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Abstract. We define semi-commutative invertible masking structures
which aim to capture the methodology of exponentiation-only protocol
design (such as discrete logarithm and isogeny-based cryptography). We
give an instantiation based on the semi-commutative action of isogenies
of supersingular elliptic curves, in the style of the SIDH key-exchange
protocol. We then construct an oblivious transfer protocol using this
new structure and prove that it UC-securely realises the oblivious trans-
fer functionality in the random-oracle-hybrid model against passive ad-
versaries with static corruptions. Moreover, we show that it satisfies the
security properties required by the compiler of Döttling et al. (Eurocrypt
2020), achieving the first fully UC-secure two-round OT protocol based
on supersingular isogenies.

1 Introduction

Since its beginnings, isogeny-based cryptography has progressed in several direc-
tions. First, that of protocol design, where primitives such as key-exchange and
identification protocols [27, 17, 20] or signature schemes [24], have already been
constructed. Secondly, in the understanding of the concrete security of the com-
putational assumptions [23]. Finally, in the implementation methods for such
protocols [15, 3, 19].

Whilst development of discrete-logarithm-based protocols has been rich, in
terms of number of primitives, in the context of isogeny-based systems there
has been less success. One reason is that the subtleties of isogeny-based prim-
itives can be counter-intuitive (and even dangerous when misunderstood [22]).
In particular, as noted in [27, 17], isogeny-based systems lack the commutative
property which is often exploited in discrete-logarithm-based cryptography. Fur-
thermore, the space of computational problems and their precise formulation is
still shifting.



Supersingular isogeny-based protocols have attracted increasing attention
mainly for their potential for post-quantum cryptography. In this direction some
recent works [38, 7, 4] have proposed oblivious transfer (OT) protocols based
on the hardness of supersingular isogeny problems. OT, originally introduced by
Rabin in 1982 [34], is a fundamental primitive that has been proved complete
for both two-party and multi-party computation, and has been used as building
block in many efficient protocols [31, 28, 39]. Due to earlier interest in lattice-
based and code-based cryptography, there have already been post-quantum OT
protocols [32, 5, 6] based on the LWE, LPN and McEliece assumptions.

As well as underlying security assumptions, when we consider the state-
of-the art in post-quantum OT protocols we also need to take into account
different factors, such as the security model and round complexity. Indeed, one
of the most desiderable properties, is having OT protocols with high security
guarantees and only two rounds of communication. However, this is very hard to
achieve and especially in the malicious setting, when one of the parties involved
in the computation can arbitrarily deviate from the protocol. Indeed two-round
OT with simulation based security is impossible in the plain model [26], and
we need to rely on setup assumptions such as a common reference string or a
random oracle.

Our contribution. We consider a new approach for studying isogeny-based
constructions by defining a new general framework for exponentiation-only pro-
tocols. We then apply this new structure and describe a simple oblivious transfer
protocol with high security guarantees and minimal round complexity.

Semi-commutative masking. We define new structures called semi-commutative
invertible masking schemes to capture the exponentiation-only restriction of
isogeny-based protocols and help draw out parallels with discrete-logarithm-
based protocols. These also capture the absence of full commutativity in su-
persingular isogenies within a framework that is notationally simpler. In the
full version, we show that these structures can also be realised in the discrete
logarithm-based setting and in the setting of class group actions on endomor-
phism rings [12]. Moreover, we define generic computational problems for our
structure and show that these correspond closely to the existing problems in the
literature. The combination of our new structure together with instantiation-
independent computational problems enables a clearer protocol design method-
ology. Furthermore, we believe that the hardness assumptions that we present
can be extended to ones where more elements are given as a challenge (for ex-
ample as used in pairing-based crypto). Such extended assumptions may enable
the generic construction of schemes and protocols with richer functionalities as
they have in the discrete-logarithm setting.

Isogeny-based oblivious transfer. We illustrate the advantage of our framework
describing a new two-round OT protocol constructed from our masking schemes.
It achieves universal composability (UC) security against passive adversaries
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with static corruptions in the random oracle model (ROM). In the full version
we also show a second construction which is an adaptation of the key-exchange
based protocol of Chou and Orlandi [14] to the “exponentiation-only” setting.
Notably, our new structure allows us to provide a single proof of security for each
protocol which is then valid for different instantiations of the masking scheme.

UC-secure isogeny-based two-round OT. This only provides a two-round pas-
sively secure protocol, however we also show how to obtain a two-round mali-
ciously secure protocol. The known methods for maliciously-secure OT are either
based on zero-knowledge proofs or on “lossy” encryption schemes [32], which we
don’t know how to instantiate using isogeny-based constructions and/or without
increasing the round complexity. In [18], Döttling et al. introduced a general com-
piler to transform a rather weak and simple two-round elementary-OT (eOT),
to a fully UC-secure two-round OT, providing also two instantiations: one based
on the Computational Diffie-Hellman (CDH) problem and one on the Learning
Parity with Noise (LPN) problem. We show (in Appendix 6) that our protocol
satisfies the security requirements of this compiler, establishing the feasibility of
two-round UC-secure OT based on semi-commutative masking, and more in par-
ticular on supersingular isogenies assumptions. In fact, we achieve the stronger
notion of search-OT (sOT) security which means that Döttling et al’s expensive
transformation from eOT to sOT is not required for our protocol. To do so, we
introduce a new problem for our masking scheme, called ParallelDouble (Defini-
tion 13), that is comparable to the one-more static CDH problem (where the
adversary has access to both a challenger and a helper oracle and has to solve
one more challenge than it was helped on).

Related work. Since De Feo and Jao’s work [27, 17], others have explored dif-
ferent directions of supersingular isogenies [15, 3, 23, 24, 19, 20, 12, 35, 2, 21, 30].
However, to the best of our knowledge, our work is the first to present a frame-
work for “exponentiation-based” protocols which unifies supersingular isogenies
with previous constructions and also provides a separation between protocol de-
sign and analysis of computational assumptions. While we only present an OT
protocol is this work, we believe that most of the works stated above can be
formulated within our framework.

Recent works, concurrent and posterior to ours, have also proposed OT pro-
tocols based on supersingular isogenies [38, 4, 8]. The first describes an instan-
tiation which is comparable to ours, especially regarding the computation of
inverses and the question of the Weil pairing. It also proposes two protocols
inspired by the same exponentiation-based approach and constructed from the
same key-exchange and key-transport mechanisms. However, thanks to our new
structure, our protocols better refine and separate the required computations.
The OT protocol that we describe in this current paper fixes the two elements
it requires for all instances, thus reducing the exchange to two flows – the best
that can be hoped for, and the maximum allowed for Döttling et al.’s trans-
formation to achieve UC security – instead of three, and it shifts the burden
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Functionality FOT

Parameter: n length of the bit-strings

– Upon receiving (PS , sid,m0,m1) from PS , check if a (sid, c) was previously
stored. If yes, send mc to PR; if not, store (sid,m0,m1) and continue to run.

