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Learning to Rank for Uplift Modeling
Floris Devriendt, Jente Van Belle, Tias Guns, and Wouter Verbeke

Abstract—Causal classification concerns the estimation of the net effect of a treatment on an outcome of interest at the instance level,
i.e., of the individual treatment effect (ITE). For binary treatment and outcome variables, causal classification models produce ITE
estimates that essentially allow one to rank instances from a large positive effect to a large negative effect. Often, as in uplift modeling
(UM), one is merely interested in this ranking, rather than in the ITE estimates themselves. In this regard, we investigate the potential of
learning to rank (L2R) techniques to learn a ranking of the instances directly. We propose a unified formalization of different binary
causal classification performance measures from the UM literature and explore how these can be integrated into the L2R framework.
Additionally, we introduce a new metric for UM with L2R called the promoted cumulative gain (PCG). We employ the L2R technique
LambdaMART to optimize the ranking according to PCG and show improved results over the use of standard L2R metrics and equal to
improved results when compared with state-of-the-art UM. Finally, we show how L2R techniques can be used to specifically optimize
for the top-k fraction of the ranking in a UM context, however, these results do not generalize to the test set.

F

1 INTRODUCTION

CAUSAL classification models estimate for each instance
the causal effect of a treatment on an outcome variable

of interest, i.e., the individual treatment effect (ITE) [1].
This causal inference task is encountered in the literature
under various names, e.g., heterogeneous treatment effect
estimation [2], individualized treatment rule learning [3],
conditional average treatment effect estimation [4], and
uplift modeling [5]. Causal classification models have been
applied in various domains to maximize the effectiveness
of e.g., personalized medicine [6] and marketing campaigns
[7]. Another application is determining which customers to
target with a retention campaign to maximize reduction in
churn while also minimizing the use of resources [8].

In this work, we focus on binary causal classification in
that we consider both treatment and outcome to be binary
variables. In this setting, ITE estimates allow one to rank
instances from a large positive effect to a large negative
effect. Often, one is merely interested in this ranking rather
than in the ITE estimates themselves. This specific ranking
objective is typically encountered in the uplift modeling
(UM) literature [5]. Learning to rank (L2R) techniques, which
stem from the information retrieval community, comprise
techniques specifically designed to optimize the quality
of predicted rankings directly, rather than the quality of
predicted values that serve to rank instances [9]. This work
investigates whether L2R techniques can be successfully
used in the context of UM.

While existing UM techniques are in fact already ap-
proaches to L2R since standard classification techniques can
be considered as ‘pointwise’ approaches to L2R (see Section
3), we present different ways to formulate UM as an L2R
problem. As this is directly linked to the different evaluation
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measures proposed to assess the quality of produced rank-
ings in UM, we first provide an overview of these measures.
We then consider how suited existing L2R measures are for
UM and introduce a new L2R metric for this purpose, called
the promoted cumulative gain, by translating the uplift metric
Area Under the Uplift Curve to an L2R measure which
can be directly used together with the LambdaMART L2R
technique.

Finally, in both UM and information retrieval, often only
the top-k fraction of the ranking is of interest to the user [5].
However, while L2R comprises techniques and measures
designed to optimize for the top-k specifically, current UM
techniques aim to optimize the entire ranking. Therefore, we
will investigate whether specifically optimizing for the top-
k by using L2R techniques can be successfully applied to
UM. To the best of our knowledge, optimizing for the top-k
has not been investigated before in UM.

Our contributions are:

• We investigate and experimentally compare the main
UM evaluation measures in use today, and propose
a unified formalization in which all measures can be
unambiguously written.

• We explore the different ways in which UM can be
formulated as an L2R problem.

• We introduce a new metric for UM with L2R, called
the promoted cumulative gain.

• We empirically evaluate the different L2R formula-
tions for UM on multiple datasets.

• We investigate optimizing specifically for the top-k
in UM by using L2R techniques, though the benefit
of top-k learning is shown to be limited as the results
do not generalize to the test set.

• We compare different state-of-the-art UM techniques
with our best performing L2R formulation and show
that L2R is a viable alternative to the existing UM
methodology.

The rest of the paper is organized as follows: in Section 2
we formally introduce causal classification and UM, discuss
related work and elaborate on the evaluation measures used
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in the UM literature. Section 3 covers L2R and its measures,
how UM can be formulated as an L2R problem and intro-
duces a new metric for the L2R framework. In Section 4, we
describe the experiments and report the results. Section 5
discusses the results and finally Section 6 presents our
conclusions.

2 CAUSAL CLASSIFICATION & UPLIFT MODELING

Causal classification is about estimating the class of an
instance in function of the treatment that is applied. Hence,
it is equivalent to estimating the ITE, i.e., the causal effect of
a treatment on an outcome of interest at the instance level
[1]. Therefore, causal classification models can be used to
optimize treatment assignment to instances with the aim
to maximize (or, depending on the application at hand, to
minimize) the outcome of interest. In this work, we focus
on binary causal classification in that we consider both
treatment and outcome to be binary variables.

Suppose that we have a dataset D = {(x, y, t)} of n in-
stances with each a feature vector x ∈ X , response variable
y ∈ {0, 1} and treatment indicator t ∈ {0, 1}. Following the
Neyman-Rubin potential outcomes framework [10], the ITE
can be formally defined as:

τ(x) = E[Y (1) − Y (0)|x] (1)

where Y (1) and Y (0) are the two potential outcomes and
correspond to the response y of an instance belonging to the
treatment (t = 1) and control (t = 0) group, respectively.
Note that it is generally assumed that some instances re-
spond (y = 1) without being treated (t = 0) (e.g., natural
healing or subscribing to a product independent of adver-
tising). The main difficulty in ITE estimation is that τ(x) is
not directly observable since we can only observe one of
the potential outcomes for a particular instance. That is, we
can observe the outcome after treating or not treating, but
can not know what the outcome would have been for the
opposite treatment choice. This is commonly known as The
Fundamental Problem Of Causal Inference [11].

In this work, we focus on estimating the ITE in ran-
domized controlled trial (RCT) settings. In such setting, the
treatment was administered randomly and independent of
x and τ(x) can be estimated as [4], [12]:

τ̂(x) = P (y = 1|x, t = 1)− P (y = 1|x, t = 0). (2)

The ITE is thus defined as the difference between the
probability of an instance to respond if treated minus the
probability of an instance to respond if not treated.

As mentioned in the introduction, in case of binary
treatment and outcome variables, ITE estimates allow one to
rank instances from a large positive effect to a large negative
effect. In many cases, one is merely interested in this ranking
rather than in the ITE estimates themselves. This specific
setting, which is the focus of this work, lies at the core of the
UM literature [5].

UM has as goal to rank an unseen set of instances, e.g.
customers, by their estimated τ̂(x) and to target a highly
ranked fraction of this set of instances. For example, in
marketing or churn prediction, the size of the fraction is
determined by the campaign budget, e.g., the top 1000 or
10000 customers. Given a limited budget, these customers

are expected to be most likely to respond when targeted
with the campaign.

2.1 Related Work

UM techniques can be grouped into data preprocessing
and data processing approaches. In the data preprocessing
approaches, after pre- or postprocessing data and outcomes,
existing out-of-the-box learning methods are used. In the
data processing approaches, new learning methods and
methodologies are developed that aim to estimate τ(x) more
directly. For an in depth discussion on UM techniques we
refer to [5], [13].

A popular and generic data preprocessing approach is the
flipped label approach, also called the class transformation
approach [14], [15]. In this approach, a new target variable
z ∈ {0, 1} is created where z = 1 if either: t = 1 and y = 1
or t = 0 and y = 0; and z = 0 otherwise. Due to this class
transformation, estimation of τ(x) is converted into a binary
classification problem with label z, allowing us to adopt any
standard classification technique [15].

Other data preprocessing approaches extend the set of
features to allow for the estimation of τ(x). An example
is grouping together the instances from both treatment
and control group and including a dummy variable that
denotes to which group an instance belongs. A model is
then developed from: (1) the original features; (2) the added
dummy variable; and (3) interaction variables between the
features and the dummy variable [16], [17]. This model
can then be used to estimate two response probabilities
for a new instance, once as if the instance belongs to the
treatment group and once as if it belongs to the control
group. Subtracting the probabilities returns τ̂(x).

Data processing approaches comprise both indirect and di-
rect estimation approaches. Indirect estimation approaches
include the two model approach. This approach builds two
separate models to predict the response probabilities, one
for the treatment group and one for the control group.
For a new instance, the probability of responding is esti-
mated with each model. Afterwards, the probabilities are
subtracted to obtain τ̂(x).

Direct estimation approaches are typically adaptations of
decision tree algorithms such as CART [18] or CHAID [19].
Proposed adaptations include modified splitting criteria and
dedicated pruning techniques. Examples of tree-based tech-
niques include significance-based uplift trees [20], decision
trees with information theory-inspired splitting criteria [21]
and uplift random forest and causal conditional inference
trees [22]. However, there is also a group of direct estimation
techniques that builds on support vector machines [23], [24],
[25].

Finally, note that the overview above focuses on tech-
niques to estimate ITE in RCT settings. However, ITE esti-
mation based on observational data with treatment selection
bias is also an active research area in the field of causal
machine learning. For recent works on this subject, one may
refer to [1], [26] and references therein.

Our work differs from all the above in that we focus on
the link between UM and L2R, both when treatment and
control groups are handled as separate subsets or as one
joint set.
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Fig. 1: A cumulative incremental gains curve (blue) and the
expected gains from random treatments (black).

2.2 Performance Measures for Evaluating Uplift Models

Because τ(x) is unobservable, we can not directly measure
the quality of the estimated τ̂(x) values. However, since
in UM one is rather interested in the ranking that results
from ranking instances by τ̂(x), the norm is to evaluate
the quality of this ranking. [20] propose to do this by
computing and plotting the cumulative incremental gains for
an incrementally larger subgroup of the ranked population,
i.e., the lift in response rate as a result of treating more
instances or the cumulative incremental treatment effect.

