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Abstract 

A novel synthesis process of ZIF-94 (also known as SIM-1) is developed for particle size 

tuning, using either NaOH or NH4OH as deprotonators. ZIF-94 stem from MOFs and have 

several advantages over traditional porous materials, dealing with their chemistry, structure 

and with their applications as catalysts, adsorbents, biocides and membrane materials. The 

existing synthesis process of ZIF-94 at scale-up level produces particles of approximately 250 

nm in size; having even smaller size is expected to give even better gas separation performance 

and catalytic activity. In this study, it was found that NaOH gives ZIF-94 particles with well-

defined crystal structure while in the case of NH4OH, particles agglomerated to produce 

random shaped bigger particles. The optimum base to metal ratio was found to be 2:1 

(NaOH:Zn), which gives a compromise between particle size and surface area, such amount of 

base loading gives a SEM average particle size of 114 ± 3 nm with BET specific surface area 

of 254 ± 4 m2/g. Furthermore, the synthesized nanoparticles underwent a thorough 

characterization by XRD, TGA, N2 adsorption and electronic microscopy revealing the lowest 

SEM average particle size of 84 ± 3 nm.

Keywords: MOF, ZIF-94, SIM-1, Particle size tuning, Nanoparticle synthesis 
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1. Introduction 

Metal organic frameworks (MOFs) or coordination polymers are crystalline porous organic-

inorganic hybrid materials. Since their appearance in 1980s, they have attracted great attention 

among researchers due to their fascinating properties and potential applications.1 Zeolite 

imidazolate frameworks (ZIFs) are an important subclass of MOFs comprised of tetrahedral 

metal ions linked by imidazolate moieties.2 ZIFs have several advantages over traditional 

porous materials, such as ultramicroporosity, flexible structure, selective gas uptake, higher 

chemical stability, adjustable properties, and easy functionalization.3 Thanks to these 

outstanding features, ZIFs have been explored for potential applications in gas separation 

/storage,4,5 liquid separation,6 water purification,7 catalysis and adsorption,8 sensors,9 drug 

delivery and other medical applications.10,11 Iron-doped ZIF-8 catalyst gives a 96.6 % yield of 

cyclic carbonate synthesis from CO2 cycloaddition.12 Dong and Zheng13 have constructed a 

novel H2O2 sensor using cobalt-based ZIF, ZIF-67. Sun et al.10 reported a ZIF based pH-

responsive drug delivery system for effective antitumor therapy. Hollow fiber membranes 

incorporated with ZIF-8, for water purification, showed better performance in small molecule 

separations. They reject up to 99.5% of small molecules with molecular weight 320 to 800 Da 

at high permeance of up to 50 L m-2 h-1 bar-1.7 ZIFs are indeed in focus for their application as 

fillers in MMMs, and it was demonstrated to have great potential for CO2 capture and 

separation. In a recent study, lithium-modified ZIF-91 showed CO2 uptake up to 10 mmol·g-

1.14 ZIF-8, when used as filler in MMMs, increases the permeability of CO2 through membranes 

without affecting much the selectivity over other gases.15–17 Similarly, a highly permeable and 

selective membrane of ZIF-95 has been developed for H2/CO2 separation.18  

A less explored ZIF, ZIF-94, also called SIM-1 (substituted imidazolate material-1), has shown 

to have promising properties to be used as filler in MMMs for gas separation,19,20 continuous 

membrane,20,21 adsorbent for biomass-derived polyols,22 catalyst,23 biocidal material,24,25 and 

CO2 adsorbent.26 As ZIF-8, ZIF-94 also crystallizes in the sod topology constructed by Zn 

atoms and 4-methyl-5-imidazole-carboxaldehyde links (Fig. 1).27 
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Fig. 1. ZIF-94 framework with the linker represented in red circle, where blue, red and white dots represent nitrogen, carbon 
and oxygen atoms respectively (a), ZIF-94 linker 4-methyl-5imidazolecarboxaldehyde (b). Adapted with permission from 27.

