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Abstract

The specific nature of credit loan data requires the use of mixture cure models
within the class of survival analysis tools. The constructed models allow for com-
peting risks such as early repayment and default, and for incorporating maturity,
expressed as an unsusceptible part of the population. A novel further extension of
such models incorporates unobserved heterogeneity within the risk groups. A hierar-
chical expectation-maximization algorithm is derived to fit the models and standard
errors are obtained. Simulations and a data analysis illustrate the applicability and
benefits of these models, and in particular an improved event time estimation.

Key words: Credit risk modeling; Competing risks; EM-algorithm; Mixture cure
model; Survival analysis; Unobserved heterogeneity.

1 Introduction

The analysis of credit risks via survival analysis takes advantage of the nature of time-
to-event data, in particular by its ability to naturally capture the specifics of default,
prepayment and maturity events. While those credit risk events were first examined and
modeled individually, see for example Banasik et al. (1999), Stepanova and Thomas (2002),
Andreeva (2006) and Bellotti and Crook (2009), these models were soon extended by al-
lowing for a cured fraction while modeling early repayment or default, known as mixture
cure models, see Tong et al. (2012) and Dirick et al. (2015). The simultaneous analysis of
all different events is evident in Deng et al. (2000), Pavlov (2001), Ciochetti et al. (2002),
Dirick et al. (2015) and Watkins et al. (2014). Dirick et al. (2019) studied the inclusion of
macro-economic effects in mixture cure models with time-varying covariates.

For a recent overview about mixture cure models, the different types of models and a
review of the literature, see Amico and Van Keilegom (2018). A general class of mixture
cure models is theoretically studied in Patilea and Keilegom (2020).

The extension proposed in this paper of multiple event models for credit risk data
acknowledges the fact that there are different kinds of customers. For example, some people
are risk-averse, others might be risk-neutral or even risk-seeking. While this characteristic is
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not observed, our new approach makes it possible to incorporate unobserved heterogeneity
in the models. More specifically, we construct a novel expectation-maximization (EM)
algorithm that simultaneously deals with the mixture cure model with multiple events and
with a number of subgroups for each of the modeled events. We explain the implementation
of such a hierarchical EM algorithm for the credit risk models. Note that the presence of
unobserved heterogeneity is structurally different from the multilevel mixture cure models
(Lai and Yau, 2009; Tawiah et al., 2020) that incorporate observed grouping structures,
such as institutions, hospitals, etc. via random effects. Heterogeneity has also been studied
in the context of bivariate, twin data via frailty models and a cured fraction (Wienke et al.,
2007).

This paper gives for credit risk modeling the first simulation study of the mixture cure
models with unobserved heterogeneity. An application of the model for personal loan
data from a UK bank reiterates the importance of the unobserved heterogeneity for credit
risk. In the simultaneous modeling of competing events, similar to Watkins et al. (2014)
we find for credit risk that the explanatory variables can act in different directions upon
incidence and duration; and, variables exist that are statistically significant in explaining
only incidence or duration.

Data collection processes are never complete and many real-life credit risk data sets are
characterized by unobserved, yet potentially important predictive variables which typically
reflect heterogeneity in the credit population. Deng et al. (2000) show that there exists
significant heterogeneity among mortgage borrowers which generated discussion in this area,
though not many researchers followed their lead. Hanson et al. (2008) find that ignoring
heterogeneity in firm returns and default thresholds may lead to an underestimation of
the expected loss and that there is an effect on portfolio risk too. Burda et al. (2015)
employ an approach to build a semiparametric competing risk model with unobserved
heterogeneity for the analysis of unemployment in the US. Their Bayesian method does
not involve the EM-algorithm, and introduces unobserved heterogeneity through an infinite
mixture of generalized inverse Gaussian densities. Djeundje and Crook (2018) work with
multi-state delinquency models for credit cards and incorporate unobserved heterogeneity
between accounts by including account-level random effects.

Despite the fact that in this paper the focus is on competing risks for loan data, the
model is not restricted to these types of data and is applicable in a large range of situations
where competing risks (and a possibility of not undergoing the risk or an “unsusceptible”
part of the population) and a substantial amount of censoring are present. In the biomedical
context, many disease-related research uses these models when there are several possible
death causes (for example Lunn and McNeil, 1995), when there is a cured fraction of the
patients (see, e.g., Bremhorst and Lambert, 2016) or the combination of both (e.g. Ng et al.,
2002). In the economic context, an interesting example is given in Berrington and Diamond
(2000), where first-partnership formation (competing risks are cohabitation and marriage)
of males and females born in 1958 in Britain is studied. An unsusceptible population
part can then be defined as the subjects that will never marry or cohabitate, however,
censoring is present through the subjects that have not yet entered the first-partnership at
the moment of the study, but will afterwards. Burda et al. (2015) use another application
where the time to moment of exit from unemployment is modeled (to the same versus
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another industry where they had been employed previously). In portfolio allocation, our
approach can extend Gambacciani and Paolella (2017) to take into account bankruptcies.
In the educational context of Forcina (2017), the benefits could be derived by including the
school leavers cohort into the analysis.

Section 2 gives the hierarchical mixture cure model with unobserved heterogeneity.
Section 3 details the EM-algorithm. The simulation study is summarized in Section 4 and
the empirical application is in Section 5. Concluding comments are in Section 6 followed
by the theoretical derivations in the appendix.

2 The hierarchical mixture cure model

We observe life times Ti and a set of covariates for observation i ∈ {1, . . . , n}. The life times
Ti represent the time until an event j ∈ {1, . . . , J} takes place, or until the observation is
censored. In credit risk, the events are default, early repayment, and maturity. For event
J , the general censoring indicator δi for observation i is equal to 0, indicating that none
of the competing events was observed. Additionally, each observation has J event-specific
censoring indicators, denoted by δj,i. As it is assumed that events are mutually exclusive,
the rationale is that the occurrence of a certain event causes the observation to be censored
from any other event type. Note that δi =

∑J
y=1 δy,i. For censored observations (δj,i = 0

for every j and, consequently, δi = 0), it is unknown which of the event types will be
experienced eventually, or in other words, the event “group” that a censored observation
belongs to is unknown. This group membership is represented by a partially observed
variable Y ∈ {1, . . . , J}, with Y being observed only when δi = 1.

Denote by πj(z, b) = P (Y = j | z, b) the probability of belonging to a certain group j,
with j ∈ {1, . . . , J}, given the covariate vector z and the vector of coefficients b. For this
discrete distribution it holds that (for a fixed z) 0 ≤ πj(z, b) ≤ 1 and that

∑J
j=1 πj(z, b) = 1.

The estimation of πj(z, b) is done through a multinomial logistic regression model with
covariate vector z and corresponding parameter vector b. For j = J it holds that πJ(z, b) =
1−

∑J−1
y=1 P (Y = y | z, b) with for j ∈ {1, . . . , J − 1},

πj(z, b) = P (Y = j | z, b) =
exp(z>bj)

1 +
∑J−1

y=1 exp(z>by)
. (1)

The survival probabilities S(t | Y = j, x; βj) (or the probability of not having ex-
perienced any event by time t) use a covariate vector x, which may be different from,
overlapping with, or be identical to the covariate vector z. In group J , the subjects are
unsusceptible to any of the considered events, or in other words “cured”, which is originat-
ing from medical studies considering cured patients, see e.g. Kuk and Chen (1992), Sy and
Taylor (2000), Peng and Dear (2000). In the model, the cured or unsusceptible group has
a survival probability S(t | Y = J) = 1 for every t and does not depend on x or on any
parameters. In credit risk, the cured group consists of matured loans. The probability of
not having experienced any event by time t is then given by

S(t;x, z, b, β) =
J−1∑
y=1

πy(z, b)S(t | Y = y, x; βy) + πJ(z, b), (2)
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where S(t | Y = j, x; βj) is the probability of not having experienced the event j by time
t. In Theorem 1, see A.1, we prove the identifiability of (2).

To incorporate heterogeneity, in a hierarchical model we assume that all J − 1 main
groups, thus except for the “unsusceptible” Jth group, may be further divided into Kj

subgroups, of which observations experience the same event and have a similar covariate
structure but differ with regard to their event time structure. So instead of immediately
modeling the survival function S(t | Y = j, x; βj) which depends on main group membership
only, the survival structure depends on the subgroups as well. The probability of not having
experienced event j at time t when belonging to subgroup k is modeled by a semi-parametric
Cox proportional hazards model and given by

ST |Ỹj ,Y (t | Ỹj =k, Y =j, x, βjk) = exp
{
−exp(xTβjk)

∫ t

0

h0(u | Ỹj =k, Y =j)du
}
, (3)

with h0 the unspecified baseline hazard function, estimated using Breslow’s estimator. The
latent variable Ỹj which takes values in {1, . . . , Kj} represents the subgroup membership
for group j ∈ {1, . . . , J − 1} and βjk is the parameter vector related to the survival func-
tion of subgroup k in main group j. For identifiability reasons, the vectors βjk do not
contain an intercept. For further use, we define the probability to belong to subgroup k
as τk|j = P (Ỹj = k | Y = j). We follow McLachlan and Peel (2000, Sec. 1.14), see also
Aitkin and Rubin (1985), to carry out the estimation without constraints but order the
estimated subgroup probabilities τk|j in a predetermined order to guarantee identifiability
of the parameters βjk, j = 1, . . . , J−1, k = 1, . . . , Kj. The identifiability of the hierarchical
mixture cure model is investigated in simulations in Section 4.