Figure 1 shows an example, where the blue line rep-
resents the cumulative incremental gains as a function of
the selected fraction of the ranked population. The black
line represents the expected cumulative incremental gains
for a random subsample of that size, called the random
baseline. A good uplift model ranks instances likely to
respond when treated higher, leading to higher estimated
cumulative incremental gains in the early parts of the plot.

Interestingly, many different ways for computing and
visualizing the cumulative incremental gains have been
proposed in the literature. Two variants exist with a different
name: the Qini Curve and the Uplift Curve. In this work, we
focus on the difference of how the cumulative incremental
gain values are computed for both variants. However, note
that also other differences between the curves occur in the
literature, e.g., what values are plotted, and how a single
measure such as Area Under the Curve is derived.

Even for the Qini and Uplift variants, there are no unique
definitions. We analyzed the literature, and identified two
main differences. The first one relates to whether the ranking
is computed for each group (i.e., treatment and control
group) separately or for one joint group. If the ranking is
computed separately, the top 10% instances are the top 10%
instances of the treatment group and the top 10% instances
of the control group. However, if the ranking is computed
jointly, the top 10% instances originate from both groups.
Hence, in the joint setup, the proportions of instances of
each group represented in the ranking can differ from the
global proportions of treatment and control groups. The
second difference is linked to the potential imbalance of the
treatment and control groups as it relates to whether the

cumulative incremental gains are computed in (rebalanced)
absolute numbers of instances or in relative terms.

An overview of the different definitions occurring in the
literature, structured according to the identified differences
discussed above, is provided in Table 2. Before discussing
differences between the definitions in more detail, we first
introduce notation allowing us to formalize the different
definitions.

For evaluation, we assume the presence of a predictive
model û that allows us to rank a dataset D in decreasing
order, i.e., instances are ranked from high to low τ̂(x) (see
Section 2.1). Note that û does not necessarily estimates τ̂(x)
based on the probabilities as in Equation 2 directly. We
denote the total number of treated (t = 1) and control (t = 0)
instances among the top-k ranked instances by NT (D, k)
and NC(D, k), and the number of treated and control re-
sponders (y = 1) among the top-k ranked instances by
RT (D, k) and RC(D, k), respectively.

In the literature, the lift in response rate is often com-
puted and compared for both the treatment and control
group separately. To formalize this, we introduce the subsets
T and C, with T the subset of treated instances and C the
subset of instances that belong to the control group. In line
with the notations introduced in the previous paragraph for
rankings covering both the treatment and control group,
we denote the number of treated and control responders
among the top-k ranked instances per group by R(T , k)
and R(C, k).

To clarify the notation introduced, consider Table 1
which shows a minimal example of a ranked dataset. For
the number of treated instances among the top 1 and top 3
instances in the dataset, one would write NT (D, 1) = 1
and NT (D, 3) = 2, respectively. Likewise, to obtain the
number of treated responders among the top 1 and top 3
instances in the dataset, one would write RT (D, 1) = 0
and RT (D, 3) = 1, respectively. The above notations relate
to the joint scenario, in which a ranking is computed for
the treatment and control instances as one group. In the
separate scenario, on the other hand, both the treatment and
control group have their own ranking. Therefore, to obtain
the number of treated responders among the top 1 and top
3 instances, one would write R(T , 1) = 0 and R(T , 3) = 2,
respectively. Notice the difference in the numbers obtained
for the top 3 case.

TABLE 1: Minimal example of dataset ranked in decreasing
order to demonstrate differences in notations.

y t
i1 0 1
i2 1 1
i3 1 0
i4 1 1

Table 2 shows the different evaluation measures for UM
proposed in the literature. For the separate scenarios, we
use p to denote a percentage, where p|T | and p|C| are then
the corresponding absolute numbers of instances being con-
sidered from the treatment and control groups, respectively.
The value function V () returns the cumulative incremental
gains value for the first p-percent of the population, or for
all instances up to and including instance k.
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TABLE 2: Evaluation measures for UM. Two main approaches are considered, the Qini Curve and the Uplift Curve,
both over two dimensions: ranking the data separately per group or jointly over all data, and expressing the cumulative
incremental gains in absolute or relative terms.

Rank Count Qini Curve Uplift Curve

Sep.
Abs. V (p) = R(T , p|T |)−R(C, p|C|) |T |

|C| V (p) = R(T , p|T |)−R(C, p|C|)
[12], [20], [27], [28] [24]

Rel. /
V (p) =

R(T ,p|T |)
|T | − R(C,p|C|)

|C|
[15], [21], [25], [29], [30], [31], [32], [33]

Joint
Abs. V (k) = RT (D, k)−RC(D, k)N

T (D,k)

NC(D,k)
V (k) =

(
RT (D,k)

NT (D,k)
− RC(D,k)

NC(D,k)

)
∗ (NT (D, k) +NC(D, k))

[27], [34] [35]

Rel. V (k) =
RT (D,k)

|T | − RC(D,k)
|C|

[12], [36]

The first curve that occurs in the literature is the Qini
Curve [28]. This curve plots the absolute number of incre-
mental responses of the treated group compared to as when
there is no treatment. To obtain a balanced comparison,
however, the number of responders among the top p-percent
of the control group is adjusted to neutralize the effect of
different treatment and control group sizes. The values for
the Qini Curve are then obtained by:

V (p) = R(T , p|T |)−R(C, p|C|) |T |
|C|

. (3)

The Qini Curve has since been used and modified by several
researchers to evaluate the performance of uplift models.

An alternative to the Qini Curve is the Uplift Curve. The
Uplift Curve is obtained by subtracting two separate lift
curves, one for the treatment and one for the control group,
using the same model [21]. In [30] the authors measure
the cumulative incremental gains by subtracting the gain
obtained from the first p-percent of ranked instances of the
control group from the gain obtained from the first p-percent
of ranked instances of the treatment group. A normalization
factor, i.e., dividing by the respective group sizes, is added
to account for overall imbalance in treatment and control
groups. The corresponding formula is then:

V (p) =
R(T , p|T |)
|T |

− R(C, p|C|)
|C|

. (4)

Note that from a modeling point of view, the above equation
is equivalent to Equation 3 as it can be obtained by dividing
Equation 3 by the constant |T |. Hence, both measures will
give rise to the same conclusions when used for comparing
different models.

In [24], the authors follow the same reasoning that was
used to obtain Equation 4, however, the difference is that
they measure the cumulative incremental gains in absolute
terms. The authors do not mention any normalization ap-
plied in calculating the cumulative incremental gains:

V (p) = R(T , p|T |)−R(C, p|C|). (5)

All above definitions of Qini and Uplift curves evaluate
uplift models in a separate manner, i.e., the top p-percent
of the treatment group is compared with the top p-percent
of the control group. A different approach is to consider
both the treatment and control groups as one joint group
and evaluate targeting the top-k from that group, which is
closer to how uplift models are to be used in practice.

In the joint relative setup, there is no clear distinction be-
tween the Qini and Uplift curves, as they are both obtained
as follows [12], [36]:

V (k) =
RT (D, k)
|T |

− RC(D, k)
|C|

. (6)

For the joint absolute setting, however, both Qini and
Uplift variants can be distinguished. In the first variant, the
cumulative incremental gains are expressed in rebalanced
absolute numbers [34]:

V (k) = RT (D, k)−RC(D, k)N
T (D, k)

NC(D, k)
. (7)

Note that this measure rebalances the responder counts
based on the numbers of treated and control instances
among the top-k ranked instances, instead of the overall
imbalance |T |/|C|. The second variant is proposed by [35]
and uses a different approach to obtain the cumulative
incremental gains in rebalanced absolute numbers:

V (k) =

(
RT (D, k)
NT (D, k)

− RC(D, k)
NC(D, k)

)
∗(NT (D, k)+NC(D, k)).

(8)
Here, the responder counts are divided by their respective
number of instances among the top-k ranked instances
before subtraction, of which the result is then multiplied
by the total number of instances considered in the ranking.

In addition to constructing a Qini or Uplift Curve accord-
ing to one of the definitions above, we can also calculate the
Area Under the Qini or Uplift Curve, hereinafter referred
to as AUUC, to obtain a single numerical quantity to mea-
sure and compare the performance among uplift models.
Sometimes the quantity obtained is reduced by the AUUC
of the baseline [12], [28], however, in this paper we ignore
this constant.

For any of the joint setting definitions from Table 2, the
AUUC is defined as:

AUUC =

∫ 1

0
V (x)dx =

n∑
k=1

V (k). (9)

For the separate setting definitions, we make the following
approximation over 100 intervals:

AUUC =

∫ 1

0
V (x)dx ≈

100∑
p′=1

V

(
p =

p′

100

)
. (10)
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Note that in the literature, it is common to use only 10
groups (or deciles), though this does not provide much
granularity.

The different evaluation measures are empirically com-
pared in Section 4.2. However, as our goal is not only to
evaluate rankings but also to optimize rankings, we turn to
L2R in the next section.

3 LEARNING TO RANK (L2R)
L2R finds its origin in the Information Retrieval (IR) domain.
IR is defined as finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need
from within large collections (usually stored on computers) [37].
Ranking is a core problem in IR, as it is an important part of
many IR problems (e.g., document retrieval, collaborative
filtering and product rating) [9]. In what follows, we use
document retrieval as example to illustrate how L2R works
and to establish the connection between L2R and UM.

A search engine is the most common example of a doc-
ument retrieval system. The web consists of an extremely
large amount of documents (i.e., webpages) and finding
relevant documents is a difficult task. A search engine has
multiple components, but one of its most crucial ones is the
ranker. The ranker is responsible for matching the request of
the user (i.e., the query) with relevant indexed documents.
The goal of a ranking algorithm is to produce a ranked list
of documents according to its relevance to a given query [9].