ZIF-94 is characterized by high CO2 uptake of 2.4 mmol g-1 even at low pressure of 1 bar which 

is higher in comparison to other ZIFs i.e. ZIF-93 (1.7 mmol g -1 ), ZIF-7 (1.6 mmol g -1 ) and 

ZIF-11 (0.8 mmol g -1 ).19 The higher CO2 uptake is due to the smaller pore diameter of ZIF-

94 compared to other ZIFs as well as due to the specific interaction with its aldehyde group. It 

is expected that the smaller particles of ZIF-94 would further improve the CO2 uptake.26 

Particle size of catalyst highly influences the catalytic effect; the smaller particles show better 

catalytic activity.28,29 Furthermore, smaller particles of ZIF-8 in polysulfone (PSf) membrane 

result in higher CO2/CH4 selectivity.30 However, the particle size of ZIF-94 is yet to be 

optimized. Several attempts to modify the properties such as pore size, particle size and particle 

size distributions have been made by using various solvents and modifying metal to ligand ratio 

at different reaction conditions as well as by using post-synthetic modifications.19,21,22,27,31,32 

The smallest average particle size of ZIF-94 synthesised at scale-up level till date is ca. 250 

nm.31 

Here a novel way of synthesising ZIF-94 nanoparticles with an average particle size below 100 

nm, is reported using inorganic deprotonators NaOH and NH4OH. Smaller particles of ZIF-94 

synthesised through this procedure could improve its catalytic activity, CO2 uptake and polyol 

adsorption. 

2. Experimental Section
2.1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O), 98% and 4-methyl-5-imidazolecarboxaldehyde 

(C5H6N2O), 99% were purchased from Acros Organics. Tetrahydrofuran (THF), anhydrous, 
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99.9% and ammonium hydroxide solution (NH4OH), 28-30% NH3 base were obtained from 

Sigma-Aldrich. Methanol and sodium hydroxide (NaOH), pellets were supplied by Scharlab 

S.L., Spain. All the chemicals were used as obtained from the manufacturer without any further 

purification.

2.2. ZIF-94 synthesis
First, ZIF-94 synthesis by Johnson et al.31 was reproduced and termed as the original method. 

Briefly, 528 mg (2.4 mmol) of zinc acetate dihydrate was dissolved in 2 mL of methanol. In a 

separate vial, 528 mg (4.8 mmol) of 4-methyl-5-imidazolecarboxaldehyde was dissolved in 5 

mL THF. After stirring each for 10 min separately, metal salt solution in methanol was added 

into the ligand suspension in THF under vigorous mixing. The final reaction mixture was kept 

under continuous stirring for 16 h at room temperature (RT). Finally, the product was collected 

by centrifugation at 11000 rpm for 10 min and washed three times with methanol through the 

same centrifugation procedure. Ultrasonication was used during washing for proper mixing of 

the product into methanol. The sample obtained after washing was mixed properly in methanol, 

sonicated and dried at RT under a fume hood for 48 h.

2.3. ZIF-94 synthesis – modification of the original method
It has been found that the basic medium of synthesis solution promotes deprotonation of linker 

and the pH affects the nucleation, crystallization and growth of ZIFs.33,34 Therefore, the effect 

of two different bases was investigated to elucidate their effect on the particle size of ZIF-94: 

NaOH and NH4OH. The bases were added at various ratios keeping the metal:ligand ratio 

constant (Table 1). 
Table 1. Original method modifications with constant metal to ligand (Zn(CH3COO)2·2H2O:C5H6N2O) molar ratio of 1:2 to 

adjust the ZIF-94 particles size.

Sample Base Base:Zn molar ratio Amount of base (mg)

1 NaOH 0.5:1 48

2 NaOH 1:1 96

3 NaOH 2:1 192

4 NaOH 3:1 289

5 NH4OH 1:1 84

For the NaOH procedure, the same amount and composition of the metal salt solution and 

ligand suspension were prepared as stated above. NaOH pellets were firstly crushed to obtain 

powdered NaOH for better mixing in the synthesis suspension. Next, 48 mg (1.2 mmol), 96 mg 

(2.4 mmol), 192 mg (4.8 mmol) and 289 mg (7.2 mmol) of solid NaOH was added to the zinc 
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acetate solution in order to obtain 0.5:1, 1:1, 2:1 and 3:1 base to the metal molar ratio in the 

final reaction mixture, respectively (Table 1). Zinc acetate solution containing NaOH was 

stirred for 10 min and then it was added into the pre-stirred ligand suspension. The final mixture 

was stirred at RT for 16 h. The product was collected, washed with methanol and dried at room 

temperature as described in the original method, where THF/methanol solution was used as a 

solvent without any base deprotonators.31 

In case of the NH4OH procedure, 146 mg of 57.7 wt% aqueous NH4OH was added to the zinc 

acetate solution. The effective amount of NH4OH present in the water solution was 84 mg (2.4 

mmol) resulting in 1:1 base to metal ratio in the final reaction mixture. The rest of the steps 

were the same as it was described in the case of NaOH. The experimental scheme of synthesis 

process can be found in the supplementary information (Fig. S1). 