– Upon receiving (PR, sid, c) from PR, check if a (sid,m0,m1) was previously
stored. If yes, send mc to PR; if not, store (sid, c) and continue to run.

Fig. 1: Oblivious transfer functionality

Functionality FRO

The functionality is parametrized by a domain D and range R. It keeps a list L of
pairs of values, which is initially empty and proceeds as follows:

– Upon receiving a value (sid,m),m ∈ D, if there is a pair (m, ĥ), ĥ ∈ R, in the

list L, set h = ĥ. Otherwise choose h
$←− R and store the pair (m,h) in L.

– Reply to the activating machine with (sid, h).

Fig. 2: Random oracle functionality

of computing the inverse to the Receiver. This reduces communication further
and allows for only one inverse computation to be required. Using our masking
structure, we also give another OT protocol, described in the full version, which
separates the transmission of key material and choice material from the Sender
to the Receiver. This permits the Sender to contribute to the final encryption
key which is closer in spirit to the original key-exchange protocol. Vitse [38] also
proposes an instantiation of her protocols from Kummer varieties; we leave it
to further work to establish whether this could yield a new instantiation of our
masking structure. Note, the works [4, 38] only prove security in the stand-alone
and game-based models respectively, as opposed to our proofs in the UC model
and there is no extension to malicious security.

Following the blueprint of previous works [10, 5], Branco et al. [8] achieve
active security for OT at the cost of three additional rounds of communication.
However, this requires the addition of a new mechanism which diverges from the
“exponentiation-only” methodology. Furthermore, the security of their isogeny-
based mechanism relies on assumptions that were only recently proposed [4] and
have not yet been studied at length.

2 Preliminaries

We denote by λ the computational security parameter. We say that a function
f : N → N is negligible, respectively noticeable (or non-negligible), if for every
positive polynomial p(·) and all sufficiently large n it holds that f(n) < 1

p(n) ,

respectively f(n) ≥ 1
p(n) . We denote by a

$←− A the uniform sampling of a
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from a set A, and computational and statistical indistinguishability by
c
≈ and

s
≈

respectively. We let [n] denote the set {1, . . . , n}.

Symmetric encryption. By E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} we denote
a symmetric encryption scheme, where KE ,ME , CE are the key-space, message-
space and ciphertext-space, respectively. We make use of the usual definition of
IND-CPA security.

UC security of oblivious transfer. We prove security of our protocols in the
universal composition (UC) framework of Canetti [11], and assume familiarity
with this. In particular, we prove in the full version that our protocol UC-realize
the OT functionality FOT in the FRO-hybrid model, where FOT and FRO are
presented in Figures 1 and 2.

3 Semi-Commutative Invertible Masking Structures

We first formally define our new masking structures and discuss some compu-
tational problems that arise in this setting. To help fix ideas we illustrate our
masking structures with the case of discrete logarithms in a finite field Fp, where
q = (p− 1)/2 is prime and g ∈ Fp is an element of order q.

3.1 Masking Structure

A masking structure M is defined over a set X. Each element x ∈ X may
have multiple representations, and we define Rx to be the set of representations
of an element x ∈ X. (We require that it be efficient to recover x from any
representation in Rx.) We denote the set of all such sets by RX = {Rx}x∈X .
The sets of representatives are assumed to be disjoint, i.e. ∀x, x′ ∈ X s.t. x 6=
x′, Rx∩Rx′ = ∅, and we define R = ∪x∈XRx to be the set of all representatives.
For example, if we take X = 〈g〉 ⊂ F∗p, then the usual choice for R is to let
Rx = {x} for every x ∈ X; but one could also take a redundant representation
with two elements letting Rx = {x, x+ p}.

A mask is a function µ : R −→ R, and a masking set M is a set of such
functions. In the discrete logarithm case, a natural candidate for M is a set
indexed by elements in Z∗q which each give an explicit exponentiation algorithm
on the set of representatives of the group elements X. A masking function µ ∈M
is said to be invertible if

∀x ∈ X, ∀r ∈ Rx, ∃µ−1 ∈M : µ−1(µ(r)) ∈ Rx. (1)

Note, we only require that µ−1 outputs a representative in the same set Rx. If all
elements µ ∈M are invertible, then we say that the masking set M is invertible.
In the discrete logarithm case, if µ corresponds to the map g 7→ ga, then µ−1

corresponds to the map g 7→ g1/a.
An invertible masking structure M for a set X is then a collection of sets

of representative RX , along with a collection of invertible masking sets [Mi]
n
i=1,
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Data:M = {X,RX , [Mi]
n
i=1}, λ ∈ N

Result: win ∈ {0, 1}
1 r, µ0, µ1, i, st← A(1λ) such that r ∈ R, i ∈ [n], µ0, µ1 ∈Mj , j 6= i;
2 r0 ← µ0(r), r1 ← µ1(r);

3 b
$←− {0, 1};

4 µ
$←−Mi;

5 r̃ ← µ(rb);

6 b̃← A(1λ, st, r̃);

7 if b̃ = b, then return win = 1 else return win
$←− {0, 1};

Fig. 3: The IND-MaskA,M security experiment

and we write M = {X,RX , [Mi]
n
i=1}. Such an invertible masking structure is

said to be semi-commutative if

∀i 6= j, ∀µ ∈Mi, ∀µ′ ∈Mj , ∀r ∈ R, µ(µ′(r)) ∈ Rx ⇐⇒ µ′(µ(r)) ∈ Rx. (2)

In the discrete logarithm case, with M a set of exponentiation functions, M =
{X,RX , [M,M ]} is straightforwardly semi-commutative.

3.2 Problems and Properties

We now present a distinguishing experiment and computational problems for
masking structures. The precise security level of these depends from concrete
instantiations and reductions to specific computational problems.

Definition 1 (IND-Mask security). We define the IND-MaskA,M experiment
in Figure 3 for a masking structure M = {X,RX , [Mi]

n
i=1}, and an arbitrary

adversary A. We say that M is IND-Mask-secure if for all PPT adversaries A,
it holds that ∣∣∣∣Pr [IND-MaskA,M(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

In the discrete logarithm setting, when Rx = {x}, the map g 7→ ga for random
a ∈ Z∗q induces a random permutation of the group elements. Therefore for a
secret a and two group elements g0, g1, the distribution of gab is perfectly uniform,
independently of b. This shows that such an M is perfectly IND-Mask-secure.

