Verifying autonomous decision making against
environment assumptions: An experience report

Hoang Tung Dinh
KU Leuven
Dept. of Computer Science, imec-DistriNet
B-3001 Leuven, Belgium
Email: hoangtung.dinh@cs.kuleuven.be

Abstract—Discrete decision making is a crucial software com-
ponent of autonomous systems. Since many autonomous systems
are safety-critical, it is important to have their decision making
formally verified. Model checking is a well-known technique in
computer science that can automatically verify the correctness
of a system. In this paper we report our experience on applying
different model checkers, including ProB, SPIN, TLC, Alloy
and NuSMYV, on verifying the discrete decision making of an
autonomous UAV in an industrial application: pylon inspection.
We study how the decision making logic of the UAV and the
assumptions on its operating environment can be represented in
each model checker and conduct a performance evaluation. The
results demonstrate that only model checkers based on bounded
model checking and symbolic model checking, that is, Alloy and
NuSMYV, are able to verify the decision making of the UAV in
our case study.

I. INTRODUCTION

In an autonomous system, discrete decision making con-
cerns performing symbolic reasoning to decide which high-
level actions the system should execute, based on semantic
information received from perception components. Each high-
level action then executes motion planning and control algo-
rithms to bring the system to its desired states. Examples of
high-level actions of an autonomous UAV system are take-off
and fly-to-home. Since autonomous systems operate in an open
environment, they need to deal with a huge number of possible
situations, leading to the high complexity in their decision
making. Figure 1 shows the position of the decision making
component in a typical software stack of autonomous systems
(11, [2].

Since many autonomous systems are safety-critical, it is im-
portant to have their decision making formally verified. Model
checking is a computer science technique that can automati-
cally verify the correctness of a system. Given a specification
and a desired property, model checking automatically explores
all possible execution traces of the specified system to check

Motion planning

Sensor data
Perception Decision making & Control

| !

The typical software stack for an autonomous system.

Control
commands

Fig. 1.

Tom Holvoet
KU Leuven
Dept. of Computer Science, imec-DistriNet
B-3001 Leuven, Belgium
Email: tom.holvoet@cs.kuleuven.be

if the property always holds. If the property can be falsified,
model checking returns a counter-example demonstrating an
execution trace that falsifies the property. The counter-example
is valuable information for one to understand and improve the
correctness of the system.

Existing works [3], [4], [5], [6] have shown a great potential
of using model checking for verifying autonomous decision
making. However, model checkers differ greatly in both their
specification languages and computation techniques. It re-
quires extensive expertise and effort to use such model check-
ers for a specific application. Applications of model checkers
are therefore tailored and implemented in a specific way to
match the respective specification languages and computation
techniques.

Given the variety of model checkers available, it is difficult
to select a suitable model checker for any other specific
application. Yet, selecting the right model checker can improve
verification results significantly. For example, in [7], the SPIN
model checker was employed to verify the decision making of
a domestic home care robot. Later, in a follow-up paper [8],
the authors showed that by using the NuSMV model checker
and carefully hand-crafting the NuSMV specification, they
can take into account more sophisticated information while
being able to verify more properties (some properties cannot
be verified by SPIN) at a shorter computation time. To the
best of our knowledge, there exists no work on comparing the
usability of different model checkers for autonomous decision
making.

In this paper we report our experience on applying different
model checkers in a case study of autonomous UAVs for
pylon inspection and provide insights into the modeling and
performance aspects of each model checker. The decision
making in the case study was developed within the scope of
the SafeDroneWare project' and has been deployed in a real
UAV platform, the DJI Matrice 100?. We select five different
model checkers with different underlaying model checking
techniques, including ProB [9], SPIN [10], TLC [11] , Alloy
[12] and NuSMV [13]. Since there is a single UAV and
quantitative properties are not considered in the case study,

Thttps://www.imec-int.com/en/what-we-offer/research-
portfolio/safedroneware
Zhttps://www.dji.com/be/matrice 100

multi-agent model checkers and probabilistic model checkers
such as MCMAS [14] and PRISM [15] are not considered in
this paper.

Since the UAV operates in an open, non-deterministic and
unstructured environment, it is not possible to create a high-
fidelity and formal environment model for model checking.
Instead, we aim at verifying desired properties against a set of
logical assumptions on the behavior of the environment [4].
The set of assumptions, as a result, represent the interaction
between the UAV system and the environment. Specifying the
environment as a set of assumptions is also advantageous in
that they explicitly represent the boundary conditions in which
the UAV can guarantee the correctness of its decision making.

Concretely, our contribution is twofold. First, we study
how the discrete decision making, desired properties and
assumptions of the UAV in a pylon inspection case study can
be modeled in each model checker. Second, we evaluate the
performance of each model checker on verifying the UAV’s
discrete decision making. The evaluation results show that only
Alloy and NuSMYV can verify all properties in our case study.