The amount of base for both cases was calculated using a general equation (equation 1):
𝑀𝐵𝑎𝑠𝑒 = 𝑛𝑍𝑛(𝐶𝐻3𝐶𝑂𝑂) ∙ 𝐻2𝑂 ∙ 𝑟 ∙ 𝑀𝑊 (1)

Where MBase is the amount of base that had to be added to the synthesis (g), is 𝑛𝑍𝑛(𝐶𝐻3𝐶𝑂𝑂) ∙ 𝐻2𝑂 

the number of moles of zinc acetate dihydrate (mol), r is the required ratio of a base (-), and 

Mw is the molecular weight of the base (g/mol).

2.4. ZIF-94 characterization 

2.4.1. Powder X-ray diffraction (PXRD)

Powder X-ray diffraction data were collected using Panalytical Empyrean equipment with 

CuKα radiation (λ = 0.154 nm), over the range of 5º - 40º at a scan rate of 0.03º s-1, to examine 

the d-spacing of the nanoparticles. Obtained data were compared to the simulated data available 

online.35,36

2.4.2. Thermogravimetric analysis (TGA)

TGA was carried out using a Mettler Toledo TGA/STDA 851e. Small amount of the sample 

(approx. 5 mg) placed in 70 μL alumina pans was heated under airflow (40 mL min-1) from 35 

to 700 ºC at a heating rate of 10 ºC min-1. Normalised weight versus temperature curve was 

plotted.
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2.4.3. N2 adsorption-desorption and BET surface area

N2 adsorption-desorption isotherms were obtained using Micrometrics Tristar 3000 at 77 K. 

Before these measurements, ZIF-94 samples were degassed for 8 h under vacuum at 200 °C 

using a heating rate of 10 ºC min-1. Nitrogen adsorption-desorption was performed to obtain 

the quantity adsorbed and desorbed versus relative pressure. The surface area was calculated 

using the Brunauer-Emmett-Teller (BET) method. Collected data were analysed to obtain BET 

surface area and N2 adsorption-desorption isotherm. 

2.4.4. Scanning Electron Microscopy (SEM)

The morphology of ZIF-94 nanoparticles was examined by scanning electron microscopy 

(SEM) with backscattered electron mode using an Inspect F50 model scanning microscope 

(FEI), operated at 10 kV. The image at 50,000 magnification from three spots in each sample 

was analysed with ImageJ software and particle size distribution was obtained.

2.4.5. Transmission Electron Microscopy (TEM) 

Samples were analysed through transmission electron microscopy (TEM) to examine the 

possibility of aggregation. The sample suspension in methanol was placed onto a carbon-coated 

copper 300 mesh TEM grid and observed under FEI Tecnai T20 transmission electron 

microscope operated at 200 kV.

3. Results and Discussion

Figure 2 shows the schematic representation of the modifications carried out in the original 

method to obtain different products to be characterized by the various techniques mentioned in 

section 2.4.
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Original Method 
(ZIF-94)

Modification 1
(Base NaOH)

Base:Zn
(0.5:1)

Product A.1

Base:Zn
(1:1)

Product A.2

Base:Zn
(2:1)

Product A.3

Base:Zn
(3:1)

Product A.4

Modification 2
(Base NH4OH)

Base:Zn
(1:1)

Product B

Fig. 2. Schematic representation of modification in the original method to obtain different products

3.1. Original method 
X-ray diffraction pattern determines the crystallinity of the product and the absence of any 

additional crystal phases. Figure 3A shows that the XRD pattern of product synthesised via the 

original method corresponds to the simulated data.35,36 Peak positions and relative intensities 

match well with single crystal data corresponding to ZIF-94. Miller indices (hkl) corresponding 

to each peak have been calculated, and this confirms that the sample has cubic phase structure 

and matches well with the values reported earlier for ZIF-8 (complete calculation process has 

been provided in the supplementary information, Table S1).37

Thermogravimetric analysis of all the samples was performed in the temperature range of 35 