Note 1. In some settings (but not in the discrete logarithm one), it may be
possible to distinguish the action of two masks that belong to separate masking
sets. It is also possible that this difference is preserved under the action of a mask
from a third masking set. Therefore, if an adversary was able to submit arbitrary
r0 and r1 to the IND-Mask experiment, it could ensure that the difference between
them is preserved by the action of the randomly sampled µ and hence win the
experiment with certainty. By forcing A to submit a single r ∈ R and two maps
µ0, µ1 belonging to the same masking set Mj , the experiment prevents that
strategy.
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We also define to the following hard problems for semi-commutative invertible
masking structures:

Definition 2. Given a masking structure M = {X,RX , [Mi]
n
i=1}, we define the

following computational problems:

1. Demask: Given (i, r, rx) with the promise that rx = µx(r) for a uniformly

random µx
$←−Mi, return µx.

2. Parallel: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r)

and ry = µy(r) for uniformly random µx
$←− Mi, µy

$←− Mj, return z ∈ X
such that µx(ry) ∈ Rz.

3. ParallelInv: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx =

µx(r) and ry = µy(r) for uniformly random µx
$←− Mi, µy

$←− Mj, return
z ∈ X such that µ−1x (ry) ∈ Rz.

4. ParallelEither: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx =

µx(r) and ry = µy(r) for uniformly random µx
$←− Mi, µy

$←− Mj, return
z ∈ X such that either µx(ry) ∈ Rz or µ−1x (ry) ∈ Rz.

5. ParallelBoth: Given (i, j, r, rx0
, rx1

, ry) with the promise that i 6= j and that

rxb
= µb(r), b ∈ {0, 1} and ry = µy(r) for uniformly random µb

$←−Mi, µy
$←−

Mj, return z ∈ X such that either µ−11−b(µb(ry)) ∈ Rz or µ−1b (µ1−b(ry)) ∈
Rz.

To make explicit the given structure M to which the (say) Demask problem
refers, we write DemaskM. The name “Parallel” is inspired by a similar problem
defined by Couveignes [16].

We motivate these problems in the context of the discrete logarithm setting,
where we take our masking structure as before to have Rx = {x} and to have
each Mi to be identical to the set of exponentiation maps indexed by Z∗q . We
give a graphical intuition of these problems in Figure 4.

– The Demask problem is, given (g, h) with the promise that h = ga for a
random a, to return a. This is the discrete logarithm problem (DLP).

– Similarly, the Parallel problem is, given (g, ga, gb) for random a, b, to return
ga·b which is the computational Diffie-Hellman (CDH) problem.

– In the discrete logarithm setting, the ParallelInv problem is to compute gb/a

given (g, ga, gb). In the full version we show that this is equivalent to the
Parallel problem. We note that this does not immediately hold in the abstract
case, due to the absence of relation between r and µ−1(µ(r)), but it can
nonetheless be shown to hold for different instantiations.

– The ParallelEither problem is an instance where both the solutions to the
Parallel and to the ParallelInv problems, for the same challenge, are accepted.
Whilst it is immediate that the ParallelEither problem is at most as hard as
any of the other two, a formal reduction to show the reverse implication does
not appear to be as trivial. We conjecture that in most settings, and in the
discrete logarithm setting in particular, allowing for two possible answers
which are both hard to compute on their own does not significantly decrease
the hardness of the ParallelEither problem.
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g

ga

gb

(gb)a

(a) The Parallel problem.

g

ga

gb

(gb)1/a

(b) The ParallelInv problem.

g

ga0ga1

gb (gb)a0/a1(gb)a1/a0

(c) The ParallelBoth problem.

Fig. 4: Representations of computational problems.

– The solution of the ParallelBoth problem can be seen as a combination of both
Parallel and ParallelInv solutions together with the choice of the ParallelEither
problem as is shown in Figure 4c.
Indeed, one can first use a Parallel oracle to compute µb(ry) for either b ∈
{0, 1} and then use a ParallelInv oracle to compute µ−11−b(µb(ry)) which shows
that ParallelBoth is at most as hard as those two problems. Similarly to the
ParallelEither problem, we conjecture that in most settings the ParallelBoth
will not be significantly easier as it requires solutions which are both hard
to compute.

4 Instantiation From Supersingular Isogenies

To avoid a sub-exponential quantum attack vector [13], De Feo, Jao and Plût [17]
consider the use of supersingular elliptic curves over the extension field Fp2 whose
full endomorphism ring is an order in a quaternion algebra and therefore non-
commutative. In this section we summarize this approach succinctly, construct a
semi-commutative masking structure from this setting and discuss the hardness
of the induced problems.
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4.1 Supersingular Isogenies over the Extension Field

Preliminaries. Let E1 and E2 be elliptic curves defined over a finite field Fq.
An isogeny φ : E1 → E2 over Fq is a non-constant rational map over Fq which
is also a group homomorphism from E1(Fq) to E2(Fq). For the isogenies that
we consider, we identify their degrees with the size of their kernels. Two curves
E1, E2 are said to be isogenous over Fq if there exists an isogeny φ : E1 → E2

over Fq; this holds if and only if #E1(Fq) = #E2(Fq). A set of elliptic curves
over Fq that are all isogenous to one another is called an isogeny class.

An endomorphism over Fq of an elliptic curve E is a particular isogeny E → E
over Fqm for some m. The set of endomorphisms of E together with the zero
map, denoted End(E), forms a ring under the addition, φ⊕ϕ : P 7→ φ(P )+ϕ(P ),
and multiplication, φ ⊗ ϕ : P 7→ φ(ϕ(P )), operations. The full ring End(E) is
isomorphic to either an order in a quaternion algebra, in which case we say that
E is supersingular, or to an order in an imaginary quadratic field, in which case
we say that E is ordinary. Curves that are in the same isogeny class are either
all supersingular or all ordinary. Here we focus on the supersingular case. All
supersingular curves can be defined over the field Fp2 for a prime p and for every
prime ` - p there exist `+ 1 isogenies, up to isomorphism, of degree ` originating
from any given supersingular curve.

Given a curve E and a subgroup K of E there is, up to isomorphism, a
unique isogeny φ : E → E′ having kernel K and we therefore identify E′ with
the notation E/φ. Particularly, we will work with subgroups of the torsion group
E[m] for m ∈ N which is the group of points of E whose order divides m. When
we also have that m2 divides #E(Fp2), we can always represent cyclic kernels
by generators defined over Fp2 .

Semi-commutativity. We introduce the notion of semi-commutativity present
in this setting; the same notion is behind the SIDH key-exchange protocol [17]
and we generalise it here. We discuss the case where Fq is fixed to be Fp2 where
p is a prime of the form `e11 `

e2
2 · · · `enn · f ± 1 for n small primes `1, . . . , `n and

a small cofactor f . By construction, in each isomorphism class there is a curve
E/Fp2 such that the torsion group E[`eii ] contains `ei−1i (`i + 1) cyclic subgroups
of order `eii (which each define a different isogeny).