This paper is organized as follows. Section II discusses
related work. Section III presents the formal definition of
discrete decision making policies and the case study. Section
IV describes how the verification problem can be formulated
in each model checker. Section V presents the performance
evaluation of each model checker. Finally, Section VI draws
conclusions and outlines future work.

II. RELATED WORK

Model checking is a widely used formal method. Model
checking can automatically search and verify whether there
is a possible execution trace of the system violating the
desired properties. There has been a great interest in applying
formal methods in general and model checking techniques in
particular for guaranteeing the safety of autonomous systems
[16].

A large body of work in the literature focuses on ver-
ifying autonomous decision making implemented in agent
programming languages. In [7], [3], SPIN is used to verify the
behavior of a domestic home care robot. The decision making
logic of the robot is first modeled in Brahms, a language to
model rational agent, and then is translated to PROMELA,
SPIN’s specification language, for verification. Dennis et al.
[4], [17] use the AJPF model checker [18] to verify decision
making logic implemented in the agent programming language
GWENDOLEN.

Both SPIN and AJPF are also used to verify a UAV control
system [19]. Choi et al. [5] use MCMAS, a model checker
for multi-agent systems, to verify different heterogeneous
multi-agent systems. The authors in [8], [6] model-check the
behavior of a domestic home care robot by translating its
behavior to an intermediate form. From the intermediate form,
NuSMV models are constructed automatically and verified.

So far, significant progress has been made in demonstrating
how model checking can be applied to verify autonomous
decision making. However, as remarked by many authors,

a common limitation when applying model checking is its
computational complexity. In addition, the selection of model
checkers is often based on personal experience. As model
checkers differ greatly from their specification languages to the
verification algorithms, it is not obvious which model checkers
are suitable to a particular problem.

III. CASE STUDY
A. Decision making policy

In the case study, the UAV employs a decision making
policy as its symbolic reasoning mechanism. Decision making
policy is a popular mechanism to represent the decision
making logic of autonomous systems, for example, being the
result of advanced planning or learning processes [20], [21],
[22], [23]. Formally, a decision making policy is defined as
follows.

A state vector is a set of discrete state variables S =
{S1,...,S,} where each variable S, takes on values in some
finite domain Dom(S;). A = {a1,...,a,,} is a finite set of
actions. A decision making policy 7 : S1 X -+ X S, = Aexec
is a complete function mapping each value of the state vector
to a set of actions Aexec C A to be executed. Table I
illustrates an example decision making of an autonomous UAV.
Note that, while in the example, the sets of actions executed
are either empty or contain only one action, it is possible for
a decision making policy to have multiple actions executed at
a time.

TABLE I

AN EXAMPLE POLICY
Sflying Sdest Sbattery Actions
landed | not_reached above {take_of f}
landed | mot_reached below {}
flying | not_reached above {navigate_to_point}
flying | mot_reached below {land}
flying reached above {land}
flying reached below {land}
landed reached above {}
landed reached below {}

At runtime, the UAV updates the value of the state vector
at a fixed frequency, for example, every 100 milliseconds, by
monitoring the environment and its internal state. Whenever
the state vector changes, the UAV activates or deactivates
the actions based on the decision making policy. For the
verification problem considered in this paper, we assume that
state variables are always monitored correctly. Note that, it is
possible for a decision making policy to take uncertainty into
account by explicitly representing the uncertainty as the values
of state variables. For example, if there is a situation where
the UAV does not know whether it is flying or landed, the
situation can be explicitly represented by adding a unknown
value to the domain of the state variable Syiying.

B. Pylon inspection

Our case study concerns verifying the decision making of
an autonomous UAV in the pylon inspection application. The
task of the UAV is to autonomously inspect a pylon while

taking into account safety requirements. At the beginning
of each mission, the UAV must wait for permission from
the human operator and loads a mission configuration that
contains the location of the pylon and the desired flight pattern
around the pylon, before performing the autonomous flight.
During the flight, for safety, the human operator must always
be able to intervene and manually control the UAV at any
time by sending a request signal. The human operator can
also send a signal to abort the mission and let the UAV
autonomously returns to the home location. The UAV has an
obstacle detection component that can detect whether there is
any obstacle blocking its flight path. If the UAV is blocked
for an extensive duration, it must notify the human operator
and propose alternative options such as aborting the mission
and going home or following an alternative flight path. If the
obstacle detection component stops sending information for
an extended period, for example, 0.5 seconds, it is considered
as failed and the UAV must hover until new information is
received. The UAV communicates with the human operator via
a communication link that has three states: stable, degraded
(only critical information can be sent) and /ost (no information
can be sent). The UAV must also constantly monitor the status
of its obstacle detection component, communication link and
battery. In case of contingency events, the UAV must react
properly such as notifying the human operator or terminating
the mission and flying to home. The UAV can also monitor its
flying state, its current location and whether it has successfully
sent a notification to the human operator.

The complete decision making policy consists of 16 state
variables with 221184 possible combined state values. Based
on the values of the state variables, at each time step, the
UAV selects a set of actions to be executed from the 17 prede-
fined actions such as take_of f, land, go_to_landing_zone,
manual_control and noti fy_critical_battery.

