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Artificial Intelligence (AI) is currently being introduced into different domains, including medicine.
Specifically in radiation oncology, machine learning models allow automation and optimization of the
workflow. A lack of knowledge and interpretation of these AI models can hold back wide-spread and full
deployment into clinical practice. To facilitate the integration of AI models in the radiotherapy workflow,
generally applicable recommendations on implementation and quality assurance (QA) of AI models are
presented. For commonly used applications in radiotherapy such as auto-segmentation, automated treat-
ment planning and synthetic computed tomography (sCT) the basic concepts are discussed in depth.
Emphasis is put on the commissioning, implementation and case-specific and routine QA of AI models
needed for a methodical introduction in clinical practice.
� 2020 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 153 (2020) 55–66 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The radiotherapy (RT) workflow is a complex process consisting
of several time-consuming steps that have an impact on treatment
quality and hence patient outcome. Artificial intelligence (AI) has
been proposed as a tool to increase quality, standardization and
acceleration of these steps leading to a more safe and accurate
radiation administration by automation and optimization of work-
flows [1–3]. Especially with the introduction of adaptive radiother-
apy (ART), a streamlined workflow is mandatory in clinical routine.
AI is characterized as a collection of algorithms that perform tasks
correlated with human thinking or intelligence [4] with machine
learning (ML) and deep learning (DL) as subdomains [5]. Several
review papers have been published on the use of AI, ML and DL
in radiotherapy [6–12]. However, not much is written on clinical
implementation of these new techniques [13,14].
Recently, a survey on the clinical use of AI in radiotherapy [15]
revealed that most popular AI supported applications were auto-
matic segmentation and treatment planning, followed by synthetic
CT (sCT) generation. It also revealed a demand for guidance on the
implementation of AI in clinical practice. Therefore, the aim of the
current paper is to provide recommendations on the use of AI in
radiotherapy focussing on automatic tumor and organ-at-risk
(OAR) segmentation, automated planning techniques and sCT gen-
eration (Fig. 1). General and application-specific recommendations
on commissioning, implementation and quality assurance (QA) are
both described in detail2.
General recommendations

The recommendations described below follow the typical sce-
nario for introducing new technology in clinical practice: starting
with the commissioning phase of the AI-based application, fol-
lowed by the clinical implementation phase and finally the daily
use of the AI model together with model and case-specific QA.
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Fig. 1. Current use of selected AI applications in the radiotherapy workflow discussed in this paper. Other workflow steps that could benefit from AI such as image
reconstruction, registration, etc. that are not discussed in this paper are not shown in this figure.

Overview and recommendations for AI applications in radiotherapy
Commissioning

The commissioning procedure is two-fold, to train an AI-
algorithm/model and to investigate the accuracy and reproducibil-
ity of the model prior to clinical use. As shown in Fig. 2, this com-
missioning procedure can be divided into a training/validation
phase (first phase) and a test phase (second phase)3 [16]. The
phases that need to be completed depend on whether the AI model
has been built in house, in collaboration with a vendor or was com-
mercially available.

The training/validation phase is performed to tune the model to
the clinical need. This phase needs to be completed only when the
model is built in house or when a previously trained model allows
for customization. Training of a model is generally accomplished
with a large amount of data, preferably of high quality and anno-
tated [2]. Using locally acquired data offers the advantage of pre-
serving the department’s clinical guidelines and (imaging)
protocols. The data should be reviewed to ensure that it is a
curated representation of the patient population and clinical prac-
tice under consideration, which can require triage to generate reli-
able subsets samples. In practice, well-known, not too large, high-
quality datasets are generally preferred over very large datasets of
lower quality due to the evolving nature of clinical protocols and
guidelines. Validation of the model is accomplished using both a
quantitative and a qualitative analysis on a smaller set of data:
i.e. the validation set [16]. This set should represent the data on
which the model will be applied clinically. Consider a range of met-
rics to evaluate (in addition to those used for training) tailored to
the application of the model. In general, one starts with evaluating
quantitative metrics by comparing the model output to the clinical
data. Once satisfied, the results of the model are presented to clin-
ical experts (e.g. physicians, physicists or radiotherapy technolo-
gists (RTTs)) for revision. This step may reveal where the model
and the expert disagree on the prediction, which can be incorpo-
rated in the model to improve the results [17]. Models that are
built in collaboration with the vendor or are commercially avail-
3 Note that the used terminology about validation/test is typically used by ML
experts. Clinical experts sometimes turn this around and use test instead of validation
and vice versa.
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able do typically not allow or require this phase, but should then
be accompanied by proof of FDA/CE marking [18] and a vendor’s
validation report detailing the performance of the model. This
baseline set of investigations forms the starting point for further
clinical commissioning. Availability of detailed information con-
cerning model intended use and limits, description of training
and validation set, used standards (if applicable), metrics and over-
all validation protocol is highly recommended. Lastly, the vendor
should provide an annual accuracy assessment protocol, that
describes the procedure for the customer to follow on a yearly
basis.