3 The joint likelihood and EM-algorithm for the hi-

erarchical model

The likelihood contribution of an observation i = 1, . . . , n is given by

fT,Ỹ ,Y (ti | ỹ, y) = fTi|Ỹi,Yi(Ti | Ỹi, Yi, xi, δi, βY,Ỹ ) · τỸi|Yi · πYi(zi, b),

where we use that, for a given j and k, the conditional likelihood contribution is

fT |Ỹj ,Y (ti | Ỹj = k, Y = j, xi, δj,i, βjk)

=hT |Ỹj ,Y (ti | Ỹj = k, Y = j, xi, βjk)
δj,iST |Ỹj ,Y (ti | Ỹj = k, Y = j, xi, βjk), (4)

with h the hazard function, formally,

hT |Ỹj ,Y (ti | Ỹj = k, Y = j, xi, βjk) = h0(t | Ỹj = k, Y = j) exp(xTβjk).

The joint hierarchical log-likelihood of (Ti, Yi, Ỹi) now takes the form

Lhn(b, βY,Ỹ ;Y1, . . . , Yn, Ỹ1, . . . , Ỹn, T1, . . . , Tn, δ1, . . . , δn)

= log
n∏
i=1

{
fTi|Ỹi,Yi(Ti | Ỹi, Yi, xi, δi, βY,Ỹ ) · τỸi|Yi · πYi(zi, b)

}
. (5)
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The expected complete-data log likelihood

Since the main group indicators Yi as well as the subgroup indicators Ỹi are not fully
observed, the EM-algorithm (Dempster et al., 1977) is used in order to maximize the log
likelihood. In this iterative procedure, the parameter estimates of the r-th EM-iteration
are used along with the observed information to compute the expected complete-data log
likelihood of the (r + 1)-th EM-iteration, formally,

Qh
{

(b, βY,Ỹ )(r+1) | (b, βY,Ỹ )(r)
}

= E(b,β
Y,Ỹ

)(r) [Lhn
{

(b, βY,Ỹ )(r+1)
}
| T1, . . . , Tn]

=
n∑
i=1

{
E[log πYi(zi, b

(r+1)) | Ti, b(r)] + E[log τ
(r+1)

Ỹi|Yi
| Ti, β(r)

Yi,Ỹi
]

+E[log fTi|Yi,Ỹi(Ti | Yi, Ỹi, xi, δi, β
(r+1)

Y,Ỹ
) | Ti, β(r)

Yi,Ỹi
]
}
. (6)

Rewriting the first term gives

E[log πYi(zi, b
(r+1)) | Ti, b(r)] =

J∑
y=1

P (Yi = y | Ti = ti, xi) log πy(zi, b
(r+1)),

with P (Yi = j | Ti = ti, xi) the probability of belonging to group j, conditional on the
censoring or event time, which for uncensored cases is either 1 or 0. It is a weighted
average of the time densities in the censored case,

P (Yi = j | Ti = ti, xi) ≡ wj(β
(r); ti, xi)

=


πj(zi, b

(r))fT |Y=j(ti | Y = j, xi, β
(r)
j )∑J

y=1 πy(zi, b
(r))fT |Y=y(ti | Y = y, xi, β

(r)
y )

if δi = 0,

1 if δi = 1 and Yi = j,
0 if δi = 1 and Yi 6= j.

As the density fT |Y=j(ti | Y = j, xi, β
(r)
j ) itself is composed of the subgroup time densities

with their respective subgroup probabilities, τj|k,

wj(β
(r); ti, xi)

=


πj(zi, b

(r))
∑Kj

ỹ=1 τỹ|jfT |Ỹj ,Y (ti | Ỹj = ỹ, Y = j, xi, β
(r)
jỹ )∑J

y=1 πy(zi, b
(r))
∑Ky

ỹ=1 τỹ|yfT |Ỹy ,Y (ti | Ỹy = ỹ, Y = y, xi, β
(r)
yỹ )

if δi = 0,

1 if δi = 1 and Yi = j,
0 if δi = 1 and Yi 6= j,

and using (4) along with the fact that δj,i = 0 when δi = 0,

wj(β
(r); ti, xi)

=


πj(zi, b

(r))
∑Kj

ỹ=1 τỹ|jST |Ỹj ,Y (ti | Ỹj = ỹ, Y = j, xi, β
(r)
jỹ )∑J

y=1 πy(zi, b
(r))
∑Ky

ỹ=1 τỹ|yST |Ỹy ,Y (ti | Ỹy = ỹ, Y = y, xi, β
(r)
yỹ )

if δi = 0,

1 if δi = 1 and Yi = j,
0 if δi = 1 and Yi 6= j.

(7)
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For the second term in (6) we get that

E[log τ
(r+1)

Ỹi|Yi
| Ti, β(r)

Yi,Ỹi
] =

J∑
y=1

Ky∑
ỹ=1

P (Ỹy,i = ỹ, Yi = y|Ti = ti, xi) log τ
(r+1)
ỹ|y

=
J∑
y=1

Ky∑
ỹ=1

P (Ỹy,i = ỹ | Yi = y, Ti = ti, xi)P (Yi = y|Ti = ti, xi) log τ
(r+1)
ỹ|y ,

with P (Ỹj,i = k | Yi = j, Ti = ti, xi) the probability of belonging to subgroup k, given the
event type j and the censoring or event time. Similarly to (7), we get

P (Ỹj,i = k | Yi = j, Ti = ti, xi) ≡ vk|j(β
(r)
j ; ti, xi)

=
τ

(r)
k|j fT |Y=j,Ỹj=k(ti | Y = j, Ỹj = k, xi, β

(r)
jk )

τ
(r)
ỹ|j
∑Kj

ỹ=1 fT |Y=j,Ỹj=ỹ(ti | Y = j, Ỹj = ỹ, xi, β
(r)
jỹ )

,

for j ∈ {1, . . . , J − 1} and k ∈ {1, . . . , Kj}. By consequence,

E[log τ
(r+1)

Ỹi|Yi
| Ti, β(r)

Yi,Ỹi
] =

J−1∑
y=1

Kj∑
ỹ=1

vỹ|y(β
(r)
y ; ti, xi)wy(β

(r); ti, xi) log τ
(r+1)
ỹ|y .

As opposed to the main groups where δj,i gives partial information on membership, no prior
information is available for subgroup membership thus τ does not depend on a covariate
vector. In the first iteration of the EM-algorithm, a value for τk|j is chosen for each k such

that
∑K

k=1 τk|j = 1 for each j. Without prior information, a logical starting value for τk|j
is 1/Kj with Kj the total number of subgroups in main group j. In the next steps of the
EM-algorithm, τk|j is updated as follows (see A.2 for details),

τ
(r+1)
k|j = τ

(r+1)
k|j (x1, . . . , xn) = P (Ỹj = k | Y = j) =

∑n
i=1 v

(r)
k|ji

(β
(r)
j ; ti, xi)

n
. (8)

Similarly, the third term of (6) is given by

E[log fTi|Yi,Ỹi(Ti | Yi, Ỹi, xi, β
(r+1)

Y,Ỹ
) | Ti, β(r)

Y,Ỹ
]

=
J∑
y=1

Kj∑
ỹ=1

vỹ|y(β
(r)
y ; ti, xi)wy(β

(r); ti, xi) log fTi,yi,ỹi(Ti | Yi = y, Ỹi = ỹ, xi, β
(r+1)
yỹ )

=
J−1∑
y=1

Kj∑
ỹ=1

vỹ|y(β
(r)
y ; ti, xi)wy(β

(r); ti, xi) log fTi,yi,ỹi(Ti | Yi = y, Ỹi = ỹ, xi, β
(r+1)
yỹ ).
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The resulting hierarchical expected complete-data log likelihood is then given by

Qh
{

(b, βY,Ỹ )(r+1) | (b, βY,Ỹ )(r)
}

=
n∑
i=1

[
wJ(β(r); ti, xi) log πJi(zi, b

(r+1)) +
J−1∑
y=1

{
wy(β

(r); ti, xi) log πyi(zi, b
(r+1))

+

Kj∑
ỹ=1

wy(β
(r); ti, xi)vỹ|y(β

(r)
y ; ti, xi)× (9)

[
log τ

(r+1)
ỹ|y + log fTi,yi,ỹi(Ti | Yi = y, Ỹi = ỹ, xi, β

(r+1)
yỹ )

]}]
.

Initialization and iterative E- and M-step

The three main steps of the computational algorithm are performed as follows:
a) Initialization stage

1) Determine the number of subgroups Kj for each of the J-1 main groups. Whereas
the number of main groups J is fixed by the data structure, the number of subgroups
is not. It is suggested to try several values for Kj, and evaluate the results (see also
Section 5).

2) Initialization of w: Set w
(0)
j (β(0); ti, xi) = δj,i for every j. Hence, the initial value is 1

for an observed event of category j and is 0 otherwise.

3) Initialization of b: Fit a multinomial logit model to w(0) using covariate vector z, in
order to retrieve an initial estimate b̂(0).