According to the requirements, the decision making policy
must guarantee the following properties.

1) The UAV must always land at one of the predefined
landing zones.

2) The UAV must never fly without permission.

3) Always notify the human operator when (1) the battery
is low, (2) the UAV is being blocked, (3) the commu-
nication link is degraded or (4) the obstacle detection
component is failed.

4) In a normal circumstance, the UAV should eventually
complete the inspection.

It is not possible to guarantee the properties above in all
situations. For example, the UAV cannot send a notification
to the human operator when the communication link is lost.
Thus, it is important to explicitly state all assumptions for
the properties to be guaranteed so that one is aware of under
which circumstances, the decision making is safe. To find
necessary assumptions to guarantee a property with a model
checker, first, the property is verified without any assumption.
Once an assumption is found based on the counter-examples
generated by the model checker, it is added to the specification.

The property is then verified again until the model checker
confirms that it holds in all situations. Below are some example
assumptions for the properties above.

1) At the beginning, the UAV must be landed at a landing
zone.
2) The UAV can only change its location while it is flying.
3) The UAV must have full control over its flying state,
that is, it can only change its flying state by executing
the take_of f or land actions.
4) Once the start permission has been given, it should never
be taken back.
5) The communication link never gets lost (that is, the
communication link is always either stable or degraded).
6) If the UAV keeps executing the action take_of f, even-
tually it will be flying.
7) If the UAV keeps executing the action [and, eventually
it will be landed.
8) Eventually, the UAV always has stable communication.
9) Eventually, the obstacle detection component never fails.
10) Eventually, the human operator gives the UAV the
permission to start the mission.

The decision making policy, the complete list of assump-
tions for each property and the complete specification for each
model checker are available online’.

IV. MODELING

We now describe at a high level the formal model that
needs to be represented in each model checker to perform
verification. The execution of the decision making policy is
represented by a time series, where each time step stands for
a decision making cycle, that is, updating the values of the
state variables and selecting the set of actions to be executed.
The verification of each property starts without any assumption
and there is no constraint on the values of the state variables.
At each time step, a state variable can be assigned any value
from its domain. It is to represent that the environment is non-
deterministic and the UAV system does not have any control
over the state variables.

The behavior of the environment is represented by a set of
assumptions constraining the transitions of the state variables.
Note that, the effects of action execution are also considered
as assumptions. For example, an assumption on the interaction
between action execution and the environment is that if the
UAV keeps executing the action take_of f, eventually it will
be flying.

The decision making policy determines which actions are
executed at each time step based on the value of the state
variables. Since a decision making policy often contains a
large number of mappings, for example, more than 2 x 10°
in our case study, modeling a policy in its original format as
described in Section III results in a large model which requires
a large amount of memory and computational resource to
solve. Therefore, we first transform the decision making policy
to a more compact format.

3https://github.com/hoangtungdinh/irc2020-supplemental-material

Because a policy can be seen as a truth table where the
inputs are the values of the state variables and the out-
puts are the values of binary variables corresponding to the
activation of actions, we use a technique called two-level
logic minimization [24] to compactly represent a policy. Two-
level logic minimization concerns finding a minimum formula
in disjunctive normal form (DNF), that is, a disjunction of
conjunctive clauses, of a boolean function or a truth table.

We employ the Espresso algorithm [25] to perform two-
level logic minimization. The Espresso algorithm reduces
the policy’s truth table to a set of formulas in DNF. Each
DNF formula represents the condition in which an action is
executing. Table II shows the result after applying the two-
level logic minimization technique on the example policy in
Table 1.

TABLE I
AN EXAMPLE REDUCED POLICY

DNF formula
(Stiying = flying A Sqest = not_reached
ASpattery = above)
(Sfiying = landed A Sgcsr = not_reached
/\Sbattery = above)
(Stiying = flying A Sgest = reached)V
(Stiying = flying A Spattery = below)

Action

navigate_to_point

take_of f

land

The DNF representation of decision making policies can
be easily encoded in any specification language provided
by the model checkers. In contrast, since the properties and
assumptions often contain temporal expressions, it is desirable
to represent them in a temporal logic such as Linear Temporal
Logic (LTL).

We now describe how the decision making policy is
modeled in each model checker. For illustration, we in-
clude simple and incomplete specifications in the specification
languages provided by the model checkers. The illustrative
specifications consist of only two state variables, S_flying
and S_pylon_inspection, as well as only two actions,
take_off and land. The DNF formula corresponding to
an action is denoted by DNF (action).

A. ProB

ProB [9] is a model checker for the B-method, a method-
ology for the formal development of computer systems. ProB
allows one to specify the system in different formal languages
such as B, Event-B and Z and supports different validation
methods including invariant checking, constraint based check-
ing, refinement checking, bounded model checking, symbolic
model checking and LTL model checking. As the B language
is well-documented and provided with many examples within
ProB, we model the decision making policy as a B machine
using the B language. Since it is difficult to express temporal
expressions in B or Z [26], we use the LTL model checking
method as it is the only validation method in ProB allowing
the specification of temporal expressions.

