , P

a
i )i∈N be a fair annotated reduction sequence with P a

0 =
{(θ0, (H0, c))}, finiteah(h

a
0), completelh(H0), finitelh(H0) and consistentconf(h

a
0, P

a
0 ).

Let H0 contain no signal or wait permission chunks. Further, let ha
0 contain no

chunks unlockedaRes(m,P,HP ) where HP contains any signal chunks. Let G be
the program order graph of (ha

i , P
a
i )i∈N. Then, S

∞
G = ∅.

Proof (Sketch). Suppose S∞
G 6= ∅. Since Levs is well-founded, the same holds

for the set {lev(s) | s ∈ S∞}. Hence, there is some smin ∈ S∞ for which no
z ∈ S∞ with lev(z) <L lev(smin) exists.

Since neither the initial logical heapH0 nor any unlocked lock invariant stored
in ha

0 does contain any signals, smin must be created during the reduction se-
quence. The reduction step creating signal smin simultaneously creates an obliga-
tion to set smin. Analogous to our proof rules, the annotated semantics only allow
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threads to wait for a signal s (i) if the signal’s level is lower than the level of each
held obligation and (ii) if s has not been set yet. Hence, we know for every wait
edge (a, θ, n, b) referring to smin that (i) thread θ does not hold any obligation for
smin (i.e., there is exactly one obligations chunk with P a

a (θ).heap(obslRes(O)) = 1
and for this chunk smin 6∈ O holds) and (ii) smin has not been set, yet (i.e.
signalaRes(smin,False) ∈ ha

a). Hence, in step a another thread θob 6= θ must hold
the obligation for smin (i.e. P a

a (θob).heap(obslRes(O)) = 1 for some bag of obliga-
tions O with smin ∈ O ). Since there are infinitely many wait edges concerning
smin in G, the signal is never set.

By fairness, for every wait edge as above, there must be a non-ghost reduction

step ha
k, P

a
k

θob
 atp ha

k+1, P
a
k+1 of the thread θob holding the obligation for smin

with k ≥ a. Hence, there exists an infinite path pob in G where each edge
(e, θob, n, f) ∈ edges(pob) concerns some thread θob holding the obligation for
smin. (Note that this thread ID does not have to be constant along the path,
since the obligation can be passed on during fork steps.)

The path pob does not contain wait edges (e, θob, n, f) for any s∞ ∈ S∞,
since this would require s∞ to be of a lower level than all held obligations.
This restriction implies lev(s∞) <L lev(smin) and would hence contradict the
minimality of smin. That is, S

∞
pob

= ∅.
The annotated reduction semantics preserve the finiteness of thread-local

heaps. Since H0 is finite, the same holds for every logical heap associated with
the root of pob. This allows us to apply Lemma 3, by which we get that pob is
finite. A contradiction.

Lemma 5. Let �H {obs(∅) ∗
i=1,...,N

∗ itperm(δi)} c {obs(∅)} hold. There exists no

fair, infinite annotated reduction sequence (ha
i , P

a
i )i∈N with P a

0 = {(θ0, (H0, c))},
ha
0 = ∅ and H0 = {obslRes(∅), itpermlRes(δ1), . . . , itpermlRes(δN )}.

Proof. Suppose a reduction sequence as described above exists. We are going to
prove a contradiction by considering its infinite program order graph G.

Since P a
0 contains only a single thread, G is a binary tree with an infinite set

of vertices. By the Weak König’s Lemma [34] G has an infinite branch, i.e. an
infinite path p starting at root 0.

The initial logical heap H0 is complete and finite and the initial annotated
machine configuration (ha

0, P
a
0 ) is consistent. By Lemma 4 we know that S∞

G = ∅.
Since S∞

p ⊆ S∞
G , we get S∞

p = ∅. This allows us to apply Lemma 3, by which
we get that p is finite, which is a contradiction.

Theorem 1 (Soundness). Let ⊢ {obs(∅) ∗
i=1,...,N

∗ itperm(δi)} c {obs(∅)} hold.

There exists no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅ and
P0 = {(θ0, c)} for any choice of θ0.

Proof. Assume that such a reduction sequence exists. By Hoare triple soundness,

Lemma 1, we get �H {obs(∅) ∗∗i=1,...,N
itperm(τ, δi)} c {obs(∅)} from the assump-

tion ⊢ {obs(∅) ∗∗i=1,...,N
itperm(τ, δi)} c {obs(∅)}. Consider the logical heap H0 =
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{obslRes(∅), itpermlRes(δ1), . . . , itpermlRes(δN )} and the annotated heap ha
0 = ∅.

It holds H0 �A obs(∅) ∗∗i=1,...,N
itperm(τ, δi), h

a
0 ∼ah lh H0 (since H0 does not contain

any logical resources with an annotated counterpart) and ha
0 ∼ah ph h0 (since both

heaps are empty). This allows us to apply Lemma 2, by which we can construct
a corresponding fair annotated reduction sequence (ha

i , P
a
i )i∈N that starts with

ha
0 = ∅ and P a

0 = {(θ0, (H0, c))}. By Lemma 5 (ha
i , P

a
i )i∈N does not exist. A

contradiction.

6 A Realistic Example

To demonstrate the expressiveness of the presented verification approach, we
verified the termination of the program presented in Fig. 7a. It involves two
threads, a consumer and a producer, communicating via a shared bounded FIFO
with a maximal capacity of 10. The producer enqueues numbers 100, . . . , 1 into
the FIFO and the consumer dequeues those. Whenever the queue is full, the
producer busy-waits for the consumer to dequeue an element. Likewise, whenever
the queue is empty, the consumer busy-waits for the producer to enqueue the next
element. Each thread’s termination depends on the other thread’s productivity.
This is, however, no cyclic dependency. For instance, in order to prove that the
producer eventually pushes number i into the queue, we only need to rely on the
consumer to pop i+ 10. A similar property holds for the consumer.

Fine-Tuning Signal Creation To simplify complex proofs involving many signals
we refine the process of creating a new ghost signal. For simplicity, we com-
bined the allocation of a new signal ID and its association with a level and a
boolean in one step. For some proofs, such as the one we outline in this section,
it can be helpful to fix the IDs of all signals that will be created throughout the
proof already at the beginning. To realize this, we replace view shift rule VS-

NewSignal by the rules presented in Fig. 7b and adapt our logical resource
chunks accordingly. With these more fine-grained view shifts, we start by al-
locating a signal ID, cf. VS-AllocSigID. Thereby we obtain an uninitialized
signal uninitSig(ℓ) that is not associated with any level or boolean, yet. Also,
allocating a signal ID does not create any obligation because threads can only
wait for initialized (and unset) signals. When we initialize a signal, we bind its
already allocated ID to a level of our choice and associate the signal with False,
cf. VS-SigInit. This creates an obligation to set the signal.