4) Initialization of β: Obtain estimates β̂
(0)
j,k at each subgroup level. The parameter

estimates of the multiple event mixture cure model (Dirick et al., 2015) without
heterogeneity can be used to set the initial values for the

∑J−1
y=1 Ky parameter vectors.

Remark: The Kj initial values for every j ∈ {1, . . . , J − 1} should be different for
the algorithm to work more efficiently. Hence, we start by specifying different βj,k
parameters for each group.

5) Initialization of τ : τ
(0)
k|j = 1/Kj if no information about subgroups.

6) Initialization of densities: Compute density fT |Y=j,Ỹj=k(ti | Y = j, Ỹj = k, xi, βj,k),

baseline hazard h0(u | Ỹj = k, Y = j) through Breslow’s estimator and the sur-

vival function ST |Ỹj ,Y (ti | Ỹj = k, Y = j, xi, βj,k) values (using Formula 3) for each

observation, using the β̂
(0)
j,k -estimates obtained from step 4.

b) E-step

1) Compute π
(1)
j (zi, b) for each j, using b̂(0).

2) Compute w
(1)
j (β; ti, xi) for each j, using β̂(0).

3) Compute v
(1)
k|j(βj; ti, xi) for each k and each j, using β̂

(0)
j .

c) M-step
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1) Update b: Obtain a new estimate b̂(1) using the w
(1)
j (β; ti, xi)’s of the E-step.

2) Update βjk: Obtain a new estimate β̂
(1)
j,k using mixture weights w

(1)
j (β; ti, xi) and

v
(1)
k|j(βj; ti, xi). Method: The likelihood contribution corresponding to the event times

can be written as

J−1∑
j=1

Kj∑
k=1

n∑
i=1

wj(β; ti, xi)vk|j(βj; ti, xi) log
{
hT,j,k(ti | xi, βjk)δj,iST,j,k(ti | xi, βjk)

}

=
J−1∑
j=1

Kj∑
k=1

n∑
i=1

wj(β; ti, xi)vk|j(βj; ti, xi)δj,i log hT,j,k(ti | xi, βjk)

+wj(β; ti, xi)vk|j(βj; ti, xi) logST,j,k(ti | xi, βjk)

=
J−1∑
j=1

Kj∑
k=1

n∑
i=1

vk|j(βj; ti, xi)
(
δj,i log

{
wj(β; ti, xi)hT,j,k(ti | xi, βjk)

}
+wj(β; ti, xi) logST,j,k(ti | xi, βjk)

)
.

For the last step, we used logwj(β; ti, xi)δj,i = 0 and δj,iwj(β; ti, xi) = δj,i.
Due to this, β can be estimated using standard software for fitting Cox proportional
hazards models, such as the coxph-function in R, with an additional offset variable
log(wj(β; ti, xi)) and weights equal to vk|j(βj; ti, xi). A similar reasoning has been
used by Cai et al. (2012).

3) Update densities: Obtain a new estimate of fT |Y=j,Ỹj=k
(ti | Y = j, Ỹj = k, xi, βjk),

h0(u | Ỹj = k, Y = j) and ST |Ỹj ,Y (ti | Ỹj =k, Y =j, xi, βjk), using β̂
(1)
j,k .

Repeat the E- and M-step with all updated estimates, until parameter convergence. The
algorithm stops when the sum of the absolute value of the relative differences between(
β̂(r+1), b̂(r+1)

)
and

(
β̂(r), b̂(r)

)
is smaller than 10−6.

Note that for some observations i, fT |Y=j,Ỹj=k(ti | Y = j, Ỹj = k, xi, βjk) for all subgroups

k ∈ {1, . . . , Kj} in one of the main groups j ∈ {1, . . . , (J − 1)} can be very small or even

0. As a result, vk|j(βj; ti, xi) can go to infinity for all Kj subgroups of group j. As
∑Kj

k vk|j
should be equal to 1, this issue is solved by putting vk|j(βj; ti, xi) = 1/Kj for every k when
the denominator of vk|j(βj; ti, xi) < 10−10 for a certain observation i. Intuitively, when a
certain observation is seemingly found to not belong to any of the subgroups of a main
group j, its subgroup probabilities should be equal. As a result of the equal weights, for
such a situation the estimates for all groups will be approximately the same. This may be
interpreted as a case where different subgroups are not needed.

Standard errors through the SEM-algorithm

The typical execution of the EM-algorithm does not automatically produce standard errors
of the parameter estimates. The supplemented EM-algorithm, introduced by Meng and
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Rubin (1991), is widely used in various applications for standard error estimation when
applying the EM-algorithm, see for example Segal et al. (1994), Cai and Lee (2009), Cai
(2008). For a discussion on standard errors for EM estimators, see Jamshidian and Jennrich
(2000). Meng and Rubin (1991) show that a numerically stable asymptotic variance matrix
for the estimators can be obtained using the supplemented EM-algorithm, more specifically,
V = I−1

oc (Id − DM)−1, where Ioc is the negative second Hessian matrix of the expected

complete-data log likelihood, with Θ = (b, βY,Ỹ ), Ioc = −∂2Qh
(
Θ̂ | Θ̂

)
\(∂Θ · ∂Θ>). The

matrix Id is the identity matrix with dimension d × d, with d equal to the length of the
parameter vector Θ. The d × d-matrix DM can be interpreted as the matrix rate of
convergence of the EM-algorithm. The idea behind this is that, implicitly, a mapping
Θ → M(Θ) = (M1(Θ), . . . ,Md(Θ))> is defined by the EM-algorithm from the parameter
space to itself such that M(Θ̂(r)) = Θ̂(r+1) for r = 0, 1, . . . . A Taylor series expansion in
the neighborhood of Θ̂ yields that

(Θ̂(r+1) − Θ̂)> ≈ (Θ̂(r) − Θ̂)>DM, where DM =

(
∂Ml(Θ)

∂Θm

)∣∣∣∣
Θ=Θ̂

,

a d× d-matrix evaluated at Θ = Θ̂. In practice, DM is obtained by numerically differen-
tiating M(Θ). For more information on the computation of DM , we refer to Meng and
Rubin (1991, section 3.3). For the calculation of the Hessian matrix, we used the exact
expressions as provided by the Cox proportional hazard models and the logistic regression
models, respectively. We have implemented this procedure to obtain standard errors of the
estimators of bj and βj,k for all considered j and k.

Alternative methods for standard error calculations include the bootstrap. A bootstrap
approach similar to that of Cai et al. (2012) in the R package smcure is applied in the data
analysis, see Section 5, to the hierarchical mixture cure models.

In some cases one can compute the estimator’s covariance matrix theoretically. For
mixture cure models with a single main group and one cured group, Sy and Taylor (2001)
obtained an expression for the standard errors and suggested approximations in case of tied
event times. Unlike mixtures of all t-distributions, for example, for which approximations
to the information matrix have been studied, see Wang and Lin (2016), mixture cure
models are more challenging to handle due to the survival component, censored data and
the nonparametric estimation of the baseline hazard. We expect that calculations similar
to those of Sy and Taylor (2001) could be performed too for the hierarchical mixture cure
model with multiple events of interest.

4 Simulation study

Simulation settings

To validate the model, a simulation study was conducted using the software R (R Core
Team, 2020). Since mixture cure models as such have already been thoroughly investigated
in the literature, we particularly focus attention to the model’s performance regarding the
unobserved grouping structure. In the first scenario in each simulation run, a dataset of
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Setting I Setting II Setting III
βA1 βA2 βB1 βB2 bA bB bA bB bA bB

(intercept) 0.7 0.2 -0.6 0.3 -0.7 -1.1
λj 0.7 0.9 0.5 0.8 - - - - - -
νj 0.6 1 0.7 1.1 - - - - - -
xj,1 -0.2 0 0.3 1.3 0.7 -0.4 0.8 -1.2 0.5 -1.5
xj,2 0.1 0.4 -0.5 -0.1 0.6 1.2 -0.1 -0.3 -1.2 -0.4
xj,3 -0.5 -0.3 0.1 0.3 0.2 -1 0.6 -1 0.7 -1.3

Table 1: Generating values for the parameter vectors β and b in the simulation study. For
identifiability in the survival part of the model, there is no intercept in the vectors β.

size n = 7500 was constructed with three event groups A, B and C, and two subgroups
for groups A and B (C is the “cured” group). This sample size resembles that of a typical
credit risk study. There are three variables, generated respectively by x1 ∼ N (−2, 1),
x2 ∼ N (2.6, 1.2) and x3 ∼ N (3, 2). These variables in combination with b-parameters
shape the event group memberships of the observations when using a multinomial logit
transformation. As a result, we get the probability of belonging to group j ∈ {A,B}:

πi,j(zi, b) = P (Y = j | b) =
exp(z>i bj)

1 + exp(z>i bA) + exp(z>i bB)
,

in this simulation study we took z = x. The general model formulation (Section 2) allows
for z and x to be different. The value πi,C = 1− πi,A − πi,B.

In total three settings were explored which differ solely with regard to the values of
b (which can be found in Table 1), resulting in different group sizes. In Setting I, there
is a low number of “cured” (group C) cases of around 12%. Setting II contained around
35% cured cases, and Setting III around 67%. For all settings, the remainder of cases was
approximately evenly split over groups A and B.