We represent the decision making policy as an abstract
machine in B. A B-abstract machine includes variables, an

invariant on the variables, initial states and operations that can
perform deterministic or non-deterministic value assignment
for the variables. The variables can be typed by using the
invariant to enforce its domain to be a set.

Each state variable S; and each action a; is represented
as an abstract variable. The domain of each state variable
Dom(S;) is represented by a set while each action is a boolean
variable. Listing 1 illustrates the B-specification of the decision
making policy.

Listing 1
PROB MODEL

ABSTRACT_VARIABLES
S_flying ,
S_pylon_inspection ,
take_off ,
land
SETS
D_flying={flying , on_the_ground};
D_pylon_inspection={complete , not_complete };
INVARIANT
S_flying D_flying &
S_pylon_inspection
take_off : BOOL &
land : BOOL
INITIALISATION
S_flying D_flying;
S_pylon_inspection
IF DNF(take_off) THEN

D_pylon_inspection &

D_pylon_inspection;

take_off := TRUE ELSE take_off := FALSE END;
IF DNF(land) THEN
land := TRUE ELSE land := FALSE END;
OPERATIONS
update_state =
BEGIN
S_flying D_flying;

S_pylon_inspection
IF DNF(take_off) THEN

D_pylon_inspection;

take_off := TRUE ELSE take_off := FALSE END;
IF DNF(land) THEN

land := TRUE ELSE land := FALSE END;
END

END

The B-machine contains a single operation. The operation
first assigns values of the state variables non-deterministically.
After that, the value of each action variable is determined by
the values of the state variables and its corresponding DNF
formula. The DNF formula for each action is represented using
B’s IF-THEN-ELSE expression. The B machine is initialized
in the same manner, that is, by assigning a random value to
each state variable and then deciding the value of each action
variable based on the values of the state variables.

Desired properties are expressed in LTL. ProB checks LTL
properties using an adapted version of the tableau algorithm
[26]. Once an assumption is found, it is connected to the
corresponding property using the LTL formula of the form
(bassumption = (bproperty-

Note that, ProB has some preferences to be set by users
for each model checking problem. The two most important
preferences are the maximum number of initializations and the
maximum number of outputs by applying an operation. For the
model checking result to be complete, one needs to set those
two preferences to the total number of possible state vector

values. It is to make sure that the decision making policy is
checked against all possible initial states of the state vector
and all possible changes in the environment.

B. SPIN

SPIN [10] is a model checker tailored for verifying asyn-
chronous systems. SPIN uses PROMELA, an imperative mod-
eling language specialized in describing concurrent systems, as
the system specification language. In PROMELA, one defines
variables and processes that manipulate the variables. From
any running process, further asynchronous processes can be
launched. SPIN allows properties to be specified in LTL.
SPIN translates a LTL property to a never-claim, a feature
in PROMELA which specifies a situation that should never
occur, to perform model checking.

Since a decision making policy can be considered as a
sequential system, our PROMELA model consists of only one
process that performs an infinite decision making loop. Similar
to the ProB model, a SPIN’s decision making cycle first
updates the value of each state variable non-deterministically
and then sets the value of each action variable based on the
values of the state variables. In the PROMELA model, each
action variable is a boolean variable and each state variable
is a PROMELA’s subtype so that its domain is restricted to a
set of symbolic constants. Listing 2 illustrates our PROMELA
specification for the decision making policy.

Listing 2
SPIN MODEL

first_valid_state = true
}
first_valid_state = false
do
atomic { simulate_one_step () }
od

}

mtype: D_flying={flying , on_the_ground };

mtype: D_pylon_inspection={complete , not_complete };
mtype: D_flying S_flying

mtype: D_pylon_inspection S_pylon_inspection

bool take_off
bool land
bool valid_state = false
bool first_valid_state = false
inline update_S_flying () {
if
S_flying = flying
S_flying = on_the_ground
fi
}
inline update_S_pylon_inspection () {
if
S_pylon_inspection = complete
S_pylon_inspection = not_completen
fi
}
inline simulate_one_step () {
update_S_flying ()
update_S_pylon_inspection ()
if
:: DNF(take_off) —> take_off = true
else —> take_off = false
fi
if
: DNF(land) —> land = true
else —> land = false
fi
}
init {
atomic {

simulate_one_step ()
valid_state = true

Note that, in PROMELA, variables are always initialized
to the default values of their corresponding types. Because
of that, the initial value of each state variable is fixed and
the initial value of each action variable is not set according to
the decision making policy. To represent the non-deterministic
initialization of the decision making policy, the PROMELA
process first performs an initialization step that assigns values
to the state variables non-deterministically and enforces the
values of the action variables with respect to their DNFs. The
initial values in the PROMELA model before the initialization
step is then not taken into account while verifying the proper-
ties. We do so by defining two boolean variables valid_state
and first_valid_state to indicate whether the system is in a
(first) valid state, that is, after the initialization step. To ignore
the initial state of SPIN’s variables, all the LTL properties and
assumptions are then specified in the following form.

valid_state = ((bassumption = ¢property) (1)

Expressions related to the initial state of the system such as
Assumption 1 can then be represented as follows.

first_valid_state = (Sfiying = landed) 2)

C. TLC

TLC [11] is the model checker for TLA+ (Temporal
Logic of Actions), a declarative language to describe non-
deterministic concurrent systems. In TLC, both the system
specification and the properties can be modeled as TLA+
formulas. TLC can check TLA+ specifications of the following
form [27].

