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Abstract. In this article, we describe the randregret command, which imple-
ments a variety of Random Regret Minimization (RRM) models. The command
allows the user to apply the classic RRM model introduced in Chorus (2010, Eu-
ropean Journal of Transport and Infrastructure Research 10: 181-196), the Gener-
alized RRM model introduced in Chorus (2014, Transportation Research Part B:
Methodological 68: 224-238), and also the µRRM and Pure RRM models, both
introduced in van Cranenburgh et al. (2015, Transportation Research Part A: Pol-
icy and Practice 74: 91-109). We illustrate the usage of the randregret command
using stated choice data on route preferences. The command offers robust and
cluster standard error correction using analytical expressions of the scores func-
tions. It also offers likelihood ratio tests that can be used to assess the relevance of
a given model specification. Finally, users can obtain the predicted probabilities
from each model using the randregretpred command.

Keywords: randregret, randregret pure, randregretpred, discrete choice models,
semi-compensatory behavior, random utility maximization, random regret mini-
mization.

1 Introduction

Chorus et al. (2008) proposed an alternative to Random Utility Maximization (RUM)
(Manski 1977) discrete choice behavior by introducing a family of models rooted in Re-
gret Theory (Loomes and Sugden 1982; Bell 1982), called Random Regret-Minimization
(RRM). Intuitively, RRM claims that individuals base their choices between alternatives
on the desire to avoid the situation where a non-chosen alternative ends up being more
attractive than the chosen one, which would cause regret. Therefore, individuals are
assumed to minimize anticipated regret when choosing among alternatives, in contrast
to utility maximization.
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2 Random regret minimization models using Stata

2 Early Model (Chorus et al. 2008)

The model proposed in Chorus et al. (2008) assumes that decision-makers (referred to
n), face a set of J alternatives (referred to i or j indistinctly), each alternative being
described in terms of the value of M attributes (referred to m). Therefore, the value of
attribute m of alternative i of individual n is denoted by ximn. When the decision-maker
n is choosing between alternatives, he/she aims to minimize the anticipated random
regret of a given alternative i. Consequently, the regret of alternative i on attribute m
of individual n, will be described by Rmax

i↔j,mn = max {0, βm · (xjmn − ximn)}. From this
formulation we can see two things. First, the regret is zero when alternative j performs
worse than i in terms of attribute m. Second, the regret grows as a linear function of
the difference in attribute values in case alternative i performs worse than alternative j
in terms of attribute m. Here the estimable parameter, βm, gives the slope of the regret
function for attribute m. Furthermore, the original version of RRM postulates that the
systematic regret, Rmax

in , of a considered alternative i can then be written as in equation
(1), taking the maximum regret over all alternatives:

Rmax
in = max

j 6=i

{
M∑

m=1

Rmax
i↔j,mn

}
= max

j 6=i

{
M∑

m=1

max {0, βm · (xjmn − ximn)}
}

(1)

Finally, the anticipated random regret (RRmax
in ) is composed of the systematic regret

Rmax
in and an additive i.i.d Extreme Value distributed error εin, which represents the

unobserved component in the regret: RRmax
in = Rmax

in +εin. Assuming that the negative
of εin is extreme value type I distributed, and acknowledging that the minimization
of the random regret is mathematically equivalent to maximizing the negative of the
random regret, probabilities may be derived using the well-known Multinomial Logit
(MNL) formulation. Therefore, the choice probability associated with alternative i is
defined in equation (2):

Pmax
in =

exp (−Rmax
in )

∑J
j=1 exp

(
−Rmax

jn

) for i = 1, . . . , J. (2)

3 Classical Model (Chorus 2010)

The major contribution made by Chorus (2010) is to propose an elegant way to get rid
of the two max operators on the attribute level regret of the original version (Chorus
et al. 2008) which results in a non-smooth likelihood function and triggers the need
for customized optimization routines. Instead, in Chorus (2010) the new attribute
level regret is redefined by Ri↔j,mn = ln [1 + exp {βm · (xjmn − ximn)}]. Therefore, the
deterministic part of the regret of alternative i of individual n is now described by
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equation (3):

Rin =

J∑

j 6=i

M∑

m=1

Ri↔j,mn =

J∑

j 6=i

M∑

m=1

ln [1 + exp {βm · (xjmn − ximn)}] (3)

The two most important differences are as follows. First, the exterior max operator
is replaced by a summation over all the alternatives, meaning that the choice-maker’s
systematic regret not only considers the best non-chosen alternative as in Chorus et al.
(2008) but the aggregate regret of all the others as well. Particularly, when the choice set
is large, it does not seem quite reasonable to consider just one non-chosen alternative.
Secondly, the replacement of the inner max operator has a mathematical justification
because it is a continuously differentiable function that approximates the original max
operator and will generate a smooth likelihood.

Following the same idea as in Chorus et al. (2008), assuming that the random regret
function (RRin) also includes an additive i.i.d extreme value type I error term that
captures the pure random noise and impact of omitted attributes in the regret: RRin =
Rin + εin. Finally, we obtain the same well-known and convenient closed-form logit
formula for the choice probability given by equation (4). The last model is referred to
as the classical RRM and is one of the models implemented in the command.

Pin =
exp (−Rin)

∑J
j=1 exp (−Rjn)

for i = 1, . . . , J (4)

3.1 Ri↔j,mn as an approximation of Rmax
i↔j,mn

To understand how those two definitions of the regret differ from each other, an illus-
trative graph is presented in Figure (1). The x-axis represents the difference on an
attribute m of two alternatives i and j for individual n, (xjmn − ximn), and the y-axis
represents the regret (r) that this difference generates conditional on βm = 1.

In Figure (1) we can see that Ri↔jmn is a smooth version of Rmax
i↔jmn creating a nice

continuous differentiable likelihood function. Also, both functions can capture semi-
compensatory behavior, meaning that poor performance of a given alternative with
respect to an attribute is not necessarily compensated by a good performance with
respect to another attribute, which is a key feature of RRM models.

Additionally, when two alternatives have the same level for some attribute, the
corresponding regret is not zero, but equal to ln(2) ≈ 0.69. Even though this is counter-
intuitive at first glance, it is important to note that only differences in regret or utility
matter for choice probabilities (Train 2009), hence they remain unchanged, regardless,
the inclusion of this constant in the systematic regret. This can be easily checked in
equation (4).
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Rmax
i↔j,mn

Ri↔j,mn

r = ln(2)

(xjmn − ximn)

r
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Figure 1: Comparison Rmax
i↔j,mn (eq. 1) and Ri↔j,mn (eq. 3) conditional on βm = 1.

Adapted from “A New Model of Random Regret Minimization” by Chorus (2010),
European Journal of Transport and Infrastructure Research 10: 181-196. Copyright
2010 by TUDelf. Reprinted with permission.

4 Differences between RUM and RRM models

Before introducing three models that generalize in different ways the underlying paradigm
of the classical RRM model, it is worth describing some essential differences between
RRM and RUM while getting more insights in the RRM model.