To compute and publish a curve resulting from a secret isogeny, a party
generates a secret key by selecting a random point Ki of order `eii on a curve E
and computes a public curve by computing the unique isogeny with kernel 〈Ki〉
and publishing the domain curve E/〈Ki〉. The issue here is that the structure of
End(E) no longer allows for arbitrary isogenies to commute and an analogue of
the (ga)b = (gb)a equality is not immediate. However, with isogenies of co-prime
degrees some commutative structure remains.

To solve this, in addition to the curve E, the parties agree on bases {Pi, Qi}
for each of the torsion groups E[`eii ]. The semi-commutative structure then
emerges since applying an isogeny of degree `eii preserves the torsion groups
E[`

ej
j ] for j 6= i. Therefore, alongside publishing E/〈Ki〉 for their secret isogeny

φi, parties also publish {{φi(Pj), φi(Qj)}j 6=i}, the images under φi of the bases
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for the other torsion groups. By expressing their secret kernel as Kj = [αj ]Pj +
[βj ]Qj and applying αj , βj to {φi(Pj), φi(Qj)}, the other party can then com-
pute an isogeny ϕj : E/〈Ki〉 → E/〈Ki,Kj〉 which is “parallel” to the isogeny
φj : E → E/〈Kj〉 in the sense of Figure 4a.

Whilst the two resulting curves E/〈Ki,Kj〉 and E/〈Kj ,Ki〉 may not be
identical, they will be isomorphic, and the parties can then take the j-invariants
of their respective curves as an identical shared value.

The Weil pairing. We recall here the notion of the Weil pairing. For any integer
m ∈ N, we let ζm = {u | um = 1} ⊂ F∗p2 . For any curve E/Fp2 , the Weil pairing is

a map em : E[m]×E[m] −→ ζm, that satisfies em(φ(P ), φ(Q)) = em(P,Q)deg(φ),
where φ : E → E′ is any isogeny.

4.2 Masking Structure

To define a semi-commutative masking structure, we fix p = `e11 `
e2
2 · · · `enn · f ± 1

as above. In this setting, there are five supersingular isogeny classes and we let X
denote one of the two classes with curves E/Fp2 with trace t = p2+1−#E(Fp2) ∈
{−2p, 2p}; these two classes are the largest of the five [1].

Representatives. For each j-invariant x ∈ X, there is a canonical choice of
curve Ex [36]. For each Ex we take the appropriate twist of the curve such that
they belong to the same isogeny class. We define the set Rx of representatives
as the set of tuples (Ex, {{Pi, Qi}i∈[n]}) where {Pi, Qi} is a basis of the torsion
group Ex[`eii ] as above.

For a given curve and torsion order, there exists a deterministic and efficient
algorithm Basis(E, i) which outputs a basis {Pi, Qi} ⊂ Ex[`eii ] [3, Section 3.2];
for each torsion order, we fix a generator qi ∈ ζ`eii such that for any curve E,

em(Pi, Qi) = qi for {Pi, Qi} ← Basis(E, i). This will be used to derive new
torsion points when required, but these are still free to be modified under the
action of isogenies. Hence for each x, there will be a unique choice of Ex but
many choices of bases of torsion groups that originate from the deterministic
one.

Masking sets. We first observe that for any Ki = [αi]Pi+[βi]Qi on E, the point
[m]Ki, for m ∈ (Z/`eii Z)∗, generates the same subgroup of E[`eii ]. By defining
the equivalence relation ∼R by

(α, β) ∼R (α′, β′) ⇐⇒ ∃m ∈ (Z/`eii Z)∗ s.t. (α′, β′) = (mα,mβ),

we can then identify any such Ki with the equivalence class of (αi, βi) which
we denote [αi : βi]. We recall that the projective line P1(Z/`eii Z) is the set of
equivalence classes [αi : βi] such that gcd(αi, βi) = 1.

Since Ki has exact order `eii , at least one of αi and βi must not be divisible
by `i and hence the ideal of the ring Z/`eii Z generated by αi, βi is always the
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unit ideal, i.e. the whole of Z/`eii Z. This implies that all the possible choices for
Ki can be exactly identified with the points on the projective line P1(Z/`eii Z).
We therefore define n masking sets [Mi]i∈[n] where each Mi is the projective line
Pi := P1(Z/`eii Z).

Masking action. Computing the result of a mask µ(r) ∈ Ry on a representative
r ∈ Rx then consists in computing one of its representatives Ki in Ex[`eii ] and
the isogeny φi : Ex → Ex/〈Ki〉. Note that the curve Ex/〈Ki〉 with j-invariant
y ∈ X may not be the same curve as the canonical choice Ey. However they will
be isomorphic over Fp2 , due to the appropriate choice of twist in the definition
of our set Ry, and the isomorphism χ : Ex/〈Ki〉 −→ Ey will be easy to compute.

To be able to compose isogenies in a semi-commutative way, computing µ(r)
also requires computing the images of {{Pj , Qj}} for j 6= i first under φi and
then under the isomorphism χ to obtain bases of the torsion groups of Ey. It
also requires generating a new basis for Ey[`eii ] using the Basis(Ey, i) algorithm.

The output of the computation of the mask µ(r) is therefore the curve Ey
χ
'

Ex/〈Ki〉 together with the basis points {{χ ◦ φi(Pj), χ ◦ φi(Qj)}} for j 6= i and
the output of Basis(Ey, i).

Inverting the mask. Since our masking sets Mi do not derive from a group
structure, we do not have an immediate instantiation of an inverse operation.
However, for every isogeny φ : E → E′ of degree `, there is a unique dual isogeny
φ̂ : E′ → E also of degree ` such that the composition is the multiplication-by-`
map: φ̂ ◦ φ = [`] : E → E. Whilst not a perfect inverse operation, in this setting
the multiplication-by-`eii map preserves the structure of the `

ej
j -torsion groups

for all j 6= i and that is all we require for semi-commutativity to hold.
Hence, given a kernel generator Ki ∈ E[`eii ] for some curve E, one can com-

pute a generator of the image φi(E[`eii ]) ⊂ E′[`eii ] of the `eii -torsion group un-

der the isogeny φ̃i defined by Ki and an appropriate isomorphism, to obtain
K̂i ∈ E/〈Ki〉 which is a generator of the kernel of the unique dual isogeny φ̂i.

Given a mask µ ∈ Mi = Pi and elements r and r′ = µ(r) with r′ =
(E′, {{Pj , Qj}j∈[n]}), computing the inverse µ−1 amounts to computing a point

K̂i as above and expressing it as (α̂i, β̂i) in the deterministically generated basis
for E′[`eii ] which can be done efficiently as is shown in [3]. This then allows us to

define µ−1 uniquely as [α̂i : β̂i] ∈ Pi, given µ and r. We note that the dependency
of µ−1 on µ and r is consistent with the definition of the inverse of a mask as
stated in Section 3.

Masking structure. We formally define a masking structure in this setting.