L2R algorithms can essentially be categorized into three
groups: pointwise, pairwise and listwise approaches [9].
The pointwise approach predicts the relevance of each doc-
ument and uses these final scores to rank all documents
considered. Standard classification techniques can be con-
sidered as pointwise approaches to L2R as they can be
used to discriminate between ‘relevant’ and ‘not relevant’
documents. One limitation of a pointwise approach is that
the interdependency between documents is not taken into
consideration, meaning that the loss function used does not
consider the documents’ final place in the ranking. The pair-
wise approach takes as input pairs of documents and outputs
for each pair which of the two documents is preferred in
terms of relevance by relying on a classification model. For
a entire list of documents, one thus obtains as output relative
orderings for pairs of documents. However, deriving the
position of all documents in the final ranking from this
output is a difficult problem. Finally, the listwise approach
takes as input the entire list of documents and directly
outputs a ranking of all documents. This approach is closest
to the L2R ideology as there is no mismatch between the
learning stage and the final output of the algorithm (as is
the case for pointwise and pairwise approaches).

One of the most well-known and versatile techniques
in L2R is LambdaMART [38], [39]. LambdaMART com-
bines two methods previously proposed in the field,
namely LambdaRank and Multiple Additive Regression
Trees (MART). A core idea of LambdaRank, which is itself
an extension of RankNet, is that it can directly optimize a
ranking measure, even if it is non-differentiable, by relying
on so-called λ-gradients. These gradients are determined
heuristically by multiplying the gradients of a pairwise loss
function by the difference obtained in the ranking metric

under consideration due to swapping the pair’s positions
in the ranking. Combining LambdaRank gradients with
the learning algorithm Multiple Additive Regression Trees
(MART), which is a gradient boosted tree algorithm, gives
us LambdaMART. For more information, one may refer to
[38], [39].

Whilst a pairwise loss function is used in obtaining λ-
gradients, the second factor depends on the global structure
of the entire list of documents. Therefore, LambdaMART can
be considered a listwise approach. Next to research on non-
parametric methods such as LambdaMART, there is also
research on parametric (model-based) listwise L2R methods,
such as ListNet [40] and Plackett-Luce ranking models [41].
However, as the general objective of this work is to explore
the potential of L2R for UM, in what follows we focus
on adopting the LambdaMART L2R technique for UM. A
broader exploration of L2R methods for UM is identified as
a prime topic for further research.

3.1 Performance Measures for Evaluating L2R Models

Commonly used performance metrics in L2R are [42], [43],
[44]: Precision (P), Mean Average Precision (MAP), Cumu-
lative Gain (CG) and (Normalized) Discounted Cumula-
tive Gain (DCG). Different metrics are used depending on
whether relevance values are binary or graded, e.g., graded
according to a five-star rating system. Below, we briefly
discuss each of the above measures.

3.1.1 Binary Relevance

When working with binary relevance values, an instance i
(i.e., a document in document retrieval) is either ‘relevant’
or ‘not relevant’, i.e., reli ∈ {0, 1}.

The Precision at k (P (k)) corresponds to the proportion
of relevant instances (reli = 1) among the top-k ranked
instances:

P (k) =

∑k
i=1 reli
k

. (11)

The Average Precision of a query q, consisting of |q|
instances, sums over all instances in the query and computes
the average of the P (k) values at every k where a relevant
instance is positioned:

AvgP(q) =
∑|q|

i=1 P (i)∑|q|
i=1 reli

. (12)

The Mean Average Precision (MAP) is the mean of
Average Precisions over a set of Q queries:

MAP (Q) =

∑
q∈Q AvgP(q)

|Q|
. (13)

3.1.2 Graded Relevance

Here, the relevance is assumed to be given as a graded
score, e.g., reli ∈ {1, 2, . . . , 5}, where a higher value means
higher relevancy. Evaluation metrics can be modified ac-
cordingly, as highly relevant instances are more valuable
than marginally relevant instances, which in turn are more
valuable than not relevant instances.
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The Cumulative Gain (CG) of a ranked list is the sum of
all relevance values of the ranked list of a single query q, up
to point k:

CG(k) =
k∑

i=1

reli. (14)

A limitation of CG is that it does not consider the connection
between ranking position and instance relevancy [42].

An alternative that takes this connection into account,
i.e., that considers whether the instances with highest rele-
vancy do appear at the top of the ranking, is the Discounted
Cumulative Gain (DCG). To achieve this, graded relevance
values are discounted logarithmically proportional to the
ranking positions [42]:

DCG(k) =
k∑

i=1

reli
log2(i+ 1)

. (15)

An alternative formulation for DCG does exist, which places
more emphasis on the relevance values by using 2reli − 1
instead of reli in the numerator [45]. When relevance values
are binary, both formulations are equal [46].

Different queries can relate to different numbers of in-
stances. To fairly compare a rankers’ performance among
multiple queries of different sizes, one can normalize the
DCG of each query to obtain scores in the range of [0, 1]. The
Normalized Discounted Cumulative Gain (NDCG) metric
normalizes DCG by dividing the achieved DCG of each
query by its Ideal Discounted Cumulative Gain (IDCG),
where the IDCG is obtained by sorting all instances ac-
cording to their relevance values resulting in the maximum
possible DCG [42]:

IDCG(k) =
k∑

i=1

rel′i
log2(i+ 1)

(16)

NDCG(k) =
DCG(k)

IDCG(k)
(17)

where rel′i is the best possible relevance value for instance
i as it results from the best possible ranking. By averaging
over a set of queries Q, one can obtain the mean DCG and
NDCG (similar to Equation 13).

3.2 Uplift Modeling as Learning to Rank
To cast UM as an L2R problem, we first determine appro-
priate relevance values for each of the UM performance
measures presented in Table 2. These relevance values allow
us to use existing L2R performance measures in combina-
tion with an L2R technique such as LambdaMART to learn
a ranking. Next, as an alternative to using existing L2R
measures, we propose a new metric for UM with L2R, called
the promoted cumulative gain (PCG), which can be used to
learn a ranking that directly optimizes the AUUC.

3.2.1 Relevance Values for UM with L2R
In UM, an instance belongs to either the treatment group
(t = 1) or the control group (t = 0). As shown in Table 2, for
evaluating uplift models, we can rely on separate and joint
performance measures, depending on whether a ranking is
computed for each group separately or for one joint group.
Likewise in L2R, one or multiple queries can be considered.

To be more specific, for L2R in the separate UM setting, we
consider both the treatment and control groups as separate
queries, i.e., an L2R technique will be run to optimize the
rankings of the two queries separately. In the joint UM
setting, only one query is considered, covering instances of
both the treatment and control groups.

We now determine relevance values for each of the UM
performance measures from Table 2. The relevance value
of an instance takes over the role of τ̂(x) which is used in
traditional UM. Recall that an instance can belong to one
of the following four categories: Treatment Responder (TR),
Treatment Non-Responder (TNR), Control Responder (CR)
and Control Non-Responder (CNR). To obtain relevance val-
ues for each UM performance measure, we check the effect
of each of the above categories on their value functions.

Table 3 shows the different value functions and the
corresponding relevance values for the separate queries. The
effect of a TR or TNR is assessed by looking at the left
components of the subtractions in the value functions. A TR
increases the overall values obtained, whereas a TNR does
not impact the value functions at all. The size of the effect of
a TR, however, depends on the value function considered.
Similarly, the right components are used to assess the effects
of a CR and CNR. An increase in the right components
lowers the overall values obtained. Therefore, a negative
relevance is assigned to a CR, however, the relevance value
changes depending on the value function considered. A
CNR, on the other hand, does not affect any of the value
functions considered.

Table 4 shows the different value functions and the
corresponding relevance values for the joint queries. For the
relative value function, the relevance values are identical
to those for the relative value function for the separate
queries. However, for the absolute value functions, TNRs
and CNRs no longer have neutral effects on the overall
values as the responder counts are rebalanced using the
number of treated and control instances among the top-k
ranked instances. Consider the Joint Absolute Qini Curve
for which the responder count of the control group is rebal-
anced by multiplication of (NT (D, k)/(NC(D, k)). A TNR
thus increases this ratio, leading to an increase in the right
component of the value function, and hence a lower overall
value. A CNR, on the other hand, results in a decreased
value for the right component of the value function and
hence an increase in the overall value. Quantifying the exact
increases and decreases in the overall values, however, is not
trivial. Instead, we observe that a TR increases the overall
value the most, while a CNR only causes a small increase,
a TNR leads to a small decrease and a CR causes a larger
decrease in the overall value. We simply encode this relation
by using relevance values 3, 2, 1 and 0 for a TR, CNR, TNR
and CR, respectively. For the Joint Absolute Uplift Curve, a
similar analysis gives rise to the same insights (and therefore
we do not include it in Table 4).

The various sets of relevance values presented can all
be used in combination with any L2R metric that accepts
graded relevance values.

3.2.2 Transforming AUUC into an L2R Metric
The goal of this section is to come up with an L2R measure
that is most similar to the AUUC, and that can be readily
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TABLE 3: Relevance values for separate queries for each value function definition.

Value Function Treatment Responder Treatment Non-Responder Control Responder Control Non-Responder
relTR relTNR relCR relCNR

V (p) = R(T , p|T |)−R(C, p|C|) 1 0 -1 0
V (p) = R(T , p|T |)−R(C, p|C|) |T |

|C| 1 0 − |T |
|C| 0

V (p) = R(T ,p|T |)
|T | − R(C,p|C|)

|C|
1

|T | 0 − 1
|C| 0

Query 1 Query 2

TABLE 4: Relevance values for joint queries for each value function definition.