°C to 700 °C to evaluate the thermal stability of prepared nanomaterials. TGA curve shows 

that pure, activated material was obtained (no significant weight loss in the ca. 200-300 ºC 

range suggesting the absence of trapped ligand). Nevertheless, the particles contained some 

residuals of the solvent, since the first decrease in the curve (up to approximately 85 ºC) 

corresponds to the solvent evaporation. There is a rapid weight loss after 300 °C which is due 

to the degradation of the sample and it confirms that thermal stability of the particles is up to 

300 °C (Fig. 3B).
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Fig. 3. XRD pattern of particle prepared through the original method compared with simulated data available online (A); 
TGA curve of particles prepared through the original method (B)

N2 adsorption-desorption and BET theory are the techniques that are used to measure the 

quantity of an adsorbed gas, the nanoparticle pore volume and surface area. Even though the 

XRD pattern of ZIF-94 is the same as that of ZIF-8, the BET area distinguishes the two 

materials very well. In several reports, the surface area of ZIF-8 was found to be between 1300 

and 1810 m2/g,38,39 while Jin et al.22 reported the surface area of 363 m2/g for ZIF-94. BET 

surface area of the particles synthesised through the original method was found to be 326 ± 10 

m2/g which is comparable to the reported data.22 N2 adsorption isotherm (Fig. 4) is concave 

towards P/Pº axis with steep uptake at the very low value of P/Pº. The quantity adsorbed 

approaches to maximum when P/Pº reaches towards its maximum. Similar isotherm was 

obtained by Johnson et al.31 for ZIF-94 and it is the typical type I isotherm given by 

microporous solid.40
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Q
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Fig. 4. N2 adsorption-desorption isotherm of ZIF-94 synthesised by the original method
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SEM image (Fig. 5A) shows that ZIF-94 nanoparticles obtained in the original method have a 

well-defined crystal structure and that they are well separated with variation in size. Particle 

size distribution (Fig. 5B) obtained from measuring around 40 particles from three such images 

taken at three different spots of the sample indicates that the particle size is between 100 to 350 

nm. The majority of the particles possess a size between 200 to 250 nm making the average 

particle size of 212 ± 7 nm.

A) B)

100 150 200 250 300 350
0

5

10

15

20

N
u

m
b

er
 o

f 
p

ar
ti

cl
es

Particle size (nm)

Fig. 5. SEM image of original method particles (A); particle size distribution obtained from three SEM images taken from 
different spots in the sample (B)

3.2. Modified ZIF-94 synthesis

Five samples of ZIF-94 particles were synthesised after the modification of the original 

method. Products A.1-A.4 and product B were obtained by adding different amount of two 

bases NaOH and NH4OH, respectively (see Fig. 2 for a scheme). All the samples prepared 

through a modified method possess XRD patterns that correspond to ZIF-94, which in turn 

correspond to that of ZIF-8 since both materials share the same sod type structure.41 XRD 

patterns of product A.2-A.3 (Fig. 6A) and B (Fig. 7A) have a broader peak. Scherrer equation42 

suggests that this broad peak could indicate the smaller particle size in these samples. In fact, 

the calculation with this equation (at 2-theta value of ca. 7.5º) revealed particle sizes in the 

range of 30-38 nm (30-38 nm for A.1-A.4 and 21 nm for B), not seen in the SEM images 

suggesting important particle agglomeration. The size of the particles calculated through this 

method (Table 2) is somewhat in agreement with the particle size calculated from SEM images 

i.e. particle size decreases for samples prepared using NaOH and NH4OH. The complete 

calculation procedure, equation used and average particle size using all the peaks can be found 

in the supplementary information (Table S2). 
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Table 2. The particle sizes of all the samples calculated using Scherrer equation, at the values of 2-theta ca. 7.5º and K 
equals to 0.94

Sample Peak position 
(2theta)

FWHM Crystal Size (nm)  
(Kλ/β cos θ)

Original Method 7.48 0.23 36

Product  A.1 7.47 0.25 33

Product A.2 7.47 0.28 30

Product A.3 7.51 0.25 33

Product A.4 7.46 0.22 38

Product B 7.60 0.39 21

TGA curves of products A.1-A.4 (Fig. 6B) and product B (Fig. 7B) show that the thermal 

decomposition of all the samples occurs at around 300 °C which is in agreement with the ZIF-