The event times differ for the two subgroups of A and B. Because of this, there are
different parameter vectors for the survival functions of the subgroups. See Table 1 for the
generating parameters β. To model the subgroups, for each main group the observations are
randomly split into two groups of equal size, with event times generated using a Weibull
distribution each with a covariate vector βAk and corresponding scale parameter λ and
shape parameter 1/ν, see Table 1 for the parameter values for each group. More precisely,
T = [− log(U)/{λ exp(x>βAk)}]1/ν with U a uniform distribution on (0, 1). The event times
for observations in the unsusceptible group C are all the same, for these simulations we put
these equal to 103. Finally, some censoring was introduced. For both simulation settings,
the censoring distribution was Censor ∼ Unif(0, 200), leading to 15− 20% censoring in the
main groups A and B.

In the second scenario we reduce the sample size to 3000 and increase the censoring by
taking Censor ∼ Unif(0, 50). This leads to 34-40% censoring. The other settings remain
the same.
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Simulation results

According to the simulation settings in Section 4, 1000 simulation runs were conducted.
Three types of models are fitted and compared, (i) a misspecified homogeneous model with
three main groups and no subgroups, Kj=1, (ii) a model with heterogeneity assuming
two subgroups for both groups A and B, which corresponds to the data generation, and
(iii) a misspecified model with too much heterogeneity as compared to how the data were
generated, we use three subgroups for both main groups A and B.

Model without heterogeneity

We evaluate the estimation of the parameters in a misspecified model, assuming that there
is no heterogeneity. Table 2 shows the mean of the parameter estimates over all simulation
runs along with their standard deviations. Since this model is misspecified, we only compute
an empirical bias for the parameters of the logistic model. Due to the misspecification, such
results should be interpreted with care. We observe that the parameters of the incidence
model are well-estimated. The main interest, however, lies in the estimates β̂, since the
model without heterogeneity forces to estimate only one β per main group, whereas the
data are generated with two parameters β for both A and B. It is observed that abandoning
the heterogeneity might lead to undetected effects. An example for this is βB,1: the model
estimates are between 0.542 and 0.644 when using no subgroups, whereas the two generating
values βB1,1 = 0.3 and βB2,1 = 1.3. It seems that the model favors weaker relationships,
which results in estimated βs that are relatively small in absolute value. A comparison
between the two simulation scenario’s leads to the expected finding of smaller biases and
standard errors for scenario 1 where the sample size is larger and less censoring is present.

Model with heterogeneity: two subgroups

The mean parameter estimates for all settings over 1000 simulation runs for a model with
heterogeneity can be found in Table 3. The parameter estimates for b in the right panel
are close to the estimates for the model without heterogeneity, resulting in good estimates
with respect to the simulated parameters and similar standard errors for all settings. The
estimates β̂ in the left panel show that the two subgroups are well-identified for groups
A and B. When comparing the estimates β̂ with the true parameter values used for
simulation (see Table 1), we note that higher cure does in general not disturb the estimation
of β. However, it should be noted that standard errors are larger for subgroup A1 when
comparing with other subgroups. Additionally, standard errors tend to go up when the
cured fraction is larger. This first phenomenon can be explained by the fact that the
parameters of both subgroups in A lie closer to each other as compared to the subgroup
parameters of B. This possibly makes estimation more difficult. The second phenomenon is
explained by the smaller number of cases in groups A and B for Setting III in comparison
with Setting I. Because approximately 2/3 of the observations is cured in Setting III,
only around 600 observations belong to each subgroup in this setting. This leads to less
accuracy and higher variation in parameter estimation. For most parameters, under the
more challenging scenario 2, an increase in bias and standard error is observed as compared
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β̂A β̂B b̂A b̂B

S
et

ti
n
g

I int. Scenario 1: n = 7500 0.86 (0.16,0.17) 0.39 (0.19,0.19)
xj,1 -0.08 (0.02) 0.54 (0.03) 0.64 (-0.06,0.09) -0.43 (-0.03,0.10)
xj,2 0.13 (0.02) -0.28 (0.02) 0.41 (-0.19,0.07) 0.98 (-0.23,0.09)
xj,3 -0.27 (0.02) 0.15 (0.02) 0.19 (-0.01,0.08) -0.98 (0.02,0.09)
int. Scenario 2: n = 3000 1.01 (0.31,0.41) 0.61 (0.41,0.42)
xj,1 -0.07 (0.05) 0.67 (0.08) 0.71 (0.01,0.23) -0.26 (0.14,0.27)
xj,2 0.19 (0.05) -0.23 (0.05) 0.05 (-0.55,0.19) 0.56 (-0.65,0.21)
xj,3 -0.25 (0.04) 0.21 (0.04) 0.30 (0.10,0.23) -0.79 (0.21,0.24)

S
et

ti
n
g

II int. Scenario 1: n = 7500 -0.48 (0.12,0.13) 0.38 (0.08,0.15)
xj,1 -0.08 (0.03) 0.62 (0.04) 0.76 (-0.04,0.05) -1.16 (0.04,0.08)
xj,2 0.13 (0.02) -0.26 (0.03) -0.13 (-0.03,0.03) -0.35 (-0.05,0.04)
xj,3 -0.26 (0.02) 0.16 (0.02) 0.55 (-0.05,0.04) -0.97 (0.03,0.05)
int. Scenario 2: n = 3000 -0.48 (0.12,0.21) 0.45 (0.15,0.27)
xj,1 -0.07 (0.06) 0.71 (0.09) 0.76 (-0.04,0.10) -0.91 (0.29,0.20)
xj,2 0.17 (0.04) -0.20 (0.06) -0.13 (-0.03,0.06) -0.39 (-0.09,0.07)
xj,3 -0.23 (0.04) 0.21 (0.04) 0.50 (-0.10,0.08) -0.86 (0.14,0.11)

S
et

ti
n
g

II
I int. Scenario 1: n = 7500 -0.59 (0.11,0.15) -0.95 (0.15,0.18)

xj,1 -0.06 (0.04) 0.64 (0.05) 0.46 (-0.04,0.05) -1.43 (0.07,0.09)
xj,2 0.16 (0.04) -0.26 (0.04) -1.18 (0.02,0.05) -0.45 (-0.05,0.05)
xj,3 -0.24 (0.03) 0.17 (0.03) 0.63 (-0.07,0.04) -1.25 (0.05,0.05)
int. Scenario 2: n = 3000 -0.65 (0.05,0.25) -0.71 (0.39,0.34)
xj,1 -0.04 (0.08) 0.68 (0.12) 0.44 (-0.06,0.09) -1.09 (0.41,0.20)
xj,2 0.22 (0.07) -0.19 (0.08) -1.14 (0.06,0.09) -0.49 (-0.09,0.09)
xj,3 -0.21 (0.05) 0.21 (0.06) 0.57 (-0.13,0.06) -1.09 (0.21,0.12)

Table 2: Mean (standard error) and mean, (bias,standard error) of the parameter estimates
for the misspecified model without heterogeneity over 1000 simulation runs, for Setting I
(with cure around 12%), Setting II (35% cure) and Setting III (67% cure). The true
generating model has two subgroups for the main groups A and B. For this reason there
is no true βA and βB to compare with.

to scenario 1.
Table 4 compares the standard errors obtained via the supplemented EM algorithm with

those obtained from computing the standard deviation over the simulated estimates. For
the larger sample size, the estimated standard errors come closer to their empirical coun-
terparts. The results are in particular good for the estimators of the incidence parameters
in the logistic regression models. There is more underestimation for the parameters of the
Cox regression model. The results become better for the larger sample size in scenario 1.

The aim of the analysis is to determine the main group for the censored observations. In
this simulation study, we perform such classification to main groups using either one, two
or three subgroups. In Table 5, the percentages of correctly classified observations for the
model with two subgroups are listed on the diagonal of the middle part. The percentages
of observations belonging to each main group, that are presented in the table, have been
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(1) β̂A1 β̂A2 β̂B1 β̂B2 b̂A b̂B
int. Setting I 0.88 (0.18,0.19) 0.39 (0.19,0.22)
xjk,1 -0.51 (-0.31,0.38) -0.06 (-0.06,0.04) 0.36 (0.06,0.17) 1.05 (-0.25,0.21) 0.64 (-0.06,0.11) -0.47 (-0.07,0.12)
xjk,2 0.01 (-0.09,0.30) 0.17 (-0.23,0.08) -0.39 (0.11,0.11) -0.08 (0.02,0.13) 0.49 (-0.11,0.09) 1.06 (-0.14,0.11)
xjk,3 -1.00 (-0.50,0.44) -0.26 (0.04,0.03) 0.14 (0.04,0.07) 0.19 (-0.11,0.11) 0.20 (-0.00,0.11) -0.99 (0.01,0.11)
int. Setting II -0.48 (0.12,0.14) 0.35 (0.05,0.16)
xjk,1 -0.51 (-0.31,0.41) -0.05 (-0.05,0.09) 0.58 (0.28,0.20) 1.52 (0.22,0.32) 0.78 (-0.02,0.06) -1.21 (-0.01,0.09)
xjk,2 0.09 (-0.01,0.31) 0.15 (-0.25,0.05) -0.29 (0.21,0.07) -0.13 (-0.03,0.18) -0.14 (-0.04,0.04) -0.35 (-0.05, 0.04)
xjk,3 -0.99 (-0.49,0.36) -0.23 (0.07,0.06) 0.16 (0.06,0.07) 0.31 (0.01,0.20) 0.60 (-0.00,0.07) -0.98 (0.02,0.06)
int. Setting III -0.57 (0.13,0.17) -1.03 (0.07,0.20)
xjk,1 -0.32 (-0.12,0.45) -0.03 (-0.03,0.13) 0.58 (0.28,0.13) 1.64 (0.34,0.41) 0.47 (-0.03,0.05) -1.50 (0.00,0.11)
xjk,2 0.28 (0.18,0.40) 0.21 (-0.19,0.23) -0.29 (0.21,0.07) -0.11 (-0.01,0.24) -1.22 (-0.02,0.06) -0.45 (-0.05,0.05)
xjk,3 -0.67 (-0.17,0.39) -0.21 (0.09,0.08) 0.15 (0.05,0.05) 0.39 (0.09,0.27) 0.67 (-0.03,0.06) -1.27 (0.03,0.06)