This change does not affect the soundness of our verification approach. How-
ever, it drastically simplifies proofs, such as the one discussed below, that would
normally require the conditional creation of new signals within loops. Using the
finer-grained view shifts, we can create all the signals we need centrally at the
beginning of the proof. Since we thereby do not create any obligations, this step
does not affect the acquisition of locks later on, as long as the signals remain
uninitialized. Moreover, since we already know all signal IDs, we can centrally
create all the wait permissions we need.
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let fifo10 := cons(nil) in let m :=new mutex in
let cp := cons(100) in let cc := cons(100) in
fork (
while (

acquire m;
let f :=[fifo10 ] in
if size(f) < 10 then (

let c :=[cp] in
[fifo10] := f ·(c :: nil);
[cp] := c− 1

);
release m;
let c :=[cp] in
c 6= 0

) do skip;
);

while (
acquire m;
let f :=[fifo10 ] in
if size(f) > 0 then (

let c :=[cc] in
[fifo10 ] := tail(f);
[cc] := c− 1

);
release m;
let c :=[cc] in
c 6= 0

) do skip

(a) Realistic example program with a producer and a consumer thread communicating
via a shared bounded FIFO.

VS-AllocSigID

True⇛ ∃id. uninitSig(id)

VS-SigInit
obs(O) ∗ uninitSig(id)
⇛ obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

(b) Fine-grained view shift rules for signal creation.

Fig. 7: Realistic verification example.



22 Tobias Reinhard and Bart Jacobs

Creating Permissions & Signals We choose ∆ = N and start our verification
with a single iteration permission itperm(2) and without obligations. Initially
we create 400 iteration permissions of degree 1 by weakening the initial one.
Additionally, we allocate 200 signal IDs id100push, . . . , id

1
push, id

100
pop, . . . , id

1
pop. We

use 200 of our iteration permissions to create one wait permission of degree 0 for
each signal. 100 of the remaining 200 iteration permissions will be used by each
thread to justify the iterations in which it pushes or pops, respectively, i.e., the
productive iterations in which it does not have to wait.

Using the Signals We are going to ensure that always at most one push signal and
at most one pop signal are initialized and unset. The producer and consumer are
going to hold the obligation for the push and pop signal, respectively. Eventually,
the producer will hold the obligation for sipush while the signal is initialized and

it will set sipush when it pushes the number i into the FIFO. Meanwhile, the

consumer will use sipush and wperm(idipush, 0) to wait for the number i to arrive
in the queue when it is empty. Similarly, the consumer will hold the obligation
for sipop and will set sipop when it pops the number i. The producer uses sipop
and wperm(idipop, 0) to wait for the consumer to pop i from the queue when it
is full.

Choosing the Levels Note that we ignored the levels so far. The producer and
the consumer both acquire the mutex while holding an obligation for a signal.
Hence, we choose Levs = N, lev(m) = 0 and lev(s) > 0 for every signal s. Both
threads will wait at the end of an iteration inside a release view shift, i.e., after
they discharged the obligation to release the mutex. So, the mutex level does not
interfere with the wait steps. The producer waits when the queue is full and the
consumer when it is empty. That is, the producer waits for si+10

pop while holding an

obligation for sipush and the consumer waits for sipush while holding an obligation

for sipop. So, we have to choose the signal levels such that lev(si+10
pop ) < lev(sipush)

and lev(sipush) < lev(sipop) hold. We solve this by choosing lev(sipop) = 102 − i

and lev(sipush) = 101− i.

Distributing Resources Both threads count from 100 downwards. So, we use the
allocated IDs id100push, id

100
pop to initialize our first two signals s100push = (id100push, 1),

s100pop = (id100pop, 2) and transfer their ownership to the mutex. We split the mutex
chunk and pass one half to each thread such that both can access the initialized
signals. Additionally, the producer thread receives the 100 iteration permissions,
the obligation for s100push, the uninitialized signal chunks uninitSig(id99push), . . . ,

uninitSig(id1push) and the wait permissions wperm(id100pop, 0), . . . , wperm(id1pop, 0)
upon its forking. The rest remains with the consumer, i.e., 100 iteration permis-
sions, the obligation for s100pop, uninitialized signal chunks uninitSig(id99pop), . . . ,

uninitSig(id1pop) and wait permissions wperm(id100pop, 0), . . . , wperm(id1pop, 0).

Verifying Termination This setup suffices to verify the example program. Each
thread holds (i) the iteration permissions it needs to justify its productive iter-
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ations and (ii) the wait permissions that in combination with the acquired lock
invariant allow to wait until the next productive iteration. Whenever the pro-
ducer pushes a number i into the queue, it sets sipush which discharges the held
obligation and decreases its counter. Afterwards, if i > 1, it uses the uninitial-
ized signal chunk uninitSig(idi−1

push) to initialize si−1
push = (idi−1

push, 101− (i− 1)) and

replaces sipush in the lock invariant by si−1
push before it releases the lock. If i = 1,

the counter reached 0 and the loop ends. In this case, the producer holds no
obligation. The consumer behaves similarly. Since we proved that each thread
discharged all its obligations, we proved that the program terminates. We present
the verification sketch in the technical report [27]. Furthermore, we encoded [30]
the proof in VeriFast [15].

7 Specifying Busy-Waiting Concurrent Objects

Our approach can be used to verify busy-waiting concurrent objects with respect
to abstract specifications. For example, we have verified [29] the CLH lock [11]
against a specification that is very similar to our proof rules for built-in mutexes
shown in Fig. 2. The main difference is that it is slightly more abstract: when a
lock is initialized, it is associated with a bounded infinite set of levels rather than
with a single particular level. (To make this possible, an appropriate universe
of levels should be used, such as the set of lists of natural numbers, ordered
lexicographically.) To acquire a lock, the levels of the obligations held by the
thread must be above the elements of the set; the new obligation’s level is an
element of the set.

8 Allowing Permission Transfer

In the logic presented so far, transferring permissions between threads is not
allowed, to prevent self-fueling busy-waiting loops. However, as we showed in
earlier work [14], permission transfer is useful for verifying termination of non-
blocking algorithms involving compare-and-swap loops. For this reason, we relax
our logic as follows: we qualify each permission by the thread phase that pro-
duced it, and we allow a thread in phase p to consume a permission only if it
was produced by an ancestor thread phase p′ ⊑ p. Initially, the main thread is in
the root phase ǫ, and all permissions provided as part of the program’s precon-
dition are considered to have been produced by the root phase. When a thread
t running in phase p forks a new thread, the new thread’s initial phase is the
new phase p.Forkee and t itself moves into the new phase p.Forker. Weakening an
iteration permission and converting an iteration permission into a wait permis-
sion do not affect the permission’s phase. As a result, in a program that does not
involve busy-waiting, all permissions are qualified by the root phase and can be
transferred between threads freely. Permissions produced by waiting in a phase
p, however, can be transferred only between descendants of p. We formalize this
relaxed logic in the technical report [27].
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9 Tool Support

We have extended our VeriFast tool for separation logic-based modular veri-
fication of C and Java programs so that it supports verifying termination of
busy-waiting C or Java programs. We had already added call permissions (sim-
ilar to iteration permissions) to VeriFast as part of earlier work [14] on verifying
termination of programs using primitive blocking constructs without assuming
fairness of the thread scheduler. The only change we had to make to VeriFast’s
symbolic execution engine was to enforce the thread phase rule mentioned in § 8.
We encoded the other aspects of the logic simply as axioms in a trusted header
file. We used this tool support to verify the bounded FIFO (§ 6) and the CLH
lock (§ 7).

