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On the strong H2 norm of differential algebraic
systems with multiple delays: finiteness criteria,

regularization and computation
Marco A. Gomez, Raphaël M. Jungers, Wim Michiels

Abstract—The H2 norm of an exponentially stable
system described by Delay Differential Algebraic Equa-
tions (DDAEs) might be infinite due to the existence of
hidden feedthrough terms and, as shown in this paper,
it might become infinite as a result of infinitesimal
changes to the delay parameters. We first introduce
the notion of strong H2 norm of semi-explicit DDAEs,
a robustified measure that takes into account delay
perturbations, and we analyze its properties. Next, we
derive necessary and sufficient finiteness criteria for the
strong H2 norm in terms of a frequency sweeping test
over a hypercube, and in terms of a finite number of
equalities involving multi-dimensional powers of a finite
set of matrices. As the main contribution, we present a
strengthened, sufficient, condition for finiteness of the
strong H2 norm, along with an algorithm for checking
it, which has significantly better scalability properties
in terms of both the dimension of the system and the
number of delays. We show that the satisfaction of
the novel condition is equivalent to the existence of a
simultaneous block triangularization of the matrices of
the delay difference equation associated to the DDAE.
The latter is instrumental to a novel regularization
procedure that allows to transform the DDAE to a
neutral type system with the same transfer matrix,
without any need for differentiation of inputs or out-
puts. As we illustrate, this transformation enables for
instance to compute the strong H2 norm using an
established approach grounded in Lyapunov matrices.
Finally, we investigate the conservatism of the sufficient
finiteness condition. We show by a counterexample that
the condition is in general not necessary, inducing open
problems, but we also list several classes of DDAEs for
which it is necessary and sufficient.

Index Terms—H2 norm, time-delay systems, differ-
ential algebraic equations.

I. Introduction
We consider systems described by linear delay-

differential algebraic equations

Ê
d

dt
x(t) = Â0x(t) +

m∑
j=1

Âjx(t− hj) + B̂u(t)

y(t) = Ĉx(t),

(1)
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where x(t) ∈ Rn̂, u(t) ∈ Rni , y(t) ∈ Rno are the state,
input and output at time t, leading matrix Ê ∈ Rn̂×n̂
is possibly singular with rank Ê = r, the other matrices
satisfy Âj ∈ Rn̂×n̂, j = 0, . . . ,m, B̂ ∈ Rn̂×ni , and
Ĉ ∈ Rno×n̂, and 0 < h1 ≤ · · · ≤ hm are the delay
values. By considering the delays in this form we keep the
possibility for delays to have the same value but represent
different physical parameters. For instance, if two delays
h1 and h2 are equal to one delay h but they correspond to
independent physical parameters, then the system should
be defined as Ê d

dtx(t) = Â1x(t − h) + Â2x(t − h). On
the other hand, if they correspond to the same physical
parameter then the system should be defined as Ê d

dtx(t) =
(Â1+Â2)x(t−h). This distinction is important because, as
we shall see, the H2 norm may be sensitive to infinitesimal
delay perturbations.
Systems of the form (1) naturally appear in the modeling
of electronic circuits, mechanical systems with algebraic
constraints and interconnected systems with delays, just to
mention a few [1]–[3]. It should be noted that linear time-
invariant retarded and neutral equations, with discrete
delays inputs, states and outputs, can be expressed in form
(1), see [4], [5]. For the special case r = 0, system (1)
corresponds to a difference equation in continuous time.
System (1) can be explicitly expressed as coupled delay
differential equations and delay difference equations. Con-
sidering matrices

(
U1 U2

)
and

(
V1 V2

)
, which are the

left and right factor of the Singular Value Decomposition
of matrix Ê, respectively, where U1 ∈ Rn̂×r, U2 ∈ Rn̂×n̂−r,
V1 ∈ Rn̂×r, and V2 ∈ Rn̂×n̂−r, we make the following
assumption.

Assumption 1. Matrix UT2 Â0V2 is nonsingular.

Assumption 1 implies that the differentiation index
of (1) is one (a semi-explicit DDAE). If r ≥ 1 then,
premultiplying system (1) by

(
U1 U2

)T , and considering
the change of coordinates

x(t) =
(
V1 V2

)(x1(t)
x2(t)

)
, x1(t) ∈ Rr, x2(t) ∈ Rn,

with n := n̂− r, enable us to rewrite system (1) as

E
d

dt
x1(t) =A(11)

0 x1(t) +A
(12)
0 x2(t) +

m∑
j=1

A
(11)
j x1(t− hi)
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+
m∑
j=1

A
(12)
j x2(t− hj) +B1u(t)

x2(t) =A(21)
0 x1(t) +

m∑
j=1

A
(21)
j x1(t− hj)

+
m∑
j=1

Ajx2(t− hj) +Bu(t)

y(t) =C1x1(t) + Cx2(t),

(2)

where we have assumed without loss of generality that
A

(22)
0 = UT2 Â0V2 = −I. Matrix E = UT1 ÊV1 is invertible

and the other matrices are given by

A
(11)
j =UT1 ÂjV1, A

(12)
j = UT1 ÂjV2,

A
(21)
j =UT2 ÂjV1, Aj = UT2 ÂjV2, j = 0, . . . ,m,

and

B1 = UT1 B̂, B = UT2 B̂, C1 = ĈV1, C = ĈV2.

For r = 0, system (1) can be put in the form (2), where
the differential equation is omitted and x1 is set to zero in
the other equations.

We consider initial functions ϕ for (1) that belong
to the set of Rn̂-valued absolutely continuous functions
AC

(
[−hm, 0],Rn̂

)
and call them consistent if the corre-

sponding initial value problem at t = 0 has at least one
solution [6]. A function x(t, ϕ) is called a (classical) solu-
tion of system (1) if it is absolutely continuous and satisfies
(1) almost everywhere on [0,∞), and x(θ, ϕ) = ϕ(θ) for
θ ∈ [−hm, 0], where ϕ is a consistent initial function. For
a continuously differentiable input function, the space of
consistent initial functions for (1) is given by

X :=
{
ϕ ∈ AC

(
[−hm, 0],Rn̂

)
:

UT2 Â0ϕ(0) +
m∑
j=1

UT2 Âjϕ(−hj) + UT2 B̂u(0) = 0
}
,

which corresponds to the set of initial conditions for
which the second equation in (2) is satisfied at t = 0.
Moreover, for every initial function belonging to X, a
forward solution is uniquely defined [6]–[8].

Definition 1. System (1), with zero input, is exponentially
stable if there exist constant γ > 0 and σ > 0 such that for
all initial condition ϕ ∈ X we have

‖x(t)‖ ≤ γe−σt sup
θ∈[−hm,0]

‖ϕ‖, t ≥ 0.

The H2 norm is an important performance measure in
the field of control theory [9]. For exponentially stable
systems of the form (1), it is defined as

‖G‖H2 :=

√
1

2π

∫ ∞
−∞

Tr(G∗(ıω)G(ıω))dω, (3)

where G is the transfer matrix of system (1), given by

G(s) = Ĉ

sÊ − Â0 −
m∑
j=1

Âje
−shj

−1

B̂.