4.1 Semi-compensatory Behavior and the Compromise Effect

Probably the most remarkable difference with the RUM model is the semi-compensatory
behavior that is described by RRM models. To illustrate this, we show the Ri↔j,mn
function with βm = 1 in Figure (2), which describes the regret generated by attribute
m when a considered alternative i is being compared with alternative j, as a function
of the difference between the attribute values, i.e. xjmn − ximn. Segments (A) and (B)
in the Figure represent the magnitude of rejoice and regret, respectively, on an equal
difference of attribute levels of 2.5 units. As shown in Figure (2), the regret is much
larger than the rejoice at an equal difference in the attribute levels. Additionally, we
can also see that this discrepancy becomes larger for higher attribute value differences
due to the regret function’s convexity.

Conversely, in RUM models, linear specification of utility leads to a fully-compensatory
model, where the poor performance of one attribute could, in principle, could be com-
pensated entirely with better performance in another attribute.

A consequence of the semi-compensatory behavior of RRM models is the so-called
compromise effect. Given that having an inferior performance in one attribute causes a
large regret, RRM models tend to predict that alternatives that have a relatively good
performance in all the attributes will be preferred to alternatives that present a fairly
good performance in almost all attributes but a rather poor performance in just one
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Regret domain
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Figure 2: Semi-compensatory behavior of Ri↔j,mn (eq. 3) conditional on βm = 1.
Adapted from “New insights on random regret minimization models” by van Cranen-
burgh, Guevara, and Chorus (2015), Transportation Research Part A: Policy and Prac-
tice 74: 91-109. Copyright 2015 by Elsevier. Reprinted with permission.

attribute. The compromise effect has been discussed in detail by Chorus and Bierlaire
(2013) and by Chorus et al. (2013).

4.2 Taste Parameter Interpretation in RRM models

When it comes to the interpretation of the RRM parameters, it is essential to note
that they cannot be compared with the utilitarian counterpart of RUM models. On the
one hand, parameters of RUM models are interpreted as the change in utility caused
by an increase of a particular attribute level. On the other hand, parameters of RRM
models represent the potential change in regret associated with comparing a considered
alternative with another alternative in terms of the attribute, caused by one unit change
in a particular attribute level. For instance, an attribute that exhibits a positive and
significant coefficient suggests that regret increases as the level of that attribute increases
in a non-chosen alternative compared to the level of the same attribute in the chosen
one.

5 Extensions of the Classical RRM model

5.1 Generalized RRM (Chorus 2014)

The generalization proposed by Chorus (2014), namely, the Generalized Random Regret
Minimization Model (GRRM), replaces the number 1 in the attribute-regret function
(eq. 3) by a new estimable parameter γm ∈ ]0, 1[ which represents the regret-weight
for a particular attribute. Chorus (2014) proves that depending on the value of the
parameter γm, we can recover random utility maximization behavior (γm = 0) or the
classical random regret minimization behavior (γm = 1), showing that GRRM is not
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only a generalization of the classical RRM model, but also of RUM models. In this
command, we allow for only one generic and common γ for all the attributes, due to its
computational simplicity, which is one of the particular cases of this model implemented
by Chorus (2014). Consequently, the attribute level regret in the GRRM is described
by RGRRM

i↔j,mn = ln [γ + exp {βm [xjmn − ximn]}], and the systematic part of regret in this
model is given by equation (5):

RGRRM
in =

J∑

j 6=i

M∑

m=1

RGRRM
i↔j,mn =

J∑

j 6=i

M∑

m=1

ln [γ + exp {βm (xjmn − ximn)}] (5)

When an additive type I Extreme Value i.i.d. error is added to the systematic
regret function in equation (5), we obtain the random regret expression for the GRRM
model: RRGRRM

in = RGRRM
in + εin. Finally, the choice probability of the GRRM model

is presented in equation (6):

PGRRM
in =

exp
(
−RGRRM

in

)
∑J
j=1 exp

(
−RGRRM

jn

) for i = 1, . . . , J (6)

An illustration of how different values of γ affect the shape of the attribute level
regret function RGRRM

i↔jmn is presented in Figure (3).

As before, we have asymmetries regarding regret and rejoice produced by the dif-
ference in an attribute level. However, in the GRRM model, γ, controls the convexity
of RGRRM

i↔j,mn, as can be seen in Figure (3). Smaller gamma values imply a less convex
attribute-level regret function, and consequently, a smaller asymmetry between regret
and rejoice. In particular, when γ = 0, the convexity of the regret function vanishes,
yielding a fully compensatory behavior. Additionally, Chorus (2014) proved that the
likelihood of a GRRM model with γ = 0 is equivalent to the likelihood of a linear RUM
model. Finally, when γ ∈ ]0, 1[, the sensitivity of the regret function is still higher in
the regret domain, but is smaller than in the classical RRM, where γ = 1.



Á. A. Gutiérrez Vargas, M. Meulders and M. Vandebroek 7

Regret domain

Rejoice domain

γ = 1

γ = 0.5

γ = 0.25

γ = 0.1

γ = 0.01

γ = 0

(xjmn − ximn)

r

0 0.5 1 1.5 2 2.5 3 3.5 4−0.5−1−1.5−2−2.5−3−3.5−4
0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

Figure 3: RGRRM
i↔j,mn (eq. 5) at different values of γ conditional on βm = 1. Adapted from

“A Generalized Random Regret Minimization model”, by Chorus (2014), Transportation
Research Part B: Methodological 68: 224-238. Copyright 2014 by Elsevier. Reprinted
with permission.

5.2 µRRM (van Cranenburgh et al. 2015)

van Cranenburgh et al. (2015) presents a new generalization of the classical RRM model
that is linked to the scale parameter of the RRM model. The authors show that the
classic regret function (eq. 3) is not scale-invariant. This property, which seems at first
glance unfortunate, has been shown potentially useful to obtain more flexibility and
also, as we will see later, for providing insights related to the observed regret in the
data.

The first model proposed by van Cranenburgh et al. (2015) is the so-called µRRM
model. In particular, this model is capable of estimating the scale parameter µ which
is linked to the error variance as var(εi) =

(
π2µ2/6

)
. In this new model the attribute

level regret function is described by RµRRM
i↔j,mn = ln [1 + exp {(βm/µ) (xjmn − ximn)}],

and consequently the systematic regret function is given by equation (7):

RµRRM
in =

J∑

j 6=i

M∑

m=1

µ ·RµRRM
i↔j,mn =

J∑

j 6=i

M∑

m=1

µ · ln [1 + exp {(βm/µ) (xjmn − ximn)}] (7)

Interestingly, in this model, we can estimate the scale parameter µ, which is well
known to be non-identifiable in the RUM context because only differences in utility mat-
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ter. However, as we mentioned earlier, RRM models can describe a semi-compensatory
behavior, meaning that regret and rejoice do not cancel out entirely, allowing identifi-
cation of the µ parameter.

As before, an additive type I Extreme Value i.i.d. error term is added to the sys-
tematic regret function in equation (7) to obtain the random regret expression for the

µRRM: RRµRRM
in = RµRRM

in + εin. Finally, the choice probabilities of this model are
given by (8):

PµRRM
in =

exp
(
−RµRRM

in

)

∑J
j=1 exp

(
−RµRRM

jn

) for i = 1, . . . , J (8)

van Cranenburgh et al. (2015) claim that the size of µ in the µRRM model is
informative of the degree of regret imposed by the model, stated otherwise, how much
semi-compensatory behavior we are observing in the decision-makers choice behavior.
Given that the taste parameter βm is divided by the scale parameter µ, the larger
the value of µ, the smaller the ratio (βm/µ), and therefore, the smaller the regret.
Conversely, the smaller the value of µ, the bigger the ratio (βm/µ), and therefore, the
larger the regret. This behavior is illustrated in Figure (4), where we plotted different

RµRRM
i↔j,mn for a fixed value of βm = 1 and different values of µ.