Definition 3 (Masking structure from supersingular isogenies). Let p
be a prime defining the finite field Fp2 as above, we define the masking structure
Mp = {X,RX , [Mi]i∈[n]} where the individual components are defined as above.

Lemma 1. The masking structure Mp of Definition 3 is semi-commutative.

11



Proof. First we see that the elements of Mp together with the action of any
µ ∈ Mi on any r are well-defined. Then, since the composition of any isogeny
with its dual results in an endomorphism of the starting curve, our method of
inverting a given mask yields the same j-invariant regardless of the starting r or
masking index i. Also, the semi-commutative property of our structure follows
from the semi-commutative property of isogenies of co-prime degrees. Finally,
the required efficiency of the computations for Mp follows from the comments
above regarding the computation of isogenies of smooth degrees and expression
of points in arbitrary torsion bases. Equality in X and Mi and membership in
X are immediate to check. ut

4.3 Computational Problems

The problem landscape of the SIDH setting is still currently undergoing in-
tense study from the community. Urbanik and Jao [37] have proposed a detailed
presentation and study of the analogues of the discrete logarithm and CDH
problems that arise from the SIDH key-exchange of De Feo, Jao and Plût [17].
Galbraith and Vercauteren also have written a survey of these problems [25],
with a stronger focus on the mathematics of isogenies of elliptic curves.

Here we frame Urbanik and Jao’s discussion of these problems in [37, Section
4] in our setting that uses n distinct small primes `i. Whilst we give a very
general presentation, in practice the OT scheme presented in this paper will
only require n = 2, as in the case of the SIDH key-exchange. Our second OT
protocol (described in the full version) will require n = 3, which constitutes only
a small extension of the original setting.

The isogeny problem. In its simplest form, the intuition behind the security
of isogeny-based cryptography is that it is hard to compute a hidden isogeny, up
to isomorphism, when given only the initial and final j-invariants. The general
isogeny problem can be stated as follows.

Definition 4 (General isogeny problem [25, Definition 1]). Given j-
invariants j, j′ ∈ Fp2 , return an isogeny φ : E −→ E′ (if it exists), where
j(E) = j and j(E′) = j′.

Given that the elements of X in the masking structure Mp are the super-
singular j-invariants of Fp2 and that the elements of the masking sets Mi can
be uniquely identified with isogenies between isomorphism classes, it would first
seem that the Demask problem forMp can be instantiated as the general isogeny
problem of Definition 4. To recover some commutative structure, however, we
have to reveal the images of the bases of the torsion points. This constitutes sig-
nificantly more information and therefore is conjectured to be an easier problem
to solve [24, 33, 25, 29].

12



Additional information. This has led to the definition in the literature of a
specific SIDH problem. Here we merge the definitions of [25] and [37] for the
case of n = 2 small primes in the composition of p.

Definition 5 (2-i-isogeny problem [25, Def. 2][37, Prob. 4.1]). Let i ∈
{1, 2} and let (E,P1, Q1, P2, Q2) be such that E/Fp2 is a supersingular curve and
Pj , Qj is a basis for E[`

ej
j ] for j ∈ {1, 2}. Let E′ be such that there is an isogeny

φ : E −→ E′ of degree `eii . Let P ′j , Q
′
j be the images under φ of Pj , Qj for j 6= i.

The 2-i-isogeny problem, is, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j), to determine

an isogeny φ̃ : E −→ E′ of degree `eii such that P ′j = φ̃(Pj) and Q′j = φ̃(Qj).

This definition leads to the following natural generalisation which we show cor-
responds exactly to the computational problem that we need.

Definition 6 (n-i-isogeny problem). Let n be an integer, i ∈ {1, . . . , n} and
let (E, {Pj , Qj}nj=1) be a tuple such that E/Fp2 is a supersingular curve and

Pj , Qj is a basis for E[`
ej
j ] for j ∈ [n]. Let E′ be such that there is an isogeny φ :

E −→ E′ of degree `eii . Let {P ′j , Q′j} be the images under φ of {Pj , Qj} for j 6= i.
The n-i-isogeny problem, for i ∈ [n], is, given (E, {Pj , Qj}nj=1, E

′, {P ′j , Q′j}j 6=i),

to determine an isogeny φ̃ : E −→ E′ of degree `eii such that P ′j = φ̃(Pj) and

Q′j = φ̃(Qj) for all j 6= i.

Lemma 2. Let p = `e11 `
e2
2 · · · `enn · f ± 1 be a prime and let Mp be a masking

structure as defined in Definition 3. Then the Demask problem for Mp is an
instance of the n-i-isogeny problem.

Proof. The specification of i in (i, r, rx) together with the random mask µx sat-
isfies the promise of existence of an isogeny φ of degree `eii . Also, By definition of
Rx for each x ∈ X for Mp, the representative rx contains exactly the informa-
tion of the curve E′ together with the images of the appropriate torsion points.
We note that rx does not contain additional information as the basis points of
E′[`eii ] are derived deterministically from E′. ut

Computational SIDH. The isogeny problems defined above can be viewed
as the analogues of the discrete logarithm problem of computing an unknown
exponent in the general case and in the specific SIDH setting. This naturally
leads to an analogue of the CDH problem which is defined as follows in the case
of n = 2.

Definition 7 (2-computational SIDH problem [37, Problem 4.3]). Let
E,EA, EB be supersingular curves such that there exist isogenies φA : E −→ EA
and φB : E −→ EB with kernels KA and KB and degrees `e11 and `e22 respectively.
Let P1, Q1 and P2, Q2 be bases of E[`e11 ] and E[`e22 ] respectively, and let P ′1 =
φB(P1), Q′1 = φB(Q1) and P ′2 = φA(P2), Q′2 = φA(Q2) be the images of the
bases under the isogeny of coprime degree. The 2-computational SIDH problem
is, given (E,P1, Q1, P2, Q2, EA, P

′
2, Q

′
2, EB , P

′
1, Q

′
1), to identify the isomorphism

class of the curve E/〈KA,KB〉.

13



This problem can also be generalised in a natural way to the following which
then yields the appropriate instantiation for our structure.

Definition 8 (n-i, j-computational SIDH problem). Let E,EA, EB be su-
persingular curves such that there exist isogenies φA : E −→ EA and φB : E −→
EB with kernels KA and KB and degrees `eii and `

ej
j respectively with i 6= j. Let

{Pk, Qk} be bases of E[`ekk ], for k ∈ [n], and let PAk = φA(Pk), QAk = φA(Qk),
for k 6= i, and PBk = φB(Pk), QBk = φB(Qk), for k 6= j be the images of the bases
under the isogeny of coprime degree. The n-i, j-computational SIDH problem,
for i, j ∈ [n], is, given (E, {Pk, Qk}k∈[n], EA, {PAk , QAk }k 6=i, EB , {PBk , QBk }k 6=j),
to identify the isomorphism class of the curve E/〈KA,KB〉.