The goal of the test phase is to obtain an independent evalua-
tion of the final performance of the model, investigate the robust-
ness of the model and define for which (type of) patients the model
can be applied. This phase should be applied to all AI models used
clinically. An independent dataset, which should represent the
data for which the model will be used clinically and show similar
variation as in the training data, is used to evaluate the model on
a qualitatively and quantitatively manner. A consensus is hard to
define for the amount of patients to include in the test set [15],
depending also on the variation of the input data. Nevertheless, a
minimum selection of ten patients is recommended as a good
starting point, which can be adjusted in case a large variation in
the results is present. Case-specific QA should cover the detection
of outlier results. No adaptation of the model should be made to
improve performance that is based on these specific patient cases.
However, if model modifications are deemed necessary based on
this test, a new and independent test set should again be collected
after modification of the model [16]. Optionally, other relevant
endpoints such as the reduction of interobserver variation and/or
time-saving could be evaluated in this phase as well.
Implementation

Prior to clinical implementation, it is recommended to involve a
dedicated multidisciplinary team of relevant expertise (e.g. physi-
cian, physicist, RTT, IT specialist) to ensure safe and clinically rele-
vant use. This team should have a basic knowledge of AI/ML/DL in
general and an understanding of the particular model including the



Fig. 2. Workflow for the commissioning, implementation and QA of a new AI model in the clinic. Commissioning starts already during (in-house) development of a model.
When the model is built, or when using a previously developed model, commissioning starts in the second phase with an independent test set. For major model updates, one
should go back to the first phase. For minor updates, only the second phase is repeated.
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patient cohorts for which it is applicable to evaluate the strengths
and possible limitations. Furthermore, this team should guide the
users and provide training and education for correct use and inter-
pretation of the model output. It is recommended to perform an
independent end-to-end test [19] prior to clinical implementation
executed by clinical personnel that will actually use the applica-
tion. Lastly, it should be stressed that it is important that all users
know and understand what the exact intended use and scope of
testing of the application is.

In Fig. 2, a potential workflow to implement an AI model in the
clinic is presented. A feedback system is important to maintain
safety and quality as clinical practice may change over time. For
minor adaptations that do not have a large influence on the output,
such as changes in post-processing, only the test phase of the com-
missioning stage needs to be performed and will reveal whether
additional recommissioning is necessary or not. A change in the
clinical workflow or a systematic reduction of the performance
[20], may require retraining with a new and updated training set.
Afterwards, it is important to (re)commission the model with a
new validation and test set and repeat the end-to-end test.

During the first weeks of clinical use, it is recommended to hold
regular meetings between the users of the model and the imple-
mentation team. This way, minor issues in the implemented work-
flow can be addressed in a timely manner. It is important to keep in
mind that while AI brings consistency, systematic errors can
remain present if undetected during the implementation phase.

As for any new tool, it is strongly recommended to perform a
risk analysis before any model is implemented (as per Euratom
Directive 2013/59) [21] by analyzing the risks, the implementation
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is generally improved by early detections of possible risks or mal-
function and made more robust against failure. A well-known
method is a Failure Mode and Effect Analysis (FMEA) [20,22–24]
or Risk Analysis Matrices [25], which includes a brainstorm on
the potential risks with people from all disciplines dealing with
implementation and use of the model. For AI tools, risk classifica-
tion will be influenced by the user control and interpretability of
the model, to what extent humans are involved in the (QA) work-
flow and the presence of safety barriers. Moreover, alternative
models or independent tools for the intended application should
be considered in case of failure or misbehavior.
Quality assurance

After successful implementation of any AI-based application,
regular QA is highly recommended. We distinguish between
‘case-specific QA’ and ‘routine model QA’.

Case-specific QA
Case-specific QA refers to patient specific or per machine QA.

The performance of the model is estimated during commissioning
for known situations. However, this does not guarantee the desired
behaviour in new, unknown situations. Depending on the inter-
pretability of the method, the user can choose to perform a more
comprehensive evaluation. Many of the current AI models appear
as black boxes to the end-users. More transparent methods are
generally easier to interpret and more straightforward to verify
[26]. However, there is typically a trade-off between transparency
of the model and (potential) accuracy, since more complex models
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with more parameters tend to have higher ability to fit to the data,
possibly at the cost of generalizability [27].

Depending on the application of the model, the quality of the
output of the model can be checked in different ways. Currently,
supervision of the output is seen as one of the most important
tools. In some applications, like contouring and planning, the out-
put of the model can be adjusted by the users to their preference. It
is recommended to log the corrections made by the clinical staff, to
keep track of poorly performing cases and to log errors made either
by the model or the user itself. In this way, potential risks in the
model or implementation workflow can be found to update and
improve the model (Continuous Quality Improvement) [28,29].