µ = 2

µ = 1
µ = 0.5µ = 0.05

µ = 15

(xjmn − ximn)
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Figure 4: RµRRM
i↔j,mn (eq. 7) for different values of µ conditional on βm = 1. Adapted from

“New insights on random regret minimization models” by van Cranenburgh, Guevara,
and Chorus (2015), Transportation Research Part A: Policy and Practice 74: 91-109.
Copyright 2015 by Elsevier. Reprinted with permission.

Figure (4) shows that for arbitrarily large values of µ, the regret function becomes
flatter, with the obvious consequence that the semi-compensatory behavior of the model
vanishes when µ tends to infinity. A formal proof of such a behavior is provided by van
Cranenburgh et al. (2015) where the authors show that the µRRM model collapses into
a linear RUM model when µ goes to infinity.
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On the other hand, when the value of µ is arbitrarily small, the µRRM model
represents the strongest semi-compensatory behavior possible among the RRM family
models. This scheme is explained in the following section.

Finally, needs to be noted that, in this model, the convexity of the attribute level
regret function (RµRRM

i↔j,mn) is based on both the taste parameter β and µ; therefore, large
values of the taste parameter could compensate large values of µ generating a ratio close
to one.

5.3 Pure RRM (van Cranenburgh et al. 2015)

The second model proposed by van Cranenburgh et al. (2015) its a particular case of the
µRRM model, that is generated by arbitrarily small values of µ in the µRRM model.
As explained earlier, small values of µ, mean that the ratio βm/µ is very large, causing
the regret function to yield very strong differences between regrets and rejoices. This
can be seen graphically in Figure (4), where the smaller the value of µ, the larger the
slope of the regret function within the regret domain.

Interestingly, the authors formally proved that for µ going to zero in the µRRM
model in (7), the model collapses into a linear specification (Appendix D of van Cra-
nenburgh et al. (2015)). The resulting model is called by the authors Pure-RMM model
(hereafter PRRM), which describes the strongest semi-compensatory behavior of all
RRM models. The specification of systematic regret imposed by the PRRM model is
presented in equations (9)-(10):

RPRRM
in =

M∑

m=1

βmx
PRRM
imn (9)

xPRRM
imn =

{∑J
j 6=i max {0, xjmn − ximn} if βm > 0∑J
j 6=i min {0, xjmn − ximn} if βm < 0

(10)

From equation (10) we can see that the PRRM can be understood as a traditional
logit model using transformed attribute levels. What is important to notice here is
that to estimate the PRRM, we need to know the sign of the attributes a priori. In
some situations, this requisite is not very restrictive. For instance, in transport contexts
where the alternatives are mainly described in terms of its travel time (tt) and total
cost (tc), we can expect the coefficients βtc and βtt to have negative signs, given that
cheaper and faster routes are preferred to costlier and slower ones. The negative sign
can be understand in terms of regret as follows: when the total time (total cost) in
non-chosen alternatives increases, our regret decreases given that the chosen alternative
becomes relatively faster (cheaper).

Finally, adding the usual additive i.i.d. type I extreme value error as in the previous
models to the systematic regret in equation (9) we obtain that the random regret of the
model: RRPRRM

in = RPRRM
in + εin. Consequently, the choice probability of the PRRM

model under the stated distributional assumption is given by equation (11):
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PPRRM
in =

exp
(
−RPRRM

in

)
∑J
j=1 exp

(
−RPRRM

jn

) for i = 1, . . . , J. (11)

6 Alternative Specific Constants

The inclusion of Alternative Specific Constants (ASC) in the presented models is possible
by simply adding them into the systematic part of the regret. To exemplify this, let R∗in
denote a generic systematic regret of alternative i as defined in equation (3), (5), (7) or
(9). We denote by αi ASC of alternative i in equation (12). The inclusion of the ASC
serves the same purpose as in RUM models, which is to account for omitted attributes
for a particular alternative. As usual, for identification purposes, we need to exclude
one of the ASC from the model specification. For a detailed discussion of the ASC in
the context of RRM models, see van Cranenburgh and Prato (2016).

R∗in =

J∑

j 6=i

M∑

m=1

R∗i↔j,mn + αi (12)

7 Relationships among the different models

In Figure (5), we present the relationships among all the presented models. Solid arrows
state that a model collapses onto another model for a specific value of some parameter.
For instance, we can see the connection between the classical RRM model and the
GRRM model when γ = 1. On the other hand, dotted arrows indicate that the choice
probabilities and the likelihood of two models are the same, but not necessarily the
estimated parameters. For instance, Chorus (2014) showed that the relationship among
RUM and RRM parameters is described by βRRM

m = J · βRUM
m when γ = 0, where J is

the size of the choice set. Similarly, van Cranenburgh et al. (2015) showed that when µ
goes to infinity the relationship is described by βRUM

m
∼= (J/2) · βRRM

m .

The relationships in Figure (5) allow us to use a Likelihood Ratio (LR) test to com-
pare nested models and check which model fits the data best. In particular, Table (1)
lists the relevant hypotheses with the corresponding LR statistic and the asymptotic
distribution of the test. The first column lists the models that we are can compare
based on a particular parameter. The second column lists the formal hypotheses for the
relevant parameter. The third column presents the LR statistic in each case where `(.)

represents the log-likelihood of the model, and θ̂RRM, θ̂GRRM, θ̂µRRM, θ̂RUM represent
the full set of parameters of the classical RRM, GRRM, µRRM and linear-in-parameters
RUM model, respectively. Finally, the fourth column lists the asymptotic distribution
of the statistic under the null hypothesis. The fact that the two first hypotheses fol-
low a different distribution from the traditional χ2

1 is because we are testing a null
hypothesis on the boundary of the parametric space of γ. For details about deriving the
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GRRM

RGRRM
in =

∑J
j 6=i

{∑M
m=1 ln {γ + exp [βm · (xjmn − ximn)]}

}

RRM

Rin =
∑J
j 6=i

{∑M
m=1 ln {1 + exp [βm · (xjmn − ximn)]}

}

µRRM

RµRRM
in =

∑J
j 6=i

{∑M
m=1 ln {1 + exp [(βm/µ) · (xjmn − ximn)]}

}

RUM

Uin =
∑M
m=1 βm · ximn

PRRM

RPRRM
in =

∑M
m=1 βm · xPRRM

imn

γ = 0

γ = 1

µ = 1

µ→∞ µ→ 0

Figure 5: Interrelationship among the models based on parameters

distribution of the LR test under non-standard conditions, see Self and Liang (1987).
Additionally, illustrations of this matter can be found in Molenberghs and Verbeke
(2007) and Gutierrez et al. (2001).

