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1 - Introduction - Setting and Scope
• We present p-refined Multilevel Quasi-Monte Carlo a

novel algorithm which considerably speeds up the computation
of statistics of a quantity of interest derived from the solution
of a model described by a PDE with random coefficients

• This will be benchmarked against
– Standard Multilevel Monte Carlo
– Standard Multilevel Quasi-Monte Carlo

• Applied to a Non-linear Slope Stability Problem - (Geotechnical
Engineering)
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1 - Introduction - Case Presentation
• Case

– Assess the stability of man made or natural slopes
– Non-linear problem
– Uncertainty located in the soil’s cohesion
– 2D Plane Strain

Source: Schijnbare cohesie van onverzadigde gronden - Geotechniek Januari 2011
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1 - Introduction - p-MLQMC

• p-MLQMC combines
– a hierarchy of higher order Finite Elements
– QMC sample points

• Because of the hierarchy of higher order Finite Elements
– we cannot assign the randomness to the whole element because

the number of elements remains the same on each level
– we decouple the relation between the resolution of the random

field and the resolution of the mesh
• Careful consideration needs to be given to the generation of

random fields over successive levels
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2 - p-MLQMC - Expected Value
• MLMC [Giles, 2008]
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• MLQMC [Giles and Waterhouse, 2009]
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Take many computationally cheap samples on coarse meshes and

few computationally expensive samples on fine meshes
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2 - p-MLQMC - QMC Points
• For MLQMC, sample points are chosen according to a

deterministic rule (rank-1 lattice rule) [Nuyens et al., 2016]
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• Representation of the QMC points as open lattice rule,

x(r ,n) = frac (φ2(n)z + Ξr ) , for n ∈ N,

with the radical inverse function φ2 (xn) in base 2, the
generating vector z, and random shift Ξr
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2 - p-MLQMC - Ritz-Galerkin
• By means of the variational formulation the PDE governing the

displacement is discretized in the following form,

Ku = f

with K the global stiffness matrix of the problem resulting from
the assembly of the element stiffness matrices,

Ke =
∫

Ω
BTDBdΩ

with B containing the derivatives of the element shape function
and D the elastic/elastoplastic constitutive matrix.

• Ke is numerically integrated by means of Gauss Quadrature.
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2 - p-MLQMC - Mesh Hierarchies
Standard ML(Q)MC, hence referred to as h-ML(Q)MC,

makes use of mesh hierarchy based on nested
geometric refinement

———– Level 0 ———— ———– Level 1 ———— ———– Level 2 ————
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2 - p-MLQMC - Mesh Hierarchies
p-ML(Q)MC

makes use of mesh hierarchy based on increasing the
element’s polynomial order

———– Level 0 ———— ———– Level 1 ———— ———– Level 2 ————
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3 - Uncertainty Modeling - Random Fields
• The uncertainty in the material parameter

– is chosen as the spatial variation of the soil’s cohesion,
– and is represented as a random field

• Ad hoc definition of a random field
– Collection of random variables at certain discrete locations

– Many different techniques possible
• QR decomposition
• Spectral decomposition
• Circulant Embedding
• Karhunen–Loève expansion

– We will use and focus on the Karhunen–Loève expansion
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3 - Uncertainty Modeling - Karhunen–Loève
Generation of the random field is a two-step process:
• Construction of a Gaussian random field by means of a

Karhunen–Loève expansion,

Z (x, ω) ≈ Z (x, .) +
s∑

n=1

√
θnξn(ω)bn(x),

with a Matérn covariance Kernel,

C(x, y) := σ2
1

2ν−1Γ (ν)

(√
2ν ‖x− y‖2

λ

)ν
Kν
(√

2ν ‖x− y‖2
λ

)
.

• Transformation of the Gaussian random field to a Log-normal
random field by applying the exponential

Zlognormal(x, ω) = exp(Z (x, ω))
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3 - Uncertainty Modeling - Stochastic Mapping
• Classically the midpoint method is used → each element is

assigned one value of the random field
M (T ) = M (Random Field)

• p-MLQMC uses the integration point method → each
quadrature point is assigned one value of the random field

M (T ) < M (Random Field)
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3 - Uncertainty Modeling - Stochastic Mapping
• How to generate the discrete values of the random field?