10 Integrating Higher-Order Features

The logic we presented in this paper does not support higher-order features such
as assertions that quantify over assertions, or storing assertions in the (logical)
heap as the values of ghost cells. While we did not need such features to carry
out our example proofs, they are generally useful to verify higher-order program
modules against abstract specifications. The typical way to support such features
in a program logic is by applying step indexing [1,2], where the domain of logical
heaps is indexed by the number of execution steps left in the (partial) program
trace under consideration. Assertions stored in a logical heap at index n+1 talk
about logical heaps at index n; i.e., they are meaningful only later, after at least
one more execution step has been performed.

It follows that such logics apply directly only to partial correctness proper-
ties. Fortunately, we can reduce a termination property to a safety property by
writing our program in a programming language instrumented with run-time
checks that guarantee termination. Specifically, we can write our program in
a programming language that tracks signals, obligations, iteration permissions,
and wait permissions at run time, has constructs for iteration permission weaken-
ing, signal creation, wait permission creation, waiting, and setting a signal, and
where the fork command takes as an extra operand the list of obligations to be
transferred to the new thread (and the other constructs similarly take sufficient
operands to eliminate any need for angelic choice), and that gets stuck when
these constructs’ preconditions are not satisfied, such as when a thread waits
for a signal while holding the obligation for that signal, or when it performs a
loop iteration without holding an iteration permission. We can then use a step-
indexing-based higher-order logic such as Iris [17] to verify that our program
never gets stuck. Once we established this, we know none of the instrumentation
has any effect and can be safely erased from the program.

11 Related & Future Work

Liang and Feng [21, 22] propose LiLi, a separation logic to verify liveness of
blocking constructs implemented via busy-waiting. In contrast to our verification
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approach, theirs is based on the idea of contextual refinement. In their approach,
client code involving calls of blocking methods of the concurrent object is verified
by first applying the contextual refinement result to replace these calls by code
involving primitive blocking operations and then verifying the resulting client
code using some other approach. In contrast, specifications in our approach are
regular Hoare-style triples and proofs are regular Hoare-style proofs.

D’Osualdo et al. [7] propose TaDA Live, a separation logic for verifying termi-
nation of busy-waiting. This logic allows to modularly reason about fine-grained
concurrent programs and blocking operations that are implemented in terms of
busy-waiting and non-blocking primitives. It uses the concept of obligations to
express thread-local liveness invariants, e.g., that a thread eventually releases
an acquired lock. One difference with our work is that TaDA Live’s assertions
are not syntactically stable; that is, certain proof rules require the user to prove
stability of certain assertions with respect to environment actions as a side con-
dition. This may make it more difficult to provide effective tool support: whereas
we could easily implement our logic in our VeriFast tool, and we expect our logic
to be easy to integrate into other separation logics such as Iris [17] and their
tool support, we are not aware of tool support for TaDA Live at this time.

In recent work [13] we proposed a Hoare logic to verify liveness properties of
the I/O behaviour of programs that do not perform busy waiting. By combining
that approach with the present one, we expect to be able to verify I/O liveness
of realistic concurrent programs involving both I/O and busy waiting, such as
a server where one thread receives requests and enqueues them into a bounded
FIFO, and another one dequeues them and responds. To support this claim, we
encoded the combined logic in VeriFast and verified a simple server application
where the receiver and responder thread communicate via a shared buffer [28].

12 Conclusion

In this paper we proposed a separation logic to verify termination of programs
with busy-waiting. We proved our logic sound and demonstrated its usability
by verifying a realistic example. Further, we encoded our logic and the realistic
example in VeriFast [30] and used this encoding also to verify the CLH lock [29].
Moreover, we expect that our approach can be straightforwardly integrated into
other existing concurrent separation logics such as Iris [17].
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Appendix

A General

Definition 9 (Projections). For any Cartesian product C =
∏

i∈I Ai and any

index k ∈ I, we denote the kth projection by πC
k :

∏

i∈I Ai → Ak. We define

πC
k ((ai)i∈I) := ak.

In case the domain C is clear from the context, we write πk instead of πC
k .

Definition 10 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A ⊔B := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.

Definition 11 (Bags). For any set X we define the set of bags Bags(X) and
the set of finite bags Bagsfin(X) over X as

Bags(X) := X → N,

Bagsfin(X) := {B ∈ Bags(X) | {x ∈ B | B(x) > 0} finite}.

We define union and subtraction of bags as

(B1 ⊎B2)(x) := B1(x) +B2(x),
(B1 \B2)(x) := max(0, B1(x) −B2(x)).

For finite bags where the domain is clear from the context, we define the following
set-like notation:

∅ := x 7→ 0,

{[x]} :=

{
x 7→ 1
y 7→ 0 for y 6= x,

{[x1, . . . , xn]} :=

n

⊎
i=1

{[xi]}.

We define the following set-like notations for element and subset relationship:

x ∈ B ⇔ B(x) > 0,
B1 ⊆ B2 ⇔ ∀x ∈ B1. B1(x) ≤ B2(x),
B1 ⊂ B2 ⇔ ∃C ⊆ B1. C 6= ∅ ∧ B1 = B2 \ C.

For any bag B ∈ Bags(X) and predicate P ⊆ X we define the following refine-
ment:

{[x ∈ B | P (x)]} :=

{
x 7→ B(x) if P (x),
x 7→ 0 otherwise.

Definition 12 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A ⊔B := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.
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B Language

Definition 13 (Evaluation of Closed Expressions). We define a partial
evaluation function [[·]] : Exps ⇀ Values on expressions by recursion on the
structure of expressions as follows:

[[v]] := v if v ∈ Values
[[e = e′]] := True if [[e]] = [[e′]] 6= ⊥
[[e = e′]] := False if [[e]] 6= [[e′]] ∧ [[e]] 6= ⊥ ∧ [[e′]] 6= ⊥
[[¬e]] := False if [[e]] = True

[[¬e]] := True if [[e]] = False

[[e]] := ⊥ otherwise

We identify closed expressions e with their ascribed value [[e]].

C Logic

Definition 14. We define the predicate mentionsPerms ⊂ A by recursion on the
structure of assertions such that the following holds:

mentionsPerms(itperm(δ)),
mentionsPerms(wperm(id, δ)),
mentionsPerms(¬a) if mentionsPerms(a),
mentionsPerms(a1 ⊗ a2) if mentionsPerms(a1) ∨mentionsPerms(a2),
mentionsPerms(

∨
A) if ∃a ∈ A. mentionsPerms(a),

mentionsPerms(mutex(m, a)) if mentionsPerms(a),
mentionsPerms(locked(m, a, f)) if mentionsPerms(a),

where ⊗ ∈ {∧,∨, ∗}.

Definition 15. We define the function getHLocslRes : Rlog → Locs mapping
logical resources to their respective (either empty or singleton) set of involved
heap locations as

getHLocslRes(ℓ 7→ v) := {ℓ},
getHLocslRes(uninitlRes(ℓ)) := {ℓ},
getHLocslRes(mutexlRes((ℓ, L), a)) := {ℓ},
getHLocslRes(lockedlRes((ℓ, L), a, f)) := {ℓ},
getHLocslRes( ) := ∅ otherwise.