Value Function Treatment Responder Treatment Non-Responder Control Responder Control Non-Responder
relTR relTNR relCR relCNR

V (k) = RT (D,k)
|T | − RC(D,k)

|C|
1

|T | 0 − 1
|C| 0

V (k) = RT (D, k)−RC(D, k)N
T (D,k)

NC(D,k)
3 1 0 2

Query 1

optimized using existing L2R techniques. To this purpose,
we use the relative definitions of the Uplift Curve as the
experiment in Section 4.2 shows that these are most robust
to differences in group sizes.

Equation 9 shows that the AUUC is a summation of the
value function over all possible k values. If we insert the
value function definition for the Joint Relative Uplift Curve
(Equation 6), we obtain:

AUUC =
n∑

k=1

V (k) =
n∑

k=1

(
RT (D, k)
|T |

− RC(D, k)
|C|

)
. (18)

Let us introduce the following helper function g(i):

g(i) =


0 if y = 0

1/|T | if y = 1 and t = 1

−1/|C| if y = 1 and t = 0

(19)

where the three cases are mutually exclusive and cover all
possible assignment combinations for y and t.

Recall from Section 2.2 that RT (D, k) and RC(D, k)
denote the number of treated (t = 1) and control (t = 0)
responders (y = 1) among the top-k ranked instances, re-
spectively. As these quantities are obtained by a summation
over the top-k instances, Equation 18 can be reformulated
in terms of g(i), where i represents a single instance, as
follows:

AUUC =
n∑

k=1

k∑
i=1

g(i) =
n∑

i=1

n∑
k=i

g(i) =
n∑

i=1

(n− i+ 1)g(i).

(20)
Based on the similarities between the above expression

for AUUC and the DCG measure from Equation 15, we
introduce a new metric for UM with L2R called the promoted
cumulative gain (PCG):

PCG(k) =
k∑

i=1

(n− i+ 1)g(i). (21)

In the DCG measure, each element has a relevance reli
which is represented by g(i) in our case, and instead of
discounting by 1/log2(i + 1) we promote each element by
(n − i + 1). Finally, along the lines of the DCG measure,
PCG allows optimizing the ranking of the top-k instead of
the full dataset as well.

A similar analysis can be made for the separate setting,
i.e., when the treatment and control groups are ranked
separately, based on the Separate Relative Uplift Curve. The
PCG can then be obtained as follows (see Appendix A for
details):

PCG(kT , kC) = PCGT (kT ) + PCGC(kC)

=
kT∑
i=1

(|T | − i+ 1)g(i) +
kC∑
i=1

(|C| − i+ 1)g(i)

(22)

with kT = p|T | and kC = p|C| for some percentage p.
Hence, the PCG can be computed on both subsets separately
and summed up. In an L2R setup, that means (i) creating
two queries, one for the treatment and one for the control
group, (ii) using the PCG measure for each query, and (iii)
aggregating the resulting PCG values. Note that the k is
different for each query, which requires a small modification
to the learning systems.

3.2.3 Summary

In this section we summarize the different steps needed to
use L2R for UM.

Step 1. Choose one of the two settings: the separate
or joint setting. Note that the latter is closer to how uplift
models are to be used in practice as producing a ranking for
new data implies that none of these new instances has yet
been treated.

Step 2. Select a target UM evaluation measure from Ta-
ble 2 (conditional on the choice made in Step 1) or use PCG
(see Section 3.2.2) to assign relevance values to (training)
instances (see Tables 3 and 4 and Section 3.2.2).

Step 3. Use an existing L2R technique such as Lamb-
daMART to optimize the full ranking or the top-k according
to a selected L2R metric, for either one or two queries,
depending on the choice made in Step 1.

4 EXPERIMENTS

In this section, we present several experiments to investi-
gate whether and how L2R techniques can be successfully
used in the context of UM. In Section 4.1, we first provide
information on the datasets and software used. Section 4.2
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covers the first experiment in which we analyze the dif-
ferences between the value function definitions of the UM
performance measures (Table 2) through simulation. This
experiment provides useful insights to guide the selection
of a target UM evaluation measure for UM with L2R (see
Step 2 in Section 3.2.3). In Section 4.3, we compare the
performance of a traditional pointwise UM approach, i.e.,
the flipped label approach, to those of similar listwise L2R
approaches. Section 4.4 looks at how the use of different
relevance values than those presented in Tables 3 and 4 for
a specified target UM evaluation measure affects the perfor-
mance of the L2R approach (see Step 2 in Section 3.2.3). In
Section 4.5, we investigate the effectiveness of optimizing
rankings for the top-k instead of the full dataset (see Step 3
in Section 3.2.3). Finally, in Section 4.6 we compare the
performance of the best performing L2R setup to state-of-
the-art UM techniques.

4.1 Experimental Setup
4.1.1 Datasets
We use three publicly available datasets originating from
randomized controlled trials (RCT) for the experiments. An
overview of the characteristics of the datasets is provided
in Table 5. The first dataset is part of the Information R
package1. The data relates to a marketing campaign in
the insurance industry and the response variable indicates
whether or not a purchase happened. The second dataset
is published on the website MineThatData2 and contains
data on an e-mail marketing campaign concerning clothing
merchandise. The dataset includes three response variables:
‘visit’, ‘purchase’ and ‘conversion’. The first two are binary
variables, while the third is a numerical response variable
that represents the amount of money spent. The dataset
includes 64,000 observations with 1/3 targeted with an e-
mail campaign concerning men’s clothing, 1/3 targeted with
an e-mail campaign concerning women’s clothing and 1/3
not targeted. For this dataset, in line with [17] to facilitate
comparison, the ‘visit’ variable is selected as the response
variable of interest and the selected treatment is the e-mail
campaign for women’s clothing (reducing the dataset to
42,693 observations). The last dataset is obtained from the
Criteo AI Lab3 [12] and contains data resulting from several
incrementality tests in advertising. The dataset consists of
more than 25 million observations, but due to computational
reasons, a random subsample of 0.1% is used, reducing the
dataset size to 25,310 observations.

4.1.2 Software
The L2R technique employed in the experiments is Lamb-
daMART, for which we use the implementation from the
open-source RankLib package4 which is implemented in
Java. As LambdaMART relies on gradient boosted trees (see
Section 3), for fair comparison, we also use gradient boosted
trees for all traditional UM approaches. For this, we rely on
the implementation in the xgboost R package [47].

1. https://cran.r-project.org/web/packages/Information/index.html
2. https://blog.minethatdata.com/2008/03/minethatdata-e-mail-

analytics-and-data.html
3. https://ailab.criteo.com/criteo-uplift-prediction-dataset/
4. https://sourceforge.net/p/lemur/wiki/RankLib/

Random stratified sampling was applied to the treatment
and control groups of each dataset to split them into 80%
training and 20% test data while preserving the overall
response rate within each group. All reported results are
on the test set, unless explicitly stated otherwise. Parameter
tuning was done upfront based on the performance on a val-
idation set containing 20% of the data and hyperparameters
are kept identical for all experiments in the paper (500 trees
and a learning rate of 0.01). Each experiment is repeated 10
times. Reported results are averages of these different runs,
and in plots we visualize the range between the minimum
and the maximum value as a shaded area.

4.2 Experiment 1: Comparing UM Performance Mea-
sures through Simulation

To optimize L2R techniques for UM, we need to select
a UM evaluation measure from Table 2. From the table,
one can see that the normalization used to account for
possible differences in treatment and control group sizes is a
differentiating factor. To better understand these differences,
we simulate data for three different scenarios with regard to
the sizes of the treatment and control groups, produce a
ranking for each scenario, and compare how these rankings
are evaluated by the different UM evaluation measures
presented in Table 2.

The simulation consists of two populations: the treat-
ment group with a response rate of 7% and the control
group with a response rate of 5%. Each instance is assigned
a value for τ̂(x) between 0 and 1 depending on the category
the instance is in (i.e., TR, TNR, CR or CNR). To simulate
uplift, we use the following procedure: for a TR and CNR,
we uniformly sample from the interval [0.2, 1.0], while for
a CR and TNR we sample from the interval [0.0, 0.8]. These
intervals ensure that TR and CNR instances will appear
higher in the overall ranking than CR and TNR instances.
In a next step, we sample from both treatment and control
groups to create three scenario’s: (1) a balanced setting with
an equal number of instances in both groups (|T | = |C|),
(2) an imbalanced setting with a larger treatment group
(|T | = 9|C|) and (3) an imbalanced setting with a larger
control group (|C| = 9|T |).

Because each instance is assigned a value for τ̂(x), we
can create a ranking for each scenario and compare how
these rankings are evaluated by the different UM metrics. To
this end, we visualize the different curves (and correspond-
ing baselines) obtained for both the absolute and relative
definitions in Figures 2 and 3, respectively. We split up the
analysis for the absolute and relative definitions as they
have different units of measurement.

For the absolute definitions, we observe in Figure 2 that
the Qini curves behave quite similar for the separate and
joint settings at first sight. However, a closer inspection
shows that higher a Qini Curve, and thus a higher AUUC, is
obtained for the separate setting. For the Qini curves, AUUC
values are all positive but differ significantly depending on
the sizes of the groups. For the Uplift curves, on the other
hand, the behavior of the curves in separate and joint set-
ting, as well as for the different scenarios, is very different.
Moreover, for the Separate Absolute Uplift Curve, AUUC
values turn negative when the control group is significantly
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TABLE 5: Characteristics of datasets used in the experiments.

Information Hillstrom Criteo
Description Insurance Online clothing Marketing
Channel E-mail E-mail Advertisement
Total size 10,000 64,000 25,309,483
# Treatment observations 4,972 21,387 21,409
# Control observations 5,028 21,306 3,901
# Variables 68 10 14
Response variable (binary) Purchase Visit Visit
Treatment-to-control size ratio 0.99:1 1:1 5.48:1
Treatment positive rate 20.37 % 15.14 % 4.41 %
Control positive rate 19.55 % 10.62 % 2.61 %
Uplift initial campaign 0.82 % 4.52% 1.80 %
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Fig. 2: Experiment 1. Simulation of the absolute curves in both separate and joint setting. In each figure, the baseline of
each respective scenario is represented by the dashed line. In Figure 2d the baselines for the different scenarios are equal.

larger than the treatment group, which is due to the fact that
there is no normalization between the treatment and control
groups for this UM performance measure.