In contrast to other classes of systems, the H2 norm
of system (1) might be infinite even if the system is
exponentially stable, as the DDAE formulation might hide
a nontrivial feedthrough, and, besides the single delay
case addressed in [10], there does not exist a Lyapunov
matrix based procedure that can be directly applied for the
computation. We illustrate the former with an example.

Example 1. We consider system (1) with m = 1 and
matrices specified as Â0 = −I,

Ê =

1 0 0
0 0 0
0 0 0

 , Â1 =

0 0 0
0 0 0
0 1 0

 , B̂ = ĈT =

1
1
1

 ,

whose transfer function is

G(s) = (s+ 1)−1 + 2− e−sh1 .

The term 2 − e−sh1 corresponds to a (hidden) direct
feedthrough from input to output, which induces an infinite
H2 norm of the system [9]. Indeed, by elimination of
variables, we have ẋ1(t) = −x1(t) + u(t), y(t) = x1(t) +
2u(t) +u(t−h1). In [10], [11], we have proved that the H2
norm is finite if and only if 2− e−sh1 ≡ 0.

We recently showed in [11] that the finiteness of the H2
norm is determined by the condition Ga ≡ 0, where Ga is
the asymptotic transfer function

Ga(s) := C

I − m∑
j=1

Aje
−shj

−1

B,

which describes the asymptotic behavior of G(s) for |s| →
∞ in the half plane <(s) ≥ 0, see [5]. It can be interpreted
as the transfer function of delay difference equation

x2(t) =
m∑
j=1

Ajx2(t− hj) +Bu(t), y(t) = Cx2(t), (4)

obtained by setting x1 = 0 in the second equation of
(2). Obviously, Ga = G if r = 0 in (1). In [11] we
also presented algebraic necessary and sufficient conditions
for determining whether Ga ≡ 0 is satisfied. In order
to recall these results, we rely on matrix polynomials
Pk1,...,km

(A1, . . . , Am), with kj ∈ Z≥0, j = 1, . . . ,m, which
are recursively defined through the following expressions:

P0,...,0(A1, . . . , Am) := I, (5)

Pk1,...,km(A1, . . . , Am) := A1Pk1−1,k2,...,km(A1, . . . , Am)
+A2Pk1,k2−1,...,km(A1, . . . , Am) + . . .+
+AmPk1,k2,...,km−1(A1, . . . , Am)

(6)

and

Pk1,...,km
(A1, . . . , Am) := 0 if any kj ∈ Z<0, j = 1, . . . ,m.

(7)
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For instance, for m = 2 and k1 + k2 ≤ 3, these matrix
polynomials are

P0,0 = I,
P1,0 = A1, P0,1 = A2,
P2,0 = A2

1, P1,1 = A1A2 +A2A1, P0,2 = A2
2,

P3,0 = A3
1, P2,1 = A2

1A2 +A1A2A1 +A2A
2
1,

P1,2 = A1A
2
2 +A2A1A2 +A2

2A1, P0,3 = A3
2.

The main results of [11] can now be stated.

Lemma 1. [11] Let system (1) be exponentially stable.
Assume that the delays (h1, . . . , hm) are rationally inde-
pendent, i.e. the only solution (c1, . . . , cm) of

m∑
j=1

cjhj = 0, ci ∈ Z, i = 1, . . . ,m,

is given by (c1, . . . , cm) = (0, . . . , 0). The following state-
ments are equivalent.

1) The H2 norm of system (1) is finite.
2) Transfer matrix Ga(s) is identically zero.
3) Equation

CPk1,...,km
(A1, . . . , Am)B = 0 (8)

holds for all (k1, . . . , km) ∈ Zm≥0.
4) Equation (8) holds for all (k1, . . . , km) ∈ Zm satisfying∑m

j=1 kj < mn.

It is worthwhile observing the equivalence of Statement
3 and Statement 4, which enables checking the finiteness
of the H2 norm in a finite number of mathematical
operations. At the basis of the equivalence is the m-
dimensional Cayley-Hamilton theorem, a generalization of
the classic Cayley-Hamilton theorem in the sense of a
recursion multiplication formula of a block matrix. We
notice that for the one delay case condition (8) reduces
to

CAk1B = 0, k = 0, 1, . . . , n− 1, (9)

which is indeed the finiteness condition for system (1)
with one delay obtained in [10]. Although the study of
the H2 norm of system (1) has moved forward with the
introduction of Lemma 1, there are still some problems
of practical and theoretical interest, which are the main
focus of this paper.

A first problem is that, as we shall see in Section II,
the H2 norm may be a fragile measure in the sense of
being sensitive with respect to infinitesimal delay per-
turbations. More specifically, the H2 norm might become
infinite under infinitesimal perturbations of the delays. In
order to address this problem, we define the strong H2
norm, a robustified measure, and present conditions for its
finiteness. One of the necessary and sufficient conditions is
found to be the same as condition (8), equivalent to the one
in Statement 4. In the analysis we do not rely anymore on
the assumption of rationally independent delays, which is
restrictive from an application perspective. We also show
that whenever the strong H2 norm is finite, it is equal to
the H2 norm defined by (3).

A second problem is the computational cost of verifying
the finiteness conditions of the H2 norm. Even though
the expression in Statement 4 provides a finite test, the
number of equations scales poorly with respect to the
number of delays m and the dimension n, as we show
at the end of Section II. We tackle this problem by
introducing a novel strengthened, sufficient, condition for
the finiteness of the (strong) H2 norm, along with an
efficient computational test.

A third problem concerns the computation of the H2
norm, whenever it is finite. For the one delay case, the
computation problem has been successfully addressed in
[10] by constructing a neutral type system that has the
same input-output map in the frequency domain whenever
the H2 norm is finite. The construction of such a system
is based on the existence of a transformation matrix that
allows a block triangularization of matrices (A1, B,C) as

(A1, B, C)→
((

A11 0
A12 A13

)
,

(
0
Bc

)
,
(
Cu 0

))
,

whenever condition (9) holds. Following this idea, one
may be tempted to conjecture that the set of matrices
(A1, . . . , Am, B,C) in the multiple delay case admits a
simultaneous block triangularization by a transformation
matrix whenever condition (8) is satisfied. However, as
we shall see, a necessary and sufficient condition for a
simultaneous block-triangularization is the strengthened
sufficient condition previously referred to, which is shown
by a counterexample in Section IV not to be equivalent
to (8), unless additional conditions are put on the coef-
ficient matrices. The simultaneous block-triangularization
of matrices A1, . . . , Am allows us to construct a neutral
type system without derivatives of the input (which would
appear when simply differentiating the second equation of
(2)), enabling us to compute the H2 norm by state-of-the-
art methods.

The remainder of the paper is organized as follows. In
Section II we define and analyze the strong H2 norm
and derive necessary and sufficient conditions for its
finiteness. The strengthened finiteness criterion is intro-
duced in Section III. There we also present an efficient
computational algorithm for checking this criterion, we
provide the construction of the equivalent neutral type
system and we outline computation of the H2 norm via
the so-called delay Lyapunov matrix. In Section IV we
show that the strengthened condition is not equivalent
to the original one, but that in a number of cases the
strengthened condition is necessary and sufficient for the
finiteness of the (strong)H2 norm. We also discuss an open
problem regarding the construction of neutral systems. We
illustrate the results by a numerical example in Section V,
and conclude the paper with some final remarks.