Spec £ Init A O[Next]yars A Liveness 3)

Init is a predicate constraining the initial states of the vari-
ables in the specification. The Next predicate constrains the
relation between the variable values before and after a step.
A TLA+ specification must allow stuttering steps, that is,
steps in which all the variables stay unchanged. The vars
subscript is a set of all the variables in the specification. The
symbol [Next],qrs is @ compact way to state that the values
of all the variables in the next step must either satisfy the
Next predicate or remain unchanged. Finally, Liveness is
the conjunction of liveness formulas.

Listing 3 illustrates our TLA+ specification. Since TLA+
variables are untyped, we define predicates to enforce the do-
main of each variable. In our specification, the Init predicate
is the conjunction of the two predicates: InitTypelnvariant
to constrain the initial values of the variables to be in their
domain and InitPolicy to assign the values of the action
variables according to their DNFs. Similarly, two predicates

NextTypelnvariant and NextPolicy in the Next pred-
icate are used to constrain the variables after each step.
Because there is no constraint on the state variables except
the type invariant, their values are allowed to change non-
deterministically at each time step. Note that, in Listing 3
we do not include the Liveness predicate in the Spec since
Liveness is not required to represent a decision making
policy.

Listing 3
TLA+MODEL

—— MODULE decision_making ——

VARIABLE
S_flying , S_pylon_inspection, take_off , land
vars £ <<S_flying, S_pylon_inspection,
take_off , land>>
D_flying £ {"flying”, “on_the_ground”};
D_pylon_inspection £ {”complete”, ”“not_complete”};

InitTypelnvariant £
A S_flying € D_flying
A S_pylon_inspection € D_pylon_inspection
A take_off € BOOLEAN
A land € BOOLEAN
NextTypelnvariant £
A S_flying > € D_flying
A S_pylon_inspection’
A take_off’ € BOOLEAN
A land’® € BOOLEAN
InitPolicy £
A IF DNF(take_off) THEN take_off ELSE —take_off
A IF DNF(land) THEN land ELSE —land
NextPolicy £
A IF DNF(take_off ’) THEN take_off’ ELSE —take_off’
A IF DNF(land ’) THEN land’ ELSE —land’

€ D_pylon_inspection

Init £ InitTypelnvariant A InitPolicy
Next £ NextTypelnvariant A NextPolicy
Spec 2 Tnit A O[Next]_vars

represented as first-order logic constraints. An Alloy model
can be verified using Alloy Analyzer, a SAT-based constraint
solver. Alloy Analyzer verifies a property by performing an
exhaustive search for an instance of the Alloy model with a
bounded size that violates the property.

Listing 4 illustrates our Alloy model. An execution trace
of a decision making policy is a linear ordering of states and
actions. Since Alloy is based on first-order logic, it does not
have the notion of time or state orders. Fortunately, Alloy
provides the util/ordering library which allows users to impose
a linear ordering on a set of atoms.

Listing 4
ALLOY MODEL

open util/ordering[Step]

abstract sig D_flying {}

one sig flying, on_the_ground extends D_flying {}
abstract sig D_pylon_inspection {}

one sig complete, not_complete extends D_flying {}
abstract sig Action {}

one sig take_off, land extends Action {}

sig Step {
S_flying: D_flying,
S_pylon_inspection: D_pylon_inspection ,
Executing: set Action

fact {

all step: Step {
take_off in step.Executing <=> DNF(take_off)

}
}
fact {
all step: Step {
land in step.Executing <=> DNF(land)
}
}

Because TLC does not check arbitrary temporal formulas,
one could not encode both assumptions and properties in
the temporal formula of the form ¢ussumption = Pproperty-
To overcome this problem, we must add the assumption to
TLA+ Spec. Assumptions on the initial states of the system,
e.g., Assumption 1, can be added to the Init predicate.
Assumptions related to the transitions of the state variables
such as Assumption 2 can be added to the Next predicate.
Assumptions on the liveness of the system such as Assumption
6 can be added to the Liveness predicate. Different from ProB
and SPIN where only knowledge about LTL is required for one
to model assumptions, using TLA+, one must have a deep
understanding of the TLA+ specification to decide where to
add an assumption. Nevertheless, we found TLA+ expressive
enough to encode all assumptions and properties in our case
study.