For the two relative definitions in Table 2, we observe in
Figure 3 that there are no differences in the curves (and the
corresponding AUUC values) for the different scenarios in
the separate setting. Recall from Section 2.2 that the Separate
Relative Uplift Curve is equivalent to the Separate Absolute
Qini Curve up to the constant scaling factor |T |, which
implies that the curves in Figure 3a are rescaled versions
of the ones in Figure 2a, and that the same ranking would
be obtained when these measures are used for optimization.
For the joint setting in Figure 3b, in contrast to the separate
setting, we observe that a different scenario results in a shift

of the Uplift Curve. A possible explanation is that one group
is overrepresented in the top fraction of the ranking, causing
the uplift to be one-sided. However, the AUUC values are
very similar. Finally, by comparing the separate and joint
settings for the balanced scenario in Figure 3c, we observe
that we get a higher Uplift Curve for the separate setting,
and thus a higher AUUC. This is also true for the other
scenarios. The reason is that, in the separate setting, the
number of TR instances in the top fraction is much higher
than in the joint setting, in which we see relatively more
CNR instances in the top fraction, which heavily influences
the Uplift curves in the early parts of the plot.

Given the above comparisons for the simulated rankings,
we consider the relative definitions to be more robust to
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Fig. 3: Experiment 1. Simulation of the relative curves in both separate and joint setting.

differences in treatment and control group sizes as these
UM evaluation measures are (rather) stable under the three
different scenarios. As this can be considered a useful prop-
erty, in the experiments that follow, we use the relative UM
measures, both in separate and joint setting.

4.3 Experiment 2: Pointwise UM vs. Listwise L2R
Recall that the flipped label approach can be considered as
a pointwise L2R method in which a single model has to
rank TRs higher than TNRs and CNRs higher than CRs.
Hence, both TRs and CNRs are assigned a new label z = 1,
whereas the rest is labeled z = 0 with z ∈ {0, 1}. For the
flipped label approach, there is thus no need to separate in-
stances in different groups. In this experiment, we compare
this baseline uplift model with the listwise L2R technique
LambdaMART. In this regard, recall from Section 4.1.2 that
we use gradient boosted trees as learning algorithm for all
traditional UM approaches to ensure a fair comparison with
LambdaMART.

In the flipped label approach, no distinction is made
between TRs and CNRs, and TNRs and CRs. In L2R context,
this is similar to the separate setting as the relevant instances
of each query have no relation to each other. Therefore, we
compare the flipped label approach to L2R by using Lamb-
daMART for two separate queries, one for the treatment
group and one for the control group. As for the relevance
values we use binary values in accordance with the labels
used in the flipped label approach.

Typically, LambdaMART is used to optimize only the
top-k of the ranking (as users of for example search engines
typically only focus on the first k results), however, in
order to compare with the baseline uplift model we use
LambdaMART to optimize over all instances. Therefore, in
this experiment, k is set equal to the number of training in-
stances in the group considered (either treatment or control).
Finally, we use LambdaMART to optimize four different
metrics: MAP, DCG, NDCG and PCG.

Figure 4 shows the relative Uplift curves for the baseline
uplift model and the different LambdaMART setups for the
three different datasets. On the Information dataset (Fig-
ure 4a), the pointwise UM approach performs better than
the standard LambdaMART setups based on DCG, NDCG
and MAP. However, for LambdaMART optimized with our
PCG metric, the Uplift curve shows higher cumulative incre-
mental gains in the early parts of the plot when compared
to the pointwise UM approach. On the Hillstrom dataset

(Figure 4b), LambdaMART with MAP, DCG, NDCG and
PCG perform equally well compared to the pointwise UM
approach, and perform significantly better for proportions
of the population treated above 40%. Finally, on the Criteo
dataset (Figure 4c), all techniques achieve high cumulative
incremental gains in the early parts of the plot (first 10%
of the population treated). However, for proportions of the
population treated between 10% and 40%, the pointwise UM
approach performs worse than the listwise L2R approaches.

We further analyze the results by examining the AUUC
values presented in Table 6. The pointwise UM approach
performs better than the listwise L2R approaches on the
Information dataset with only LambdaMART PCG coming
close. However, the listwise L2R approaches marginally
perform better on both the Hillstrom and Criteo datasets.

TABLE 6: Experiment 2. AUUC values of the Separate
Relative Uplift Curve for the baseline uplift model and the
different LambdaMART setups. Values in bold: best value
on that dataset.

Separate Relative AUUC
Technique Information Hillstrom Criteo
Flipped label approach 0.02052 0.02858 0.01479
LambdaMART MAP 0.01237 0.03038 0.01556
LambdaMART DCG 0.01520 0.02960 0.01522
LambdaMART NDCG 0.00935 0.03032 0.01523
LambdaMART PCG 0.01938 0.03077 0.01578

In summary, the results of this experiment indicate
that listwise L2R approaches can be viable alternatives to
pointwise UM approaches. Further, we observe that, for
the datasets considered, using the proposed PCG metric
to optimize LambdaMART always leads to a better result
compared to using one of the other L2R metrics considered.

4.4 Experiment 3: Different Sets of Relevance Values
In this experiment, we investigate how the use of different
relevance values than those presented in Tables 3 and 4
for a specified target UM evaluation measure affects the
performance of the L2R approach. In this regard, recall that
in Section 3.2.1 we determined appropriate relevance values
for each UM evaluation measure. Based on these values,
presented in Tables 3 and 4, and the relevance values used
for the flipped label approach in Section 4.3, we can create
the four different sets of relevance values presented in Ta-
ble 7. We test these different relevance value sets for both the

Page 10 of 23Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XX 2020 11

0%

1%

2%

3%

0% 25% 50% 75% 100%
Proportion of population treated

C
um

ul
at

iv
e 

in
cr

em
en

ta
l g

ai
ns

 (
pc

 p
t)

Method

DCG

Flipped Label

NDCG

PCG

Random

(a) Information

0%

1%

2%

3%

4%

0% 25% 50% 75% 100%
Proportion of population treated

C
um

ul
at

iv
e 

in
cr

em
en

ta
l g

ai
ns

 (
pc

 p
t)

Method

DCG

Flipped Label

NDCG

PCG

Random

(b) Hillstrom

0%

0.5%

1%

1.5%

2%

0% 25% 50% 75% 100%
Proportion of population treated

C
um

ul
at

iv
e 

in
cr

em
en

ta
l g

ai
ns

 (
pc

 p
t)

Method

DCG

Flipped Label

NDCG

PCG

Random

(c) Criteo

Fig. 4: Experiment 2. Relative Uplift curves in separate setting. Black color is used to represent random treatment
assignment, blue represents the baseline uplift model and the other colors represent the different LambdaMART setups.

separate and joint setting and use DCG, NDCG and PCG as
optimization metrics for LambdaMART. These metrics are
chosen because they can handle graded relevance values.

TABLE 7: Experiment 3. Different sets of relevance values.

Set TR TNR CR CNR
Absolute relevance 1 1 0 0 1
Absolute relevance 2 1 0 -1 0
Absolute relevance 3 3 1 0 2
Relative relevance 1

|T | 0 − 1
|C| 0

For the use of separate queries, the results are reported
in Table 8 in terms of AUUC values of the Separate Relative
Uplift Curve. We observe that in all possible settings, PCG
consistently performs best when compared to other metrics.
On the Information dataset, the NDCG performs signifi-
cantly worse compared to the other approaches, with the
‘absolute relevance 3’ setting being the exception, however,
on the Hillstrom and Criteo datasets, the performance of
the NDCG metric is fairly equal to that of the DCG metric.
More interestingly, despite the fact that PCG with ‘relative
relevance’ labels is exactly the same as optimizing AUUC,
using one of the absolute relevance label sets performs
marginally better on the Information and Hillstrom datasets.

For the use of a joint query, the results are reported
in Table 9 in terms of AUUC values of the Joint Relative
Uplift Curve. Also in this setting, we observe that PCG
consistently outperforms the other metrics. Furthermore,
now an absolute relevance value set performs best for all
datasets and metrics (while also here the use of ‘relative
relevance’ labels in combination with PCG is equivalent
to optimizing AUUC). Finally, also note that the NDCG
shows improved and nearly equal results to those of DCG
on all datasets, including the Information dataset. This is
as expected, as in theory, NDCG and DCG should produce
equal results when there is only one query.

In summary, the above results are somewhat surprising.
While they do confirm that PCG is better suited to the task,
the use of less theoretically motivated relevance values is
shown to be able to produce good results too.

4.5 Experiment 4: Optimizing Rankings for the Top-k

In UM, as in information retrieval, often only the top-
k fraction of the ranking is of interest to the user. For

example, in marketing or churn prediction, the size of the
fraction is determined by the campaign budget. One of the
properties of LambdaMART and other L2R systems is their
ability to optimize for the top-k specifically. Current UM
techniques, however, all aim to optimize the entire rank-
ing. Therefore, in this experiment, we investigate whether
specifically optimizing for a specific top-k by using L2R can
be successfully applied to UM. In the experiments above,
we always optimized the rankings for the entire datasets by
setting k equal to the number of training instances in the
group considered (either treatment, control or both).