(2) β̂A1 β̂A2 β̂B1 β̂B2 b̂A b̂B
int. Setting I 1.25 (0.55,0.53) 0.81 (0.61,0.51)
xjk,1 -0.54 (-0.34,0.51) -0.03 (-0.03,0.07) 0.51 (0.21,0.15) 1.61 (0.31,0.45) 0.74 (0.04,0.26) -0.25 (0.15,0.29)
xjk,2 0.18 (0.08,0.40) 0.25 (-0.15,0.09) -0.30 (0.20,0.13) -0.14 (-0.04,0.36) 0.07 (-0.53,0.23) 0.59 (-0.61,0.24)
xjk,3 -0.82 (-0.32,0.48) -0.22 (0.08,0.04) 0.19 (0.09,0.06) 0.50 (0.20,0.40) 0.32 (0.12,0.25) -0.79 (0.21,0.26)
int. Setting II -0.37 (0.23,0.28) 0.51 (0.21,0.29)
xjk,1 -0.51 (-0.31,0.57) -0.03 (-0.03,0.09) 0.63 (0.33,0.12) 2.04 (0.74,0.67) 0.78 (-0.02,0.14) -0.97 (0.23,0.23)
xjk,2 0.14 (0.04,0.39) 0.19 (-0.21,0.07) -0.24 (0.26,0.08) -0.02 (0.08,0.43) -0.15 (-0.05,0.07) -0.40 (-0.10,0.08)
xjk,3 -0.80 (-0.30,0.41) -0.19 (0.11,0.04) 0.18 (0.08,0.05) 0.61 (0.31,0.42) 0.55 (-0.05,0.12) -0.87 (0.13,0.13)
int. Setting III -0.56 (0.14,0.30) -0.68 (0.42,0.36)
xjk,1 -0.28 (-0.08,0.49) 0.00 (0.00,0.18) 0.58 (0.28,0.16) 1.79 (0.49,0.75) 0.45 (-0.05,0.10) -1.16 (0.34,0.23)
xjk,2 0.38 (0.28,0.45) 0.29 (-0.11,0.25) -0.24 (0.26,0.12) 0.04 (0.14,0.52) -1.18 (0.02,0.10) -0.49 (-0.09,0.10)
xjk,3 -0.55 (-0.05,0.36) -0.17 (0.13,0.08) 0.18 (0.08,0.09) 0.57 (0.27,0.43) 0.60 (-0.10,0.08) -1.12 (0.18,0.13)

Table 3: Mean (bias,standard error) of the parameter estimates for the correctly specified
model with two subgroups for both A and B over 1000 simulation runs, for Setting I with
low cure, Setting II with medium cure and Setting III with high cure. Top panel: Scenario
1 with n = 7500, bottom panel: Scenario 2 with n = 3000.

obtained by averaging the weights wj over all observations and further averaging over all
simulation runs. When comparing these results with the percentages of correctly classified
observations of the model without heterogeneity (on the left part of the same table), we
observe a high percentage of correctly classified observations for all settings. Note that
classification is better for groups A and B in the model with two subgroups. This is offset
by a worse classification of the cured cases C, especially in Setting I. In general, we note that
classification on the main group level does not incontestably favor one model over another.
This is not an unexpected result, as classification is driven by the parameters b, which
only marginally change when changing the number of subgroups (see the b-parameters in
Tables 2 and 3). A similar result was observed when looking at the b-parameters of a model
when having three subgroups (see also Section 4).

For the correctly specified models for settings I and II it never happened in the 1000
simulated datasets that the parameter vectors for the two subgroups were estimated with
nearly identical values. For setting III (high cure percentage) it only happened in 1 out of
1000 simulated datasets for the parameter vector related to early repayment. Thus in that
single case the model suggests a single group. This comparison for equality of the estimates
is reconsidered for estimation with three subgroups, see Table 7.
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n = 3000 bp bd βp1 βp2 βd1 βd2

I sem 0.28 0.09 0.07 0.06 0.31 0.10 0.09 0.07 0.14 0.11 0.11 0.04 0.03 0.02 0.05 0.04 0.03 0.18 0.11 0.10
empstd 0.53 0.26 0.23 0.25 0.51 0.29 0.24 0.26 0.51 0.40 0.48 0.07 0.09 0.04 0.15 0.13 0.06 0.45 0.36 0.40
II sem 0.22 0.07 0.05 0.04 0.23 0.08 0.06 0.06 0.16 0.11 0.12 0.04 0.03 0.03 0.06 0.04 0.03 0.34 0.16 0.15

empstd 0.28 0.14 0.07 0.12 0.29 0.23 0.08 0.13 0.57 0.39 0.41 0.09 0.07 0.04 0.12 0.08 0.05 0.67 0.43 0.42
III sem 0.25 0.08 0.08 0.05 0.27 0.09 0.08 0.08 0.15 0.14 0.11 0.08 0.08 0.05 0.08 0.06 0.05 0.39 0.20 0.19
empstd 0.30 0.10 0.10 0.08 0.36 0.23 0.10 0.13 0.49 0.45 0.36 0.18 0.25 0.08 0.16 0.12 0.09 0.75 0.52 0.43

n = 7500 bp bd βp1 βp2 βd1 βd2

I sem 0.17 0.06 0.05 0.03 0.19 0.07 0.06 0.04 0.11 0.08 0.10 0.02 0.02 0.01 0.03 0.02 0.02 0.05 0.04 0.03
empstd 0.19 0.10 0.09 0.10 0.20 0.12 0.11 0.10 0.33 0.27 0.37 0.03 0.04 0.02 0.08 0.09 0.03 0.20 0.17 0.13
II sem 0.13 0.04 0.03 0.02 0.13 0.05 0.03 0.04 0.12 0.08 0.10 0.02 0.02 0.01 0.03 0.02 0.02 0.14 0.07 0.06

empstd 0.13 0.06 0.04 0.06 0.16 0.09 0.04 0.05 0.40 0.28 0.31 0.04 0.03 0.02 0.06 0.04 0.02 0.28 0.20 0.22
III sem 0.15 0.05 0.05 0.03 0.16 0.06 0.04 0.05 0.11 0.10 0.08 0.04 0.04 0.02 0.04 0.03 0.02 0.18 0.10 0.09
empstd 0.16 0.05 0.06 0.06 0.20 0.10 0.05 0.06 0.36 0.31 0.33 0.08 0.12 0.04 0.08 0.05 0.03 0.33 0.22 0.25

Table 4: Averages of estimated standard deviations via SEM and empirical standard devi-
ations over 1000 simulation runs for setting I with low cure, II with medium cure and III
with high cure percentage. Top: scenario 2 with n = 3000 and high censoring. Bottom:
scenario 1 with n=7500 and less censoring.

Classified as (in %)
no heterogeneity two subgroups three subgroups
A B C A B C A B C

I

R
ea

li
ty group A 94.74 0.56 4.70 95.55 0.65 3.79 95.63 0.66 3.71

group B 0.66 94.70 4.64 0.80 95.80 3.40 0.82 95.82 3.36
group C 12.89 9.50 77.62 17.95 13.95 68.09 18.60 14.06 67.34

II

R
ea

li
ty group A 92.64 0.15 7.21 93.58 0.15 6.26 93.66 0.16 6.18

group B 0.16 91.03 8.80 0.21 91.66 8.14 0.21 91.74 8.04
group C 4.87 5.61 89.52 7.43 6.85 85.72 7.72 7.03 85.25

II
I

R
ea

li
ty group A 89.08 0.05 10.87 90.07 0.06 9.87 95.63 0.66 3.71

group B 0.05 88.65 11.30 0.06 89.45 10.48 0.82 95.82 3.36
group C 1.36 2.21 96.43 2.38 2.78 94.84 18.60 14.06 67.34

Table 5: Percentage of observations classified to each of the groups over 1000 simulation
runs for scenario 1 and settings I–III. The left part shows this for the model without
heterogeneity, the middle part for the correct model with two subgroups for A and B, and
the right part gives the classification percentages for the overspecified model with three
subgroups for A and B. The percentages of correct classification are on the diagonals of
each part.