Whether a new patient (data) is eligible for an AI-based applica-
tion or not, is in the first place the decision of the user. Involvement
of all users and a shared knowledge of the intended use and limits
is therefore critical. To help in this decision, an (automatic) similar-
ity check comparing the new data set to the training data could tell
if there is reason to doubt performance. Alternatively, there are
possibilities to perform plausibility or sanity checks on the model
outcome: e.g. an independent, secondary algorithm can be used
to benchmark the performance of the clinical (AI) model and point
divergent behaviour; or automatic case-specific QA tools can be
utilized to facilitate the detection of outliers. For this plausibility
checking, it is foreseen that AI could also play a role for current
non-AI based steps in the workflow. Finally, uncertainty estimates
of the AI output can be used as a valuable tool to flag outcomes that
require additional verification [30,31]. It is important to note that
these methods are under investigation and that supervision is cur-
rently the main tool.
Routine model QA
Setting up a Quality Management Program (QMP) [32] is recom-

mended mainly to monitor if the model has not been unintention-
ally modified and to verify that the model is still valid after a
(minor) software update. A reference data set should be selected
at the time of commissioning for this purpose, reflecting clinical
practice. However, a QMP also helps to detect changes in the work-
flow (e.g. changes in imaging device, protocol, immobilization) and
review their impact. The reference dataset should be re-predicted
on a regular basis and compared to the initial predictions during
commissioning (end-to-end performance) to verify consistency of
the model.

Additionally, an informatics platform or log file should be
created for structured data collection of cases in which the perfor-
mance of the model was suboptimal, as described in Section Case-
specific QA. This allows identification of the limitations of the
model, trending and may also facilitate future model revisions to
Table 1
Commonly used quantitative metrics for the commissioning process of auto-segmentat
intraobserver variability, and in the case of a commercial model to the values specified by

Technique Evaluation

Overlap metrics Overlap of the contour volume/ surface
(e.g. Dice Similarity Coefficient (DSC) or Surface DSC) [50,51

Distance metrics Distance between segmented and true label volume
(e.g. Hausdorff (max) Distance (HD) or Mean Surface Distan
(MSD) on registered images)
Added Path Length: The amount of adjusted path length of

Volume Comparison of volume (systematic under/over segmentatio

Dose Dosimetric impact of delineation uncertainty [48]
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improve the performance for such patient cases i.e. post-market
surveillance [33].
Automatic segmentation

Accurate segmentation of OARs and target volumes is the start-
ing point of radiation treatment planning. Manual segmentation is
a time-consuming task with high intra and interobserver variabil-
ity both within [34] and across [35] radiotherapy centers. Recently,
convolutional neural network (CNN)-based auto-segmentation
models have been shown to improve consistency and efficiency
of this process [36,37]. These models typically classify every voxel
in an image as belonging to an OAR or target based on features of
the position and intensity of the voxel and surrounding voxels [38–
40]. These DL models are now outperforming traditional auto-
contouring methods and reaching the accuracy range of manual
delineations [41].
Commissioning

The number of patients needed to train a segmentation model
depends on the variability within the data, the completeness of
the data according to missing labels and the used AI model. A
model for tumor segmentation generally needs more patient data
than for OARs, because tumor shape and location are more variable
with respect to normal anatomy. Currently, state-of-the-art CNN-
based contouring models typically consist of more than a 100
patients [40,42]. However, also models of 50–100 patients have
been shown to segment OARs with reasonable accuracy [36,38].
Variability in the training data should reflect the variability of
the clinical data for which the model will be used. For example,
if the model will be used for different imaging acquisition proto-
cols or devices, the training set should include all of these data
types. Pre-processing, such as resampling or cropping, can be used
to tackle varying pixel spacing or Field of view (FOV). Post-
processing, such as connected component selection, hole filling,
or smoothing, can be performed to obtain more clinically relevant
contours [38,41,43]. Validation and test sets typically contain
around 20 patients [43]. A minimum of 10 patients is recom-
mended, but has to be increased in case large variation in the result
is present [44,45].

To specifically analyze the performance of the auto-
segmentation model, quantitative and qualitative validation are
appropriate (Fig. 2) [36,37,42,46] and should be combined. Quanti-
tative analysis to determine agreement between clinical contours
and auto-segmentations is accomplished using similarity metrics
(see Table 1). For an overview of metrics related to image segmen-
ion. The results are commonly be compared to the values obtained by inter and
the vendor’s validation report.

Advantages/Disadvantage

]
Practical during training/validation
Easy to calculate
Depends on volume; every voxel is equally important;
no specific focus on the border of the organ.
Not well correlated to subjective acceptance of contours
Surface DSC computationally more demanding

ce

the contour [52]

Focus on the boundary of the contour
Eliminates the impact of outliers
Not dependent on absolute volume
Difficult to interpret for small contours

n) Easy to calculate and interpret
No relation to location
Clinical impact of difference between delineationsLabor
intensive
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tation, we refer to [47]. However, more clinically meaningful met-
rics for radiotherapy exist as well, such as the resulting dose differ-
ences due to discrepancies or imperfections in contours [42,48] or
an efficiency metric such as the time needed to make contours clin-
ically acceptable [43]. In terms of clinical acceptability, a qualita-
tive analysis should be performed based on head-to-head
comparison of manual contours and auto-segmentations for each
patient by one or more radiation oncologists (RO) or RTTs
[41,46]. Head-to-head comparisons could also be performed in a
blinded fashion with a modified Turing Test approach [42,49].
Scoring of the auto-contoured OARs or targets as a ‘pass’ or ‘fail’;
or estimated adjustments needed to reach clinical grade quality
would give a subjective estimate of the quality of the auto-
segmentation model [43]. The required quality of segmentations
depends on the goal: whether it is time saving to reach clinical
acceptance or completely eliminating manual intervention. Due
to persisting intra-and interobserver variability, achieving an accu-
racy comparable to this variability is generally considered as suffi-
ciently accurate. When time saving is the rationale, knowing how
much manual editing is required (or not) is an important result
[42].
Implementation and QA