D. Alloy

Similar to TLA+, Alloy [12] is a declarative language.
However, unlike TLA+ which is based on temporal logic,
Alloy is based on first-order logic. Two main concepts in Alloy
are signature and fact. A signature declares atoms or types and
their relations to other signatures. A fact defines a constraint
on the elements of the model. Properties in Alloy are also

We specify the decision making policy in Alloy as follows.
The type of each state variable is defined as an abstract
signature. The values of each domain are defined by concrete
signatures extending the abstract signature of the correspond-
ing type. Similarly, we define all the actions as concrete
signatures of the type Action.

To represent the execution steps of the decision making
policy, we define the signature Step and impose a linear
ordering on its atoms. A Step consists of one atom per state
variable and a set of Actions representing the actions that are
executed in that step. No constraint is imposed on the state
variables so that they can change non-deterministically at each
step. Each action is constrained to be in the set of executing
actions or not by a fact representing its DNF formula.

Assumptions are also represented as facts in Alloy. Since
both assumptions and properties must be represented in first-
order logic, their temporal expressions are translated to first-
order logic constraints on a trace of steps. Translating ex-
pression on the initial states, e.g., Assumption 1, or on all
states, e.g., Assumption 2, can be done easily by imposing
constraints on the first step or all steps. In contrast, more effort
is required to translate expressions related to the liveness of
the system, e.g., Assumption 6. A liveness expression imposes
a constraint on an infinite execution trace while Alloy only

performs bounded model checking on a finite trace of the
execution of the system.

A typical way to represent an infinite execution trace with
a bounded number of execution steps is to create a back loop
from the last step to any of the previous steps [28]. The
liveness expressions are then translated to constraints imposed
on the infinite execution trace. The back loop is modeled in
Alloy by adding a fact constraining that the values of the atoms
in the last step must be the same as the values of the atoms
of a previous step.

Although it requires more effort to represent assumptions
and properties in Alloy, similar to TLA+, we found Alloy
expressive enough to represent all the assumptions and prop-
erties in our case study. Note that, since Alloy Analyzer only
searches for counter-examples up to a bounded length specified
by users, the verification process performed by Alloy is not
complete. Alloy might miss a counter-example if the bounded
length is not large enough.

E. NuSMV

NuSMYV [13] is a model checker that supports both Binary
Decision Tree (BDD) based symbolic model checking and
bounded model checking. The NuSMV specification language
is tailored to describe finite state machines that manipulate a
set of variables. One can specify properties in NuSMV using
any LTL or CTL (Computation Tree Logic) formula.

Listing 5 illustrates our NuSMV model. We found that
the NuSMYV specification is simpler than the specifications in
other languages. Since NuSMV supports typed variables and
explicit state transitions, modeling a decision making policy in
NuSMYV is straightforward. Each state variable is represented
by a variable with its domain. As the state variables can be
freely changed, no transition constraint is defined on the state
variables.

Listing 5
NUSMYV MODEL

MODULE decision_making
VAR
S_flying: {flying , on_the_ground};
S_pylon_inspection: {complete, not_complete };
DEFINE
take_off := DNF(take_off);
land := DNF(land);

NuSMYV supports the DEFINE declaration that allows one
to declare a symbol associated with a common expression.
During the verification process, a symbol in the DEFINE
declaration is not treated as a variable but is considered as
a macro and is replaced by the expression it is associated
with. Taking the advantage of this NuSMV language feature,
instead of defining each action as a boolean variable as in
some other specification languages, we define each action as
a symbol associated with its DNF formula. Doing so reduces
the number of variables in our model as well as the state space
at the cost of increasing the size of the property formulas.

As NuSMV provides full support for any LTL formula,
modeling assumptions and properties is straightforwad using

the formula @gssumption = Pproperty-

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of the
model checkers on verifying the decision making of the UAV
in our case study. As our preliminary results show that not all
model checkers can cope with the size of the decision making
policy with 221184 possible state values and 17 actions, we
create a simplified version of the policy with 6 state variables
(64 possible state values) and 6 actions. We first evaluate each
model checker on the simplified policy to ensure that our
modeling is correct and to have insights into the computation
time of each model checker with a medium-size policy. After
that, the model checkers are evaluated against the complete
decision making policy.

For each model checker, we first verify each property
without any assumption. When there are missing assumptions,
each model checker should be able to return a counter-example
demonstrating the violation of the property. The evaluation is
performed on a computer with an Intel(R) Core(TM) i7-7700K
CPU @ 4.20GHz and 32GB of RAM. For each property, each
model checker is allowed to run within 20 minutes. The model
checker is terminated if after 20 minutes it cannot conclude
whether the property holds or not.

Our first observation is that with the simplified policy, all
the model checkers are able to return a counter-example when
there are missing assumptions. However, when all necessary
assumptions are added, SPIN cannot verify that Property 1
and Property 4 hold and ProB took a long time to verify
that Property 4 holds. ProB took more than 31 seconds to
verify that the liveness property 4 holds while TLC, Alloy
and NuSMV only need about one second. Note that, often, it
takes longer for a model checker to conclude that a property
holds than to conclude that a property does not hold.