Comparison of model with and without heterogeneity

The main advantage of the use of a heterogeneous model when there is some heterogeneity
in the data lies in the possibility to model more accurate event times. To illustrate this,
we investigate the estimates of the survival probabilities of the subjects using (i) a model
without heterogeneity and (ii) with two subgroups per main group, and compare these
estimates to the true survival probabilities of the simulated data. For the 1000 simulation
runs, we considered the true survival rate in each subgroup (A1, A2, B1, B2), for each decile
from 0.2 to 0.7 of all 7500 event times. These are compared to the average estimated survival
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decile rank=2 decile rank=3 decile rank=4
A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2

I 1 group 0.177 0.164* 0.008 0.005* 0.253 0.234 0.029 0.020* 0.281 0.262 0.062 0.045*
2 subgroups 0.075* 0.300 0.006* 0.031 0.099* 0.192* 0.023* 0.067 0.101* 0.100* 0.051* 0.121

II

1 group 0.254 0.228* 0.008* 0.013* 0.296 0.268 0.022 0.008* 0.250 0.226 0.066 0.034*
2 subgroups 0.118* 0.242 0.009 0.083 0.115* 0.112* 0.018* 0.188 0.086* 0.062* 0.057* 0.335

II
I 1 group 0.282 0.218 0.046 0.014* 0.142 0.054* 0.071 0.018* 0 0 0 0

2 subgroups 0.148* 0.123* 0.038* 0.341 0.111* 0.058 0.056* 0.504 0 0 0 0

decile rank=5 decile rank=6 decile rank=7
A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2

I 1 group 0.256 0.241 0.102 0.074* 0.201 0.188 0.132 0.096* 0.139 0.124 0.132 0.096*
2 subgroups 0.092* 0.054* 0.085* 0.193 0.099* 0.035* 0.108* 0.262 0.121* 0.023* 0.103* 0.302

II

1 group 0.172 0.147 0.091 0.051* 0.087* 0.047 0.067 0.022* 0 0 0 0
2 subgroups 0.097* 0.041* 0.080* 0.461 0.132 0.020* 0.053* 0.458 0 0 0 0

II
I 1 group 0 0 0 0 0 0 0 0 0 0 0 0

2 subgroups 0 0 0 0 0 0 0 0 0 0 0 0

Table 6: The mean of the absolute differences between the population survival rate and
the estimated survival probabilities for the model without heterogeneity (1 group) and
with heterogeneity (2 groups) for censoring settings I–III and scenario 1. Six different time
points are analyzed, using the real event-time deciles. The asterisk indicates where the
performance was better, each time using a pairwise comparison between the model with 1
or 2 (sub)groups). Note that zeroes in this table are exact and not rounded, as here both
estimated survival probabilities and population survival rate are equal (both zero).

probability of all observations in groups A1, A2, B1 and B2, first using a homogeneous
model, and secondly using a model with two subgroups. The result can be found in Table 6.

For each simulation setting at each of the six listed time decile ranks, the estimates
of the proportion of the populations that experienced the event not later than time td,
Sjk(t0) − Sjk(td) = 1 − Sjk(td), with td equal to the generated time decile rank d and t0
the starting time of the study (hence, before any event has occurred) are compared to
the true proportions. Table 6 lists the absolute differences between the estimated and the
true proportions, either using a model with or without heterogeneity. When the model
without heterogeneity performs better than the model with heterogeneity (this is, when
the absolute difference for “1 group” is lower than for “2 subgroups”), the numbers in
Table 6 for 1 group received an asterisk. Similar for the numbers for two subgroups where
the model with heterogeneity performed better. Note that, for high censoring rates and for
bigger time decile ranks, the survival probability estimate goes to 0 for both models, and
both models perform about equally (regular text font). Note that in a large majority of
the cases (34 out of 52, not considering the zeros), the model with heterogeneity performed
either equally well or better than the model without heterogeneity.

Model with heterogeneity: three subgroups

The third model that was fit to the simulated data was a model with three subgroups
for both main groups A and B. For this model, it appears that in many of the simulation
runs, the β̂jk for several subgroups are converging to (approximately) equal values, see Table
7. This is a result of putting several subgroup probabilities equal to 1/Kj, as discussed
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in Section 3. In 606, 737 and 756 out of the 1000 simulation runs (for Setting I to III
respectively), at least two out of three βjk for groups A, B or both were estimated to be
equal, with equal shares of observations classified in those equally estimated groups. The
occurrence of equal parameter estimates is a strong indication that too many subgroups
were modeled and that the number of subgroups Kj should be decreased. In the data
example, we use this in combination with a version of Akaike’s Information criterion to
determine the number of subgroups.

group A group B Setting I Setting II Setting III

β̂A1 6= β̂A2 6= β̂A3 β̂B1 6= β̂B2 6= β̂B3 394 263 244

β̂A1 = β̂A2 6= β̂A3 β̂B1 6= β̂B2 6= β̂B3 171 125 164

β̂A1 6= β̂A2 6= β̂A3 β̂B1 = β̂B2 6= β̂B3 315 438 363

β̂A1 = β̂A2 6= β̂A3 β̂B1 = β̂B2 6= β̂B3 120 174 229

Table 7: Analysis of the parameter estimates for heterogeneity with 3 subgroups for groups
A and B, for censoring settings I–III, scenario 1. In the majority of the simulation runs,
there were equal estimates for 2 out of the 3 βjk for A or B, or both.

5 Credit risk data example

Data description

We analyze a credit loan data set, with the main interest in the prediction of defaults and
early loan repayments. The cured or unsusceptible group is given by the matured loans
with the loan repayment on the predefined end date (maturity). The data concern personal
loans and are from a UK bank, previously used in Stepanova and Thomas (2002), Tong
et al. (2012) and Dirick et al. (2015). We use the data set consisting of 7521 observations
with loan term 36 months. Table 8 lists the eight variables that were used to build our
model. The event of early repayment was observed 2992 times, default 376 times and
maturity 269 times. The remaining 3884 other observations were censored.

Decision on the number of subgroups

To determine the value of Kj for each of the J−1=2 main groups, or rephrased to this data
set, theKd subgroups for default and theKp subgroups for early repayment, we use a version
of Akaike’s information criterion (AIC) that accounts for incomplete data. Introduced by
Cavanaugh and Shumway (1998), the so-called “complete-data AIC” (AICcd) makes use
of the expected complete-data log likelihood instead of the observed log likelihood. Dirick
et al. (2015) obtained the AICcd for multiple event mixture cure models. In this context,

AICcd = −2Qh
(
Θ̂ | Θ̂

)
+ 2d+ 2 trace{DM(Id −DM)−1}.

An additional selection restriction is that increasing the number of subgroups Kj should

be stopped when the estimates β̂jk of different components are the same.
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Description Type default early repayment cured unknown (censored)

x1
The gender of the

customer (1=M, 0=F)
cat 75.0% 71.2% 71.7% 73.6%

x2 Amount of the loan cont 3588.8 (1842.4) 3607.4 (1756.8) 3740.9 (1900.2) 3630.7 (1805.9)

x3
Number of years

at current address
cont 6.0 (6.9) 7.2 (7.5) 8.2 (8.0) 8.2 (7.9)

x4
Number of years

at current employer
cont 4.5 (4.8) 7.6 (7.4) 9.2 (9.0) 8.1 (7.7)

x5
Amount of insurance

premium
cont 342.3 (293.0) 219.3 (260.0) 200.9 (260.0) 231.8 (272.8)

x6
Home phone or not

(1=N,0=Y)
cat 6.9% 3.7% 3.7% 4.2%

x7
Own house or not

(1=N, 0=Y)
cat 46.5% 31.4% 26.8% 32.9%

x8
Payment frequency

(1=low/unknown, 0=high)
cat 56.6% 69.5% 66.9% 67.0%

Table 8: Data on credit risk. Description of the variables, continuous (cont) or categorical
(cat), stratified by failure event. For continuous variables, the observed mean (and standard
deviation) is given, for categorical variables (which are all binary) the proportion of one-
values.

Since the classical Akaike information criterion and Bayesian information criterion are
not defined for these models, we imitate their construction and use ‘AIC’ = −2Qh

(
Θ̂ |

Θ̂
)

+ 2d and ‘BIC’ = −2Qh
(
Θ̂ | Θ̂

)
+ 2 log(n). Note that no theoretical guarantee is

present for these imitations and in particular we do not expect these criteria to have the
same properties as their studied counterparts in the literature (see, e.g. Claeskens and
Hjort, 2008).

For the credit risk data, we considered values for both Kp and Kd in {1, 2, 3}, with the
value of one representing homogeneity. Using all combinations for Kp and Kd gave rise
to 9 models. Table 9 presents the values of AICcd, and the imitations of AIC and BIC.
The top three models for all three criteria contain three heterogeneity groups for early
repayment. The best model has a single group for default. When looking at the estimated
values of the βpk, however, we received (up to rounding) equal estimates for two out of
three parameter vectors. This was also the case for βpk estimates for (Kp=3, Kd = 2) and
(Kp=3, Kd = 3), which have the next lowest AICcd-values. The next lowest AICcd-value
has Kp=2, Kd = 1, which is the preferred value as there we have the model with minimal
AICcd without equal estimates for βpk-parameters. The situation with approximately equal
estimates is a consequence of assigning equal weights to the subgroups in case the weights
vk|j(βj; ti, xi) would go to infinity. The reduction of the number of subgroups by setting
the weights equal and hence also leading to approximately equal estimates solves such a
situation where no different subgroups should be identified. Hence, the suggested final
model is one with only one group for default, and two subgroups for early repayment.