94 particles obtained by the original method. There is a maximum of 10 % weight loss around 

85 °C due to THF and methanol removal. All the solvent trapped inside the sample did not 

evaporate even after 48 h of drying at RT which suggests that a more rigorous drying method 

like heating the sample below the thermal decomposition in a vacuum oven could be used.  
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Fig. 6. XRD patterns of samples produced through modified original method using base NaOH compared with original 
method samples (A); TGA curve of those samples in comparison with original method sample (B)
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Fig. 7. XRD patterns of sample produced through modified original method using base NH4OH compared with original 
method samples (A); TGA curve in comparison with original method sample (B)

BET surface area confirms that all the samples synthesised through the modified method are 

pure phase ZIF-94. The surface area of products A.1-A.4 and B is found to be 119 ± 2, 209 ± 

3, 254 ± 4, 135 ± 1 and 277 ± 5 m2/g, respectively (Fig. 8A-9A). However, all products exhibit 

smaller BET surface area compared to the original method, which can be due to a less 

crystalline structure (broad XRD peaks) as the particle size decreased. Similar phenomena has 

been observed earlier for ZIF-8 - BET surface area becomes smaller as particle size decreases.43 

Moreover, TGA results suggest that the degasification treatment at 200 ºC (before N2 

adsorption) should be enough for trapped solvents and ligand removal. XRD pattern and TGA 

curve of the activated sample (200 ºC for 8 h) further confirm the absence of any trapped ligand 

or guest molecule in the samples (Fig. S4, supplementary information). Adsorption isotherms 

of products A.1-A.4 (Fig. 8B) and product B (Fig. 9B) are comparable to the isotherm of 

original ZIF-94 (Fig. 4) indicating type I isotherm given by microporous solids.40 A slight 

hysteresis is observed in all isotherms that may be due to capillary condensation in the spaces 

in between the nanoparticles.40 Furthermore, pore volumes were calculated from nitrogen 

adsorption data and it was found that the values decreased from 0.23 cm³/g for original method 

samples to 0.16 cm³/g for product A.4 (find pore volume and pore size of all the samples in the 

supplementary information, Table S3). The diameter of ZIF-94 cavities is 0.75 nm,41 what 

suggests a pore limiting dimension of ca. 0.3 nm,  something below the 0.34 nm of ZIF-8 with 

the same sod structure and 1.14 nm cavities.39  
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Fig. 8. BET surface area comparison of all the samples produced through modified original method using base NaOH with 
original method samples (A); N2 adsorption isotherm of those samples compared with original method (B)
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SEM observation, particle size distribution and average particle size are crucial factors in this 

study. Our objective was to reduce the particle size of ZIF-94 in comparison to the widely used 

synthesis procedures. From SEM images (Fig. 10 A-E), the particle size distribution (Fig. 11) 

and average particle size were obtained. Particle size found to be gradually decreasing with an 

increased amount of base addition. The average particle size of products A.1- A.4 found to be 

142 ± 6, 110 ± 5, 114 ± 3, and 84 ± 3 nm, respectively. Product B, in which NH4OH was added, 

does not acquire the well-defined shape of ZIF-94 (Fig. 10 E) the average particle size found 

to be 636 ± 51 nm with most particles in the size range of 500-700 nm (Fig. 11). Even after 

having broad XRD peaks which suggest smaller particles, SEM image shows bigger structures. 

This is due to the agglomeration of small particles probably occurred because since NH4OH is 
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not as strong base as NaOH it could not completely deprotonate the linkers resulting in slow 

crystallization and agglomeration. While NaOH, being a strong base, completely deprotonates 

imidazole linker leading to increased nucleation rate and rapid crystallization resulting in less 

agglomerated ZIF-94. The proposed mechanism of the synthesis using NaOH is shown in Fig. 

12. OH- from the base would deprotonate the imidazole linker and facilitate coordination 

bonding with Zn2+. On the other hand, in the case of synthesis using NH4OH, the mechanism 

is similar considering OH- deprotonating the imidazole linker; however in this case, extra water 

(besides that coming from the ligand deprotonation, one water molecule per deprotonated 

ligand molecule, and that consubstantial to the Zn acetate, two water molecules per Zn atom) 

was present in the reaction mixture which has been reported to facilitate the hydrolysis of the 

linker and eventually helping in coordination with Zn2+ in the synthesis of a similar ZIF, ZIF-

8.44 At the same time due to the presence of water in the reagent, there is a possibility of 

hydrolysis of ZIF-94, which strongly depends on the amount of water present in the system. 