Case-specific QA
Every automatically generated contour should be reviewed, cor-

rected if necessary, and approved by clinical staff. Besides manual
verification, methods exist to facilitate case-specific QA by high-
lighting outliers up front [53]. For instance, a statistical model
can be used to detect outliers by evaluating structure shape, vol-
ume and centroid of automatically generated contours [54]. Alter-
natively, implementing a secondary independent segmentation
method may help to reveal segmentation difficulties when differ-
ences are present between the two segmentations [55]. Finally,
AI-based QA methods can estimate/classify uncertain or poten-
tially incorrect segmentations and present them to experts for revi-
sion [7,30,56]. Although these methods are not intended as a
complete QA, they facilitate the identification of outliers. This
may also provide guidance on which contours actually need edit-
ing and which are sufficiently accurate [42].

Routine model QA
Regular tests as described in Section Routine model QA should

be performed. An extra test set should be selected if the imaging
acquisition protocol changes; (e.g. everything that could influence
the quality of the generation of the patient 3D imaging: CT/mag-
netic resonance imaging (MRI) protocol or scanner, patient posi-
tioning, FOV, input sequences or fixation aids). The test set
should contain patient images acquired with the new workflow,
and the model output for this new test set should be reviewed
by clinical staff. Recommissioning of the model might be
warranted.
Automated treatment planning

Radiotherapy treatment planning contains an optimization
problem having many degrees of freedom. It typically requires
advanced skills, is labor intensive [57] and associated with large
user variability [58]. Developments in AI have led to applications
in the field of treatment planning to decrease human intervention
and workload, improve plan quality and consistency [59,60]. In
addition, it could enable comparisons of treatment techniques with
minimal bias, study eligibility and shared/informed decision mak-
ing for personalized treatment planning (e.g. patient selection)
[61,62].
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This section focuses on all data-driven automated treatment
planning, often referred to as knowledge-based planning (KBP).
KBP is considered as any method that uses previous knowledge,
i.e. previously optimized plans to predict the treatment plan or
dose for a new patient. The dose can be predicted in terms of
dose-volume histograms (DVHs) for a contoured structure, or com-
plete dose distributions. DVHs are typically predicted using a ML
model based on patient geometry features [63,64]. Predictions of
dose distributions are done using ML [65] or DL techniques [66–
69], subsequently used to drive an automated optimization proce-
dure resulting in clinically deliverable solutions. Other automated
planning techniques using DL (e.g. fluence map prediction, multi-
criteria optimization (MCO), beam orientation optimization are
also being described [70–72]. In this section, other ways to auto-
mate treatment planning, such as scripting or protocol-based iter-
ative planning are not discussed.
Commissioning

Automated treatment planning with AI should result in techni-
cally deliverable and clinically acceptable plans. The starting
point of any ML-based automated planning model is a patient
cohort planned according to a pre-defined protocol or class solu-
tion with consistency in tumor site and treatment setup, but also
with enough variability in patient geometry. Hence, the dataset
should represent the whole population for a specific treatment
site and prescription. The class solution could optionally be cate-
gorized to ‘easy’, ‘intermediate’ or ‘hard’ to optimize plans. Triag-
ing into subcategories makes the model more specific, while
combining the categories makes the model more robust to clinical
practice.

The type of model defines the amount of required training data.
Classical ML models need less training data than DL models since
they have less parameters to optimize: ML models are trained with
20–100 patients in current practice [59,65,73–75]. Including more
patients could enlarge the possible variability in the training data
and therefore the range of patients for whom predictions will be
satisfactory [74], although several studies have also reported satis-
factory results with smaller training sets [73,75]. DL models on the
other hand, typically require more than 100 patients for training
[67], but efforts are ongoing to develop strategies to bypass this
requirement (around 80 patients) [66]. Pre-processing steps like
dose normalization help to decrease the dependency of the pre-
scribed dose and fractionation scheme [76]. Irrespective of the
method, it is important that (clinical) plans are reviewed and
curated to ensure protocol compliant delineations and plan qual-
ity. Lastly, validation and test sets typically consist of minimally
10 patients for both types of models [77]. In case of large variation
within the data and/or results, it is advisable to evaluate more
patients [62,78].