We adopt the following notation. The set of non-
negative integer, natural numbers, and non-negative real
numbers is denoted by Z≥0, Z>0 and R≥0, respectively.
The set of complex numbers is represented by C, and the
imaginary unit by ı. We use ~θ ∈ Rm as short notation
of (θ1, . . . , θm). The Euclidian norm for vectors is denoted
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by ‖ · ‖, and the spectral norm for matrices by ‖ · ‖2. The
notations Im A, rankA and TrA stand for the image, rank
and trace of matrix A, respectively. Finally, in notations as
G(s;~h) the semicolon is used to make distinction between
variables of a function and parameters. The latter are
only displayed when necessary for the understanding of
the statement.

II. Sensitivity with respect to small delay
perturbations and the strong H2 norm

System (1), with zero input, is exponentially stable if
its spectral abscissa

α(~h) := sup
s∈C

<(s) : det

sÊ − Â0 −
m∑
j=1

Âje
−shj

 = 0


is strictly negative, where ~h = (h1, . . . , hm) denotes the
vector of delay values. It is well known that the exponential
stability may be sensitive to infinitesimal perturbations
of the delays. This has led to the introduction of the
concept of strong stability in [4], which generalizes the
corresponding notion for neutral functional differential
equations in [12]. Letting

B(~h, ε) := {~θ ∈ Rm≥0 : ‖~θ − ~h‖ < ε}, (10)

strong stability can be defined as follows.

Definition 2. [4] System (1), with zero input, is strongly
stable if there exists a number ε > 0 such that α(~hε) < 0
for all ~hε ∈ B(~h, ε).

A necessary and sufficient condition for strong stability of
system (1) is that the nominal spectral abscissa α(~h) is
strictly negative, and

max
~θ∈[0, 2π]m

ρ

 m∑
j=1

Aje
ıθj

 < 1, (11)

where ρ(·) is the spectral radius, see [4].
In this section we show that the sensitivity to small

delay perturbations may also carry over to system norms.
Accordingly, we introduce the strong H2 norm and pro-
vide necessary and sufficient finiteness conditions. Sub-
sequently we discuss the computational complexity of
verifying these conditions.

A. The strong H2 norm and finiteness conditions
With the following example we illustrate that the func-

tions

Rm≥0 3 ~h 7→
∥∥∥G(·;~h)

∥∥∥
H2
, and Rm≥0 3 ~h 7→

∥∥∥G(·;~h)
∥∥∥
H∞

,

may not be continuous, even if the system is strongly
stable. Recall that under the assumption of exponential
stability, the H∞ norm of the system (1) satisfies

‖G‖H∞ := sup
ω∈R
‖G(ıω)‖2.

Example 2. We consider system (1), already in the form
(2) with m = 2 and E = 1, A(11)

0 = −10 and matrices
A

(12)
0 =

(
1 1

)
, A(21)

0 =
(
0 0

)T
,(

A
(11)
1 A

(12)
1

A
(21)
1 A1

)
=

 0 0 0
0 1

4 0
0 −1 1

4

 ,

(
A

(11)
2 A

(12)
2

A
(21)
2 A2

)
=

 0 0 0
0 1

8
1
8

0 1 1
8

 ,

(
B1
B

)
=

100
1
0

 ,
(
C1 C

)
=
(

1 0 1
)
.

The system is exponentially stable for all delay values,
and thus strongly stable. The left hand side of (11) is
namely equal to 0.625. Furthermore, due to the tridiagonal
structure, its spectrum consists of eigenvalue s = −10,
supplemented with the spectrum of (4), which is confined
to the open left half plane because (11) is satisfied. We now
analyze its H2 norm from input u to output y. For nominal
delays, i.e. for unperturbed delays, ~h = (1, 1), we regard the
problem as a problem with a single delay. Since it can be
easily verified that

C(A1 +A2)iB = 0, i = 0, 1,

we conclude from Lemma 1, with m = 1 and A1 replaced
by A1 + A2, that the H2 norm from input u to output
y is finite and, accordingly, that the asymptotic transfer
function Ga is identically zero. On the contrary, if we take
any pair (h1, h2) of rationally independent delays and we
apply Lemma 1 with m = 2, we conclude that the H2 norm
is not finite, since

CA1B = −1, CA2B = 1.

In Figure 1 we show in the left the spectral norm of the
transfer function G and in the right the the spectral norm
of the asymptotic transfer function Ga evaluated on the
imaginary axis, for s = ıω. For ~h = (1, 1) there is clearly
no feedthrough from input to output, inducing the finite H2
norm. Let us now consider rationally independent delays
~h = (1, 1 + π/ν) with ν ∈ N. For ν = 50 we see that
functions G and Ga do not tend to zero as ω → ∞. If ν
tends to infinity, the deviation from nominal delays (1, 1)
tends to zero. However, the H2 norms of G and Ga remain
unbounded, while the significant mismatch of the transfer
functions and the corresponding transfer functions for the
limit ~h = (1, 1) only shifts towards higher frequencies. This
is visualized in the figure by comparing the cases where
ν = 50 and ν = 200.

The previous example may suggest that a discontinuity
of the H2 norm can only occur if some of the delay values
are equal to each other. This is, however, not the case, as
demonstrated by the following example.

Example 3. Consider a system of the form
x2(t) = A1x2(t− h1) +A2x2(t− h2) +A3x2(t− h3) +Bu(t),
y(t) = Cx2(t)

rjungers
Texte surligné 
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Fig. 1. Spectral norm of the transfer function (left) and of the
asymptotic transfer function (right) of system in Example 2 as a
function of s = ıω, for three cases: ~h = (1, 1) (top), ~h = (1, 1 +π/50)
(middle) and ~h = (1, 1 +π/200) (bottom). The dashed line indicates
the strong H∞ norm of Ga.

with matrices

A1 =

0 0 0
1
4 0 − 1

4
0 0 0

 , A2 =

0 0 0
0 0 0
0 0 1

8

 ,

A3 =

0 0 0
0 0 1

32
0 0 0

 , B =

1
0
1

 , C =
(
0 1 0

)
.

The characteristic equation is given by

1− 1
8e
−sh2 = 0,

from which we conclude exponential stability for all delay
values. The transfer function of the system is given by

G(s) = Ga(s) = −1
4

(
e−s(h1+h2) − e−sh3

)
8− e−sh2

.

It is clear from this expression that ‖G‖H2 = 0 if and only
if h3 = h1 + h2, while otherwise we have ‖G‖H2 = +∞.
Thus, ‖G‖H2 has a discontinuity at each tuple (h1, h2, h3)
for which

h3 = h1 + h2. (12)

These results are in agreement with Lemma 1, which states
that for rationally independent delays the H2 norm is
infinite, following from CA3B 6= 0.

The possible discontinuity of the system norms brings us
to the following robustified counter parts, which explicitly
take into account infinitesimal delay perturbations. Note
that the strong H∞ norm was already introduced in [13].