The runtime of the EM algorithm depends on the choice of the starting values as well
as on the number of subgroups. For the homogeneous model with Kp = Kd = 1 on the full
dataset with 7521 observations, the algorithm using the software R needed 98 iterations
to convergence and this took 3.1 minutes on a computer with Processor Intel Core i7-4600
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Kp Kd AICcd ‘AIC’ ‘BIC’
1 1 61997.10 61978.41 62213.88
1 2 62470.99 62440.43 62731.30
1 3 62496.09 62458.78 62805.05
2 1 58041.93 (4) 58022.49 (4) 58313.36 (4)
2 2 58479.48 58448.51 58794.78
2 3 58487.28 58449.92 58851.60
3 1 55795.23 (1) 55775.60 (1) 56121.87 (1)
3 2 56220.73 (2) 56189.64 (3) 56591.31 (2)
3 3 56224.52 (3) 56187.28 (2) 56644.36 (3)

Table 9: Data on credit risk. For each model the first column states first the number of
subgroups for early repayment (Kp), and next for default (Kd). Criterion values of AICcd,
‘AIC’ and ‘BIC’ which use Qh instead the maximized log likelihood are shown together
with the ranks for the four best models.

CPU @ 2.10 GHz 2.70 GHz, 64-bit operating system. No parallel computing was used.
With the very same starting values (thus not optimized from estimates of other models)
the model for Kp = 2 and Kd = 1 needed 499 iterations and this took 12.0 minutes. These
calculations include the extra calculations of the supplemented EM algorithm to provide
standard errors. Of course, this could have been sped up by using smarter starting values
and by using parallel computing.

Final result

β̂d1 β̂p1 β̂p2 b̂d b̂p
τ 1 0.587 0.413
int. -1.290 (0.25) 0.535 (0.16)
x1 0.245 (0.19) 0.022 (0.10) 0.156 (0.10) -0.120 (0.16) -0.190 (0.10)
x2 −7 · 10−5 (5 · 10−5) 2 · 10−5 (3 · 10−5) −9 · 10−5 (4 · 10−5) −3 · 10−5 (5 · 10−5) 2 · 10−5 (2 · 10−5)
x3 -0.022 (0.01) -0.013 (7 · 10−3) -0.009 (0.01) -0.030 (0.01) -0.013 (0.005)
x4 -0.051 (0.02) -2·10−4 (0.01) -0.004 (0.01) -0.067 (0.02) -0.011 (0.005)
x5 4 · 10−4 (3 · 10−4) −3 · 10−4 (2 · 10−4) −10−4 (2 · 10−4) 0.001 (3 · 10−4) 10−4 (2 · 10−4)
x6 0.560 (0.31) -0.234 (0.20) -0.420 (0.25) 0.393 (0.31) 0.123 (0.27)
x7 -0.042 (0.18) -0.020 (0.09) -0.192 (0.13) 0.408 (0.15) 0.106 (0.08)
x8 -0.032 (0.22) 0.090 (0.08) 0.220 (0.10) -0.380 (0.16) -0.066 (0.10)

Table 10: Data on credit risk. Parameter estimates (bootstrap standard errors) for the hi-
erarchical mixture cure model with Kd = 1, Kp = 2. The value τ represents the proportion
of the population belonging to a respective subgroup, given the main group, ‘int.’ stands
for intercept.

The parameter estimates of the final model are given in Table 10, along with their stan-
dard errors. Setting III of the simulation study is similar with regard to the approximately
50% censoring present in this dataset. Hence, we seem to get consistent estimates for β,
but for b, there might be small deviations due to the relatively high censoring percentage.
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For the latter parameter group, mainly the sign and the relative magnitude should be used
in the analysis.

First, we discuss b̂d and b̂p which affect the probabilities of default and prepayment,
which are smaller for men than for women. The effect on prepayment is stronger and
statistically significant. The residential stability (x3) and employment stability (x4) reduce
significantly both probabilities, but the effect on the probability of default is much stronger.
Having no home phone (x6) and no own home (x7) greatly increase both probabilities,
the relative effect on the default probabilities is even stronger here. However, only the
coefficient of x7 for default is statistically significant. The low frequency of payment reduces
significantly the default probability. To summarize, the variables affect the probability of
defaults more than the probability of prepayment and the signs of the coefficients are
reasonable.

Second, we discuss the estimated parameters of the survival function, β̂d1, β̂p1 and β̂p2.
When men go into default and prepayment the time to event is much shorter, though it is
statistically significant only for the second prepayment group. The residential stability (x3)
and employment stability (x4) delay the timing of defaults and prepayments and mostly
statistically significant. Having no home phone (x6) accelerates defaults, but delays the
prepayments. Having no own home (x6) significantly delays the prepayment of the second
default group. The low frequency of payments delays the defaults, but accelerates the
prepayments. The variables can have different effects in the probability of the event and the
conditional survival function. The gender dummy variable (x1) decreases the probability
of prepayment or default for men, but if men experience the event, it happens faster.
No home phone (x6) and no own home (x7) increases the prepayment probability, but
delays the timing of prepayment. Finally, when two prepayment groups are compared, all
coefficients for the second group are larger. The first group can be called the ‘base group’,
while the second group can be called the ‘sensitive’ group. All factors have much stronger
effects in the ‘sensitive’ group. To illustrate the difference in terms of early repayment
probabilities between the base group and the sensitive group, the two curves representing
early repayment for two random observations are plotted in Figure 1 (for one subject in
the left panel and for the other in the right panel). The solid and short-dashed curves
represent early repayment groups 1 and 2 respectively. The long-dashed curve represents
the early repayment curve for the two random observations fitted using a model without
heterogeneity. This figure illustrates that quite different results are obtained when not
using models with heterogeneity. Note that the two curves can be further apart for some
observations (as on the right panel), and closer for other observations (as on the left panel).

We considered typical measures for model evaluation such as mean absolute error (MAE)
and mean squared error (MSE) to predict the time of default. Hereby we followed Dirick
et al. (2017), see also Zhang and Thomas (2012). The dataset is divided in a test set
consisting of 1/3rd of the observations and a training set consisting of the remaining 2/3rd
of the observations. We want to obtain an MSE and MAE comparing the “observed” event
times with the event times produced by our model. The model, however, does not produce
one single event time, but a survival function. Instead of calculating one MSE and one
MAE, we calculated 1000 MSEs and MAEs for the training set, each one corresponding
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Figure 1: Credit loan data. Estimated survival curves for two observations. The solid and
short-dashed lines are the survival curves (estimated through formula (3) and the Breslow-
type estimator for the baseline hazard) for early repayment group 1 and group 2, for the
final model where heterogeneity is present in the early repayment-group. The long-dashed
line represents the estimated survival curve fitted with a model with no heterogeneity
(hence Ŝ(t | Ỹ = p, xi, β̂p), assuming no subgroups).

with each permille of the survival function. The permille value that resulted in the best
training set MSE and MAE were then withheld to compute the training set MSE and
MAE for just that permille. Averaged MSE and MAEs over all the test set observations
are shown in Table 11.

MSE Kd = 1 Kd = 2 Kd = 3
Kp = 1 129.34 133.16 115.68
Kp = 2 129.42 131.58 117.91
Kp = 3 129.42 131.80 115.07

MAE Kd = 1 Kd = 2 Kd = 3
Kp = 1 8.66 8.57 8.10
Kp = 2 8.67 8.57 8.10
Kp = 3 8.67 8.52 8.07

Table 11: Mean squared error and mean absolute error for predictions on a test set con-
sisting of 1/3rd of the data, based on estimates obtained from a training set consisting of
2/3rd of the data.

Both MAE and MSE have the lowest value for the largest model with three subgroups
for early repayment and three subgroups for default. Note that this method is not developed
for model selection and thus is not expected to give detailed information on the model to
be used for the full dataset. All models with a single group for default, including the
homogeneous model, are the worst in this comparison.
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6 Conclusion

This paper highlights the importance of unobserved heterogeneity for credit risk models. It
derives a hierarchical EM algorithm for estimation and provides the first simulation study in
this area, which reveals that not using models that allow heterogeneity when heterogeneity
is present can lead to distorted conclusions on the magnitude of the parameters related to
the timing of a certain event.

An application of the model on loan data from a UK bank finds that the explanatory
variables can act in different directions upon incidence and duration; and, variables exist
that are statistically significant in explaining only incidence or duration.

While the model proposed is general and can be used in many contexts, there are still
many aspects that would be interesting for future research. First of all, it would be inter-
esting to consider other survival analysis techniques for cure models for extension towards
heterogeneity, such as the promotion time cure model, or incorporating nonparametric
effects. The presence of censoring and its effects on estimation also requires more investi-
gation. One possibility is to explicitly incorporate censoring as missing information in the
EM-algorithm.