To analyze the performance, both a quantitative and qualitative
analysis should be performed. The former could be based on clini-
cal guidelines and consists of the calculation of DVH parameters/-
clinical constraints, conformity index, homogeneity index, plan
quality index [60], amount of monitor units (MU), etc. (Table 2)
and compared to plan acceptance criteria and/or clinical plans
[59,73–75]. In terms of clinical acceptability, reviewers should be
able to directly compare DVHs, clinical dose goals and dose distri-
butions via correlated scrolling in addition to dose difference maps
and should score/rank the ML plans according to criteria as overall
approval, target coverage, OAR sparing, high dose conformity, dose
gradient, etc. Depending on the optimizer (whether all delivery
constraints are taken into account: dose rate, leaf speed, gantry
speed, interdigitation, couch position etc) it might be necessary
to perform pre-treatment QA of the predicted plans to assess
deliverability.



Table 2
Quantitative metrics for the evaluation of automated treatment planning models. The results should be compared to international and institutional planning protocols.

Technique Evaluation Advantages/Disadvantages

DVH parameters Local/institutional constraints to review the
clinically acceptable DVHs

Clinically relevant
Generally automatically displayed
Gives no information on spatial dose distribution
Institution dependent

Isodose lines Qualitative observation of isodose lines or color
wash of the dose distribution

Show overall dose distribution
May reveal differences in shape
Not quantitative

Conformity index Degree to which the high dose region conforms to
the target volume [79]

Clinically relevant
Easy to calculate
It does not always take dose outside the target into
account (depending on definition)

Homogeneity index The uniformity of the absorbed dose distribution in
the target [79]

Easy to calculate
No information about location of hot/cold spots
No information about OAR

Number of monitor units Based on the amount of radiation required from the
linac (including scatter, absorption etc.)

Metric for complexity/modulation
Influenced by target volume and location
Not always comparable between energies/linacs/institutes

Plan quality index Combination of components that describe healthy
tissue conformity, target coverage and sparing of
critical organs [60]

Possibility to differentiate between ‘‘good” and ‘‘bad” plans
Weighting of individual parameters may differ between institutes/physicians

(Blind) rating of plans by RO Rate or order plans from best to worst, or choose
preferred plan

Clinically relevant
Subjective

Dose gradient Local dosimetric differences as a function of the
dose gradient [80]

Highlight differences (algorithm and delivery related) in sensible areas
Not easily available in commercial offerings

Overview and recommendations for AI applications in radiotherapy
Implementation and QA

Case-specific QA
Every automatically generated plan should be reviewed and

approved by the clinical team before clinical use, considering auto-
matically generated treatment plans as if they are designed by an
RTT in training. Additional planning or optimization steps might
be required to obtain better target coverage or sparing of OARs.
There is potential to automate this QA step [81], or the other
way around: use the AI-based method as an independent bench-
mark of the (manual or automated) clinical plan [82]. Algorithms
that predict the obtainable DVHs only, are regularly used as a
benchmark to assess whether better target coverage or OAR spar-
ing is possible [82–85]. Note that it is important to keep planning
and validation (QA) algorithms independent of each other. There-
fore, one should not use the same algorithm for planning as for QA.

Routine model QA
It is important to note that an ML model is trained on treatment

plan data for a specific treatment technique according to fixed pro-
tocols and objectives. Changing to a different treatment technique
could entail that a new model should be trained and validated
(recommissioning). To verify the robustness of the model to this
new workflow, a new test set needs to be obtained within the
new clinical workflow (e.g. change in treatment device, fractiona-
tion scheme, technique, beam set-up). The output of the model
for this test set should be reviewed by the clinical staff. One needs
to check if the accuracy of the model output is maintained and plan
optimization leads to equally good plans. If not, manual (re)plan-
ning many patients within the new workflow is required to be able
to recommission a new model, which may hamper continuity and
increase workload. Finally, a TPS update or protocol change may
also be a reason to perform recommissioning.
Synthetic CT

Synthetic CT is often used to allow for (improved) accuracy of
dose calculations on Cone-Beam CT (CBCT) or MRI images [86].
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CT images are the standard for radiotherapy dose calculations, as
they provide robust information about the electron density of tis-
sues [87]. Obtaining accurate CT numbers (Hounsfield units, HU)
for non-CT data opens the door for MR-only workflows [88–90].
Synthetic CTs can be generated using voxel, atlas based or hybrid
approaches [91–93]. Thus far, the most practical and common
approach is deformable image registration to map planning CT
HU to the (daily) treatment image. Recently, it has been shown that
CNNs (DL) provide promising methods for synthetic CT generation
based on CBCT or MRI images [86,94–99].
Commissioning