Table 1: LR test for model comparison.
Models Hypothesis LR statistic Distribution under H0

RRM v.s GRRM
H0 : γ = 1

H1 : γ < 1
2
{
`(θ̂GRRM)− `(θ̂RRM)

}
0.5(χ2

0 + χ2
1)

RUM v.s GRRM
H0 : γ = 0

H1 : γ > 0
2
{
`(θ̂GRRM)− `(θ̂RUM)

}
0.5(χ2

0 + χ2
1)

RRM v.s µRRM
H0 : µ = 1

H1 : µ 6= 1
2
{
`(θ̂µRRM)− `(θ̂RRM)

}
χ2
1

The randregret command always fits the classical RRM model to use those esti-
mates as starting points for the extended versions of the model, GRRM, and µRRM.
The LR tests for γ = 1 and µ = 1 do not require extra computations. However, for
testing γ = 0, an additional linear RUM model is fitted. Regardless, the user has the
option to deactivate the tests to speed up computations if desired.



12 Random regret minimization models using Stata

8 Robust Standard Errors

The use of robust standard errors corrected by cluster in discrete choice models is a
common practice given the panel structure that is created when a single individual
answers multiple choice situations in state preference surveys. To illustrate this, we can
write our maximum-likelihood estimation equations as in equation (13). Where θ is the
full set of parameters, S(θ; yn,xn) = ∂ lnLn/∂θ represents the score functions, lnLn is
the log-likelihood of observation n, xn is the full set of attributes, and yn is the response
variable that takes the value of 1 when alternative i is selected and 0 otherwise.

G(θ) =

N∑

n=1

S(θ; yn,xn) = 0 (13)

We can compute the robust variance estimator of θ using equation (14), where D =
−H−1 is the negative of the inverse of the hessian resulting from the optimization
procedure, and un = S(θ̂; yn,xn) are row vectors that contains the score functions

evaluated at θ̂.

V̂ (θ̂) = D

(
n

n− 1

N∑

n=1

u′nun

)
D (14)

Equation (14) is appropriate only if the observations are independent. However, when
the same individual answers several choice situations, we can expect some degree of
correlation. When such a structure is present in the data, equation (15) is a more
appropriate robust variance estimates is given by, where Ck contains the indices of all
observations belonging to the same individual k for k = 1, 2, . . . , nc with nc the total
number of different individuals present in the data set.

V̂ (θ̂) = D

{
nc

nc − 1

nc∑

k=1

(∑

n∈Ck

un

)′(∑

n∈Ck

un

)}
D (15)

Appendix A provides details on the analytical form of the scores by each model pre-
sented in this article. Additionally, the randregret command can compute corrected
standard errors using the analytical expressions of the score functions without relying
on numerical approximations.
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9 Commands

9.1 randregret

Syntax

randregret depvar
[
indepvars

] [
if
] [

in
]
group(varname) alternative(varname)

rrmfn(string)
[
, basealternative(string) noconstant uppermu(#)

negative(varlist) positive(varlist) show notrl initgamma initmu robust

cluster(varname) level(#) maximize options
]

Description

randregret is implemented as a Mata-based d0 ml evaluator. The command allows to
implement four different regret functions.

Options

group(varname) is required and specifies a numeric identifier variable for the choice
situation.

alternative(varname) is required and specifies a numeric identifier variable of the
alternative for each choice situation.

rrmfn(string) is required and specifies the regret function that will be used. classic

uses the systematic regret of equation (3), gene uses (5), mu uses (7) and pure uses
(9). The last option will use the randregret pure command (see below) to create
the transformed alternative-specific attributes.

basealternative(#) sets the reference level in dummy coding for Alternative Specific
Constants (ASC).

noconstant suppresses the alternative specific constants (ASC) from the specification.

uppermu(#) alters the optimization procedure using an ancillary parameter on the logit
scale searching for µ in the space [0,#]. The default is uppermu(5).

negative(varlist) can be used to include attributes with assumed negative sign when
rrmfn(pure) is performed.

positive(varlist) can be used to include attributes with assumed positive sign when
rrmfn(pure) is performed.

show can be used when performing rrmfn(gene) or rrmfn(mu) to show the value of the
estimated ancillary parameter.

initgamma can be used when performing rrmfn(gene) to set the initial value for the
ancillary parameter for γ. The default is initgamma(0).
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initmu can be used when performing rrmfn(mu) to set the initial value for the ancillary
parameter for µ. The default is initmu(0).

notlr can be used when performing rrmfn(gene) or rrmfn(mu) to suppress the com-
putations of the LR test over γ and µ, respectively.

robust can be used to adjust the variance-covariance matrix using equation (14).

cluster(varname) can be used to adjust the variance-covariance matrix using equation
(15) computing clusters across individuals answering multiple questions.

maximize options: difficult, iterate(#), trace, gradient, showstep, hessian, ltoleracne(#),
gtoleracne(#), ntoleracne(#), technique(algorithm spec), from(string) (see [R] max-
imize). technique(bhhh) is not allowed.

9.2 randregret pure

Syntax

randregret pure varlist
[
if
] [

in
]
group(varname) signbeta(string)

prefix(string)

Description

randregret pure is a command that implements the alternative-specific attribute trans-
formations required to fit the PRRM model in equation (10).

Options

group(varname) is required and specifies a numeric identifier variable for the choice
situation.

signbeta(string) is required and specifies the sign of all the alternative-specific at-
tributes included in varlist . Specifying pos indicates that the sign of the attributes
is positive, and neg indicates that the sign is negative.

prefix(string) is required and specifies the prefix of the new transformed alternative-
specific attributes that randregret pure will create.

9.3 randregretpred

Syntax

randregretpred newvar
[
if
] [

in
]
group(varname) alternatives(varname)

[
,

proba xb
]
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Description

randregretpred is a command that can be invoked after randregret to obtain both
predicted probabilities and systematic estimated regret. randregretpred automatically
identifies the last fitted model and calculates the predicted choice probabilities recover-
ing the parameters obtained from the likelihood maximization and then plugging them
back in using equations (4), (6), (8) or (11) depending on the previously fitted model.
Additionally, it is also possible to recover the linear prediction of the systematic regret
from equations (3), (5) (7) or (9).

Options

group(varname) is required and specifies a numeric identifier variable for the choice
situation.

alternatives(string) is required and specifies a numeric identifier variable of the al-
ternative for each choice situation.

proba the default, calculates the predicted choice probabilities of each alternative.

xb calculates the linear prediction in the regret function.
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retrieved

10 Examples

To show the usage of the randregret command we use data from van Cranenburgh
(2018) which correspond to a Value of Time (VoT) Stated Choice (SC) experiment.
The choice situation in this experiment consisted of three unlabeled route alternatives,
each consisting of two generic attributes: Travel Cost (tc) and Travel Time (tt). In
this experiment, each respondent answered a total of 10 choice situations. Table (2)
presents the first choice situation presented to respondents in the SC experiment. The
authors used a so-called D-efficient design to optimize the statistical efficiency of the
experiment1.

Table 2: English translation of 1st Choice Situation
Attribute Route A Route B Route C

Travel Time (one-way) 23 min. 27 min. 35 min.
Travel Cost (one-way) 6 euros 4 euros 3 euros

The following variables will be used in our specifications of randregret

• altern: id of the alternative faced by the user.

• choice: whether or not the alternative was chosen by an individual (0-1 dummy).

• id : id of the individual.

• cs: id of the Choice Situation (CS) faced by the individual.

• tt : Total Travel Time (one-way) of alternative i in minutes.

• tc: Total Travel Cost (one-way) of alternative i in euros.