Drastic change in XRD pattern of ZIF (ZIF-8) has been reported after hydrolysis,45 while the 

XRD pattern of product B (synthesized with NH4OH) is identical to that of the product 

corresponding to the original method. This suggests that the extent of hydrolysis if occurred 

was not enough to reverse the synthesis and to show any significant impact. However, the effect 

of the presence of water on the crystallinity of the product cannot be neglected and that could 

also be the reason of agglomeration of ZIF particles in the product B leading to randomly 

shaped bigger particles. Interestingly, for product B, TEM observation revealed an average 

particle size of 369 ± 17 nm suggesting that the particles are strongly agglomerated from much 

smaller MOF nanoparticles (those illustrated by the Scherrer calculation) (see Table 3 for the 

summary of the characteristic of all products synthesised). 
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Fig. 10. SEM images of product A.1 (A), product A.2 (B), product A.3 (C), product A.4 (D), product B (E) and TEM images 
of product A.4 and B in the inset (complete TEM images can be found in supplementary information).

50 100 150 200 250
0

10

20 Product A.1

60 90 120 150 180
0

10

20 Product A.2

60 90 120 150 180 210 240
0

15
30
45 Product A.3

30 60 90 120 150
0

10
20
30

Product A.4

420 560 700 840 980
0

5

10

Particle size (nm)

N
um

be
r 

of
 p

ar
tic

le
s

Product B

Fig. 11. Particle size distribution of product A.1-A.4 to B (from bottom to top)
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Fig. 12. Proposed mechanism of ZIF-94 synthesis using NaOH as deprotonator

Table 3. Summary of characteristics of original ZIF-94 and products obtained through different modifications of original 
method

Characteristics  Comparison to the literature
Sample

Avg. particle size 
(nm)

BET area 
(m2/g)

Avg. particle 
size 

BET area 
(m2/g)

Ref.

Original 
ZIF-94

212 ± 7 326 ± 10  340 nm 424 19 

Product 
A.1

142 ± 6 119 ± 2 800 nm 591 20 

Product 
A.2

110 ± 5 209 ± 3 4 μm 363 22 

Product 
A.3

114 ± 3 254 ± 4 275 nm 415 31

Product 
A.4

84 ± 3 135 ± 1 3 μm 602 32

Product B 636 ± 51 277 ± 5 472 nm 415 27

Page 15 of 18 New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
6 

N
ov

em
be

r 
20

20
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
N

ew
 E

ng
la

nd
 o

n 
11

/6
/2

02
0 

11
:3

5:
09

 A
M

. 

View Article Online
DOI: 10.1039/D0NJ04402D

https://doi.org/10.1039/d0nj04402d


16

4. Conclusions 

ZIF-94 is an emerging material with many potential applications. The target of this work was 

to synthesise ZIF-94 at room temperature and to decrease the particle size by using two bases 

(NaOH or NH4OH) that will work as deprotonators. 

The particle size of ZIF-94 was successfully reduced down to about 84 nm, compared to 

approximately 250 nm given by the commonly used methods. Synthesis of ZIF-94 with NaOH 

as a deprotonator resulted in particles with well-defined crystal structure, as inferred from XRD 

characterization. On the other hand, in case of using NH4OH as a base, particles agglomerated 

to produce random shaped bigger structures. This is because NaOH, being significantly 

stronger base than NH4OH, shows a severe effect on the nucleation rate and induces rapid 

crystallization during synthesis. The higher amount NaOH with respect to metal gradually 

reduced the particle size but at the cost of sacrificing the BET specific surface area, resulting 

in a conclusion that, in both cases, very small and very big amount of NaOH additions have 

disadvantageous effects. Base addition at the ratio 2:1 (NaOH:Zn) gives a compromise between 

particle size (average particle size of 114 ± 3 nm) and surface area (254 ± 4 m2/g). Therefore, 

smaller ZIF-94 particles synthesised at these conditions constitute a breakthrough and needed 

to be further investigated for their catalytic activity, adsorption efficiency, biocidal effect and 

most importantly as the fillers in MMMs.
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