Definition 3. The strong H2 and strong H∞ norm of G
are defined as

9G(·;~h)9H2 := lim
ε→0+

sup{‖G(·;~hε)‖H2 : ~hε ∈ B(~h, ε)},

9G(·;~h)9H∞ := lim
ε→0+

sup{‖G(·;~hε)‖H∞ : ~hε ∈ B(~h, ε)},

with B given by (10).

The strong H2 and H∞ norms of Ga are defined in a
similar way. They satisfy the following properties.

Proposition 1. Assume that system (1) is strongly stable.
Then its asymptotic transfer function Ga satisfies

9Ga9H∞ = max
~θ∈[0, 2π]m

∥∥∥∥∥∥∥C
I − m∑

j=1
Aje

−ıθj

−1

B

∥∥∥∥∥∥∥
2

(13)

and
9Ga9H2 =

{
0, if (8) is satisfied,
+∞, otherwise. (14)

Proof. Property (13) is proven in [13], so we focus on (14).
If condition (8) is satisfied, then it is proven in [11] that
Ga is identically zero for any values of the delays, hence,
its strong H2 norm is zero. If (8) is not satisfied, then
by Lemma 1 the H2 norm is equal to infinity for any set
of rationally independent delays, and since the ball B(~h, ε)
contains rationally independent delay values for any ε > 0,
the strong H2 norm of Ga must be equal to infinity as
well.

It is important to point out that the strong norms of
the asymptotic transfer function do not depend on the
delay values. We can now state the corresponding results
for transfer function G.

Proposition 2. If system (1) is strongly stable, then its
transfer function G satisfies

9G(·;~h)9H∞ = max
{
‖G(·;~h)‖H∞ ,9Ga9H∞

}
(15)

and

9G(·;~h)9H2 =
{
‖G(·;~h)‖H2 < +∞, if (8) is satisfied,
+∞, otherwise.

(16)
Furthermore, function Rm≥0 3 ~h 7→ 9G(·;~h)9H∞ is contin-
uous whenever (1) is strongly stable. Function Rm≥0 3 ~h 7→
9G(·;~h)9H2 is continuous whenever (1) is strongly stable
and the strong H2 norm is finite.

Proof. Property (15) and the continuity property of the
strong H∞ norm have again been proven in [13], so we
restrict ourselves in what follows to the H2 norm. First,
from the proof of Proposition 3.3 in [13], which describes
the asymptotic matching of G(ıω) and Ga(ıω) for ω →∞,
we derive that there exists an ε > 0 such that the following
holds: for all γ > 0, there is a ω̂ > 0 such that ‖G(ıω;~τε)−
Ga(ıω;~τε)‖2 < γ for all ~τε ∈ B(~τ , ε) and ω ≥ ω̂. Second,
function ~τ 7→ G(ıω;~τ), is continuous for any ω. Third,
condition (8) implies that the impulse response of system
(1) does not contain impulses [11]. Combining these results
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with (14) directly leads to (16) and it induces the assertion
on continuity of the strong H2 norm.

Example 4. We revisit Example 2 and consider nominal
delay values (h1, h2) = (1, 1). By evaluating (13) - (14)
we arrive at 9Ga9H∞ = 3.88, whose corresponding level
sets are the dashed horizontal lines in Figure 1, as well as
9Ga9H2 = +∞. The maximum in the right-hand side of
(15) is attained by the first term, hence the strongH∞ norm
is reached at a finite frequency, here ω = 0 (see Figure 1).
Obviously, we have 9G9H2 = +∞.

The developments so far were driven by the sensitivity of
the H2 norm with respect to infinitesimal delay perturba-
tions. One may argue that an infinitesimal perturbation to
the system matrices may also induce a change from a finite
to an infinite H2 norm (e.g. the first inequality in (8) reads
as CB = 0, which is fragile with respect to perturbations
to B and C). However, the situation is different. It is easy
to see from (13) that function

(A1, . . . , Am, B,C) 7→ 9Ga(·;~h,A1, . . . , Am, B,C)9H∞

(17)
is continuous whenever the system is strongly stable. Thus,
if the strong H2 norm is finite (implying Ga is identically
zero) and small perturbations to the coefficient matrices
are applied, then by the continuity of (17), ‖Ga(jω)‖2
must remain small at all frequencies ω. From an appli-
cation perspective this could indicate that a perturbation
on the system matrices, rendering the H2 norm infinite,
might correspond to a physically irrelevant perturbation
that creates a non-existing direct link from input to output
(note that in modeling systems in DDAE form, physi-
cal perturbations typically appear as highly structured
perturbation to (1)). On the contrary, in the example
visualized in Figure 1 an infinitesimal perturbation of a
delay changes the H∞ norm of Ga from zero to approxi-
mately 3.88, i.e. significant feedthrough terms are actually
present, but for the nominal delays a kind of “catastrophic
cancellation” takes place, resulting in a finite H2 norm.

The following theorem forms the starting point for the
analysis in the remainder of the paper.

Theorem 1. Assume that system (1) is strongly stable.
The following statements are equivalent.

1) The strong H2 norm of (1) is finite.
2) Condition

C

I − m∑
j=1

Aje
−ıθj

−1

B = 0, (18)

∀(θ1, . . . , θm) ∈ [0, 2π]m, is satisfied.
3) Conditions

CPk1,...,km(A1, . . . , Am)B = 0, (19)

∀(k1, . . . , km) ∈ Zm≥0 s.t.
∑m
j=1 kj < mn are satisfied,

with multi-powers Pk1,...,km(A1, . . . , Am) defined by
(5)-(7).

Furthermore, if the strongH2 norm of (1) is finite, it equals
its H2 norm.

Proof. We first prove the equivalence between the first
two statements. If the strong H2 norm for nominal delays
~h is finite, then there exist rationally independent delays
~t = (t1, . . . , tm) for which the H2 norm is still finite. By
Lemma 1 we also have Ga(ıω;~t) = 0 for all ω ∈ R, or

C

I − m∑
j=1

Aje
−ıωtj

−1

B = 0, ∀ω ∈ R. (20)

In addition, it follows from Kronecker’s theorem that
the set {(e−ıωt1 , . . . , e−ıωtm) : ω ∈ R} is dense in the set{(
e−ıθ1 , . . . , e−ıθm

)
: (θ1, . . . , θm) ∈ [0, 2π]m

}
. The latter

result and (20) imply that (18) is satisfied. For the reverse
implication, we consider a set ~t of rationally independent
delays. From (18) we get Ga(ıω;~t) = 0 for all ω ∈ R.
From this result and the strong stability assumption it
follows that Ga(s;~t) is identically zero. From Lemma 1 we
conclude that (8) is satisfied, and from (16) we conclude
in turn that the strong H2 norm is finite.

The equivalence between the first and the third state-
ment directly follows from Proposition 2.

B. Computational complexity
We conclude the section by discussing the numerical

tractability of the finiteness conditions in Theorem 1.
Criterion (18) is a semi-infinite equality, in the sense that
the equality has to be satisfied for all parameters ~θ in anm-
dimensional hypercube. Due to the nonlinear dependence
on ~θ, a direct evaluation requires a parameter sweep and
a gridding procedure. Using a regular grid with N points
in each direction, the number of equalities to check for the
discretized condition is equal to Nm.