In this experiment, we optimize LambdaMART for k
values equal to 10%, 30% and 50%. For each of these
k values, we then check the Uplift curves and AUUC
values for both separate and joint settings. Additionally,
we compare the results with our previous experiments in
which we optimized the rankings for the entire datasets.
We present the results of LambdaMART optimized with our
PCG metric. We further use for relevance values the ‘relative
relevance’ set as this is closest to directly optimizing AUUC.
We also carried out this experiment with the DCG and
NDCG metrics used for optimization, and with relevance
values as in the ‘absolute relevance 3’ setting, however, these
settings provided similar insights and therefore the results
are not reported for brevity.

For each model, we visualize the Uplift curves from
both an optimization and generalization perspective. The
optimization perspective shows the results of the models
when evaluated on the training set (which is only indicative
of the effect of training). The generalization perspective
shows the results of the models when evaluated on the test
set (the proper way to evaluate the model). The results are
shown in Figures 5 and 6 for the separate and joint settings,
respectively.

The plots from an optimization perspective for both the
separate and joint setting show that the L2R techniques
can optimize for a specific k value. We see that these
Uplift curves have change points, after which their behavior
changes. These effects are most clearly visible in the joint
setting, where it is especially pronounced for k = 10%, for
which we observe peaks around the 10% marks, followed
by declines in the cumulative incremental gains.

When investigating the effect of optimizing for a specific
top-k on the test set, i.e., how well the results generalize to
new data, the figures provide a less clear answer. Table 10
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TABLE 8: Experiment 3. AUUC values of the Separate Relative Uplift Curve. Values in bold: best value in that column.
Underlined values: best value on that dataset.

Information Hillstrom Criteo
Set DCG NDCG PCG DCG NDCG PCG DCG NDCG PCG
Absolute relevance 1 0.01520 0.00935 0.01938 0.02960 0.03032 0.03077 0.01522 0.01523 0.01578
Absolute relevance 2 0.01520 0.00678 0.01938 0.02960 0.02893 0.03077 0.01522 0.01555 0.01578
Absolute relevance 3 0.01520 0.01524 0.01938 0.02960 0.02953 0.03077 0.01522 0.01538 0.01578
Relative relevance 0.01382 0.00677 0.01829 0.02961 0.02893 0.03055 0.01549 0.01555 0.01601

TABLE 9: Experiment 3. AUUC values of the Joint Relative Uplift Curve. Values in bold: best value in that column.
Underlined values: best value on that dataset.

Information Hillstrom Criteo
Set DCG NDCG PCG DCG NDCG PCG DCG NDCG PCG
Absolute relevance 1 0.01396 0.01452 0.01940 0.02957 0.02957 0.03002 0.01497 0.01494 0.01469
Absolute relevance 2 0.01101 0.01116 0.01536 0.02935 0.02935 0.03051 0.01607 0.01607 0.01669
Absolute relevance 3 0.01563 0.01473 0.02300 0.02968 0.02968 0.03063 0.01568 0.01568 0.01536
Relative relevance 0.01052 0.01031 0.01573 0.02954 0.02954 0.03027 0.01541 0.01543 0.01554
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(f) Criteo - generalization

Fig. 5: Experiment 4. Relative Uplift curves in separate setting at multiple cutoffs. The first row is tested on the training set.
The second row is tested on the test set.

provides a closer look by presenting the AUUC values of the
relative Uplift curves from the generalization perspective
at the different k values. We observe that optimizing for a
specific k value shows better performance than optimizing
for the entire dataset only in some cases (mainly on the
Criteo dataset). However, in general, we see that there is
no direct relation between optimizing for a specific k value
and the results obtained for that value on the test set, nor for
other values. Hence, this is a negative result: while learning
to optimize AUUC up to a specific cutoff is possible, there is
no significant benefit compared to optimizing for the entire
dataset (and total AUUC) on the three datasets used in our
experiments.

4.6 Experiment 5: LambdaMART PCG vs. State-of-the-
art UM Techniques

In this last experiment we compare the L2R LambdaMART
technique, used in combination with our PCG metric,
to state-of-the-art UM techniques. In experiment 2 (Sec-
tion 4.3), we focused on comparing the performance of
different LambdaMART setups to that of the flipped label
approach. By contrast, in this experiment we focus on com-
paring the performance of the best LambdaMART setup to
that of the multiple state-of-the-art UM techniques. Next to
the flipped label approach, we also consider the dummy
treatment approach, the two model approach, and the uplift
random forest (see Section 2.1). Of all these techniques,
the uplift random forest shows the most consistent perfor-
mances according to a previous benchmark study [5]. For
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(c) Criteo - optimization
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(f) Criteo - generalization

Fig. 6: Experiment 4. Relative Uplift curves in joint setting at multiple cutoffs. The first row is tested on the training set.
The second row is tested on the test set.

TABLE 10: Experiment 4. AUUC values of relative Uplift curves at multiple cutoffs on the test set. The left half is in the
separate setting and the right half in the joint setting. Values in bold: performance of PCG @ k is higher than PCG @ 100%
in that cell. Underlined values: best value in that cell.

Separate Relative AUUC at cutoff Joint Relative AUUC at cutoff
10% 30% 50% 100% 10% 30% 50% 100%

Information

PCG @ 100% 0.00037 0.00384 0.00900 0.02178 0.00034 0.00271 0.00616 0.01573
PCG @ 10% 0.00026 0.00159 0.00368 0.01150 0.00040 0.00232 0.00495 0.01264
PCG @ 30% 0.00030 0.00299 0.00731 0.01819 0.00030 0.00246 0.00611 0.01608
PCG @ 50% 0.00049 0.00419 0.00942 0.02143 0.00021 0.00257 0.00646 0.01690

Hillstrom

PCG @ 100% 0.00037 0.00332 0.00947 0.03060 0.00037 0.00319 0.00905 0.03027
PCG @ 10% 0.00032 0.00318 0.00901 0.02980 0.00029 0.00296 0.00853 0.02920
PCG @ 30% 0.00037 0.00323 0.00934 0.03045 0.00035 0.00313 0.00887 0.03001
PCG @ 50% 0.00038 0.00321 0.00935 0.03043 0.00043 0.00347 0.00950 0.03073

Criteo

PCG @ 100% 0.00059 0.00354 0.00671 0.01575 0.00088 0.00380 0.00691 0.01554
PCG @ 10% 0.00063 0.00353 0.00681 0.01577 0.00087 0.00392 0.00725 0.01599
PCG @ 30% 0.00062 0.00368 0.00706 0.01608 0.00092 0.00383 0.00689 0.01545
PCG @ 50% 0.00058 0.00353 0.00676 0.01580 0.00088 0.00377 0.00684 0.01533

the L2R setup, we opt for LambdaMART with PCG and
‘relative relevance’ values in a separate setting. We also
carried out the experiment with the ‘absolute relevance 3’
values, however, we do not report the results as they lead to
the same conclusions.

Figure 7 shows the relative Uplift curves in separate
setting for the three datasets. We observe that most UM
techniques perform better than LambdaMART PCG on the
Information dataset, with the two model approach being
the best performing technique. However, on the Hillstrom
and Criteo datasets, LambdaMART PCG shows improved
performance over the UM techniques. On the Hillstrom
dataset, LambdaMART PCG achieves 4% cumulative incre-
mental gains as the only technique at 50% of the population
treated, whereas the other techniques only achieve this
when treating almost everyone. For the Criteo dataset, we
observe that the flipped label approach performs well when

treating only 10% of the population, however, for higher
treatment percentages LambdaMART PCG outperforms the
UM techniques. Also notice that some UM techniques even
perform worse than the baseline for very high treatment
percentages.

We further analyze the results by examining the AUUC
values presented in Table 11. On the Information dataset,
all UM techniques perform better in terms of AUUC than
LambdaMART PCG. However, on both the Hillstrom and
Criteo datasets, LambdaMART PCG performs better in
terms of AUUC than the UM techniques. Additionally,
we present the AUUC results for the relative joint setting,
however, based on the results the same conclusions can be
drawn. In summary, these results thus show that the L2R
LambdaMART technique can compete with existing state-
of-the-art UM techniques, and in some scenarios can even
do better.
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Fig. 7: Experiment 5. Relative Uplift curves in separate setting. Comparison of LambdaMART PCG (and ‘relative relevance’
values) with different UM techniques.

TABLE 11: Experiment 5. AUUC values of the Separate and Joint Relative Uplift Curve for LambdaMART PCG and the
different UM techniques. Values in bold: best value on that dataset.

Separate Relative AUUC Joint Relative AUUC
Technique Information Hillstrom Criteo Information Hillstrom Criteo
LambdaMART PCG 0.01829 0.03055 0.01601 0.01791 0.03057 0.01677
Dummy treatment approach 0.02392 0.02935 0.01165 0.02283 0.02950 0.01181
Two model approach 0.02610 0.02820 0.01213 0.02578 0.02840 0.01224
Flipped label 0.02052 0.02858 0.01479 0.02050 0.02865 0.01418
Uplift random forest 0.02210 0.02744 0.01287 0.02163 0.02746 0.01174

5 DISCUSSION

In our first experiment, we compared different definitions of
the Qini and Uplift curves by analyzing performance results
on simulated rankings. The results showed that the sizes
of the treatment and control groups heavily influence the
cumulative incremental gains when expressed in absolute
terms. Expressing the cumulative incremental gains in rel-
ative terms results in a more robust evaluation. Based on
these results, we continued our experiments by focusing on
the relative evaluation measures (and their corresponding
AUUC values) for both the separate and joint settings, in
which we rank the treatment and control groups separately
or as one joint group, respectively. Note that in this work
we only consider the binary treatment case, i.e., an instance
is either treated or not treated. However, this could be
extended to multiple treatments by creating a query for each
treatment as this is very straightforward in L2R.

In the second experiment, listwise L2R techniques are
compared to the pointwise UM flipped label approach in the
separate setting. We test LambdaMART with both standard
L2R metrics, such as DCG and NDCG, and with our own
AUUC-centric metric, PCG. The results show that Lamb-
daMART with PCG performs equal to or better than the
flipped label approach which already indicates that listwise
L2R techniques can be viable alternatives to pointwise UM
techniques.