Finally, alternative distributions can be used to model the subgroup densities, e.g., the
skew-t distribution employed in Murray et al. (2017), and the approach of Hasnat et al.
(2017) can be used to investigate the evolution of subgroups over time.
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A Appendix

A.1 Identifiability of the main groups of the hierarchical mixture
cure model.

Similar as in Heckman and Honoré (1989); Peng and Zhang (2008), we start from (2). For
a model with three main groups, without subgroups, the unconditional survival function
can be written as

S(t | x, z, b, β) =
2∑
j=1

πj(z, bj)S(t | Yj = 1,x, βj) + 1−
2∑
j=1

πj(z, bj), (10)

where

S(t | Yj = 1,x, βj) = exp
{
− exp(xTβj)

∫ t

0

h0(u | Ỹj = 1)du
}
≡ exp

(
−φj(x)Hj

0(t)
)
,
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with exp(x>βj) = φj(x) for j = 1, 2. Omitting parameters for notational convenience,

S(t | x, z) = 1 +
2∑
j=1

{πj(z) exp{−φj(x)Hj
0(t)} − πj(z)}.

Theorem 1. Assume that for j = 1, 2,
(A1) The cumulative hazard function satisfies lim

t→0
Hj

0(t) = Hj
0(0) = 0,

(A2) πj(z) is non-negative and non-constant,
(A3) φj(x) is non-negative, differentiable and non-constant with φj(0) = 1.
Then, S(t | x, z) as in (10) is identifiable if and only if for any sets {πj(z), φj(x), Hj

0 ; j =
1, 2}, and {π∗j (z), φ∗j(x), Hj∗

0 ; j = 1, 2} such that

2∑
j=1

{πj(z) exp
(
−φj(x)Hj

0(t)
)
− πj(z)} =

2∑
j=1

{π∗j (z) exp
(
−φ∗j(x)H∗j0 (t)

)
− π∗j (z)},

it follows that πj(z) = π∗j (z), φj(x) = φ∗j(x), Hj
0 = H∗j0 , for j = 1, 2.

Proof. We define ‘crude’ survival functions K1(t) and K2(t) as the probability of not ex-
periencing event type 1, resp. 2, before time t,

K1(t | x, z) = P ((T1 > t) ∩ (T2 > T1) | x, z),

K2(t | x, z) = P ((T2 > t) ∩ (T1 > T2) | x, z).

Tsiatis (1975) obtained that for j = 1, 2,

∂Kj

∂t
(t | x, z) =

[
∂S

∂tj
(t | x, z)

]
t1=t2=t

. (11)

Fix j ∈ {1, 2}. It follows that

∂Kj

∂t
(t) = −πj(z)φj(x)hj0(t) exp

(
−φj(x)Hj

0(t)
)
≡ sj(t | x, z).

First we show that there exists a constant cj such that

h∗j0 (t) exp
(
−φ∗j(x)H∗j0 (t)

)
= cjh

j
0(t) exp

(
−φj(x)Hj

0(t)
)
. (12)

Case 1: x = z. Take any constant x0 in the domain of s1(· | x). Dividing sj(t | x) by
sj(t | x0) and letting t→ 0 we get by assumption (A1)

−πj(x0)φj(x0) = −πj(x)φj(x) lim
t→0

sj(t | x)

sj(t | x0)
.

Likewise, −π∗j (x0)φ∗j(x0) = −π∗j (x)φ∗j(x) lim
t→0

sj(t | x)

sj(t | x0)
. Consequently,

πj(x0)φj(x0)

π∗j (x0)φ∗j(x0)
=
πj(x)φj(x)

π∗j (x)φ∗j(x)
≡ cj,
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hence πj(x)φj(x) can be determined upon a constant. By differentiating S(t | x) with
respect to t, (12) results.

Case 2: x 6= z. By dividing sj(t | x, z) by sj(t | 0, z) and letting t → 0 gives by

assumptions A1, and A3, that lim
t→0

sj(t | x, z)

sj(t | 0, z)
= φj(x). Hence φj(x) is uniquely deter-

mined. Consider such another set {π∗j (z), φj(x), Hj∗
0 ; j = 1, 2}. Then, for any value z0

in the domain of sj, dividing sj(t | x, z) by sj(t | x, z0) and letting t → 0 leads to

lim
t→0

sj(t | x, z)

sj(t | x, z0)
=

πj(z)

πj(z0)
=

π∗j (z)

π∗j (z0)
. Hence,

π∗j (z)

πj(z)
must be a constant, which we define as

cj. Using these results, differentiating S(t | x, z) with respect to t, (12) results.

Let t→ 0 on both sides of (12), then we get the well-defined lim
t→0

h∗j0 (0)

hj0(0)
= cj. When we

take the derivatives on both sides of (12) with respect to x, we obtain by (A3),

h∗j0 (t)H∗j0 (t)
∂φ∗j(x)

∂x
exp
(
−φ∗j(x)H∗j0 (t)

)
=cjh

j
0(t)Hj

0(t)
∂φj(x)

∂x
exp
(
−φj(x)Hj

0(t)
)
. (13)

Let t→ 0 on both sides of (13). Since lim
t→0

Hj
0(0)

H∗j0 (0)
=

1

cj
= lim

t→0

hj0(0)

h∗j0 (0)
,

∂φ∗j(x)

∂x

/∂φj(x)

∂x
=

1

cj
. (14)

Integrating Equation (14) with respect to x, we get by (A3)

φ∗j(x) =
1

cj
φj(x)− 1

cj
+ 1. (15)

Take x = 0. Because φ(0) = φ∗(0) = 1 from (A3), (12) simplifies to

cjh
j
0(t) exp

(
−Hj

0(t)
)

= h∗j0 (t) exp
(
−H∗j0 (t)

)
. (16)

From the ratios of (12) and (16), we get that H∗10 (x)(φ∗1(x)− 1) =
H1

0 (x)(φ1(x) − 1). Using (15), it is then easy to show that H∗j0 (t) = cjH
j
0(t) and conse-

quently h∗j0 (t) = cjh
j
0(t). From (16) follows that H∗10 (t) = H1

0 (t) and c1 = 1. In addition,
we obtain φj(x) = φ∗j(x) and πj(z) = π∗j (z).

A.2 Relationship between log τỹ|j and vỹ|j(β
(r)
j ; ti, xi).

From expression (6), the second term to be maximized is

n∑
i=1

E[log τỸi|Yi | Ti, β
(r)

Yi,Ỹi
] =

n∑
i=1

J∑
y=1

Kj∑
ỹ=1

vỹ|y(β
(r)
y ; ti, xi)wy(β

(r); ti, xi) log τỹ|y.
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Conditioning on the main group, say j, the term with y = j in the above sum equals

n∑
i=1

Kj−1∑
ỹ=1

vỹ|j(β
(r)
j ; ti, xi) log τỹ|j +

n∑
i=1

vỹ|j(β
(r)
j ; ti, xi) log(1−

Kj−1∑
ỹ=1

τỹ|j).

Setting the partial derivative with respect to τỹ|j equal to 0,

∂Qh
(
(b, βY,Ỹ )(r+1) | (b, βY,Ỹ )(r)

)
∂τỹ|j

=
n∑
i=1

vỹ|j(β
(r)
j ; ti, xi)

τỹ|j
−

n∑
i=1

vKj |j(β
(r)
j ; ti, xi)

τKj |j
= 0,

implies that the optimizer τ
(r+1)
ỹ|j satisfies

τ
(r+1)
ỹ|j =

∑n
i=1 vỹ|j(β

(r)
j ; ti, xi)∑n

i=1 vKj |j(β
(r)
j ; ti, xi)

, τ
(r+1)
Kj |j (17)

for ỹ = 1, . . . , Kj − 1. Under the constraints that for every j = 1 . . . , K the weights

vỹ|j(β
(r)
j ; ti, xi); ỹ = 1 . . . , Kj sum to 1, we obtain

1 =

Kj∑
ỹ=1

τ
(r+1)
ỹ|j =

∑Kj

ỹ=1

∑n
i=1 vỹ|j(β

(r)
j ; ti, xi)τ

(r+1)
Kj |j∑n

i=1 vKj |j(β
(r)
j ; ti, xi)

=

∑n
i=1

(∑Kj

ỹ=1 vỹ|j(β
(r)
j ; ti, xi)

)
τ

(r+1)
Kj |j∑n

i=1 vKj |j(β
(r)
j ; ti, xi)

=

∑n
i=1 τ

(r+1)
Kj |j∑n

i=1 vKj |j(β
(r)
j ; ti, xi)

=
nτ

(r+1)
Kj |j∑n

i=1 vKj |j(β
(r)
j ; ti, xi)

.

So, τ
(r+1)
Kj |j = n−1

∑n
i=1 vKj |j(β

(r)
j ; ti, xi). When plugging this back in (17), the same form

follows for ỹ = 1, . . . , Kj − 1. Hence τ
(r+1)
ỹ|j = n−1

∑n
i=1 vỹ|j(β

(r)
j ; ti, xi). With the constraint

that
∑Kj

ỹ=1 vỹ|y(β
(r)
y ; ti, xi) = 1 for each i, these vỹ|j(β

(r)
j ; ti, xi) are well defined, hence so is

τ
(r+1)
ỹ|j .
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