Lemma 3. Let p = `e11 `
e2
2 · · · `enn · f ± 1 be a prime and let Mp be a masking

structure as defined in Definition 3. Then the Parallel problem for Mp is an
instance of the n-i, j-CSIDH problem.

Proof. As for Lemma 2, the specification (i, j, r, rx, ry) of the Parallel problem for
Mp satisfies the promise of existence of the two isogenies of coprime degrees and
contains all the required information on the images of the torsion bases. Also,
the goals of the problems agree since the solution to the Parallel problem forMp

requires z ∈ X which is exactly the j-invariant which identifies the isomorphism
class uniquely. Again, rx and ry do not contain additional information since the
bases for the ith and jth torsion groups are computed deterministically. ut

Regarding the ParallelInv problem for Mp, we do not have an immediate reduc-
tion to the Parallel problem. We discuss this in comparison to the instantiation
from hard homogeneous spaces and also an interesting subtlety in the definitions
of the CDH problem in the full version of this work. We nonetheless conjecture
that, as they are very similar, the hardness of the ParallelInv problem is close to
that of the Parallel problem. We similarly conjecture that the hardness of the
ParallelEither and ParallelBoth problems is comparable to that of the Parallel and
ParallelInv problems as no additional information is revealed and only similarly
hard-to-compute solutions are required.

Decisional SIDH. Galbraith and Vercauteren also formalise a decisional vari-
ant of the SIDH problem in the case of n = 2.

Definition 9 (2-i-decisional SIDH problem [25, Definition 3]).
Let (E,P1, Q1, P2, Q2) be such that E/Fp2 is a supersingular curve and Pj , Qj
is a basis for E[`

ej
j ] for j ∈ {1, 2}. Let E′ be an elliptic curve and let P ′j , Q

′
j ∈

E′[`
ej
j ] for j 6= i. Let 0 < d < ei. The 2-i-decisional SIDH problem is, given

(E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j , d) for j 6= i, to determine if there exists an isogeny

φ : E → E′ of degree `di such that φ(Pj) = P ′j and φ(Qj) = Q′j.

As for the computational problems, we can generalise the above problem to our
setting.

14



Definition 10 (n-i-decisional SIDH problem). Let (E, {Pj , Qj}j∈[n]) be such
that E/Fp2 is a supersingular curve and Pj , Qj is a basis for E[`

ej
j ] for j ∈ [n].

Let E′ be an elliptic curve and let P ′j , Q
′
j ∈ E′[`

ej
j ] for j 6= i. Let 0 < d < ei. The

n-i-decisional SIDH problem is, given (E, {Pj , Qj}j∈[n], E′, {P ′j , Q′j}j 6=i, d), to

determine if there exists an isogeny φ : E → E′ of degree `di such that φ(Pj) = P ′j
and φ(Qj) = Q′j for j 6= i.

Whilst we do not have an equivalence between the IND-Mask experiment and
the n-i-DSIDH as presented above, we see that an oracle for the latter with
d = ei is sufficient to obtain a noticeable advantage against the former. Also, it
would seem that our IND-Mask experiment corresponds to a worst case of the
n-i-DSIDH as it uses a maximal degree of d = ei. Given the state of the art in
cryptanalysis for these problems, we conjecture that the IND-Mask problem for
Mp is not significantly easier than the n-i-DISDH for the same parameters.

As hinted at in Note 1, the Weil pairing is in fact a useful tool against the
IND-Mask experiment. Indeed, if the adversary had free control over the values r0
and r1 of the experiment, it could give two representatives whose basis points of
the same torsion group evaluated to different values under the Weil pairing. This
difference would be preserved under the secret masking action of the experiment
and this would enable it to win trivially. Restricting the adversary’s input to be
a single representative r and two masks that determine r0 and r1 and preserve
the values of Weil pairing on the points of r thus prevents this strategy.

Security analysis. As mentioned above, one of the main advantage of the
SIDH approach as opposed to the hard homogeneous space approach (including
CSIDH) is that no sub-exponential attack is known on the SIDH protocol, even
using a quantum computer. On the other hand in the SIDH protocol, the action
of the secret isogeny on a large torsion subgroup is revealed. A paper by Pe-
tit [33] and a recent follow-up work by Kutas et al. [29] show how to exploit this
additional information to break variants of the SIDH protocol with unbalanced
parameters or weak starting curves.

More precisely, let N1 ≈ pα be the degree of the isogeny to compute, and let
N2 ≈ pβ be the order of torsion points images revealed in the protocol. The orig-
inal SIDH protocol uses α ≈ β ≈ 1

2 , but [33] and [29] describe a generalization to
any coprime, power-smooth values N1, N2. Under some parameter restrictions
and heuristic assumptions, the best attack in [29] computes the isogeny in classi-
cal polynomial time assuming β > 2α > 2 or β > 3α > 3/2. Furthermore, Kutas
et al. show an attack requiring only β > 2α (with no lower bound on α) when
the protocol uses a weak starting curve.

In our instantiation above, for any i one can fix α = ei log `i and β =∑
j 6=i ej log `j . We also have α + β ≤ 1 so the first attack in [33] and its im-

provement in [29] does not apply if the starting curve is not weak. The second
attack of [33], however, applies whenever the number n of factors `i is larger than
O(ei log `i) for some i. The second one from [29] applies if any starting curve is
weak. The notion of weak however depends on p, α, β and the chosen curve so
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Fig. 5: Sketch of the Shamir three-pass OT protocol and the final variant

choosing correct parameters (as those chosen in SIDH are) prevents this from
happening.

One may fear that these attacks will get improved over time, leading to
further restrictions on n. We note that n = 3 is sufficient to instantiate our
OT protocols. Moreover, the protocol we describe in this paper could be even
instantiated with n = 2. We note also that n = 2 in our construction corresponds
to the SIDH protocol parameters, so our semi-commutative masking construction
with n = 2 will remain secure as long as SIDH remains secure.

5 Oblivious Transfer Protocol from Semi-Commutative
Masking

In this section we construct an OT protocol from a semi-commutative mask-
ing structure M. We prove its UC security for passive adversaries with static
corruptions in the FRO-hybrid model assuming that M is IND-Mask-secure and
that the ParallelEitherM problem is hard.

Motivation. Our OT protocol is inspired by the two-party Shamir three-pass
protocol for secure message transmission shown in Figure 5a (ignoring the ele-
ments in square brackets), also known as the Massey-Omura encryption scheme.
Here, Alice’s input is a message g together with a secret mask a and Bob’s input
is another secret mask b. To transmit g, Alice first sends ga to Bob who replies
by masking it as gab. Now Alice removes her mask and replies with gab/a = gb

to Bob who then inverts b and recovers g. This protocol can be modified to yield
an OT protocol by including the elements in square brackets; this was proposed
by Wu et al. [40].