In this context, a main contribution of [11] is that check-
ing the semi-infinite equality can be reduced to checking
a finite number of equalities (19), without introducing
conservatism or an approximation. Let us now assess this
number of equalities. The number of possible combinations
of numbers (k1, . . . , km) ∈ Zm≥0 such that k1 + . . .+km = i,
with prescribed i ∈ Z≥0, can be interpreted as the number
of multisets of cardinality i and underlying set {1, . . . ,m},
and it is given by the multiset coefficient((

m

i

))
=
(
m+ i− 1

i

)
= (m+ i− 1)!

(m− 1)! i! .

Hence, the number of equalities in criterion (8) is equal to
mn−1∑
i=0

((
m

i

))
. (21)

It should also be noted that the number of distinct mono-
mials in Pk1,...,km , for any given (k1, . . . , km) ∈ Zm≥0, equals

(k1 + . . .+ km)!
k1! · · · km! .

Table I illustrates how number (21) behaves with respect
to the dimension n of the delay-difference equation (4)
associated to (1), and the number of the delays m. Thus,
even though we have a finite test for the finiteness of the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2020 7

H2 norm, we notice that the number of equalities still
exhibits a faster than exponential growth with respect to
the number of delays m.

III. A strengthened finiteness condition
In this section we introduce and analyze a strengthened,

sufficient, condition for the finiteness of the strong H2
norm of (1). We provide an algorithm to check this con-
dition and analyze its computational complexity. We also
show how the algorithm is instrumental in transforming
system (1) to a neutral system while avoiding differentia-
tion of the input or output, thereby enabling state-of-the-
art methods for its H2 norm computation.

We consider a matrix multiplication of the form

Aσ1 · · ·Aσk

with k ∈ Z>0 and σi ∈ {1, . . . ,m}, i = 1, . . . , k. We
denote by |σ|i the number of occurrences of i in the finite
sequence σ := {σ1, . . . , σk}. In the matrix polynomial
Pk1,...,km

(A1, . . . , Am) every monomial is of order ki in Ai,
i = 1, . . . ,m, thus, we can express

Pk1,...,km
(A1, . . . , Am) =

∑
σ∈Ωk1,...,km

Aσ1 · · ·Aσk1+...+km

for (k1, . . . , km) 6= (0, . . . , 0), where

Ωk1,...,km := {σ ∈ {1, . . . ,m}k1+...+km :
|σ|i = ki, i = 1, . . . ,m}.

We observe that the strengthened conditions
CB =0,

CAσ1 · · ·Aσk
B =0,∀k ∈ Z>0, ∀σi ∈ {1, . . . ,m},

(22)

i = 1, . . . , k, imply that CPk1,...,km
(A1, . . . , Am)B = 0

for any m-tuple (k1, . . . , km), and, hence, that finiteness
criterion (19) of Theorem 1 is satisfied. Section IV will
further elaborate on the connections between criteria (22)
and (19).

A. An efficient computational test
Let us first define χ0 := Im B and, for k ≥ 1,

χk := span {B} ∪ {Aσ1 · · ·Aσk′B :
1 ≤ k′ ≤ k, σi ∈ {1, . . . ,m}, i = 1, . . . , k′}, (23)

where for the case of multiple inputs (ni ≥ 1) we take the
convention that the span of a set of block vectors is simply
the span of the columns of all the blocks combined. The
finiteness condition (22) can now be rephrased as χk ⊆
Ker C for all k ≥ 0, which implies

dim χk ≤ n− rank(C). (24)

At the same time we can express

χk+1 = χk ∪ {Ajχk : j = 1, . . . ,m} (25)

and it holds that χk is a subspace of χk+1.
If (22) holds and we construct χ0, χ1, . . ., then we

have χi ⊆ Ker C, i = 0, 1, . . ., and because of the

bound (24) and the inclusion χ0 ⊆ χ1,⊆ χ2, . . ., we must
have χı̂ = χı̂−1 for some ı̂ ≤ n − rank C. The latter
implies that χı̂−1 is an (A1, . . . , Am)-invariant subspace
and consequently χk = χı̂−1 for k ≥ ı̂ − 1. Note that
the existence of such an invariant subspace in the kernel
of C is equivalent to (22). On the contrary, if (22) does
not hold and we construct again χ0, χ1, . . . then condition
χk ⊆ Ker C must be broken for some k ≤ n−rank(C). The
argument is by contradiction: if the condition would only
be broken for some bigger value of k or not be broken at
all, then we must have χi = χi−1 ⊆ Ker C for some i < k,
which would imply that (22) is satisfied. Algorithm 1 is
based on these ideas.

Algorithm 1 Finiteness condition
Input: Matrices (A1, . . . , Am, B, C), tolerance η
Output: Certificate cond for the satisfaction of con-

dition (22)

1: Let B = (U0 Ũ0)
(

Σ0,1
Σ0,2

)(
V T0
Ṽ T0

)
be a re-

duced singular value decomposition
2: with ηI < Σ0,1 and Σ0,2 ≤ ηI
3: Set U0 = U0
4: for i = 1 to n do
5: if ‖CUi−1‖2 > η then cond=FALSE break
6: end if
7: Set Z = (A1Ui−1 A2Ui−1 · · · AmUi−1)
8: Set Z =

(
I − Ui−1UTi−1

)
Z

9: if ‖Z‖2 ≤ η then cond=TRUE break
10: end if
11: Let Z = (Ui Ũi)

(
Σi,1

Σi,2

)(
V Ti
Ṽ Ti

)
be a

reduced singular value decomposition
12: with ηI < Σi,1 and Σi,2 ≤ ηI
13: Set Ui = (Ui−1 Ui)
14: end for

Let us analyze the algorithm at this point in the (hy-
pothetical) case where all computations can be done in
exact arithmetic, which allows us to set the tolerance η to
zero. The following proposition relates matrices Ui with
subspaces χi.

Proposition 3. If all operations in Algorithm 1 are done
in exact arithmetic and η = 0, then we have

Im Ui = χi, ∀i ≥ 0.

Proof. It is easy to see that it holds for i = 0 and i = 1.
Furthermore we have by induction from i− 2 and i− 1 to
i, with i ≥ 2,
χi = χi−1 ∪ {Ajχi−1 : j = 1, . . . ,m}

= χi−1 ∪ {Im AjUi−1 : j = 1, . . . ,m}
= χi−1 ∪ {Im Aj [Ui−2 Ui−1] : j = 1, . . . ,m}
= χi−1 ∪ {Ajχi−2 ∪ Im AjUi−1 : j = 1, . . . ,m}
= χi−1 ∪ {Im AjUi−1 : j = 1, . . . ,m}
= Im Ui−1 ∪ {Im Z}
= Im [Ui−1 Ui] = Im Ui,

which completes the proof.
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m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9
n = 4 36 364 3876 42504 475020 5379616 61523748 708930508
n = 5 55 680 8855 118755 1623160 22481940 314457495 4431613550
n = 6 78 1140 17550 278256 4496388 73629072 1217566350 20286591270
n = 7 105 1771 31465 575757 10737573 202927725 3872894697 74473879480

TABLE I
Number of equalities (21) to be verified for assessing the finiteness of the H2 norm of (1) by criterion (19), for different

values of n and m.