Table III shows the computation time required by each
model checker when they verify each property with all nec-
essary assumptions. Note that, with the simplified policy,
Property 2 was not taken into account as state variables related
to Property 2 were removed from the policy.

TABLE III
THE CHECKING TIME (IN SECONDS) OF THE SIMPLIFIED POLICY.

ProB | SPIN | TLC | Alloy | NuSMV
Property 1 1.686 - | 1.121 | 0419 0.009
Property 3 1.618 | 0.505 | 1.108 | 0.372 0.010
Property 4 | 31.260 - | 1.367 | 0.554 0.012

For the complete policy with 16 state variables and 17
actions, ProB and TLC are not able to verify the properties,
even without any assumption. ProB and TLA are not able to
show that the properties do not hold and generate counter-
examples. SPIN can find a counter-example for Property 1
when there is no assumption in 2:43 minutes. However, SPIN
is not always able to verify that a property does not hold and
similar to ProB and TLC, SPIN cannot verify any property
when all necessary assumptions are added.

In contrast, Alloy and NuSMV are able to verify all the
properties with the complete policy. Alloy and NuSMV’s
computation time is not affected much by the size of the policy.
When there are missing assumptions, they both quickly find a
counter-example to demonstrate that the property is violated.
When all necessary assumptions are added, Alloy can verify
each property within few seconds and NuSMV can verify them
in less than one second. Table IV shows the computation time
of the model checkers to verify the complete policy.

TABLE IV
THE CHECKING TIME (IN SECONDS) OF THE COMPLETE POLICY.

| ProB | SPIN | TLC | Alloy | NuSMV
Property 1 - - - | 1.028 0.582
Property 2 - - - | 1.332 0.016
Property 3 - - - | 1.968 0.016
Property 4 - - - | 4.013 0.575

The significant difference in the performance of the model
checkers can be explained as follows. ProB, SPIN and TLC
are explicit-state model checkers, that is, they perform veri-
fication on an explicit representation of system’s states and
transitions. As a result, explicit-state model checkers face the
state explosion problem. Since the complete policy has a large
number of states and actions, no explicit-state model checker
can successfully verify any property.

Different from the three model checkers above, NuSMV
performs symbolic model checking. Instead of representing
the state space explicitly, NuSMV represents the state space
symbolically using Binary Decision Diagram (BDD). BDD-
based methods are often more efficient than explicit state
enumeration methods. Moreover, as discussed in Section IV-E,
the NuSMV specification language supports symbol macros,
which allows us to represent each action without having to use
a boolean variable, which in turn reduces the state space of the
problem. This explains why NuSMV has the best performance
among the five model checkers.

Alloy tackles the state exploration problem using a different
approach. Alloy performs bounded model checking (BMC)
using SAT solvers. BMC searches for counter-example of a
bounded length k£ (X = 50 in our evaluation). A BMC problem
is translated to a propositional satisfiability problem and then
can be solved efficiently using an off-the-shelf SAT solver.

The evaluation result shows that explicit-state model check-
ers such as ProB, SPIN and TLC are not suitable for verifying
decision making policies. In contrast, Alloy and NuSMV show
great potential when they can handle a large policy with
hundreds of thousands of states within a few seconds. Note
that, we do not claim that the implemented models are the
most optimal ones. Yet, with reasonable effort to get used to
the modeling language of each model checker, we believe that
the evaluation results are representative enough to reveal the
applicability of the investigated model checkers in verifying
decision making.

VI. CONCLUSIONS

We studied the suitability of model checkers for verifying
decision making in a use case of an autonomous UAV mission.
Our conclusions clearly relate to our experience in this use
case, and cannot blindly be generalized. Further validations
with a broad variety of case studies are required for any more
general conclusions. However, our study does show that model
checkers are not generally applicable. On the contrary, they
may only show benefits in cases with specific characteristics.
Our case study, in particular, has a large policy and is
characterized by a diversity of properties and assumptions.
These characteristics have proven to be useful for providing
insights into the limitations of the model checkers.

We applied five different model checkers to verify the
discrete decision in our case study. While all investigated
model checkers are expressive enough to represent the decision
making policy, the environment assumptions and the desired
properties, we found that not all model checkers provide the
same expressive comfort nor are suitable to verify the decision
making policy due to severe limitations in computational
performance. Only Alloy and NuSMYV are able to verify the
entire decision making policy of the UAV. Our evaluation
results also indicate that explicit-state model checkers such
as ProB, SPIN and TLC are not suitable for this problem. In
contrast, model checkers using bounded model checking and
symbolic model checking show a great potential. In the future,
we plan to further exploit the ability of NuSMV and Alloy by
performing verification at a lower level of abstraction of the
environment and with multi-agent scenarios.

ACKNOWLEDGMENT

This research is partially funded by the Research Fund KU
Leuven. We thank the anonymous reviewers for their helpful
comments.