Definition 16 (Logical Heap Consistency). We call a logical heap H con-
sistent and write consistentlh(H) if (i) it contains only full obligations, wait and
iteration permission chunks, i.e., if

H(obslRes(O)) ∈ N,

H(wpermlRes(id, δ)) ∈ N,

H(itpermlRes(δ)) ∈ N
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holds for all O ∈ Bags(O), id ∈ ID and δ ∈ ∆ and if (ii) heap locations are
unique in H, i.e., if there are no rl1, r

l
2 ∈ Rlog with rl1 6= rl2, H(rl1) > 0, H(rl2) > 0

and with getHLocslRes(r
l
1) ∩ getHLocslRes(r

l
2) 6= ∅.

Definition 17 (View Shift). We define a view shift relation ⇛⊂ A × A ac-
cording to the rules presented in Fig 8.

VS-SemImp
∀H. consistentlh(H) ∧H �A A ⇒ H �A B

A⇛ B

VS-Trans
A⇛ C C ⇛ B

A⇛ B

VS-Or
A1 ⇛ B A2 ⇛ B

A1 ∨A2 ⇛ B

VS-NewSignal

obs(O)⇛ ∃id. obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal

obs(O ⊎ {[s]}) ∗ signal(s, )⇛ obs(O) ∗ signal(s,True)

VS-WaitPerm
δ′ <∆ δ

itperm(δ)⇛ wperm(id, δ′)

VS-Wait
∀o ∈ O. lev(s) <L lev(o)

obs(O) ∗ wperm(s.id, δ) ∗ signal(s, b)
⇛ obs(O) ∗ wperm(s.id, δ) ∗ signal(s, b) ∗ (¬b ↔ itperm(τ, δ))

VS-WeakPerm
δ′ <∆ δ N ∈ N

itperm(δ)⇛∗
1,...,N

itperm(δ′)

VS-MutInit
¬mentionsPerms(P )

uninit(ℓ) ∗ P ⇛ mutex((ℓ, L), P )

Fig. 8: View shift rules.

Definition 18 (Proof Relation). We define a proof relation ⊢⊂ A×Cmds×
(Values → A) according to the rules presented in Fig. 9 and 10. We state the
provability of a Hoare triple in the form of ⊢ {A} c {λr.B(r)} where r captures
the value returned by c. To simplify the notation, we omit the result value if it
is clear from the context or irrelevant.

D Soundness

D.1 Annotated Semantics

Definition 19 (Intermediate Representation). We define an extended set
of commands Cmds+ according to the syntax presented in Fig. 11.
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PR-Frame
⊢ {A} c {B}

⊢ {A ∗ F} c {B ∗ F}

PR-ViewShift
A⇛ A′ ⊢ {A′} c {B′} B′

⇛ B

⊢ {A} c {B}

PR-Exp
[[e]] ∈ Values

⊢ {True} e {λr. r = [[e]]}

PR-Exists
∀a ∈ A. ⊢ {a} c {B}

⊢ {
∨

A} c {B}

PR-Fork
⊢ {obs(Of ) ∗ A} c {obs(∅)}

⊢ {obs(Om ⊎Of ) ∗A} fork c {λr. obs(Om) ∗ r = tt}

(a) Basic Proof Rules.

PR-If
⊢ {A} cb {λb.C(b) ∧ (b = True ∨ b = False)}

⊢ {C(True)} ct {B} C(False)⇛ B

⊢ {A} if cb then ct {B}

PR-While

⊢
{

I
}

cb







λb. (b = True ∨ b = False)
∗ (b → itperm(δ) ∗ I)
∗ (¬b → B)







⊢ {I} while cb do skip {B}

PR-Let
⊢ {A} c {λr.C(r)} ∀v. ⊢ {C(v)} c′[v/x] {B}

⊢ {A} let x := c in c′ {B}

(b) Control Structures.

Fig. 9: Proof rules (part 1).
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PR-Acquire

∀o ∈ O. lev(m) <L lev(o)

⊢
{obs(O) ∗ [f ]mutex(m,P )}
acquire m.loc
{λr. r = tt ∗ obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗ P}

PR-Release
obs(O) ∗A⇛ obs(O) ∗ P ∗B

⊢
{obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗A}
release m.loc
{λr. r = tt ∗ obs(O) ∗ [f ]mutex(m,P ) ∗ B}

PR-NewMutex

⊢ {True} new mutex {λℓ. uninit(ℓ)}

(a) Mutexes.

PR-Cons

⊢ {True} cons(v) {λℓ. ℓ 7→ v}
PR-ReadHeapLoc

⊢ {[f ]ℓ 7→ v} [ℓ] {λr. r = v ∗ [f ]ℓ 7→ v}

PR-AssignToHeap

⊢ {ℓ 7→ } [ℓ] := v {λr. r = tt ∗ ℓ 7→ v}

(b) Heap Access.

Fig. 10: Proof rules (part 2).

c ∈ Cmds+ ::= e | while c do skip | fork c | let x := c in c | if c then c

| cons(e) | [e] | [e] := e | new mutex | acquire e

| release e

| consumeItPerm

Fig. 11: Extended set of commands for intermediate representation.
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For the rest of the appendix, commands c refer to the extended set of com-
mands, i.e., c ∈ Cmds+.

Definition 20 (Annotated Resources). We define the set of annotated re-
sources AnnoRes as

ra ∈ AnnoRes ::= ℓ 7→ v | uninitaRes(ℓ) |
unlockedaRes((ℓ, L), a,H) | lockedaRes((ℓ, L), a, f) |
signalaRes((id, L), b)

where H does not contain any obligations chunks.

Definition 21 (Annotated Heaps). We define the set of annotated heaps as

Heapsannot := Pfin(AnnoRes),

the function locsah : Heapsannot → Pfin(Locs) mapping annotated heaps to the
sets of allocated heap locations as

locsah(h
a) := {ℓ ∈ Locs | ∃v ∈ Values. ∃L ∈ Levs. ∃a ∈ A.

∃H ∈ Heaps log. ∃f ∈ F .

ℓ 7→ v ∈ ha ∨ uninitaRes(ℓ) ∈ ha ∨
unlockedaRes((ℓ, L), a,H) ∈ ha ∨
lockedaRes((ℓ, L), a, f) ∈ ha}

and the function idsah : Heapsannot → Pfin(ID) mapping annotated heaps to sets
of allocated signal IDs as

idsah(h
a) := {id ∈ ID | ∃L ∈ Levs. ∃b ∈ B. signalaRes((id, L), b) ∈ ha}.

We denote annotated heaps by ha.
We call an annotated heap ha finite and write finiteah(h

a) if there exists no
chunk unlockedaRes((ℓ, L), a,H) ∈ ha for which finitelh(H) does not hold.

Definition 22 (Compatibility of Annotated and Physical Heaps). We
inductively define a relation ∼ah ph ⊂ Heapsannot ×Rphys between annotated and
physical heaps such that the following holds:

∅ ∼ah ph ∅,
ℓ 7→ v ∪ ha ∼ah ph ℓ 7→ v ∪ h,

uninitaRes(ℓ) ∪ ha ∼ah ph unlockedpRes(ℓ) ∪ h,

unlockedaRes((ℓ, L), P,HP ) ∪ ha ∼ah ph unlockedpRes(ℓ) ∪ h,

lockedaRes((ℓ, L), P, f) ∪ ha ∼ah ph lockedpRes(ℓ) ∪ h,

signalaRes(s, b) ∪ ha ∼ah ph h,

where ha ∈ Heapsannot and h ∈ Heapsphys are annotated and physical heaps with
ha ∼ah ph h.