In steps 7-10 we test whether the space spanned by
the columms of Ui−1 is (A1, . . . , Am)-invariant. Because
of property (25) it is sufficient, and more efficient, to
apply A1, . . . , Am only to the vectors added in the previous
iteration, which is done in line 7. Then we have to check
whether or not Im Z ⊆ Im Ui−1. For this we replace Z in
line 8 by its projection on the orthogonal complement of
Ui−1. If the space Ui−1is invariant then we necessarily have
Z = 0. If it is not, then we only add the directions to Ui−1,
which are not yet present in Im Ui−1, when we expand Ui−1
to Ui in line 13. With the singular value decompositions in
line 1 and line 11 we remove redundant information: the
columns of U0 in line 1 form a minimal orthogonal basis
of the column space of B, while in line 13 the columns of
Ui form a minimal orthogonal basis for the column space
of Z.

If there is no break in iterations 1, . . . , i, then we have

rank Ui > rank Ui−1 > · · · > rank U0 = rank B,

while rank Ui−1 ≤ n − rank C. This means that the
number of iterations before termination is bounded by
n − rank B − rank(C) + 1. Let us now assess the two
termination conditions.
• If the algorithm terminates in line 9 for iteration ı̂,

then we recall that χı̂−1 is an (A1, . . . , Am)-invariant
space. At the same time, as the condition in line 5 is
not satisfied for i = 1, . . . , ı̂, we have χı̂−1 ⊆ ker C.
These two properties correspond to condition (22).

• If the algorithm terminates in line 5 for iteration ı̂,
then there exists a vector in χi−1 = Im Ui−1 which
does not belong to the kernel of C, violating condition
(22).

Finally, if the algorithm terminates in iteration ı̂ with
cond=TRUE or in iteration ı̂+1 with cond=FALSE, then
we must have k0 + k1 + . . . + k̂ı−1 ≤ n − rank C with
ki = rank Ui. Consequently, the number of matrix-vector
products involving A1, . . . , Am is bounded by

m(n− rank C). (26)

When computing in finite precision arithmetic and ac-
counting errors on the system data, the check CUi−1 = 0
in line 5 is done up to some prescribed tolerance η > 0. It
should also be taken into account that the rank of a matrix
is fragile, in the sense of being sensitive to infinitesimal
perturbations to it. Therefore, tolerance η is also used to
determine numerically the rank of matrices B and Z in
lines 1 and 11, and their corresponding truncations to U0
and Ui. It is important to point out that the bound on
the number of matrix-vector products (26) remains valid

(an over-estimation of the rank would affect numbers ki
but not the bound, (26) itself). It scales linearly with both
n and m, which is a major improvement with respect to
(21), which merely concerns the number of (complicated)
equalities (8).

B. Simultaneous block triangularization and computation
of the H2 norm

We provide a Lyapunov matrix based formula for com-
puting the H2 norm (3). Inspired by the one delay case
[10], we introduce a neutral type system whose transfer
matrix is equivalent to transfer matrix G of system (2)
(in the sense of forthcoming Theorem 2), whenever the
strengthened finiteness condition (22) holds. This allows
us to directly apply previous results on the computation
of the H2 norm for neutral systems [14].

The following key lemma shows that a necessary and
sufficient condition for the existence of a transformation
that simultaneously brings matrices A1, . . . , Am, B and C
to their corresponding controllable/observable canonical
form is given by condition (22).

Lemma 2. Let system (1) with r < n be strongly stable,
and B 6= 0 and C 6= 0. There exists a matrix Tc ∈ Rn×n
such that

T−1
c AjTc =

(
Aj1 0
Aj2 Aj3

)
, j = 1, . . . ,m,

T−1
c B =

(
0
Bc

)
, CTc =

(
Cu 0

) (27)

if and only if condition (22) holds. Here, the location of
separation is uniform over the matrices, Bc ∈ Rr2×ni , and
Cu ∈ Rno×r1 with r1 + r2 = n.

Proof. The forward implication is trivial. Indeed, it follows
from the structure of matrices in (27) that condition (22)
holds. Therefore we focus on the reverse implication in
what follows.

Let χk be defined as in (23). Condition (22) implies that
χk ⊆ Ker C for all k ∈ Z≥0. Recall that if χk = χk+1,
then χk = χk′ for all k′ ≥ k. Thus, there exists k ≤ n −
rank C such that χk̄ is an (A1, . . . , Am)-invariant subspace
of Ker C. Define matrix

Tc :=
(
Tc1 Tc2

)
,

such that the columns of Tc2 form an orthogonal basis of
χk̄, and the columns of Tc1 an orthogonal basis of its or-
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thogonal complement χ⊥
k̄

. By the (A1, . . . , Am)- invariance
of χk̄ we have

T−1
c AjTc = TTc AjTc =

(
Aj1 0
Aj2 Aj3

)
, j = 1, . . . ,m,

and we also have, since Im B ⊆ χk̄ ⊆ Ker C,

T−1
c B =

(
0
Bc

)
, and CTc =

(
Cu 0

)
.

which completes the proof.

Under assumption that condition (22) holds and with
the rank of E satisfying r ≥ 1, we construct the following
neutral type system:

d

dt

 m∑
j=0
Djz(t− hj)

 =
m∑
j=0
Ajz(t− hj) + Bu(t)

y(t) =Cz(t),

(28)

where h0 = 0, zT (t) =
(
xT1 (t) ξT (t)

)
, ξ(t) = T−1x2(t),

D0 =
(

E A
(12)
0 TQ2

Q1T
−1A

(21)
0 I

)
,

Dj =
(

0 A
(12)
j TQ2

Q1T
−1A

(21)
j Q1T

−1AjT + T−1AjTQ2

)
,

A0 =
(

A
(11)
0 A

(12)
0 T

T−1A
(21)
0 −I

)
, Aj =

(
A

(11)
j A

(12)
j T

T−1A
(21)
j T−1AjT

)
,

where j = 1, . . . ,m,

BT =
(
BT1 0 BTc

)
, C =

(
C1 Cu 0

)
,

with

Q1 = −
(
Ir1 0
0 0

)
, and Q2 = −

(
0 0
0 Ir2

)
,

and r1 and r2 as in Lemma 2. Matrix T = Tc, with Tc
inducing (27) and specified in the proof of Lemma 2, if
B 6= 0 and C 6= 0, otherwise T is considered as an arbitrary
nonsingular matrix. If B = 0, then r2 = 0 and Q2 = 0,
and if C = 0, then r1 = 0 and Q1 = 0.

We observe that, since Q2Q1 = 0, we have
A

(12)
0 TQ2Q1T

−1A
(21)
0 = 0, which implies that

detD0 = detE 6= 0,

and system (28) is regular. For the special case r = 0,
where (1) reduces to a delay-difference equation, all blocks
in the matrices of (28) corresponding to partial state x1
should be removed.

The transfer matrix of the neutral type system is given
by

G(s) := CH−1(s)B,

where
H(s) = s

m∑
j=0
Dje−shj −

m∑
j=0
Aje−shj ,

and its spectrum by

Λn := {s ∈ C : detH(s) = 0} .