The data setup for randregret is equivalent to the one used by clogit (see [R] clogit)
and the latest released command cmclogit (see [R] cmclogit), meaning it has a panel
representation in terms of individual-alternative, that is to say, in long format. The data
is loaded from the server to Stata directly using import delimited and the URL given
in van Cranenburgh (2018). The data is currently in wide format, and just for the sake
of illustration, we show the data manipulations required in order to use randregret.
We list the first four choice situations answered by the first individual with the corre-
sponding alternative-specific attributes total time and total cost.

. scalar server = "https://data.4tu.nl/ndownloader/"

. scalar doi = "files/24015353"

1. The complete experimental design can be found in Appendix A of van Cranenburgh and Alwosheel
(2019)
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. import delimited "`=server + doi´" ,clear
(29 vars, 1,060 obs)

. keep obs id cs tt1 tc1 tt2 tc2 tt3 tc3 choice

. list obs id cs tt1 tc1 tt2 tc2 tt3 tc3 choice in 1/4,sepby(obs)

obs id cs tt1 tc1 tt2 tc2 tt3 tc3 choice

1. 1 1 1 23 6 27 4 35 3 3

2. 2 1 2 27 5 35 4 23 6 2

3. 3 1 3 35 3 23 5 31 4 1

4. 4 1 4 27 4 23 5 35 3 3

Given that randregret requires the data to be presented in long format, we will
perform the required transformation using the reshape command and present the same
information in long format.

. rename (choice) (choice_w)

. reshape long tt tc , i(obs) j(altern)
(note: j = 1 2 3)

Data wide -> long

Number of obs. 1060 -> 3180
Number of variables 10 -> 7
j variable (3 values) -> altern
xij variables:

tt1 tt2 tt3 -> tt
tc1 tc2 tc3 -> tc

. generate choice = 0

. replace choice = 1 if choice_w==altern
(1,060 real changes made)

. label define alt_label 1 "First" 2 "Second" 3 "Third"

. label values altern alt_label

. list obs altern choice id cs tt tc in 1/12, sepby(obs)

obs altern choice id cs tt tc

1. 1 First 0 1 1 23 6
2. 1 Second 0 1 1 27 4
3. 1 Third 1 1 1 35 3

4. 2 First 0 1 2 27 5
5. 2 Second 1 1 2 35 4
6. 2 Third 0 1 2 23 6

7. 3 First 1 1 3 35 3
8. 3 Second 0 1 3 23 5
9. 3 Third 0 1 3 31 4
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10. 4 First 0 1 4 27 4
11. 4 Second 0 1 4 23 5
12. 4 Third 1 1 4 35 3

After the data manipulation, we can fit the four different RRM models that randregret
can estimate. Before going into the details of each possible specification of the re-
gret function, we will discuss two required options for every model: group() and
alternative(). The group() option contains an identifier of each choice situation
in the sample, which, in our case, corresponds to the variable obs. The alternative()

option identifies the alternatives available of the choice set, which, in our case, corre-
sponds to variable the altern.

We will start with the classical RRM that uses equation (3) as systematic regret.
To obtain such a model, we need to specify rrmfn(classic). Additionally, we declare
nocons because alternatives were non-labeled in the survey; therefore, we suppress the
ASC. Here we can see that, as expected, both variables’ coefficients are negative and
highly significant. The interpretation of this latter result can be understood as follows.
A negative and significant coefficient suggests that regret decreases as the level of that
attribute increases in a non-chosen alternative compared to the same attribute level
in a chosen one. For example, a negative coefficient estimated for the attribute “total
time” indicates that the regret decreases as the total time increases in a non-chosen
alternative, compared to the level of the chosen option. The same interpretation can be
made for the attribute “total cost”.

. randregret choice tc tt , gr(obs) alt(altern) rrmfn(classic) nocons

Fitting Classic RRM Model

initial: log likelihood = -1164.529
alternative: log likelihood = -1156.5784
rescale: log likelihood = -1121.29
Iteration 0: log likelihood = -1121.29
Iteration 1: log likelihood = -1118.4843
Iteration 2: log likelihood = -1118.4784
Iteration 3: log likelihood = -1118.4784

RRM: Classic Random Regret Minimization Model

Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 114.72
Log likelihood = -1118.4784 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

RRM
tc -.417101 .0399883 -10.43 0.000 -.4954767 -.3387253
tt -.102813 .0099862 -10.30 0.000 -.1223857 -.0832403

However, given that we observe multiple answers from each individual in the pre-
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sented data, we need to correct our standard errors considering this panel structure. We
can easily cluster our standard errors across individuals using the option cluster(id),
which implements the cluster robust variance-covariance matrix described in equation
(15). When we re-estimate the model using the robust cluster correction, we can see
a considerable increase in the standard error. This change can be explained mainly
because the cluster correction treats the set of 10 answers from each of the 106 individ-
uals as independent observations, differently from the latter, that assumed each of the
1060 choice situations were all independent. We will present the following models using
robust standard errors using clusters across individuals.

. randregret choice tc tt, gr(obs) alt(altern) rrmfn(classic) ///
> nocons cluster(id) nolog

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model

Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 40.41
Log likelihood = -1118.4784 Prob > chi2 = 0.0000

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

RRM
tc -.417101 .068059 -6.13 0.000 -.5504943 -.2837078
tt -.102813 .0182526 -5.63 0.000 -.1385874 -.0670386

In order to fit the GRRM model, we simply need to declare rrmfn(gene) to use
equation (5) as our systematic regret function. From the output, we can observe that
randregret fitted three models. The classical RRM (eq 3) is fitted to use the parameters
as starting points for the GRRM, and it is used in the LR test of γ = 1. After, a linear
RUM model was performed to obtain the constrained likelihood for the LR test of γ = 0.
Finally, the GRRM model is fitted.

Because, γ must lie between 0 and 1, the optimization uses an ancillary parameter
with a logistic transformation during the optimization procedure: γ = exp(γ∗)/ (1 + exp (γ∗)) =
logit−1(γ∗) = invlogit(γ∗), where γ∗ is an unbounded ancillary parameter. Normally,
γ∗ is hidden from the output, but it can be shown using option show. The resulting γ∗

is displayed in the _cons variable of the gamma_star equation.

. randregret choice tc tt , gr(obs) alt(altern) rrmfn(gene) ///
> nocons cluster(id) show

Fitting Classic RRM for Initial Values

initial: log likelihood = -1164.529
alternative: log likelihood = -1156.5784
rescale: log likelihood = -1121.29
Iteration 0: log likelihood = -1121.29
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Iteration 1: log likelihood = -1118.4843
Iteration 2: log likelihood = -1118.4784
Iteration 3: log likelihood = -1118.4784

Fitting Conditional Logit as a Restricted Model (gamma=0) for LR test

Fitting Generalized RRM Model

initial: log likelihood = -1120.7001
rescale: log likelihood = -1120.7001
rescale eq: log likelihood = -1120.7001
Iteration 0: log likelihood = -1120.7001
Iteration 1: log likelihood = -1118.5366
Iteration 2: log likelihood = -1118.3484
Iteration 3: log likelihood = -1118.3307
Iteration 4: log likelihood = -1118.3302
Iteration 5: log likelihood = -1118.3302

GRRM: Generalized Random Regret Minimization Model

Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 10.23
Log likelihood = -1118.3302 Prob > chi2 = 0.0060

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

RRM
tc -.3904872 .1248997 -3.13 0.002 -.6352861 -.1456884
tt -.0967528 .0307009 -3.15 0.002 -.1569255 -.03658

gamma_star
_cons 1.291135 3.303988 0.39 0.696 -5.184563 7.766832

gamma .7843392 .5588736 .0055712 .9995766

LR test of gamma=0: chibar2(01) = 9.41 Prob >= chibar2 = 0.001
LR test of gamma=1: chibar2(01) = 0.30 Prob >= chibar2 = 0.293

Finally, using γ̂∗, we can obtain γ̂ back on the original scale from 0 to 1 using the
logistic transformation. It is displayed as gamma in the output. The standard error of
gamma is computed using the Delta Method. To exemplify the last point, manually, it
is possible to recover γ̂ (gamma) using (see [R] nlcom).