34 Tobias Reinhard and Bart Jacobs

Definition 23 (Compatibility of Annotated and Logical Heaps). We
inductively define a relation ∼ah lh ⊂ Heapsannot × Heaps log between annotated
and logical heaps such that the following holds:

∅ ∼ah lh ∅log,
ha ∪ {ℓ 7→ v} ∼ah lh H + {ℓ 7→ v},
ha ∪ {uninitaRes(ℓ)} ∼ah lh H + {uninitlRes(ℓ)},
ha ∪ {unlockedaRes(m,P,HP )} ∼ah lh H + {mutexlRes(m,P )} +HP ,

ha ∪ {lockedaRes(m,P, f)} ∼ah lh H + {lockedlRes(m,P, f)}
+ (1− f) · {mutexlRes(m,P )},

ha ∪ {signalaRes(s, b)} ∼ah lh H + {signallRes(s, b)},
ha ∼ah lh H + {obslRes(O)},
ha ∼ah lh H + {wpermlRes(id, δ)},
ha ∼ah lh H + {itpermlRes(δ)},

where ha ∈ Heapsannot and H ∈ Heaps log are annotated and logical heaps with
ℓ,m.loc 6∈ locsah(h

a), s.id 6∈ idsah(h
a) and ha ∼ah lh H.

Definition 24 (Annotated Single Thread Reduction Relation). We de-
fine a reduction relation  ast for annotated threads according to the rules pre-
sented in Fig. 12. A reduction step has the form

ha, H, c ast h
a′, H ′, c′, T a

for a set of annotated forked threads T a ⊂ Heaps log × Cmds with |T a| ≤ 1.
It indicates that given annotated heap ha and a logical heap H, command

c can be reduced to annotated heap ha′, logical heap H ′ and command c′. The
either empty or singleton set T a represents whether a new thread is forked in
this step.

For simplicity of notation we omit T a if it is clear from the context that no
thread is forked and T a = ∅.

Definition 25 (Annotated Thread Pools). We define the set of annotated
thread pools TPa as the set of finite partial functions mapping thread IDs to
annotated threads:

TPa := Θ ⇀fin Heaps log × (Cmds ∪ {term}).

We denote annotated thread pools by P a and the empty thread pool by ∅atp, i.e.,

∅atp : Θ ⇀fin Heaps log × (Cmds ∪ {term}),
dom(∅atp) = ∅.

We define the extension operation +atp analogously to +tp, cf. Definition 4d.
For convenience of notation we define selector functions for annotated threads

as
(H, c).heap := H,

(H, c).cmd := c.
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AST-Red-EvalCtxt

ha,H, c ast h
a′,H ′, c′, T

ha,H,E[c] ast h
a′,H ′, E[c′], T

AST-Red-Fork
ha, Hm + {obslRes(Om ⊎Of )}+Hf , fork c ast

ha, Hm + {obslRes(Om)}, tt, {({obslRes(Of )}+Hf ), c)}

(a) Basic constructs.

AST-Red-While

ha,H,while c do skip ast h
a,H, if c then (consumeItPerm;while c do skip)

AST-Red-IfTrue

ha,H, if True then c ast h
a,H, c

AST-Red-IfFalse

ha,H, if False then c ast h
a,H, tt

AST-Red-ConsumeItPerm

ha,H + {itpermlRes(δ)}, consumeItPerm ast h
a,H, tt

AST-Red-Let

ha,H, let x := v in c ast h
a,H, c[v/x]

(b) Control structures.

AST-Red-Cons
ℓ 6∈ locsah(h

a)

ha,H,cons(v) ast h
a ∪ {ℓ 7→ v},H + {ℓ 7→ v}, ℓ

AST-Red-ReadHeapLoc
ℓ 7→ v ∈ ha

ha,H, [ℓ] ast h
a,H, v

AST-Red-Assign

h ⊔ {ℓ 7→ v}, H + {ℓ 7→ v}, [ℓ] := v  ast h ⊔ {ℓ 7→ v′}, H + {ℓ 7→ v′}, tt

(c) Heap access.

AST-Red-NewMutex
ℓ 6∈ locsah(h

a)

ha,H,new mutex ast h
a ∪ {uninitaRes(ℓ)},H + {uninitlRes(ℓ)}, ℓ

AST-Red-Acquire

f ∈ F ∀o ∈ O. lev(m) <L lev(o)

ha ⊔ {unlockedaRes(m,a,HP )}, H + {obslRes(O)}+ f · {mutexlRes(m,P )},
acquire m.loc
 ast ha ⊔ {lockedaRes(m,P, f)}, H + {obslRes(O ⊎ {[m]}), lockedlRes(m,P, f)}+HP ,

tt

AST-Red-Release
HP �A P consistentlh(HP ) ∃O. H(obslRes(O)) ≥ 1

¬∃δ, id. (HP (itpermlRes(δ)) > 0 ∨ HP (wpermlRes(id, δ)) > 0)

ha ⊔ {lockedaRes(m,P, f)}, H + {obslRes(O ⊎ {[m]}), lockedlRes(m,P, f)}+HP ,
release m.loc
 ast ha ⊔ {unlockedaRes(m,P,HP )}, H + {obslRes(O)}+ f · {mutexlRes(m,P )},

tt

(d) Mutexes.

Fig. 12: Annotated single thread reduction rules.
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Definition 26 (Ghost Reduction Relation). We define a thread pool reduc-
tion relation  ghost according to the rules presented in Fig. 13 to express ghost
steps. A ghost reduction step has the form

ha, P a θ
 ghost h

a′, P a′.

We denote its reflexive transitive closure by  ∗
ghost.

GTP-Red-NewSignal
P a(θ) = (H + {obslRes(O)}, c) id 6∈ idsah(h

a)
H ′ = H + {signallRes((id, L), False), obslRes(O ⊎ {[id, L]})}

ha, P a θ
 ghost h

a ∪ {signalaRes((id, L),False)}, P
a[θ := (H ′, c)]

GTP-Red-SetSignal
P a(θ) = (H + {signallRes(s,False), obslRes(O ⊎ {[s]})}, c)

H ′ = H + {signallRes(s,False), obslRes(O)}

ha ⊔ {signalaRes(s,False)}, P
a θ
 ghost h

a ⊔ {signalaRes(s,True)}, P
a[θ := (H ′, c)]

GTP-Red-WaitPerm
δ′ <∆ δ P a(θ) = (H + {itpermlRes(δ)}, c)

ha, P a θ
 ghost h

a, P a[θ := (H + {wpermlRes(id, δ
′)}, c)]

GTP-Red-Wait
signalaRes(s,False) ∈ ha P a(θ) = (H, c)

H(wpermlRes(s.id, δ)) ≥ 1 H(obslRes(O)) ≥ 1 ∀o ∈ O. lev(s) <L lev(O)

ha, P a θ
 ghost h

a, P a[θ := (H + {itpermlRes(δ)}, c)]

GTP-Red-WeakItPerm
δ′ <∆ δ N ∈ N P a(θ) = (H + {itpermlRes(δ)}, c)

ha, P a θ
 ghost h

a, P a[θ := (H +N · {itpermlRes(δ
′)}, c)]

GTP-Red-MutInit
P a(θ) = (H + {uninitlRes(ℓ)}+HP , c) H ′ = H + {mutexlRes((ℓ,L), HP )}

HP �A P consistentlh(HP ) ∃O. H(obslRes(O)) ≥ 1
¬∃δ, id. (HP (itpermlRes(δ)) > 0 ∨ HP (wpermlRes(id, δ)) > 0)

ha ⊔ {uninitaRes(ℓ)}, P
a θ
 ghost h

a ⊔ {unlockedaRes((ℓ,L), a,HP )}, P
a[θ := (H ′, c)]

Fig. 13: Ghost thread pool reduction rules.