REFERENCES

[1] M. Fisher, L. Dennis, and M. Webster, “Verifying autonomous systems,”
Communications of the ACM, vol. 56, pp. 84-93, 2013.

[2] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

[3] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. L.
Koay, K. Dautenhahn, and J. Saez-Pons, “Toward Reliable Autonomous
Robotic Assistants Through Formal Verification: A Case Study,” IEEE
Transactions on Human-Machine Systems, vol. 46, pp. 186-196, Apr.
2016.

[4] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and S. M. Veres,
“Practical verification of decision-making in agent-based autonomous
systems,” Automated Software Engineering, vol. 23, pp. 305-359, Sep.
2016.

[5] J. Choi, S. Kim, and A. Tsourdos, “Verification of heterogeneous multi-
agent system using MCMAS,” International Journal of Systems Science,
vol. 46, pp. 634-651, 2015.

[6] P. Gainer, C. Dixon, K. Dautenhahn, M. Fisher, U. Hustadt, J. Saunders,
and M. Webster, “CRutoN: Automatic Verification of a Robotic Assis-
tant’s Behaviours,” in Critical Systems: Formal Methods and Automated
Verification. Springer, 2017, pp. 119-133.

[71 M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. L. Koay,
and K. Dautenhahn, “Formal verification of an autonomous personal
robotic assistant,” Proc. AAAI FVHMS, pp. 74-79, 2014.

[8]

[9]

[10]

(1]

[12]
[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28]

C. Dixon, M. Webster, J. Saunders, M. Fisher, and K. Dautenhahn, ““The
Fridge Door is Open”-Temporal Verification of a Robotic Assistant’s
Behaviours,” in Advances in Autonomous Robotics Systems, M. Mistry,
A. Leonardis, and C. Melhuish, Eds. = Cham: Springer International
Publishing, 2014, vol. 8717, pp. 97-108.

M. Leuschel and M. Butler, “ProB: A model checker for B,” in
International Symposium of Formal Methods Europe. Springer, 2003,
pp. 855-874.

G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Reading, 2004, vol. 1003.

R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and Y. Yu,
“Checking Cache-Coherence Protocols with TLA+,” Formal Methods
in System Design, vol. 22, pp. 125-131, Mar. 2003.

D. Jackson, Software Abstractions. MIT press Cambridge, 2006, vol. 2.
A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in International Conference on
Computer Aided Verification. Springer, 2002, pp. 359-364.

A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: A model checker for
the verification of multi-agent systems,” in International Conference on
Computer Aided Verification. Springer, 2009, pp. 682-688.

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in International Conference on
Computer Aided Verification. Springer, 2011, pp. 585-591.

M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal Specification and Verification of Autonomous Robotic Systems:
A Survey,” ACM Comput. Surv., vol. 52, pp. 100:1-100:41, Sep. 2019.
L. Dennis, M. Fisher, M. Slavkovik, and M. Webster, ‘“Formal ver-
ification of ethical choices in autonomous systems,” Robotics and
Autonomous Systems, vol. 77, pp. 1-14, Mar. 2016.

L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini, “Model
checking agent programming languages,” Automated Software Engineer-
ing, vol. 19, pp. 5-63, Mar. 2012.

M. Webster, M. Fisher, N. Cameron, and M. Jump, “Formal Methods
for the Certification of Autonomous Unmanned Aircraft Systems,”
in Computer Safety, Reliability, and Security, ser. Lecture Notes in
Computer Science, F. Flammini, S. Bologna, and V. Vittorini, Eds.
Springer Berlin Heidelberg, 2011, pp. 228-242.

M. T. J. Spaan, T. S. Veiga, and P. U. Lima, “Decision-theoretic plan-
ning under uncertainty with information rewards for active cooperative
perception,” Autonomous Agents and Multi-Agent Systems, vol. 29, pp.
1157-1185, Nov. 2015.

J. Fu, V. Ng, F. Bastani, and L.-L. Yen, “Simple and fast strong cyclic
planning for fully-observable nondeterministic planning problems,” in
Twenty-Second International Joint Conference on Artificial Intelligence,
2011.

H. T. Dinh, M. H. C. Torres, and T. Holvoet, “Sound and Complete
Reactive UAV Behavior using Constraint Programming,” in ICAPS
Workshop on Planning and Robotics, 2018.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, Multi-Agent,
Reinforcement Learning for Autonomous Driving,” arXiv:1610.03295
[cs, stat], Oct. 2016.

O. Coudert and T. Sasao, “Two-level logic minimization,” in Logic
Synthesis and Verification. ~ Springer, 2002, pp. 1-27.

R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Springer Science & Business Media, 1984, vol. 2.

D. Plagge and M. Leuschel, “Seven at one stroke: LTL model checking
for high-level specifications in B, Z, CSP, and more,” International
Journal on Software Tools for Technology Transfer, vol. 12, pp. 9-21,
Feb. 2010.

L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Pub-
lishing Co., Inc., 2002.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking.” Advances in computers, vol. 58, pp. 117-148, 2003.