– Non-Nested approach
– Global Nested approach
– Local Nested approach

• Why do we bother?
We want to have a good correlation between successive levels

→
good decrease of V[∆P`]

→
lower number of samples per level

→
lower computational cost

12



3 - Uncertainty Modeling - Stochastic Mapping
• Reference Triangular Finite Element with

–  , the location of the discrete values of the random field
– 4, the quadrature points

13



3 - Non-nested approach
• Idea: Use the locations of the quadrature points on each level

as the location where the discrete values of the random field are
to be generated, for ` = 0...L,  ` = 4`, RF ( `)

——— Level 0 ——— ——— Level 1 ——— ——— Level 2 ——— ——— Level 3 ———

• Advantage: Extensible, an extra level can easily be added
• Disadvantage: Very high computational cost due to very slow

decrease of V[∆P`]
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3 - Global Nested approach
• Idea: Starting from a user chosen maximum level L, use the

quadrature points as location for values of the random field
 L = 4L, RF ( L). On all coarser levels ` < L, compute
subsets of these points,  0 ⊆  ` ⊆ ... ⊆  L, such that they
are closest to the actual quadrature points of level `.

• Example with L = 3
——— Level 0 ——— ——— Level 1 ——— ——— Level 2 ——— ——— Level 3 ———

• Advantage: Good decrease of V[∆P`]
• Disadvantage: Maximum number of levels is fixed
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3 - Local Nested approach
• Idea: For each level ` from 1 to L, use the quadrature points as

location for values of the random field  ` = 4`, RF ( `). For
the coarser level `− 1 compute a subset of these points,
 `−1 ⊆  `, such that they are closest to the actual quadrature
points of level `.

• Example: Level 1 and Level 0
——— Level 0 ——— ——— Level 1 ———

• Example: Level 2 and Level 1
——— Level 1 ——— ——— Level 2 ———

• Advantage: Level extensibility is easy
• Disadvantage: Complexer code

16



4 - Benchmarking and Results -QoI
• Quantity of Interest

– Vertical displacement of node located at the upper left corner
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4 - Results - Uncertainty on the Solution
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4 - Benchmarking - Comparison
• Global Nested approach performs much

better than Non-Nested approach
• Better decrease of V[∆P`] for Global

Nested approach

p-ML(Q)MC
Level Nel DOF Order Nquad
0 33 48 1 7
1 33 338 3 16
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4 - Benchmarking - Global Nested Approach
h-ML(Q)MC p-ML(Q)MC

Level Nel DOF Order Nquad Nel DOF Order Nquad
0 33 48 1 7 33 48 1 7
1 132 160 1 7 33 338 3 16
2 528 582 1 7 33 892 5 28
3 2112 2218 1 7 33 1720 7 37
4 8448 8658 1 7 / / / /

• p-MLQMC ∼ 44 times faster
than h-MLMC

• p-MLQMC ∼ 3 times faster
than p-MLMC

• Cost of MLQMC ∼ ε−1

[Blondeel et al., 2020]
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4 - Benchmarking - Global Nested Approach

• Decrease of V[∆P`] over the levels
• Cost of MLQMC ∼ ε−1

p-ML(Q)MC
Level Nel DOF Order Nquad
0 33 48 1 7
1 33 160 2 13
2 33 338 3 19
3 33 582 4 25
4 33 892 5 28
5 33 1268 6 33
6 33 1720 7 37
7 33 2218 8 61
8 33 2792 9 73
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6 - Conclusion and Outlook
• Conclusions

– p-MLQMC
• Speedup of a factor 44 with respect to h-MLMC
• Global Nested and Local Nested approach for generating discrete

values of the random field are the most promising
• Outlook

– Extending p-MLQMC for 3D problems
• Higher order Finite Elements based on Hierarchical Shape Functions
• Nested Quadrature points over the levels based on Sparse Grids
• Possibility of reusing Finite Element information over the levels

– Multi-Index (Quasi) Monte Carlo for 2D/3D problems
[Robbe et al., 2017]

– Use of higher order Digital Nets instead of Rank-1 lattice rule for
QMC points

[Blondeel et al., 2018, Blondeel et al., 2019]
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Thank you for your attention!

24


	Introduction
	p-MLQMC
	Uncertainty Modeling
	Benchmarking and Results
	Conclusion and Outlook
	References