Definition 27 (Non-ghost Thread Pool Reduction Relation). We define
a thread pool reduction relation  real according to the rules presented in Fig. 14
to express real (i.e. non-ghost) reduction steps. A reduction step has the form

ha, P a θ
 real h

a′, P a′.
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RTP-Red-Lift

θf = min(Θ \ dom(P a)) P a(θ) = (H, c) ha,H, c ast h
a′,H ′, c′, T a

ha, P a θ
 real h

a′, P a[θ := (H ′, c′)]+atp T
a

RTP-Red-Term
P a(θ) = (H,v) H.obs = ∅

ha, P a θ
 real h

a, P a −atp θ

Fig. 14: Non-ghost thread pool reduction rules.

Definition 28 (Annotated Thread Pool Reduction Relation). We define
the annotated thread pool reduction relation  atp as

 atp :=  ghost ∪ real .

Definition 29 (Annotated Reduction Sequence). Let (ha
i)i∈N and (P a

i)i∈N

be infinite sequences of annotated heaps and annotated thread pools, respectively.
Let sig : N ⇀ S be a partial function mapping indices to signals.

We call ((ha
i , P

a
i )i∈N, sig) an annotated reduction sequence if there exists a

sequence of thread IDs (θi)i∈N such that the following holds for every i ∈ N:

– ha
i , P

a
i

θi
 atp ha

i+1, P
a
i+1

– If this reduction step results from an application of GTP-Red-Wait to
some signal s, then sig(i) = s holds and otherwise sig(i) = ⊥.

In case the signal annotation sig is clear from the context or not relevant, we
omit it and write (ha

i , P
a
i )i∈N instead of ((ha

i , P
a
i )i∈N, sig).

We call (ha
i , P

a
i ) an annotated machine configuration.

Lemma 6 (Preservation of Finiteness). Let (ha
i , P

a
i )i∈N be an annotated

reduction sequence with finiteah(h
a
0) and finitelh(P

a
0 (θ).heap) for all θ ∈ dom(P a

0 ).
Then, finitelh(P

a
i (θ).heap) holds for all i ∈ N and all θ ∈ dom(P a

i ).

Proof. Proof by induction on i.

Lemma 7 (Preservation of Completeness). Let (ha
i , P

a
i )i∈N be an anno-

tated reduction sequence with completelh(P
a
0 (θ).heap) for all θ ∈ dom(P a

0 ). Then,
completelh(P

a
i (θ).heap) holds for every i ∈ N and every θ ∈ dom(P a

i ).

Proof. Proof by induction on i.

Every thread of an annotated thread pool is annotated by a thread-local
logical heap that expresses which resources are owned by this thread. In the
following we define a function to extract the logical heap expressing which re-
sources are owned by threads of a thread pool (i.e. the sum of all thread-local
logical heaps).
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Definition 30. We define the function ownedResHeapatp : TPa → Heaps log

mapping annotated thread pools to logical heaps as follows:

P a 7→
∑

θ∈ dom(P a)

P a(θ).heap

Annotated resources representing unlocked locks, i.e., unlockedaRes(m, a,Ha),
contain a logical heap Ha that expresses which resources are protected by this
lock. In the following, we define a function that extracts a logical heap from an
annotated heap ha expressing which resources are protected by unlocked locks
in ha.

Definition 31. We define the function protectedResHeapah : Heapsannot →
Heaps log mapping annotated heaps to logical heaps as follows:

For any annotated heap ha let

LockInvs(ha) := {[HP ∈ Heaps log | ∃m ∈ Locs× Levs. ∃P ∈ A.

unlockedaRes(m,P,HP ) ∈ ha]}

be the auxiliary set aggregating all logical heaps corresponding to lock invariants
of unlocked locks stored in ha. We define protectedResHeapah as

ha 7→
∑

HP ∈LockInvs(ha)

HP .

We consider a machine configuration (ha, P a) to be consistent if it fulfils
three criteria: (i) Every thread-local logical heap is consistent, i.e., for all used
thread IDs θ, P a(θ).heap only stores full obligations, wait permission and iter-
ation permission chunks. (ii) Every logical heap protected by an unlocked lock
in ha is consistent. (iii) ha is compatible with the logical heap that represents
(a) the resources owned by threads in P a and (b) the resources protected by
unlocked locks stored in ha.

Definition 32 (Consistency of Annotated Machine Configurations).We
call an annotated machine configuration (ha, P a) consistent and write
consistentconf(h

a, P a) if all of the following hold:

– consistentlh(P
a(θ).heap) for all θ ∈ dom(P a),

– ∀m. ∀P. ∀HP . unlockedaRes(m,P,HP ) ∈ ha → consistentlh(HP ),
– ha ∼ah lh ownedResHeapatp(P

a) + protectedResHeapah(h
a).

Lemma 8 (Preservation of Consistency). Let (ha
i , P

a
i )i∈N be an annotated

reduction sequence with consistentconf(h
a
0, P

a
0 ). Then, consistentconf(h

a
i , P

a
i ) holds

for every i ∈ N.

Proof. Proof by induction on i.

Definition 33 (Command Annotation). We define the predicate annotcmd ⊂
Cmds ×Cmds such that annotcmd(c

′, c) holds iff c′ results from c by removing all
occurrences of consumeItPerm.
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Definition 34 (Thread Pool Annotation). We define a predicate annottp ⊂
TPa × TP such that:

annottp(P
a, P )

⇐⇒
dom(P a) = dom(P ) ∧ ∀θ ∈ dom(P ). annotcmd(P

a(θ).cmd, P (θ))

D.2 Soundness Proof

In this subsection we present detailed versions of proof sketches presented in § 5.

Definition 35 (Program Order Graph).
Let ((ha

i , P
a
i )i∈N, sig) be an annotated reduction sequence. Let N r be the set of

names referring to reduction rules defining the relations  real,  ghost and  ast.
We define the set of annotated reduction rule names N a where GTP-Red-Wait

is annotated by signals as

N a := (N r \ {GTP-Red-Wait})
∪ ({GTP-Red-Wait} × S).

We define the program order graph G(((ha
i , P

a
i )i∈N, sig)) = (N, E) with root 0

where E ⊂ N×Θ ×N a × N.
A node a ∈ N corresponds to the sequence’s ath reduction step, i.e., to the

step ha
a, P

a
a

θ
 atp h

a
a+1, P

a
a+1 for some θ ∈ dom(P a

a ). An edge from node a to node
b expresses that the bth reduction step continues the control flow of step a. For
any ℓ ∈ N, let θℓ denote the ID of the thread reduced in step ℓ. Furthermore, let
na
ℓ denote the name of the reduction rule applied in the ℓth step, in the following

sense:

– If ha
ℓ, P

a
ℓ

θ
 atp ha

ℓ+1, P
a
ℓ+1 results from an application of RTP-Red-Lift in

combination with single-thread reduction rule nst, then na
ℓ = nst.