. nlcom (gamma: invlogit(_b[gamma_star:_cons]))

gamma: invlogit(_b[gamma_star:_cons])

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

gamma .7843392 .5588736 1.40 0.160 -.311033 1.879711

From the nlcom output some immediate discrepancies are evident regarding the con-
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fidence interval (CI), where the upper bound violates the restriction that we imposed
on γ. As Buis (2014) documented using the heckman command, the discrepancies in

CI occur because nl computes the CI using γ̂ ± zρ
[
V̂ ar {γ̂}

]1/2
. Accordingly, using

the procedure of Buis (2007), and noting that the γ̂ and
[
V̂ ar {γ̂}

]1/2
are stored in

e(gamma) and e(gamma_sd), respectively, we can recover the CI of nlcom as follows.

. di "confidence interval for gamma from nl: [" /*
> */ e(gamma) - e(gamma_se)*invnormal(.975) " , " /*
> */ e(gamma) + e(gamma_se)*invnormal(.975) "]"
confidence interval for gamma from nl: [-.31103303 , 1.8797114]

On the other hand, randregret computes the CI using the endpoints of γ̂∗ and then
transforms those end points back into the restricted space. Therefore, the CI is com-

puted using invlogit

(
γ̂∗ ± zρ

[
V̂ ar {γ̂∗}

]1/2)
. We can replicate the CI produced by

randregret manually as follows.

. di "confidence interval for gamma from randregret: [" /*
> */ invlogit(_b[gamma_star:_cons] - /*
> */ invnormal(.975)* _se[gamma_star:_cons]) " , " /*
> */ invlogit(_b[gamma_star:_cons] + /*
> */ invnormal(.975)* _se[gamma_star:_cons]) "]"
confidence interval for gamma from randregret: [.00557117 , .99957663]

Even though both ways are asymptotically equivalent, in finite samples, they are
likely to differ. Moreover, the way used by randregret ensures that the restrictions
imposed on the parameter are met by the CI too.

Additionally, randregret computes two LR tests for the γ. As explained earlier,
given that we are testing a null hypothesis at the boundaries of the parametric space, we
need to adjust the critical value (Gutierrez et al. 2001). This is why the test mentions a
chibar2(01) which is a mixture of a χ2

1 (50%) and a χ2
0 (50%). From the test, we can

see that the hypothesis for γ = 0 is rejected, meaning that there is statistical evidence
in favor of the data being generated by regret minimization behavior and not from
random utility maximization. Finally, we can see that the hypothesis for γ = 1 cannot
be rejected, meaning that, in this case, the GRRM model is not significantly different
from the classical RRM.

The µRRM model can be obtained typing rrmfn(mu), implementing equation (7)
as systematic regret. For this model, similar to the GRRM model, we use an ancillary
parameter approach to bound the searching space of our algorithm for µ between 0 and
M . The transformation used is µ = M · [exp(µ∗)/ (1 + exp (µ∗))] = M ·

[
logit−1(µ∗)

]
=

M · [invlogit(µ∗)], where µ∗ is an unbounded ancillary parameter, and M is equal to the
upper bound of the searching space. The upper bound that we used in this case was
equal to 10, as can be seen in the uppermu(10) option. From the output, we see that
randregret first runs the classical RRM model, and uses the common parameters with
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the µRRM model as starting points for the maximization procedure.

. local up = 10

. randregret choice tc tt, gr(obs) alt(altern) rrm(mu) ///
> nocons uppermu(`up´) show cluster(id)

Fitting Classic RRM for Initial Values

initial: log likelihood = -1164.529
alternative: log likelihood = -1156.5784
rescale: log likelihood = -1121.29
Iteration 0: log likelihood = -1121.29
Iteration 1: log likelihood = -1118.4843
Iteration 2: log likelihood = -1118.4784
Iteration 3: log likelihood = -1118.4784

Fitting muRRM Model

initial: log likelihood = -1121.2577
rescale: log likelihood = -1121.2577
rescale eq: log likelihood = -1121.2577
Iteration 0: log likelihood = -1121.2577 (not concave)
Iteration 1: log likelihood = -1118.9528
Iteration 2: log likelihood = -1118.5884
Iteration 3: log likelihood = -1118.398
Iteration 4: log likelihood = -1118.3965
Iteration 5: log likelihood = -1118.3965

muRRM: Mu-Random Regret Minimization Model

Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 66.95
Log likelihood = -1118.3965 Prob > chi2 = 0.0000

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

RRM
tc -.4280409 .0557747 -7.67 0.000 -.5373572 -.3187245
tt -.1059436 .0152902 -6.93 0.000 -.1359119 -.0759754

mu_star
_cons -2.0056 .7911288 -2.54 0.011 -3.556183 -.4550157

mu 1.186163 .827097 .2775523 3.881689

LR test of mu=1: chi2(1) =0.16 Prob >= chibar2 = 0.686

The resulting µ̂∗ is displayed in the _cons variable of the mu_star equation because
of the _show option. To recover the value of µ̂, randregret applies the transformation
described above. The same procedure can be performed using nlcom in the same fashion
as we did for the GRRM model, with the only difference that we need to multiply by
the defined upper bound of the searching space to recover the parameter µ̂ correctly.
The same discrepancies in the CI produced by nlcom are due to the matter explained
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earlier in the GRRM model context and can be addressed as stated.

. nlcom (mu :invlogit(_b[mu_star:_cons])*`up´)

mu: invlogit(_b[mu_star:_cons])*10

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu 1.186163 .827097 1.43 0.152 -.4349177 2.807243

Additionally, randregret shows the LR test results for testing µ = 1. We see that
it is not possible to reject the hypothesis that µ is equal to 1 (p = 0.686), meaning
that the model is statistically equivalent to the classical RRM. An important remark
for practitioners is that if the maximum is reached at µ̂ = M , it is highly likely that µ is
tending to infinity, and therefore, as argued in van Cranenburgh et al. (2015), this fact
suggests that there is evidence in favor that the choice behavior is better represented
by a linear RUM model.

Finally, the PRRM model can be fitted using the rrmfn(pure) option. As we
mentioned before, this model is a particular case of the µRRM with µ arbitrarily small,
and it is described by equations (9)-(10). Important differences with the common syntax
need to be mentioned. Given that we need to feed the model with the expected signs of
attributes, we do not include the explanatory variables in the conventional way. Instead,
we split the attributes between the ones with assumed positive sign and the ones with
assumed negative sign in options pos() and neg(), respectively. In this particular case,
both of our attributes are expected to have a negative sign because faster and cheaper
routes are preferable to slower and costlier ones, and therefore, when the level on a non-
chosen alternative increases, the regret decreases. Consequently, we need to include the
two attributes as follows: neg(tc tt).