In the following theorem, we correlate the transfer
matrices and spectra of system (28) and system (1).

Theorem 2. If system (1) is strongly stable and condition
(22) is satisfied, then its spectrum Λ := {s ∈ C : det(sÊ−
Â0 −

∑m
j=1 Âje

−shj ) = 0} satisfies Λ = Λn \ {−1} or
Λ = Λn. Furthermore, we have

G(s) = G(s), s ∈ C \ Λn.

Proof. We restrict ourselves to a proof for r ≥ 1, from
which the proof for r = 0 can be deduced in a straight-
forward way. We first note that the transfer function G
of (1), via the transformation to (2), can equivalently be
expressed as

G(s) :=
(
C1 C

)
H−1(s)

(
B1
B

)
where

H(s) :=
(
sE −

∑m
j=0A

(11)
j e−shj −

∑m
j=0A

(12)
j e−shj

−
∑m
j=0A

(21)
j e−shj I −

∑m
j=1Aje

−shj

)
.

Now we can express
m∑
j=0
Dje−shj =

(
E 0
0 0

)
+ Q̂1T̂

−1H(s)T̂ + T̂−1H(s)T̂ Q̂2,

and

−
m∑
j=0
Aje−shj = T̂−1H(s)T̂ −

(
sE 0
0 0

)
,

where

T̂ =
(
Ir 0
0 T

)
, Q̂1 =

(
0r,r 0
0 −Q1

)
, Q̂2 =

(
0r,r 0
0 −Q2

)
.

Hence, we have

H(s) = sQ̂1T̂
−1H(s)T̂ + sT̂−1H(s)T̂ Q̂2 + T̂−1H(s)T̂

=
(
I + sQ̂1

)
T̂−1H(s)T̂

(
I + sQ̂2

)
, (29)

where the last equality follows from the fact that, by
Lemma 2,

Q̂1T̂
−1H(s)T̂ Q̂2

=
(

0 0
0 Q1

(
I −

∑m
j=1 T

−1Aje
−shjT

)
Q2

)
= 0.

From equation (29) we get

detH(s) = (s+ 1)r1+r2 detH(s),

implying that
Λn = Λ ∪ {−1}.

Thus,

G(s) = C
(
I − sQ̂2

)−1
T̂−1H−1(s)T̂

(
I − sQ̂1

)−1
B,

rjungers
Note
to the partial state?
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where s ∈ C \ Λn. Finally, it follows from

I + sQ̂2 =

I 0 0
0 I 0
0 0 (1 + s)I

 ,

I + sQ̂1 =

I 0 0
0 (1 + s)I 0
0 0 I

 ,

and Lemma 2 that

C =
(
C1 C

)
T̂
(
I + sQ̂2

)
and

B =
(
I + sQ̂1

)
T̂−1

(
B1
B

)
.

Therefore,

G(s) =
(
C1 C

)
H−1(s)

(
B1
B

)
= G(s), s ∈ C \ Λn.

The procedure for constructing neutral type system
(28) also has an interpretation in the time domain. It
extends the one used in [10] for systems with one delay.
We summarize it in three steps as follows:

1) Set x2(t) = Tξ(t) and apply the operator I − Q1
d

dt
to the delay-difference part of system (2). From this,
one obtains a neutral type system with matrices
(D̂j , Âj , B̂, Ĉ), j = 1, . . . ,m.

2) Consider the dual of the neutral system obtained
in Step 1, i.e. a neutral system with matrices
(D̂Tj , ÂTj , ĈT , B̂T ), j = 1, . . . ,m.

3) Apply now the operator I−Q2
d

dt
to the corresponding

delay-difference part of the dual system. The dual of
the obtained system is system (28).

It is well known that DDAEs can be transformed to
neutral type equations by applying differentiation and
shifting operations in the difference part (see, e.g. [3], [6],
[7]). As already noticed, direct differentiation of x2(t) in
system (2) results in a system with derivative in the input.
With the above procedure, we show that it is possible to
construct a neutral type system without derivatives of the
input signal.

This result is particularly relevant for providing a for-
mula for the computation of the H2 norm, as shown in
the next corollary, which directly follows from Theorem 2
and Theorem 1 in [14]. Note that if the strong H2 norm is
finite, it equals the H2 norm for the nominal delay values;
see Theorem 1.

Corollary 1. If system (1) is strongly stable and condition
(22) is satisfied, then we have

9G9H2 = ‖G‖H2 = ‖G‖H2 =
√

Tr (BTU(0)B),

where U : [−hm, hm] 7→ Rn×n is the so-called delay Lya-
punov matrix associated with CTC of neutral type system
(28).

The computation of the delay Lyapunov matrix U for
systems of the form (28) has been widely studied in the
literature, [14], [15]. Thus, Corollary 1 provides an effective
basis for computing the H2 norm of system (2) whenever
condition (22) holds.

IV. Connections between the finiteness
conditions and an open problem

In this section we establish relations between the neces-
sary and sufficient condition (19) for the finiteness of the
strong H2 norm, and sufficient condition (22), which is
more tractable from a computational point of view and
is at the basis of the transformation of system (1) to
neutral system (28). The following counterexample shows
that both conditions are not equivalent, and in turn that
condition (22) is, in general, only a sufficient condition for
the finiteness of the strong H2 norm.

Example 5. Consider the matrices

A1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,

B =


0
−1

1
0

 , CT =


0
1
1
0

 .

One can verify by direct calculation that

CPk1,k2(A1, A2)B = 0

for every (k1, k2) such that k1 + k2 < 8, but

CA1A2B = −1, CA2A1B = 1,

showing that condition (19) does not imply in general
condition (22).

Remark 1. From Lemma 2 and Example 5 we conclude
that condition (19) does not imply in general the existence
of a transformation resulting in matrices of the form (27).

The previous example, with a very special structure of
the coefficient matrices, leads us to the question whether
there exist classes of systems for which the equivalence
of both finiteness conditions holds. The next proposition
provides an answer.

Proposition 4. Criterion (19) of Theorem 1 is equivalent
to criterion (22) if any of the following conditions hold:

1) Matrices A1, . . . , Am, mutually commute.
2) Matrices A1, . . . , Am, B and C belong to Rn×n≥0 , Rn×ni

≥0
and Rno×n

≥0 , respectively.
3) The number n satisfies n = rank B + rank C.
4) The number n satisfies n ≤ 3.

Proof. It is obvious that if condition (22) holds, then
condition (19) does so. Hence, we focus on the other
direction in each of the items.

Statement 1. If matrices Aj mutually commute, observe
that for any (k1, . . . , km) ∈ Zm≥0 \ (0, . . . , 0), there exist an
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integer r > 0 and a sequence {σ1, σ2, . . . , σk1+...+km
} such

that

Pk1,...,km(A1, . . . , Am) = rAσ1 · · ·Aσk1+...+km
.

Thus, if equality (19) is satisfied, then (22) is also satisfied.
Statement 2. We observe that, since the elements of all

the matrices are nonnegative, the expression

CPk1,...,km
(A1, . . . , Am)B =

∑
σ∈Ωk1,...,km

CAσ1 · · ·Aσk
B

is made of only nonnegative terms; hence it is zero if and
only if all the terms are zero, which proves the assertion.