The starting point of a robust DL sCT model is typically a dataset
consisting of images of a single FOV, acquired using the same
image acquisition protocol on the same image devices. However,
recent studies have shown that some of these requirements can
also be circumvented [100]. Generally, there should be a good cor-
respondence between the MRI or CBCT images and the CT scan.
Models for sCT generation were traditionally trained in a super-
vised manner with 25–40 patients, but unpaired training has
shown to also eliminate or loosen the requirement for perfect
alignment [101,102]. A patch-based approach to training the data
can be beneficial for smaller datasets or if 3D training is desired,
but appropriate weighting of the patches may be of concern
[103,104]. To establish a paired training set, one should carefully
check the (voxel-wise) alignment of patients and possibly improve
this alignment by further image processing such as deformable
registration [96]. Selected patients should also preferably be posi-
tioned with the same immobilization devices present on both
imaging modalities. If not, post-processing of the images may be
required. Additionally, training data should be reviewed for image
artefacts, investigating whether these may lead to inaccurate dose
calculation. An end-to-end test helps to determine if there are
other requirements on the sCT (for instance, some systems expect
square pixels of the (synthetic) CT). After training, one should
establish strict inclusion and exclusion criteria for its use, which
implies for example patients with dental implants causing signifi-



Table 3
Quantitative metrics for the evaluation of synthetic CT models.

Technique Evaluation Advantages/Disadvantages

Mean error (ME)/Mean absolute error
(MAE)

Mean (absolute) difference between HU
values of synthetic CT and ground truth
CT:
Paired/voxel-wise comparison within a
specified volume (e.g. body contour or
other structure/region of interest)

Is usually reported
Relatively easy to calculate
Can be calculated within different structures/regions of interest
Does not show the spread in the voxel-wise differences
Difficult to compare between studies
Might not be clinically relevant
Gives information of absolute error and not of the relative error

Peak signal to noise ratio (PSNR) Ratio between maximum value of a signal
and the power of distorting noise that
affects the quality [111,112]

Easy to calculate
Gives some information about the relative error
No information about position of the error

Structural similarity metric (SSIM) SSIM is used for measuring the similarity
between two images and designed to
improve on metrics like MSE and PSNR
[113]

Carries information about inter-dependencies between pixels
More difficult to calculate

Dice coefficient of bony structures Overlap volume of the bony structures Relevant for dose calculation
Relevant for positioning
Dice is dependent on the volume of the structures
Dependent on thresholding of bones
Gives no information on actual HU values

Dose difference in DVH Calculate the DVH of the same plan on
both synthetic CT and ground truth CT,
using either the same set of delineations
or 2 different structure sets. In the latter
case newly delineated or obtained by
(deformable) registration.

Easy to calculate if both DVHs are available
Care should be taken in transferring/warping structure sets
A difference in DVH or DVH parameter can be caused by an ‘error’ in the sCT or
in the contour, or by a difference in the anatomy

Dose difference using gamma index Calculate the gamma value in every point
in the image (volume)

Used to give an overall representation of error usability of the synthetic CT
Analysis can be tweaked to preference (dose difference, DTA value and
threshold)
Difficult to compare between studies

Matching accuracy Compare matching values at the linac of
(CB)CT and sCT

Vital information for accurate patient positioning
True matching value is unknown: no gold standard available
No standard on the procedure, e.g. handling of residual misregistration [114]
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cant streaking artefacts, or postoperative patients with metal
screws that lead to signal voids on MRI images. In literature, the
validation and test sets typically consist of at least 10 patients,
no real consensus seems to exist yet [95,104–109]. This minimum
number also depends on how the sCT is situated in the workflow.

sCTs should be evaluated in terms of image similarity, geomet-
ric fidelity and dosimetric accuracy [110]. Several metrics exist to
quantify these aspects (Table 3). Almost all studies calculate mean
absolute error (MAE). Care should be taken to compare these val-
ues between studies, since there are many factors influencing this
result [110]. In addition, it is common to report the standard devi-
ation of the mean (across patients), but not the spread in HU differ-
ences on a patient level, which is usually much larger. To interpret
differences in dose, it is important that CT and sCT are in the same
frame of reference and that body contours and contours are the
same (or at least well known). Finally one should check that
matching accuracy for sCT-based positioning at the linac is at least
as accurate as in the routine workflow.
Implementation and QA

Users of sCT models should have knowledge of imaging modal-
ities to be able to detect artefacts and their associated causes. If
post-processing of the sCT generated by the (DL-based) model is
performed or required, it is important to know the details and its
impact (on dose calculation). Knowledge of dose calculation and
electron density tables helps to establish the required accuracy of
the synthetic CT. In some cases, simple models may provide suffi-
ciently accurate dose calculations [115].

Case-specific QA
Every sCT generated should be reviewed visually to ensure no

artefacts are present. A sanity check could be designed or a simple
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bulk assignment performed. Use of a secondary independent sCT
generation algorithm (e.g. a segmentation based or atlas based
method) might further improve the level of quality of the sCT. If
available, CBCT can be used as a QA tool of an MRI-based synthetic
CT that was used for planning [116]. Differences between the dose
calculation based on CBCT and sCT can reveal prediction difficul-
ties. Local uncertainty regions can also be detected by uncertainty
maps generated as the second output of an AI sCT generation algo-
rithm, though these approaches are still under investigation
[31,117,118]. If possible, it is recommended to compare all newly
incoming patient data to the data used for training using similarity
metrics. This could help to establish a level of confidence based on
a correspondence between data and resulting quality of the sCT.
Subsequently, this could serve as a method to flag potentially fail-
ing sCTs.
Routine model QA
Changes in workflow (e.g. changing MRI or CBCT device or