. randregret choice , neg(tc tt) gr(obs) alt(altern) rrmfn(pure) ///
> nocons cluster(id)

PRRM: Pure Random Regret Minimization Model

Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 21.06
Log likelihood = -1128.3777 Prob > chi2 = 0.0000

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

choice
tc -.285628 .0647545 -4.41 0.000 -.4125446 -.1587114
tt -.0661575 .0169355 -3.91 0.000 -.0993505 -.0329645

The Pure-RRM uses a transformation of the original regressors using options
positive() and negative() as detailed in S. van Cranenburgh et. al (2015)
Afterward, randregret invokes clogit using these transormed regresors
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As mentioned in the footnote of the output, randregret performs the attribute
transformation using equation (10). The transformed attributes are generated using
the randregret_pure command. Afterwards, randregret simply invokes clogit to fit
the model using these transformed attributes.

Additionally, for the sake of illustration, we will also fit the PRRM model using
randregret_pure and clogit independently. The randregret_pure command can
generate the transformed attributes described in equation (10). When dealing with a
mix of positive and negative attributes, their transformations need to be created in two
different runs of randregret_pure, that is to say, one for assumed positive attributes
and other for assumed negative attributes. In our case, all the attributes are assumed to
have negative signs. Hence, we can create them in one single run of randregret_pure
using option sign(neg). Finally, given that the function will add the transformed
attributes as new Stata variables the user needs to provide a prefix to name and include
them in the data set. Consequently, we type prefix(p_) to declare that all the new
attributes’ names will start with the p_ prefix.

. randregret_pure tc tt , sign(neg) gr(obs) prefix(p_)

. list obs altern choice tt p_tt tc p_tc in 1/3, sepby(obs)

obs altern choice tt p_tt tc p_tc

1. 1 First 0 23 0 6 5
2. 1 Second 0 27 4 4 1
3. 1 Third 1 35 20 3 0

To further illustrate the process of generating the new attributes, we will follow
the calculations in equation (10) to obtain the transformed attribute (p_tt) from the
original attribute total time (tt) for the first choice situation (obs==1) of the first
individual.

The new transformed attribute p_tt, conditional on an assumed negative sign from
the original attribute is given by: xPRRM

i,tt,1 =
∑3
j 6=i min {0, xj,tt,1 − xi,tt,1}. Subsequently,

in matrix format, we will perform the following calculations to obtain p_tt.

XPRRM
tt,1 =



xPRRM
1,tt,1

xPRRM
2,tt,1

xPRRM
3,tt,1


 =




min {0, x2,tt,1 − x1,tt,1}+ min {0, x3,tt,1 − x1,tt,1}
min {0, x1,tt,1 − x2,tt,1}+ min {0, x3,tt,1 − x2,tt,1}
min {0, x1,tt,1 − x3,tt,1}+ min {0, x2,tt,1 − x3,tt,1}




=




min {0, 27− 23}+ min {0, 35− 23}
min {0, 23− 27}+ min {0, 35− 27}
min {0, 23− 35}+ min {0, 27− 35}




=




0 + 0
−4 + 0
−12 +−8


 =




0
−4
−20




It is worth to mention that randregret_pure function flips the signs of the variables
to be used directly in combination with clogit. This is because in order to obtain the
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choice probabilities using equation (11), we need to use the negative of (10) which is
exactly what we achieve by invoking clogit using the transformed variables. Finally,
we can check that we get the same results when running randregret using rrmfn(pure)

option and using randregret_pure together with clogit.

. clogit choice p_tc p_tt, gr(obs) vce(cluster id)

Iteration 0: log pseudolikelihood = -1132.2901
Iteration 1: log pseudolikelihood = -1128.3852
Iteration 2: log pseudolikelihood = -1128.3777
Iteration 3: log pseudolikelihood = -1128.3777

Conditional (fixed-effects) logistic regression

Number of obs = 3,180
Wald chi2(2) = 21.06
Prob > chi2 = 0.0000

Log pseudolikelihood = -1128.3777 Pseudo R2 = 0.0310

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

p_tc -.285628 .0647545 -4.41 0.000 -.4125446 -.1587114
p_tt -.0661575 .0169355 -3.91 0.000 -.0993505 -.0329645

As we mentioned earlier, randregret also allows for the inclusion of alternative
specific constants (ASC) for all the models using equation (12). Below we run a classic
RRM model, using option base(1), which specifies that the first alternative is the
reference for the ASC. We list the results here to illustrate the syntax only because the
survey was implemented using non-labeled alternatives.

. randregret choice tc tt, gr(obs) alt(altern) base(1) rrmfn(classic) nolog

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model

Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 89.98
Log likelihood = -1113.5986 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

RRM
tc -.389129 .0411256 -9.46 0.000 -.4697336 -.3085244
tt -.0910313 .0106063 -8.58 0.000 -.1118192 -.0702433

ASC
ASC_2 -.1673341 .0769052 -2.18 0.030 -.3180656 -.0166026
ASC_3 .0876183 .0815384 1.07 0.283 -.072194 .2474306

To generate predictions we can invoke randregretpred after running randregret.
To illustrate this we re-run the classical RRM model, and generate two different pre-
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dictions. First, using option proba we generate the prob variable which contains the
predicted probability of equation (4). Additionally, we also used the xb option to gen-
erate a variable containing the linear predicted systematic regret of equation (3).

. qui randregret choice tc tt , gr(obs) alt(altern) rrmfn(classic) nocons nolog

. randregretpred prob ,gr(obs) alt(altern) proba

. randregretpred xb ,gr(obs) alt(altern) xb

. list obs altern choice id cs tt tc prob xb in 1/12, sepby(obs)

obs altern choice id cs tt tc prob xb

1. 1 First 0 1 1 23 6 .22354907 3.4618503
2. 1 Second 0 1 1 27 4 .54655027 2.567855
3. 1 Third 1 1 1 35 3 .22990067 3.4338339

4. 2 First 0 1 2 27 5 .43840211 2.7134208
5. 2 Second 1 1 2 35 4 .19128045 3.5428166
6. 2 Third 0 1 2 23 6 .37031744 2.8821967

7. 3 First 1 1 3 35 3 .25800373 3.2759017
8. 3 Second 0 1 3 23 5 .44187012 2.7378597
9. 3 Third 0 1 3 31 4 .30012616 3.1246728

10. 4 First 0 1 4 27 4 .43840211 2.7134208
11. 4 Second 0 1 4 23 5 .37031744 2.8821967
12. 4 Third 1 1 4 35 3 .19128045 3.5428166

11 Conclusions

We have presented the randregret command, which allows the user to easily estimate
four different RRM models, namely the Classic RRM (Chorus 2010), the Generalized
RRM (Chorus 2014), the µRRM and the PRRM (van Cranenburgh et al. 2015). We
have illustrated the results using Stated Choice Discrete Choice Data in the context of
route selection given in van Cranenburgh and Alwosheel (2019). Additionally, we have
included additional LR tests that rely on the relationships among the models, which
allows us to test whether the data are more likely to be generated by RRM or RUM
choice behavior.
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A Technical Appendix

A.1 Generic Scores Functions for RRM models

Without loss of generality, we can state that the log-likelihood of the four RRM models
presented in this article can be represented by equation (16). In particular, when R∗in
is replaced by equations (3), (5), (7) or (9), we can fit respectively the classical RRM,
the GRRM, the µRRM, and the PRRM model.

lnL =

N∑

n=1

J∑

i=1

yin ln (P ∗in)

=

N∑

n=1

J∑

i=1

yin ln

(
exp (−R∗in)

∑J
j=1 exp

(
−R∗jn

)
)

= −
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n=1

J∑

i=1

yinR
∗
in −

N∑

n=1

J∑

i=1

yin ln


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J∑

j=1

exp
(
−R∗jn

)

 (16)

Furthermore, any partial derivative of the log-likelihood with respect to any param-
eter θ ∈ θ, where θ stands for the full set of parameters of the model, can be expressed
as in equation (17). The rank of θ will depend on the particular model.