Alice, acting as Sender, now has two inputs g0 and g1 and masks both with a
to send ga0 , ga1 to Bob, the Receiver. In addition to his mask b, Bob now also has
a choice bit c ∈ {0, 1} and he replies to Alice with (gac )b. They then continue as
before until Bob recovers gc. The intuition for security is that the mask a cannot
be deduced from either ga0 or ga1 and therefore the first message hides both of
Alice’s inputs from Bob. Also when Bob applies his own mask to one of the two
messages, this hides his input bit c from Alice who does not know b.

16



Protocol Π1
OT

Parameter: length n of the PS ’s input strings.
Sender’s Input: m0,m1 ∈ME .
Receiver’s Input: c ∈ {0, 1}.
Common inputs: Arbitrary x0 6= x1 ∈ X together with r0 ∈ Rx0 , r1 ∈ Rx1 are
shared and re-used for every instance of the protocol; an instance of the random
oracle ideal functionality FRO : {0, 1}λ → KE .

OT1 (Receiver 1)

– Sample β
$←−MB uniformly at random.

– Compute rβc := β(rc) and β−1 ∈MB .
– Send rβc to PS .

OT2 (Sender 1)

– Sample α
$←−MA and compute rαb := α(rb) ∈ Rxα

b
, b ∈ {0, 1}

– For b ∈ {0, 1}, call FRO twice on input xαb obtaining kb, and compute
eb ← Enc(kb,mb)

– Compute rαβc := α(rβc )
– Send (rαβc , e0, e1) to PR.

OT3 (Receiver 2)
– Compute rαc := β−1(rαβc ) and kR := FRO(xαc ) where rαc ∈ Rxαc .
– Return mc := Dec(kR, ec).

Fig. 6: The protocol Π1
OT for realizing FOT from semi-commutative masking.

We remove the need to apply the inverse mask 1/a to gabc since Alice’s igno-
rance of c makes this impossible for general semi-commutative masking schemes
due to the definition of inverse masks. In our new (discrete logarithm based) vari-
ant, the elements g0 and g1 are common to both parties. Rather than using a to
send ga0 , g

a
1 to Bob (the Receiver), Alice (the Sender) does not go first. Instead,

Bob first communicates his masked choice gbc , and then Alice applies her mask
a and replies with gabc . At that moment, she also computes ga0 , g

a
1 internally. She

then uses these internal values to derive two symmetric keys k0 and k1. Those
are used to encrypt Alice’s actual OT inputs m0 and m1 as two ciphertexts e0
and e1 which she sends alongside gabc . This allows Bob to recover gac and hence
decrypt ec to recover mc. As g0 and g1 are now established once and re-used
for every instance of the protocol, this allows the flows to have only two passes
rather than three. Figure 5b abstracts the symmetric encryption and only shows
the flows that lead to Bob receiving the value gac .

Construction. We now formally define our OT protocol from semi-commutative
invertible masking schemes. LetM = {X,RX , [MA,MB ,MC ]} be an SCM struc-
ture with three masking sets; let E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} be a
symmetric encryption scheme and let FRO be an instance of the RO ideal func-
tionality with domain D = X and range R = KE . The protocol Π1

OT is formally
defined in Figure 6.
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As described above, the idea of the protocol is that both the sender, PS ,
and receiver, PR, have as common input arbitrary elements x0 6= x1 ∈ X along
with representations r0 ∈ Rx0 , r1 ∈ Rx1 . In the first pass, PR takes a random
mask β ∈ MB and sends rβc = β(rc) to PS , where c is its choice bit. In the
second pass, PS samples a random mask α ∈ MA and computes rα0 = α(r0)
and rα1 = α(r1). These elements uniquely determine xαb ∈ X, b ∈ {0, 1}. Thus
the sender can compute two private keys kb, b ∈ {0, 1} (by invoking twice the
random oracle functionality FRO on input xαb ) and encrypt its input messages
m0,m1 accordingly. PS then sends the ciphertexts eb ← Enc(kb,mb), b ∈ {0, 1},
and rαβc = α(rβc ) to PR. The receiver has now all the information needed to
recover the message mc corresponding to its choice bit: it can apply the inverse
β−1 to rαβc using the semi-commutativity of M, so that

β−1(rαβc ) = β−1(α(rβc )) = β−1(α(β(rc))) ∈ Rxαc ,

and recover kc = FRO(xαc ). This easily implies correctness of the scheme. Security
is given by the following theorem. We give the proof in the full version and
provide a sketch below.

Theorem 1. The protocol Π1
OT of Figure 6 securely UC-realizes the function-

ality FOT of Figure 1 in the FRO-hybrid model for semi-honest adversaries and
static corruptions, under the assumption that E is IND-CPA-secure, that M is
IND-Mask-secure and that the ParallelEitherM problem is hard.

Proof (sketch). We proceed by cases based on the honesty of each party. When
both parties are corrupt, the simulator observes all the inputs and provides a
perfect simulation. When only the receiver is corrupt, we build a reduction from
a successful distinguishing environment first to the ParallelEither problem (by
replacing k1−c with a random one) and then to the IND-CPA security of E (by
replacing m1−c with a random one). When only the sender is corrupt we build a
reduction to the IND-Mask security ofM. When no party is corrupt, we combine
the two previous reductions to simulate a protocol transcript without knowledge
of c,m0 and m1.

6 Active Secure Two-round OT from Commutative
Masking

We now show how to compile our 2-round OT protocol Π1
OT, described in Sec-

tion 5, to a 2-round maliciously UC-secure protocol using the generic transfor-
mations introduced by Döttling et al. [18].

6.1 Additional OT Security Notions

A 2-round OT protocol with public setup consists of four algorithms (Setup,
OT1,OT2,OT3) such that:

– Setup(1λ) generates a public input pin.
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– OT1(pin, c), where c ∈ {0, 1} is the PR choice bit, outputs (st, ot PR)
– OT2(pin, ot PR,m0,m1), where m0,m1 are the sender’s input messages, out-

puts ot PS
– OT3(st, ot PS) outputs mc

First we need to recall some security notions [18] for the receiver PR and the
sender PS . The first definition states that PS should not learn anything about
PR’s choice bit c.

Definition 11 (Receiver’s indistinguishability security). For every PPT
adversary A:

|Pr[A(pin,OT1(pin, 0)) = 1]− Pr[A(pin,OT1(pin, 1)) = 1]| = negl(λ),

where pin is the public output of the setup phase.

The next definition concerns the security of the sender; it states that PR
cannot compute both secret values y0 and y1 used by OT2 to protect m0 and
m1, but not necessarily in the same experiment.

Definition 12 (Sender’s search security). Let A = (A1,A2) be an adversary

where A2 outputs a string y∗. Consider the following experiment Exppin,ρ,wsOT (A),
indexed by a pin, random coins ρ ∈ {0, 1}λ and a bit w ∈ {0, 1}.