– If ha
ℓ, P

a
ℓ

θ
 atp ha

ℓ+1, P
a
ℓ+1 results from an application of GTP-Red-Wait,

then na
ℓ = (GTP-Red-Wait, sig(ℓ)).

– Otherwise, na denotes the applied (real or ghost) thread pool reduction rule.

An edge (a, θ, na, b) ∈ N×Θ ×N a ×N is contained in E if na = na
a and one

of the following conditions applies:

– θ = θa = θb and b = min({k > a | ha
k, P

a
k

θa
 atp h

a
k+1, P

a
k+1}).

In this case, the edge expresses that step b marks the first time that thread
θa is rescheduled for reduction (after step a).

– dom(P a
a+1) \ dom(P a

a ) = {θ} and

b = min {k ∈ N | ha
k, P

a
k

θ
 atp h

a
k+1, P

a
k+1}.

In this case, θ identifies the thread forked in step a. The edge expresses that
step b marks the first reduction of the forked thread.

In case the choice of reduction sequence ((ha
i , P

a
i )i∈N, sig) is clear from the

context, we write G instead of G(((ha
i , P

a
i )i∈N, sig)).



40 Tobias Reinhard and Bart Jacobs

Observation 1. Let (ha
i , P

a
i )i∈N be an annotated reduction sequence with

|dom(P a
0 )| = 1. The sequence’s program order graph G((ha

i , P
a
i )i∈N) is a binary

tree.

For any reduction sequence (ha
i , P

a
i )i∈N, the paths in its program order graph

G((ha
i , P

a
i )i∈N) represent the sequence’s control flow paths. Hence, we are going

to use program order graphs to analyse reduction sequences’ control flows.
We refer to a program order graph’s edges by the kind of reduction step they

represent. For instance, we call edges of the form (a, θ,ST-Red-While, b) loop
edges because they represent a loop backjump and we call edges of the form
(a, θ, (GTP-Red-Wait, s), b) wait edges. Any wait edge of this form represents
an application of GTP-Red-Wait to signal s.

In the following, we prove that any path in a program order graph that does
not involve a loop edge is finite. This follows from the fact that the size of the
command reduced along this path decreases with each non-ghost non-loop step.

Lemma 9. Let (ha
i , P

a
i )i∈N be a fair annotated reduction sequence. Let p =

(V,E) be a path in G((ha
i , P

a
i )i∈N). Let L = {e ∈ E | π3(e) = AST-Red-While}

be the set of loop edges contained in p. Then, p is infinite if and only if L is in-
finite.

Proof. If L is infinite, p is obviously infinite as well. So, suppose L is finite.
For any command, we consider its size to be the number of nodes contained

in its abstract syntax tree. By structural induction over the set of commands, it
follows that the size of a command c = P a(θ).cmd decreases in every non-ghost

reduction step ha, P a θ
 atp h

a′, P a′ that is not an application of RTP-Red-Lift

in combination with AST-Red-While.
Since L is finite, there exists a node x such that the suffix p≥x starting at

node x does not contain any loop edges. By fairness of (ha
i , P

a
i )i∈N, every non-

empty suffix of p≥x contains an edge corresponding to a non-ghost reduction
step. For any edge e = (i, θ, n, j) consider the command ce = P a

i (θ).cmd reduced
in this edge. The size of these commands decreases along p≥x. So, p≥x must be
finite and thus p must be finite as well.

Corollary 1. Let (ha
i , P

a
i )i∈N be a fair annotated reduction sequence. Let p =

(V,E) be a path in G((ha
i , P

a
i )i∈N). Let

C = {e ∈ E | π3(e) = AST-Red-ConsumeItPerm}

be the set of consume edges contained in p. Then, p is infinite if and only if C
is infinite.

Proof. Follows from Lemma 9 by the fact that the set {e ∈ E | π3(e) =
AST-Red-While} is infinite if and only if C is infinite.

Definition 36. Let G = (V,E) be a subgraph of some program order graph. We
define the function waitEdgesG : S → P(E) mapping any signal s to the set of
wait edges in G concerning s as:

waitEdgesG(s) := {(a, θ, (GTP-Red-Wait, s′), b) ∈ E | s′ = s}.
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Furthermore, we define the set SG ⊂ S of signals being waited for in G and its
subset S∞

G ⊆ SG of signals waited-for infinitely often in G as follows:

SG := {s ∈ S | waitEdgesG(s) 6= ∅},
S∞
G := {s∞ ∈ SG | waitEdgesG(s

∞) infinite}.

Definition 37. Let (ha
i , P

a
i )i∈N be a fair annotated reduction sequence and let

G = (V,E) be a subgraph of the sequence’s program order graph. We define
the function itpermsG : E → Bagsfin(Λ) mapping any edge e to the (potentially
empty) finite bag of iteration permissions derived in the reduction step corre-
sponding to e as follows:

Let (i, θ, n, j) ∈ E be an edge.

– If n = (GTP-Red-Wait, s) for some signal s ∈ S, then the ith reduction
step spawns a single iteration permission of degree δ, i.e.,
P a
i+1 = P a

i [θ := (P a
i (θ).heap+ {itpermlRes(δ)}, P

a
i (θ).cmd)].

In this case, we define

itpermsG((i, θ, (GTP-Red-Wait, s), j)) := {[δ]}.

– If n = GTP-Red-WeakItPerm, then the ith reduction step consumes an
iteration permission of degree δ and produces N permissions of a lower de-
gree δ′, i.e., P a

i (θ).heap = H + {itperm(δ)} for some heap H and P a
i+1 =

P a
i [θ := (H ′, P a

i (θ).cmd)] for

H ′ = H +N · {itpermlRes(δ
′)}.

In this case, we define

itpermsG((i, θ,GTP-Red-WeakItPerm, j)) := {[δ′, . . . , δ′
︸ ︷︷ ︸

N times

]}.

– Otherwise, we define

itpermsG((i, θ, n, j)) := ∅.

Definition 38 (Partial Order on Finite Bags).
Let X be a set and <X ⊂ X ×X a partial order on X. We define the partial

order ≺X ⊂ Bagsfin(X) × Bagsfin(X) on finite bags over X as the Dershowitz-
Manna ordering [6] induced by <X:

A ≺X B ⇐⇒ ∃C,D ∈ Bagsfin(X). ∅ 6= C ⊆ B

∧ A = (B \ C) ⊎D

∧ ∀d ∈ D. ∃c ∈ C. d <X c.

We define �X ⊂ Bagsfin(X)× Bagsfin(X) such that

A �X B ⇐⇒ A = B ∨ A ≺X B

holds.
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Corollary 2. The partial order ≺Λ ⊂ Bagsfin(Λ)×Bagsfin(Λ) is well-founded.

Proof. Follows from [6] and and well-foundedness of <∆.

We view paths in a program order graph as single-branched subgraphs. This
allows us to apply above definitions on graphs to paths. In particular, this allows
us to refer to the capacity of a signal s on a path p by referring to sigCapp.

For the following definition, remember that a bag B ∈ Bags(X) is a function
B : X → N while a logical heap H ∈ Heaps log is a function H : Rlog → Q≥0.