∂ lnL

∂θ
= −

N∑

n=1

J∑
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yin
∂R∗in
∂θ
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= −
N∑
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(yin − Pin)

(
∂R∗in
∂θ

)
(17)

In the Appendices (A.2) - (A.5), we will list the partial derivatives, also known as scores
functions, per type of parameter in each type of model. Additionally, it is crucial to
notice that, in any case, we can check that ∂R∗in/∂αi = 1, where αi represents the
coefficient associated with the ASC of alternative i.

A.2 Scores functions for the classical RRM model

In order to obtain the loglikelihood of the classic RRM model we need to substitute
R∗in in equation (16) by equation (3). Accordingly, the set of parameters θ is now given
by θ = (β,α)

′
. Here β is a m × 1 vector of alternative-specific regression coefficients

and α is a (J − 1)× 1 vector of ASC. Subsequently, the scores functions of the classical
RRM model will be described as follows:

∂ lnL

∂θ
=

(
∂ lnL

∂β1
, . . . ,

∂ lnL

∂βM
,
∂ lnL

∂α1
, . . . ,

∂ lnL

∂αJ−1

)

=

(
∂ lnL

∂β
,
∂ lnL

∂α

)
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Finally, to obtain the expression for ∂ lnL/∂βm we need to replace equation (18)
into equation (17).

∂Rin
∂βm

=

J∑

j 6=i

(
exp {βm (xjmn − ximn)} · (xjmn − ximn)

1 + exp {βm (xjmn − ximn)}

)
(18)

A.3 Scores functions for GRRM model

The log-likelihood of the GRRM model can be constructed by replacing the term R∗in
in equation (16) by equation (5). Hence, the full set of parameters θ is now given by
θ = (β,α, γ∗)′. Here, β is a m× 1 vector of alternative-specific regression coefficients,
α is a (J − 1)× 1 vector of ASC and γ∗ is a scalar equal to the parameter γ in the logit
scale. Hence, the corresponding scores functions are described by:

∂ lnL

∂θ
=

(
∂ lnL

∂β1
, . . . ,

∂ lnL

∂βM
,
∂ lnL

∂α1
, . . . ,

∂ lnL

∂αJ−1
,
∂ lnL

∂γ∗

)

=

(
∂ lnL

∂β
,
∂ lnL

∂α
,
∂ lnL

∂γ∗

)

Additionally, in order to obtain the expression for ∂ lnL/∂βm we need to replace
equation (19) into equation (17).

∂RGRRM
in

∂βm
=

J∑

j 6=i

(
exp {βm (xjmn − ximn)} · (xjmn − ximn)

γ + exp {βm (xjmn − ximn)}

)
(19)

However, the score function of the parameter γ∗ needs a slightly different treatment.
As mentioned earlier, the optimization procedure does not directly fit the parameter γ,
but instead, it fits the model using an ancillary parameter: γ∗ = logit(γ). Hence, we
model the parameter γ in the logit scale. This fact has a direct impact on the score
function of parameter γ∗. Using the chain rule, we can state:

∂ lnL

∂γ
=
∂ lnL

∂γ∗
· ∂γ

∗

∂γ

Subsequently, solving ∂γ∗/∂γ and rearranging terms, we see in equation (20), that in
order to compute the score function of the parameter γ∗, we need to adjust the partial
derivative from the log-likelihood with respect to γ by a factor of γ(1− γ).

∂ lnL

∂γ∗
=
∂ lnL

∂γ
· γ(1− γ) (20)

The expression for ∂ lnL/∂γ can be computed replacing equation (21) into equation
(17), which together with equation (20) gives us the required expression for ∂ lnL/∂γ∗.
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=

J∑
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M∑
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1

γ + exp {βm (xjmn − ximn)}

)
(21)
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A.4 Scores functions for µRRM model

The µRRM model has a log-likelihood that is a particular case of equation (17), where
R∗in is replaced by equation (7). Thus, the full set of parameters θ is now described by
θ = (β,α, µ∗)′. Here β is a m × 1 vector of alternative-specific regression coefficients,
α is a (J − 1) × 1 vector of ASC and µ∗ is a scalar equal to the µ parameter in a
transformed scale. Thus, the corresponding scores functions can be represented by:

∂ lnL

∂θ
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∂βM
,
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)
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,
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,
∂ lnL
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(22)

First, by replacing equation (23) back into equation (17) we can easily obtain the
expression for ∂ lnL/∂βm.

∂RµRRM
in

∂βm
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(
exp [(βm/µ) · (xjmn − ximn)] · (xjmn − ximn)
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)
(23)

The µRRM model, similarly to the GRRM model, also fits the parameter µ using an
unbounded ancillary parameter: µ∗ = ln(µ/ (M − µ)). Accordingly, this transformation
needs to be taken into account when computing the score function of the parameter µ∗.
Using the chain rule, we can state:

∂ lnL

∂µ
=
∂ lnL

∂µ∗
· ∂µ

∗

∂µ

Solving for ∂µ∗/∂µ and rearranging terms, we can see that the score function of the
parameter µ∗ is the same as the partial derivative of the log-likelihood with respect to
µ multiplied by a factor equal to µ (M − µ) /M .

∂ lnL

∂µ∗
=
∂ lnL

∂µ
· µ (M − µ)

M
(24)

Finally, the expression for ∂ lnL/∂µ can be obtained replacing equations (25) and
(26) into equation (17), which together with equation (24), provides the required ex-
pression for ∂ lnL/∂µ∗.
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A.5 Scores Functions for PRRM model

We can recover the log-likelihood of the PRRM model replacing the expression R∗in in
equation (16) by equation (9). Thus, the full set of parameters θ is now described by
θ = (β,α)

′
. Here β is a m× 1 vector of alternative-specific regression coefficients and

α is a (J − 1)× 1 vector of ASC. Consequently, the scores functions are then:

∂ lnL

∂θ
=

(
∂ lnL
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∂ lnL

∂βM
,
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∂α1
, . . . ,

∂ lnL

∂αJ−1

)

=
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∂β
,
∂ lnL

∂α

)

Accordingly, we can obtain the expression for ∂ lnL/∂βm by replacing equation (27)
into equation (17).

∂RPURE
in

∂βm
= xPURE

imn (27)
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