imaging protocol) may require a new test set acquired with this
new workflow. The sCT of the patients in this new test set should
be generated and compared to the ground truth CT for this patient
and reviewed by the clinical team involved. Recommissioning of
the model will be required if the model output is no longer satis-
factory. If the sCT generation model is based on MRI input, a regu-
lar quality check of the MRI geometric fidelity should be part of the
QA program. The electron density calibration from the training CT
data should be used. To obtain a new dataset of (paired) images
after a significant protocol change, means that additional imaging
has to be performed for a group of (new) patients; this might
become a large hurdle to change and improve imaging protocols.
In this scenario, having an MRI-only workflow can prohibit the
introduction of new imaging possibilities. A temporarily extended
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MRI protocol could be designed to have the commissioned
sequences in the imaging session, but this may not always be pos-
sible due to increased exam time or ethical guidelines.

Treatment and machine QA

QA supervises the radiotherapy workflow to assess the reliabil-
ity of treatment delivery by systematically monitoring the patient
safety [119]. Efforts are made to provide necessary checks,
secondary independent measurements, and evaluations against
practice standards [81]. Different national and international insti-
tutions have contributed to efficient and safe quality control proto-
cols [24,32,120–123]. These guidelines often recommend an
extensive list of measurements on treatment units with limited
time and personnel available. To assist with these procedures,
AI-based QA has already shown to achieve similar or better perfor-
mance than standard QA procedures [20]. Ultimately, these efforts
might guide QA to a ‘measureless’ framework where verifications
and measurement opportunities move beyond the scope of human
attention [20]. Nevertheless, the increasing usage of AI models for
automation of QA creates awareness for the need of QA procedures
to assure the safety of these AI processes [81]. Because commis-
sioning and implementation depends on the specific architecture
and solution chosen, no specific recommendations are made in this
section but more a general description of commonly used methods
is described.
Patient-specific treatment verification

The most commonly used metric to assess agreement between
two dose distributions is the gamma index, which combines both
dose difference and distance-to-agreement in a single metric
[124]. Treatment planning and delivery techniques are subject to
a wide range of uncertainties that may contribute to decreased
gamma pass rates (GPR), such as phantom/patient setup, detector
resolution and calibration, beam output and profile, beam model-
ing, and especially plan complexity [125]. Predictive algorithms
could be conducive in reducing the time required to measure plans
that are at low risk of failure, and perhaps channeling resources
into producing a better plan for difficult cases. ML models based
on hand-crafted features like plan complexity metrics (PQM)
and/or machine parameters have been demonstrated to predict
GPR with high accuracy [125–129]. In addition, CNN approaches
based on fluence maps can achieve similar prediction capabilities
as ML methods [130–134]. These tools can be used as feedback into
the treatment planning process. For instance, if the prediction
shows the plan is unlikely to pass QA, the dosimetrist or physicist
may choose to reduce the plan complexity in the optimization pro-
cess. In this way, failing plans could be potentially eliminated and a
possible treatment delay can be avoided [125].
Machine QA

QA of linear accelerators is periodically performed to monitor
longitudinal stability [135]. Measured data contain nonlinearity
in a multidimensional space, making it difficult to interpret
[136]. Due to developments seen in the delivery and monitoring
systems, opportunities arise to complement with approaches such
as Probabilistic Safety Assessment (PSA) [137] or risk analysis [21]
to focus where AI can amplify detection levels and prediction accu-
racy of potential failure or deviation from intent. Either through
machine internal sensors and logs (measuring speeds, positions,
rates, etc.) or external devices (measuring dose or surrogates, posi-
tions, etc.), AI has the potential to foresee stray behaviors with high
selectivity allowing efficient triage for problem solving as well as
pre-emptive actions. This will improve machine uptime, reliability
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and congruence between planned and delivered treatment [138].
One source of investigation includes the use of AI models to predict
deviations in multileaf collimators (MLCs) positions to perform
maintenance accordingly [139,140]. AI can be used in an ART
workflow to flag when a plan is likely to fail a QA due to overmod-
ulation or violation of delivery constraints [141]. Lastly, time-
related monitoring of the beam quality has been investigated to
better identify tolerance boundaries based on time-related data
collection [142]. Ultimately, this should lead to a better under-
standing of the underlying function and relationship betweenmea-
surements and help to take preventive actions [135].
Discussion

This paper provides an overview of recommendations to help
implementation of AI software in clinical routine. A summary of
the manuscript can be found in Table 4. The paper focuses on com-
monly used specific RT applications [15]. Applications such as
computer-aided diagnosis and detection, image registration, image
reconstruction, outcome prediction, etc., were not discussed but AI
is also appearing in these parts of the radiotherapy workflow, see
e.g. [6,7,9,10,12,143–145]. For future perspectives of AI in RT, we
refer the reader to [11,146,147]. This paper was built upon the
experience with the integration of AI software in the RT workflow
and should as such be interpreted as a consensus of radiotherapy
centers represented at the 3rd ESTRO Physics Workshop. However,
it is possible that centers or users might have already specific pro-
tocols in place to safely introduce AI software in their clinic. The
recommendations outlined here are a good starting point for clin-
ics starting introduction of AI. As AI is a rapidly evolving field
where models, applications and training methods are finding their
way in radiotherapy, it is evident that such recommendations need
to be regularly updated as well.