Definition 39. We define the functions itPermslh : Heaps log → Bags(Λ) and
waitPermslh : Heaps

log → Bags(Ω) mapping logical heaps to bags of iteration and
wait permissions, respectively, as follows:

itPermslh(H)(δ) := ⌊H(itpermlRes(δ))⌋
waitPermslh(H)(id, δ) := ⌊H(wpermlRes(id, δ))⌋

Note that for consistent logical heaps (ha, P a) the above flooring is without
any affect.

Lemma 10. Let (ha
i , P

a
i )i∈N be an annotated reduction sequence such that every

initial thread-local heap contains only finitely many permissions, i.e., such that
for every θ ∈ dom(P a

0 ) the set

{δ ∈ Λ | P a
0 (θ).heap(itpermlRes(δ)) > 0}

∪
{(id, δ) ∈ Ω | P a

0 (θ).heap(wpermlRes(id, δ)) > 0}

is finite. Then, itPermslh(P
a
i (θ).heap) and waitPermslh(P

a
i (θ).heap) are finite for

every choice of i ∈ N and θ ∈ dom(P a
i ).

Proof. Proof by induction on i.

Lemma 3. Let G((ha
i , P

a
i )i∈N) be a program order graph and let p = (V,E) be

a path in G with S∞
p = ∅. For every θ ∈ dom(P a

0 ) let P a
0 (θ).heap be finite and

complete. Then, p is finite.

Proof. Assume p is infinite. We prove a contradiction by assigning a finite ca-
pacity to every node along the path. Consider the function nodeCap : V →
Bagsfin(Λ) defined as

nodeCap(i) := itPermslh(P
a
i .heap) ⊎ ⊎

id∈ {id′ | (id′, )∈waitPermslh(P
a
i
.heap)}

L∈Levs

sigCapp((id, L), i).

For every i ∈ V , the capacity of node i, i.e., nodeCap(i), is the union of two
finite iteration permission bags: (i) To the left itPermslh(P

a
i .heap) captures all

iteration permissions held by θi in step i. (ii) To the right⊎ sigCapp((id, L), i)

captures all iteration permissions that will be created along the suffix of p that
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starts at node i by waiting for signals for which thread θi already holds a wait
permission (id, δ) in step i.

Note that for every i ∈ V , the bag of iteration permissions returned by
nodeCap(i) is indeed finite. All initial thread-local heaps contain only finitely
many permissions. By Lemma 10 itPermslh(P

a
i .heap) and waitPermslh(P

a
i .heap)

are finite. Since signal IDs are unique, for every fixed choice of i and id, there
is at most one level L, for which sigCapp((id, L), i) 6= ∅. By assumption, along
p all signals are waited for only finitely often, i.e., S∞

p = ∅. Hence, also the big

union⊎ sigCapp((id, L), i) is defined and finite.

Consider the sequence (nodeCap(i))i∈V . Since every element is a finite bag
of iteration permissions, we can order it by ≺Λ. We are going to prove a contra-
diction by proving that the sequence is an infinitely descending chain.

Consider any edge (i, θ, n, j) ∈ E. There are only three cases in which
nodeCap(i) 6= nodeCap(j) holds.

– n = GTP-Red-WaitPerm:
In this case, there are degrees δ, δ′ with δ′ <∆ δ, a signal s and N ∈ N for
which we get

nodeCap(j) = (nodeCap(i) \ {[δ]}) ⊎ {[δ′, . . . , δ′
︸ ︷︷ ︸

N times

]}.

That is, nodeCap(j) ≺Λ nodeCap(i).

– n = GTP-Red-WeakItPerm: Same as above.

– n = AST-Red-ConsumeItPerm:
In this case, we know that nodeCap(j) = nodeCap(i) \ {[δ]} ≺Λ nodeCap(i)
holds for some δ.

(Note that in case of n = GTP-Red-Wait, we have nodeCap(i) = nodeCap(j)
since

itPermslh(P
a
j .heap) = itPermslh(P

a
i .heap) ⊎ {[δ]},

⊎ sigCapp((id, L), j) =
(

⊎ sigCapp((id, L), i)
)

\ {[δ]}

holds for some δ.) So, nodeCap is monotonically decreasing.

By assumption p is infinite. According to Corollary 1 this implies that the
path contains infinitely many consume edges, i.e., edges with a labelling n =
AST-Red-ConsumeItPerm. Hence, the sequence (nodeCap(i))i∈V forms an in-
finitely descending chain. However, according to Corollary 2, ≺Λ is well-founded.
A contradiction.

Lemma 4. Let (ha
i , P

a
i )i∈N be a fair annotated reduction sequence with P a

0 =
{(θ0, (H0, c))}, finiteah(ha

0), completelh(H0), finitelh(H0) and consistentconf(h
a
0, P

a
0 ).

Let H0 contain no signal or wait permission chunks. Further, let ha
0 contain no

chunks unlockedaRes(m,P,HP ) where HP contains any signal chunks. Let G be
the program order graph of (ha

i , P
a
i )i∈N. Then, S

∞
G = ∅.
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Proof. Suppose S∞
G 6= ∅. Since Levs is well-founded, the same holds for the set

{lev(s) | s ∈ S∞}. Hence, there is some smin ∈ S∞ for which no z ∈ S∞ with
lev(z) <L lev(smin) exists.

Since neither the initial logical heapH0 nor any unlocked lock invariant stored
in ha

0 does contain any signals, smin must be created during the reduction se-
quence. The reduction step creating signal smin is an application of GTP-Red-

NewSignal, which simultaneously creates an obligation to set smin. By preser-
vation of completeness, Lemma 7, every thread-local logical heap P a

i (θ).heap
annotating some thread θ in some step i is complete. According to reduction
rule GTP-Red-Wait, every wait edge (a, θ, (GTP-Red-Wait, smin), b) implies
together with completeness that in step a (i) thread θ does not hold any obliga-
tion for smin (i.e. P a

a(θ).heap(obslRes(O)) = 1 for some bag of obligations O with
smin 6∈ O ) and (ii) smin has not been set, yet (i.e. signalaRes(smin,False) ∈ ha

a).
Hence, in step a another thread θob 6= θ must hold the obligation for smin (i.e.
P a
a (θob).heap(obslRes(O)) = 1 for some bag of obligations O with smin ∈ O).

Since there are infinitely many wait edges concerning smin in G, the signal is
never set.

By fairness, for every wait edge as above, there must be a non-ghost reduction

step ha
k, P

a
k

θob
 atp ha

k+1, P
a
k+1 of the thread θob holding the obligation for smin

with k ≥ a. Hence, there exists an infinite path pob in G where each edge
(e, θob, n, f) ∈ edges(pob) concerns some thread θob holding the obligation for
smin. (Note that this thread ID does not have to be constant along the path,
since the obligation can be passed on during fork steps.)

The path pob does not contain wait edges (e, θob, (GTP-Red-Wait, s∞), f)
for any s∞ ∈ S∞, since reduction rule GTP-Red-Wait would (together with
completeness of P a

e (θob).heap) require s
∞ to be of a lower level than all held obli-

gations. This restriction implies lev(s∞) <L lev(smin) and would hence contradict
the minimality of smin. That is, S

∞
pob

= ∅.
By preservation of finiteness, Lemma 6, we get that every logical heap asso-

ciated with the root of pob is finite. This allows us to apply Lemma 3, by which
we get that pob is finite. A contradiction.
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