In the third experiment, we investigated whether the use
of different sets of relevance values significantly affects the
performance of the L2R approaches. The results of this ex-
periment clearly indicate that our PCG metric outperforms
standard L2R metrics in the different settings considered.
When optimizing PCG with the ‘relative relevance’ values,
we directly optimize the AUUC. However, the results show
that the use of less theoretically motivated relevance values
also produces good results, and even marginal improve-

ments in performance. In the separate setting, this can be
explained by the fact that changing the relevance values
does not affect the preference orders. However, in the joint
setting, changing the relevance values does affect the pref-
erence orders between the four categories (TR, TNR, CR
and CNR). Future research could investigate the effects of
different sets of relevance values. Moreover, this also paves
the way to future research on multipartite ranking methods
[48] in a UM context.

The fourth experiment investigated the potential of opti-
mizing rankings for the top-k in UM. From an optimization
perspective, we often did observe a change in behavior as
change points in performance were clearly identified around
the k value used in optimization. This effect was observed
in both the separate and joint settings, however, it is more
distinguishable in the joint setting, indicating that the joint
setting is more suitable for optimization. However, these
results did not generalize to the test set. This experiment
thus indicates that optimizing rankings for top-k fractions
of the population is possible, but that there is no significant
benefit compared to optimizing for the entire dataset.

Finally, in the fifth experiment, we compared the perfor-
mance of LambdaMART PCG, which is the best performing
L2R setup, to those of existing state-of-the-art UM tech-
niques. The UM techniques show varying performances on
all datasets. On the Information dataset, the UM techniques
do seem to perform better than LambdaMART PCG. How-
ever, on the Hillstrom and Criteo datasets, the results show
that LambdaMART PCG outperforms the UM techniques in
terms of AUUC. These results indicate that LambdaMART
PCG is able to better identify the most impactful instances
for smaller proportions of the population treated compared
to the UM techniques. Therefore, we can conclude that L2R
techniques can be added to the UM toolbox of techniques.
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6 CONCLUSION

Causal classification models estimate for each instance the
causal effect of a treatment on an outcome variable of
interest, i.e., the individual treatment effect (ITE). If both
treatment and outcome are binary variables, ITE estimates
allow one to rank instances from a large positive effect to a
large negative effect. In uplift modeling (UM), one is exactly
interested in this ranking rather than in the ITE estimates
themselves, as the aim is to identify the instances that are
most likely to respond as an effect of being treated. Uplift
models estimate the ITE and then use it to build a ranking
from which a fraction is selected for treatment. On the other
hand, Learning to Rank (L2R) techniques comprise tech-
niques specifically designed to optimize the quality of pre-
dicted rankings directly, rather than the quality of predicted
values that serve to rank instances. This paper explores the
possibility of using L2R techniques, more specifically the
well-known LambdaMART technique, in a UM context.

Before UM was cast as an L2R problem, an analysis of the
current evaluation metrics of UM was done. This analysis
shows conflicting definitions in the literature. The main
differences among definitions are (1) whether the treatment
and control groups are considered as separate groups or as
one joint group and (2) whether the cumulative incremental
gains are expressed in absolute units or in relative percent-
ages.

Our experiments show that standard L2R techniques
can be viable alternatives to UM techniques by compar-
ing their performances in terms of Area Under the Uplift
Curve (AUUC) for two UM metric definitions selected (the
Separate Relative Uplift Curve and Joint Relative Uplift
Curve). With the promoted cumulative gain (PCG) we have
created a new L2R metric which promotes relevance values
of instances earlier in the ranking, instead of discounting
relevance values of instances further in the ranking. The
PCG is exactly the AUUC metric from UM and can be read-
ily used by the LambdaMART L2R technique. Moreover,
using the proposed PCG metric to optimize LambdaMART
is shown to produce better results in terms of AUUC than
using standard L2R metrics and to achieve equal or better
results than the baseline uplift model (i.e., the flipped label
approach).

This paper also tested the effectiveness of optimizing
rankings for the top-k instead of the full dataset in a UM
context. Models were trained to optimize their rankings for
the top 10%, 30%, 50% and 100%. While the results show
that learning to optimize rankings for a specific top fraction
of the population is possible, from a generalization perspec-
tive, no significant benefits can be observed compared to
optimizing for the entire dataset.

Finally, with the last experiment we have shown that
LambdaMART PCG can compete with existing state-of-the-
art UM techniques and even lead to improved performances
in terms of AUUC. Overall, our results confirm that L2R
can be regarded as a viable alternative to the existing UM
methodology by focusing on modeling the ranking directly
instead of predicting values that are used to produce a
ranking. This work brings up new research questions for
future research:

• Future research could look into other listwise L2R
techniques.

• Further investigating the effects of using different
relevance values for CNRs and TNRs is another
possibility.

• The potential of multipartite ranking methods [48]
could be explored in UM context, which is related to
the previous point.

• One of the open questions in UM is the use case of
having multiple treatments [21]. The L2R framework
readily allows one to plug in multiple treatments by
considering each treatment as a separate query.

• Finally, as illustrated with the PCG metric, the L2R
framework allows optimizing rankings for custom
metrics. This creates the opportunity to include
profit-centric metrics into the modeling phase. Fu-
ture research could for example look into integrating
the Maximum Profit Uplift (MPU) metric, specifically
created for UM [13], into the L2R framework with
the aim of obtaining rankings that result in higher
profits.
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APPENDIX

Appendix A: AUUC for the Separate Relative Uplift Curve
By substituting the definition of the Separate Relative Uplift Curve (Equation 4) into the AUUC definition for the separate
setting (Equation 10), we obtain:

AUUC ≈
100∑
p′=1

V

(
p =

p′

100

)
(23)

≈
100∑
p′=1

(
R(T , p′|T |/100)

|T |
− R(C, p′|C|/100)

|C|

)
. (24)

Recall that R(T , k) and R(C, k) denote the number of treated and control responders among the top-k ranked instances for
the treatment and control groups, respectively. As these quantities are obtained by summations over the top-k instances
in the treatment and control groups separately, denoted by kT = p|T | and kC = p|C| for some percentage p, we can
reformulate the above equation in terms of kT , kC and the helper function g(i) as defined in Equation 19, where i represents
a single instance, as follows:

AUUC =

|T |∑
kT =1

kT∑
i=1

g(i) +

|C|∑
kC=1

kC∑
i=1

g(i) (25)

=

|T |∑
i=1

|T |∑
kT =i

g(i) +

|C|∑
i=1

|C|∑
kC=i

g(i) (26)

=

|T |∑
i=1

(|T | − i+ 1)g(i) +

|C|∑
i=1

(|C| − i+ 1)g(i). (27)
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Summary of Changes: Learning to Rank for Uplift Modeling (TKDE-2020-04-0372) 

Dear Prof. Dr. Xuemin Lin, 

We would like to thank the reviewers for the very helpful comments and remarks. We have substantially 

revised the paper in that we have streamlined the text and simplified the exposition of the uplift modeling 

evaluation measure framework. These two actions allowed us to shorten the paper. Further, we have also 

removed the appendices except for Appendix A so as to focus on the most important findings. Below, we 

summarize the changes we made to the article in response to the reviewers' comments. 

 

Reviewer comments and author answers 

Dear Reviewers, 

We would like to thank you for the time and effort you kindly invested in reviewing our manuscript. Your 

suggestions were constructive and helpful to us in improving the quality of our work. 

Please find our answers to your comments and suggestions below. In the remainder of this document your 

comments have been formatted in bold and italic.  

Once again, thank you for your remarks and suggestions. 
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Reviewer #1: 
 
1. The present form of the paper is specific to uplift modeling. While having a strong interest in this field 

myself, I argue that uplift modeling is niche literature, which is about to be absorbed by the field of 
causal machine learning (CML). Parts of the paper are written like a classical uplift paper, which, in my 
opinion, is not suitable anymore because strong connections to the literature on treatment effects and 
causal inference are well-understood today and should be highlighted. The use of the do-operator and 
citing several relevant CML papers show that the authors are well familiar with the state-of-the-art. 
However, treatment effects and the conditional average treatment effect (CATE) in particular, which is 
equivalent to an uplift score, are never mentioned in the paper. To my knowledge, TDKE has not 
published previous work on uplift models. Thus, by focusing only on the uplift setting and marketing 
applications of uplift models, the authors leave an opportunity to highlight the generality of their work 
unexploited. I recommend i) revising the positioning of the paper and the review of related work such 
that connections to CML are indicated, and ii) revisiting the review of related work accordingly. 
 
We have thoroughly reworked the introduction and Section 2 so as to clearly position the paper within the 
field of CML. Adjustments are also made to the other parts of the paper with this objective in mind. In the 
exposition of uplift modeling in Section 2, we now use the well-known Neyman-Rubin potential outcomes 
framework. However, in Sections 2.1 and 2.2 we intentionally keep the focus on the uplift modeling 
literature as the focus of this paper is to link the fields of uplift modeling (together with its evaluation 
measures) and L2R. In the related work section, we do, however, have included some extra CML 
references to recent work on ITE estimation. 
 

2. Inconsistent use of evaluation measures is a crucial flaw of the uplift modeling literature and I am very 
appreciative of the paper introducing a unified framework of evaluation metrics (e.g., Table 2). This is an 
important contribution to the uplift modeling literature. Following my previous comment, I wonder 
whether measures like the uplift or qini curve might be unappreciated by the CML community in that the 
applicability of these measures might extend well beyond targeting marketing campaigns. With this in 
mind, I was somewhat disappointed that the authors focus exclusively on targeting settings. Given that 
the measures and their excellent synthesis are instrumental to the paper, I recommend that the authors 
attempt to discuss possible extensions of the use of these measures in other settings. The reason for this 
request is that I expect a corresponding discussion to make the paper more interesting for readers 
outside the field of uplift modeling. 
 