A concern raised by automation is the possible disappearance of
domain knowledge among physicians, physicists or RTTs. In part,
skills are dependent on experience and automation reduces the
possibility of gaining experience in creating manual plans or seg-
mentations in the clinical workflow. Manually performing these
tasks on a regular basis helps to preserve domain knowledge. How-
ever, we also expect a shift from being active in the patient’s indi-
vidual care path to ‘‘offline” preparation of models which requires
similar experience. Since clinical workflows, fractionation
schemes, devices, etc. change over time, models will also have to
change over time. New data will be required to update models to
new clinical practices and specific knowledge will still be needed
to create this new data. Furthermore, we expect a shift in the
knowledge and experience from pure treatment planning (work-
flow) to an understanding of the working principle of the models
and interpretation of the output of the models. Medical physicists
involved in AI should familiarize themselves with all relevant
aspects, and (future) curricula of the Qualified Medical Physics
expert and radiation oncologists should incorporate big data and
artificial intelligence [148].

Because regulation and quality labels are still being developed
for AI, these topics were not included in this paper. But as the EU
white paper on AI frames it appropriately: ‘‘the use of AI brings
both opportunities and risks.” [149]. Users of AI solutions are
strongly recommended to become familiar with the recently pub-
lished Medical Device Regulation (MDR) [150] as it will influence
the clinical application and liabilities related to in-house created
models or software tools. The 2013/59/EURATOM directive [151]
also sets the requirement to perform risk analysis audits on the
clinical management plans, which also includes any clinical soft-
ware/algorithmic solution such as AI. Data sharing agreements
between clinics would be beneficial and could facilitate the use



Table 4
A summary of principal recommendations to guide the implementation and use of AI models in the clinical workflow.

Automated segmentation Automated treatment planning Synthetic CT

Objective(s) Increase accuracy/consistency
Time saving
Decrease inter- and intra-observer variability

Using MRI or CBCT for dose calculation
(and patient positioning)

Commissioning training/validation phase: tune model to clinical needs
test phase: independent evaluation (accuracy/robustness)

Data characterization � Large amount of high quality annotated, retrospective data [2]
� Variability of the clinical practice should be represented

Consistency in treatment site and/or treatment technique Consistency in treatment site, image acquisition
protocol and image device

Model analysis Quantitative: calculating similarity to clinical ground truths
Overlap, distance and dose measures
(cf. Table 1)

Dosimetric measures
(cf. Table 2)

Measures to evaluate image similarity, geometric
fidelity and dosimetric accuracy
(cf. Table 3)

Qualitative: present output to clinical experts for revision

Implementation � Multidisciplinary team with relevant expertise and AI knowledge needed
� End-to-end test
� Feedback system
� Risk analysis (recommended)

Quality assurance To monitor the accuracy/consistency of model output over time and robustness to
adapted workflows, i.e. continuous quality improvement [28]

Case-specific QA � Manual verification
� Involvement of all users/education
� Statistical or AI models to identify outliers
� Independent, secondary automated algorithm or plausibility check

Routine model QA � Quality Management Program (QMP) with reference dataset [32]
� Informatics platform/log file to collect suboptimal cases, i.e. post-market surveillance [33]
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of AI models. However, setting up agreements for exchanging data,
scripts and models between different centers will become even
more complicated. The General Data Protection Regulation (GDPR)
[150] also sets the framework for privacy compliance which is rec-
ommended to use as a benchmark for practices and future AI
implementation. Data anonymization and informed consent of
patients are the two ways to be able to create and use curated
databases in the context of AI training, validation, testing and clin-
ical usage. It is fair to state that AI pushes our perception of privacy
to the extreme. Finding the proper balance between privacy pro-
tection of individuals and progress in research to help improve
individualized health care is an ongoing discussion. Evidently, AI
is based on Big Data, collaboration and sharing, all of which are
regulated by both MDR and GDPR. Regardless of regulation issues,
users should be aware of accountability, safety issues and robust-
ness when developing AI tools in a clinical setting. There are strong
arguments in favor of providing some kind of quality label or
uncertainty assessment, risk analysis and sanity checks when
introducing models that have been created in-house or by other
groups into clinical carepaths.

AI models and especially data driven models such as ML and DL
are advancing in the clinical radiotherapy workflow. Since many of
the current AI models appear as black boxes to the users, the com-
missioning, implementation and QA procedures are essential. In
this article, we aimed to provide clinical recommendations to sup-
port clinical teams during implementation of AI models in the
radiotherapy workflow for contouring, planning and synthetic CT.
Recommendations were not provided for the implementation of
automated QA models since this is still in its infancy. However,
the general principles are transferable to other applications.
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