1. Run (ot PR, st)← A1(1λ, pin; ρ).

2. Compute (ot PS , y0, y1)
$←− OT2(pin, ot PR).

3. Run y∗ ← A2(st, ot PS , w) and output 1 iff y∗ = yw.

We say that A breaks a scheme’s Sender’s search (sOT) security if there exists
a non-negligible function ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0sOT (A) = 1] > ε and Pr[Exppin,ρ,1sOT (A) = 1] > ε] > ε,

where pin
$←− Setup and ρ

$←− {0, 1}λ.

6.2 Two rounds OT with Active UC-Security

We provide an intermediary result which enables us to use the general compiler
from [18] to get an actively secure 2-round OT protocol starting from Π1

OT. First
we introduce and discuss a new security assumption derived from the Parallel
problem but more suited to active adversaries. Then we show that our protocol
satisfies the security notions of Definitions 11 and 12. Finally, by applying the
general transformations from sOT to UC OT described in [18], we obtain a fully
UC-secure two-round OT protocol. We note that we are able to remove the
random oracle from our protocol to achieve sOT security; therefore the resulting
OT protocol requires only the CRS. We define our new computational problem
as follows.
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Definition 13 (ParallelDouble). Given (i, j, r, rx0
, rx1

, ry) with the promise that

i 6= j and that rxb
= µxb

(r), b ∈ {0, 1} and ry = µy(r) for random µxb

$←− Mi

and µy
$←− Mj, and given a one-time access to an oracle Oy which, when given

r ∈ R returns µy(r), compute z0, z1 ∈ X such that both µxb
(ry) ∈ Rzb .

The instantiation of this problem in the discrete logarithm case is, when given
(g, ga, gb, gc) and a one-time access to an exponentiation-by-c oracle, to return
both gac and gbc. For practical efficiency, it is also desirable that ga and gb remain
constant across multiple instances of the ParallelDouble problem, with only gc

being randomly sampled in each instance. This version of the problem is similar
to the one-more static CDH problem where an adversary has to successfully
compute one more CDH challenge than it was able to ask from a helper oracle [9].

Security of the Π1
OT protocol. We then prove that protocol Π1

OT achieves Re-
ceiver’s indistinguishability and Sender’s search security.

Proposition 1. The protocol Π1
OT in Figure 6 satisfies computational receiver’s

indistinguishability security and sender’s sOT security under the assumption that
M is IND-Mask-secure and that the ParallelDoubleM problem is hard.

Proof. Receiver’s indistinguishability follows from the IND-Mask-security assump-
tion. By setting the public inputs r0 and r1 in Π1

OT as they are computed in the
IND-Mask experiment, the random mask µ is distributed in the same way as the
mask β in OT1. Therefore if an adversary breaks the receiver’s indistinguisha-
bility for Π1

OT, this can be reduced to a solution to the IND-Mask problem.

Sender’s search security. To prove sOT security for Π1
OT we assume the existence

of an adversary A = (A1,A2) and a non-negligible ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0sOT (A) = 1] > ε and Pr[Exppin,ρ,1sOT (A) = 1] > ε] > ε,

and we build a reduction B that is given a ParallelDouble challenge (i, j, r, rx0
, rx1

,
ry) with access to an oracle Oy (Definition 13). Instead of running Setup to

generate r0 and r1, B sets r0 ← rx0 and r1 ← rx1 ; also B samples ρ
$←− {0, 1}λ.

As this ensures that pin is distributed identically to the output of Setup, pin and
ρ are good for A with probability at least ε.

After B runs A1, which outputs (ot PR, st), it queries the oracle to obtain
ot PS,0 ← Oy(ot PR). It also computes ot PS,1 ← µ(ot PS,0) for a random
µ ∈ Mk with i 6= k 6= j; it also computes µ−1. Then, for w ∈ {0, 1}, B runs
y∗w ← A2(st, ot PS,w, w) and updates y∗1 ← µ−1(y∗1). Finally B returns y∗0 and
the updated y∗1 as the ParallelDouble answer.

Since Pr[Exppin,ρ,0sOT (A) = 1] > ε and Pr[Exppin,ρ,1sOT (A) = 1] > ε, with prob-
ability ε2, A2 is successful for both inputs (st, ot PS,0, 0) and (st, ot PS,1, 1) as
the two messages are made independent by B’s addition of µ. If this happens,
then y∗0 is exactly one of the answers, and the update of y∗1 by B removes the
extra mask µ and means that y∗1 is then the other answer to the ParallelDouble
problem. Hence B is successful with probability at least ε3.
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Theorem 2. Under the assumption that M is IND-Mask-secure and that the
ParallelDoubleM problem is hard, there exists a 2-round UC-secure OT protocol
constructed from Π1

OT.

Proof. This follows from the transformations and results of [18, Theorems 8, 9,
11, 12, 14, 19 and 21].

Corollary 1. By instantiating the semi-commutative masking scheme, there ex-
ists an actively secure 2-round OT protocol based on supersingular isogenies.

We remark here that the isogeny-based OT protocols proposed by Vitse [38],
while being semantically secure against malicious adversaries, require three rounds
of communication; this implies that they cannot be transformed to achieve two-
round OT with fully UC-security using the work of Döttling et al.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by CyberSecurity Research Flanders with reference number VR20192203,
by the Defense Advanced Research Projects Agency (DARPA) and Space and
Naval Warfare Systems Center, Pacific (SSC Pacific) under contracts No. N66001-
15-C-4070 and No. HR001120C0085, by the FWO under an Odysseus project
GOH9718N and by EPSRC grant EP/S01361X/1

References

1. Adj, G., Ahmadi, O., Menezes, A.: ON ISOGENY GRAPHS OF SUPERSINGU-
LAR ELLIPTIC CURVES OVER FINITE FIELDS. Cryptology ePrint Archive,
Report 2018/132 (2018), https://eprint.iacr.org/2018/132

2. Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: Practical supersingular
isogeny group key agreement. Cryptology ePrint Archive, Report 2019/330 (2019),
https://eprint.iacr.org/2019/330

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Emura, K., Hanaoka, G., Zhang, R. (eds.)
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryp-
tography, APKC. pp. 1–10. ACM (2016)

4. Barreto, P., Oliveira, G., Benits, W.: Supersingular isogeny oblivious transfer.
Cryptology ePrint Archive, Report 2018/459 (2018), https://eprint.iacr.org/
2018/459

5. Barreto, P.S.L.M., David, B., Dowsley, R., Morozov, K., Nascimento, A.C.A.:
A framework for efficient adaptively secure composable oblivious transfer in the
ROM. Cryptology ePrint Archive, Report 2017/993 (2017), http://eprint.iacr.
org/2017/993
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