Statement 3. Under the rank assumption, equality CB =
0 implies Im B = ker C. As a consequence, equations
CAjB = 0 imply that Im AjB ⊆ Im B, j = 1, . . . ,m,
that is, Im B is an (A1, . . . , Am)-invariant subspace equal
to ker C. The latter implies that (22) is satisfied.

Statement 4. For the cases where n = 1 and n = 2,
as well as the cases where B = 0 or C = 0, the proof is
trivial. Therefore, we consider n = 3 and nonzero B and
C in what follows. Because of Statement 3. we can further
restrict ourselves to the single input, single output case,
ni = no = 1.

From CB = 0 we can assume without loss of generality
that

C =
(

1 0 0
)
, B =

 0
0
1

 ,

as this structure can be induced by a state transformation.
Due to condition CAjB = 0, j = 1, . . . ,m, matrices Aj
must have the structure

Aj =

aj bj 0
cj dj ej
fj gj hj

 , j = 1, . . . ,m.

Condition CA2
iB = 0 can be rephrased as

biei = 0, i = 1, . . . ,m, (30)

while condition C(AiAj +AjAi)B = 0 leads to

biej + bjei = 0, ∀i, j ∈ {1, . . . ,m}. (31)

Considering (30) for i = 1 and i = 2, along with (31) for
i = 1, j = 2, lead us to either b1 = b2 = 0 or e1 = e2 = 0.
For m > 2 we distinguish between three cases. If e1 6= 0
then from (31) with i = 1 and j > 2, along with bjej = 0
we get bj = 0 for j > 2. Similarly, if b1 6= 0 we get ej = 0
for j > 2. Finally, if b1 = c1 = 0, we go through the same
process, starting from matrix A2 and by considering the
cases e2 6= 0, d2 6= 0 and d2 = e2 = 0. Hence, with a
recursive argument we always arrive at

bi = 0, i = 1, . . . ,m, or ei = 0, i = 1, . . . ,m.

This property implies that the matrices Aj , j =
1, . . . ,m, B and C have the block structure as in (27),
which implies that (22) is satisfied.

As shown in Subsection III-B, the construction of a
neutral system that is equivalent to system (1) in the

sense stated in Theorem 2 is possible whenever (22) is
fulfilled. However, as shown by Example 5 conditions
(19) and (22) are not equivalent in general. In addition
to getting more insight in the relation between the two
conditions, this leads us to the following open question:

If (19) is satisfied but (22) is not, is it still possible to find
a transformation that allows constructing an equivalent
neutral type system without differentiation of input and
output?

V. Illustrative example
We consider a strongly exponentially stable system (1)

already in the form (2) with two (nominal) delays h1 = 1
and h2 = 2, E = 1, A(11)

0 = −2 and matrices A(12)
0 =

A
(21)T

0 =
(
0 0 0

)
,

(
A

(11)
1 A

(12)
1

A
(21)
1 A1

)
=


0 −1 −2 1
0 0.1 −0.5 0.4
0 0 0.3 0

0.75 0 −0.5 0.5

 ,

(
A

(11)
2 A

(12)
2

A
(21)
2 A2

)
=


0 0 0 0
−0.5 −0.05 0.15 0.05
−0.25 0 −0.05 0
−0.75 0 0 −0.1

 ,

and

(
B1
B

)
=


1 1
1 0
0 0
0 1

 ,
(
C1 C

)
=
(

1 0 1 0
1 0 1 0

)
.

We observe that rank(C)+rank(B) = 3, hence it follows
from either Statement 3 or Statement 4 of Proposition 4
that condition (19) and (22) are equivalent for this system.
One can check either that (19) holds for all (k1, k2) such
that k1 + k2 < 6 by direct computation, or that (22) is
satisfied by using Algorithm 1, hence the strong H2 norm
is finite. Notice however that condition (19) requires to
check 21 equations of the form CPk1,k2(A1, A2)B = 0,
whereas Algorithm 1 stops at iteration i = 1 at line 9
since Im B is an (A1, A2)-invariant space.

Figure 2 illustrates the spectral norm of transfer matri-
ces G and Ga of the system as a function of s = ıω for both
nominal and perturbed delays (h1, h2) = (1, 2 + 0.05

√
2).

As expected from the previous discussion, ‖Ga(ıω)‖2 is
zero in both cases for all ω ∈ R≥0, showing the finiteness
of the strong H2 norm.

From Lemma 2 it follows that there exists a matrix Tc
that allows us to bring matrices (A1, A2, B,C) to control-
lable/observable canonical form. Thus, by considering

T =

0 1 1
1 0 0
0 1 0

 ,

and

Q1 = −

1 0 0
0 0 0
0 0 0

 , Q2 = −

0 0 0
0 1 0
0 0 1

 ,
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Fig. 2. Spectral norm of the transfer function (left) and of the
asymptotic transfer function (right) of the system of Section V for
two cases: (h1, h2) = (1, 2) (top), and (h1, h2) = (1, 2 + 0.05

√
2)

(bottom).

we can construct a neutral type system of the form (28)
with matrices D0 = I,

D1 =


0 0 0 1
0 −0.3 0 0
0 0 −0.5 0
0 0 0 −0.1

 ,

D2 =


0 0 0 0

0.25 0.05 0 0
0 0 0.1 0
0 0 −0.1 0.05

 ,

A0 =


−2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

A1 =


0 −2 0 −1
0 0.3 0 0

0.75 −0.5 0.5 0
−0.75 0 0 0.1

 ,

A2 =


0 0 0 0

−0.25 −0.05 0 0
−0.75 0 −0.1 0
0.25 0.15 0.1 −0.05

 ,

and

B =


1 1
0 0
0 1
1 −1

 , C =
(

1 1 0 0
1 1 0 0

)
.

According to Corollary 1, we have that for the nominal
case (h1, h2) = (1, 2)

9G9H2 = ‖G‖H2 ≈ 3.01,

and for the perturbed delay case (h1, h2) = (1, 2+0.05
√

2)

9G9H2 = ‖G‖H2 ≈ 3.02,

where ‖G‖H2 is computed via the delay Lyapunov matrix
based formula introduced in [14].

VI. Conclusions
We introduced the strong H2 norm for systems of

the form (1), which is a robustified measure taking into
account infinitesimal perturbations of the delays. We pro-
vided necessary and sufficient conditions for its finiteness,
presented in Theorem 1, and sufficient conditions given
by (22). We showed that the strengthened condition (22)
is numerically more tractable by introducing an efficient
algorithm in order to verify it. Some classes of systems for
which conditions (22) and (19) are equivalent were also
presented.

We also introduced a methodology for constructing a
neutral type system whose transfer matrix is the same as
the transfer matrix of system (1) whenever the sufficient
condition (22) is satisfied. A notable characteristic of
constructed neutral system (28) is that differentiation of
the input was avoided. The latter was particularly useful
for providing a formula based on the delay Lyapunov ma-
trix for the H2 norm computation. Future research work
includes addressing the open problem stated in Section
IV, and exploring other applications of the regularization
procedure to a neutral system.
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