We definitely agree that these measures do not (yet) seem to be adopted beyond the uplift modeling 
literature, although for sure they may have a broader use in settings where the ranking of instances is the 
prime objective. Although many such settings may be envisioned, however, in literature only a limited 
variety of cases can be retrieved. Additionally, note that these measures apply to a binary setting (both a 
binary treatment and binary outcome), limiting their impact and relevance within the field of CML.  
Nonetheless, we have found and added an example (personalized medicine) beyond the targeting 
marketing/retention campaigns. 
 

3. I acknowledge that the empirical part (Section 4) is well-organized. Nonetheless, I found the part to be 
somewhat hard to follow at times. The authors could clarify the intention of a sub-experiment in a more 
approachable manner. For example, Section 4.3 starts with an explicit statement of the research 
questions to be tested, which is useful, whereas Section 4.2 does not and only hints at the goal of the test 
after elaborating on the simulation approach. The paper would benefit from a clear description of the 
steps one needs to take to use L2R for uplift modeling. This description does not have to be part of 
Section 4. It is clear that the chain of experiments in Section 4 is already the product of the authors’ 
thinking what it takes to use L2R for uplift modeling. However, this thinking, one may call it a conceptual 
model, is never fully explicated in the paper. Instead, multiple parts of the paper including the 
introduction, the empirical part, and its discussion as well as the conclusions provide pieces of 
information. A flow chart of steps or something alike might be a solution but simply prose might be 
equally effective. Either way, I recommend that the authors identify a single, most suitable place in the 
paper in which the elaborate on the steps needed to use L2R for uplift modeling. They can then refer to 
this part when explaining the specific contributions of the paper and/or the experiments undertaken to 
implement the steps.  
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We have included a new section (Section 3.3) in which we summarize the steps needed to use L2R for 
uplift modeling. We also use this section (refer to the different steps) to explain the goals of the different 
experiments in the reworked introduction of Section 4. 
 

4. Arguably this point is related to be the previous one as also concerning the empirical part. The exposition 
is rather descriptive at times. I understand that you leave a discussion and interpretation of results for 
Section 5. However, I suggest you re-read the paper and decide whether there is room for streamlining 
the exposition and focusing it on the most important findings, which are not immediately available in 
the tables or figures. 
 
We have refined the exposition and discussion of the results in that we have streamlined the text and tried 
to focus on the most important findings. In this regard, we have also removed the appendices except for 
Appendix A. 
 

5. The experiments concerning research question 1 involve defining three scenarios, which differ in terms of 
the ratio of treatment to control group observations. At this point, I was wondering whether an outcome 
modification such as inverse propensity weighting or the doubly robust approach would not overcome 
any imbalance in the number of group members and facilitate the use of an uplift measure without 
worrying about stability. I do not associate any specific recommendation with this point. The authors 
may reflect connections to modified outcome methods in the paper if they feel this would add value to 
the section, or simply ignore the comment. 
 
This is an important point and a true concern with respect to the practical application of CML. For quite 
some time, in our lab we have been discussing about the impact of imbalanced data sets (both in terms of 
treatment/control distribution, as well as class distribution) on both the stability and performance of uplift 
models, and carrying out some exploratory experiments. It is a difficult issue to tackle and discuss, though, 
and we thought it to be better not to touch upon it in this paper, since it is not the core focus of the paper 
and the best we could do is to indicate it as a prime topic for future research and provide some initial 
thoughts and directions to explore. Hence, if permitted, we would prefer not to discuss upon it. By 
providing this comment, however, the reviewer strengthens our believe that further research on this topic 
may be of interest to and hence appreciated by the community. 
 

6. Since you stress notation and precision, which is missing in prior work on uplift/Qini curves, I was 
thinking about equation (5) and (6). If using the Iverson bracket, these equations appear to translate into 
calculating a sum over products of the number of responders and treated observations (or untreated 
observations in equation 6). This is not what you mean. Maybe revisit whether the notation with two 
brackets actually is the right way to express the counting that you have in mind.  
 
We have simplified the exposition of the uplift modeling evaluation measure framework in the revised 
version of the manuscript. In the revised version of the manuscript, the Iverson bracket is not used 
anymore. 
 

7. Minor comments 
a. The reference to Table 2 on page 8 (bottom) in Section 4.1.1 seems wrong. Should this be a 

reference to Table 5? 
b. Check the numbering of the sub-sub sections in Section 4.2. Shouldn’t it be 4.2.1 instead of 

4.2.0.1.? 
 
Corrections were made to the manuscript to address all the comments above. 
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Reviewer #2: 
 
1. One remark is in place here: from the modeling point of view Sep-Abs Qini curve is identical to the Sep-

Rel Uplift Curve as one can be obtained from another by dividing by |T| which is a constant. The Sep-Abs 
Qini curve is thus a relative not Absolute measure. The authors do write about the equivalence but only 
on page 11.  I believe it should be stated much earlier and reflected in Table 2 and related text. This also 
affects the experiments in Section 4.2 where curves for some methods are simply rescaled curves for 
other methods.  This should be clearly indicated. 
 
In the revised version of the manuscript, we discuss the equivalence between the two curves already in 
Section 2.2. In Section 4.2, we now also explicitly state that the curves in Figure 3a are rescaled versions of 
the ones depicted in Figure 2a. However, we do not explicitly reflect the equivalence in Table 2, as we 
categorize the Sep-Abs Qini curve as an absolute measure since we use the term ‘absolute’ to refer to the 
way the cumulative incremental gains are expressed (also see the caption of Table 2), which is in abolute 
terms for the Sep-Abs Qini curve. 
 

2. Typos: 
a. page 4, line 24: "It aims to directly optimizes" 
b. page 10 line 22: "... in joint setting have this."  It is unclear what 
c. Figure 4: different dataset names (Insurance, Clothing) are used in the Figure and in the tables 

(Information, Hillstrom).  Same in Fig 7 
 
Corrections were made to the manuscript to address all the comments above. 
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Reviewer #3: 
 
1. Although the topic is interesting and the paper is easy to follow, I found it quite lengthy, partly a bit 

wordy and tough to read.  
 
We have substantially revised the paper in that we have streamlined the text and simplified the exposition 
of the uplift modeling evaluation measure framework. These two actions allowed us to shorten the paper. 
Further, we have also removed the appendices except for Appendix A so as to focus on the most important 
findings. 
 

2. There is essentially no theory, only experiments on three data sets. As with all purely empirical papers, 
one should therefore be cautious with conclusions. In particular, on should also consider the specific 
choice of the methods and other decisions regarding the experimental setup. That said, I find it difficult 
to make concrete suggestions for improvement. Perhaps one could try to improve the presentation a bit, 
making it more concise and to the point (there are also a number of typos and small grammatical 
mistakes). 
 
We have refined the exposition and discussion of the results and we have paid explicit attention not to 
overstate the significance of the findings. In the conclusion, we also indicate the need for further research 
(e.g., on alternative relevance value sets) and more extensive empirical results. 
 

3. As for the learning-to-rank methods, I think the presentation could be a bit broader, both regarding 
methods and performance metrics. For examples, even if such methods are not necessarily used and 
included in the experiments, I could imagine that model-based methods might be an interesting 
alternative to (non-parametric) approaches such as LambdaMART. In particular, the Plackett-Luce model 
has become quite popular in the LTA field [1,2]. In this (probabilistic) model, each alternative has a latent 
"skill" parameter, which might be interpreted as a degree of susceptibility in the context of uplift 
modeling (interpretability is clearly an appealing property). Since the model is probabilistic, it can be 
learned using maximum likelihood inference.  
[1] John Guiver, Edward Snelson. Bayesian inference for Plackett-Luce ranking models. ICML 2009. 
[2] https://arxiv.org/abs/1909.06722  
 
We agree that the presentation of the learning to rank methods is rather focused on the LambdaMART 
technique. Therefore, in Section 3, we now mention the existence of alternative methods and have 
included some references to model-based methods. However, as the focus of this paper is to explore the 
link between learning to rank and uplift modeling, we do not discuss these methods in detail. A broader 
exploration of learning to rank methods for uplift modeling is however identified as a prime topic for 
further research (in Sections 3 and 6). 
 

4. As for the performance metrics, the authors essentially focus on metrics that are commonly used in 
information retrieval, i.e., measures that are based on relevance degrees of the items. However, the 
relevance degrees assigned to the four types of customers (treated responders non-responders, control 
responders and non-responders) are of course a bit arbitrary. Alternatively, the ranking problem could 
be tackled as a problem of multi-partite ranking [3,4], which is an extension of bipartite ranking. In 
multi-partite ranking, the population is divided into different groups, and the goal is to establish a 
ranking that is coherent with these groups. In uplift modeling, for example the goal would be to rank 
treated responders higher than non-responders higher than control non-responders higher than control 
responders. As performance measures, the C-index (a generalization of AUC) is commonly used in multi-
partite ranking. It essentially counts the number of violations in the ranking, i.e., the number of pairs 
(a,b) such that a is ranked higher than b, although the opposite should be the case. 
[3] J. Fürnkranz, E. Hüllermeier and S. Vanderlooy. Binary Decomposition Methods for Multipartite 
Ranking. ECML/PKDD 2009. 
[4] A. Fallah Tehrani, W. Cheng, E. Hüllermeier. Preference Learning using the Choquet Integral: The Case 
of Multipartite Ranking. IEEE Transactions on Fuzzy Systems, 20(6):1102-1113, 2012. 
 
We agree that it is an interesting idea to cast the problem as a multipartite ranking problem. This is also 
indicated in Sections 5 and 6 by including it as a possible direction for future research. However, as we 
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focus on the LambdaMART technique as learning to rank method in this paper, we have chosen to keep 
the discussion on the learning to rank metrics limited to the metrics that can be used by LambdaMART to 
optimize rankings. 
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