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Abstract. Guaranteeing safety is crucial for autonomous robotic agents.
Formal methods such as model checking show great potential to provide
guarantees on agent and multi-agent systems. However, as robotic agents
often work in open, dynamic and unstructured environments, achiev-
ing high-fidelity environment models is non-trivial. Most verification ap-
proaches for agents focus on checking the internal reasoning logic without
considering operating environments or focus on a specific type of envi-
ronments such as grid-based or graph-based environments. In this paper
we propose a framework to model and verify the decision making of
autonomous robotic agents against assumptions on environments. The
framework focuses on making a clear separation between agent model-
ing and environment modeling, as well as providing formalism to specify
agent’s decision making and assumptions on environments. As the first
demonstration of this ongoing research, we provide an example of using
the framework to verify an autonomous UAV agent performing pylon
inspection.
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1 Introduction

Autonomous robotic agents are often considered as safety-critical. They work
in an open environment and need to ensure that their behavior does not harm
other entities such as human or properties.

Yet, guaranteeing safety for robotic agent’s behavior is difficult. As they often
work in an open, dynamic, unstructured and uncontrolled environment, ensuring
that the correctness of the agent’s behavior holds in all possible situations is non-
trivial. The complexity of the environment is a major challenge hindering the
formal verification of autonomous agents [11], as achieving a formal and high-
fidelity environment model to perform verification is difficult, if not impossible.

Due to the complexity in modeling the environment, researches on formal
verification of autonomous agents often focus on a specific and low-fidelity rep-
resentation of environments such as grid-based [1] and graph-based [13], raising
concerns on the validity of verification results when deploying agent systems in
real-world. Recently, environment representations based on Markov decision pro-
cesses are also used [10, 9]. Such representations can capture more complicated
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behavior of environments but are still not expressive enough to represent, for
example, the temporal properties of environments.

In this paper we study the problem of verifying robotic agent’s decision mak-
ing against the specifications of environments. Instead of creating a concrete
model of the environment for verification, we verify decision making logics of
robotic agents against a set of assumptions, formalized in Linear Temporal Logic
(LTL), on the behavior of the environment. The idea of verifying agent’s deci-
sion making against environment assumptions was introduced in [4]. As having
a high-fidelity formal model of the environment is non-trivial while often, not
every detail of the environment is relevant to the verification task, it is more
realistic and practical to derive a set of necessary assumptions for the agent
to guarantee the correctness of its decisions. In addition, from the software en-
gineering perspective, it is desirable to have environment assumptions defined
explicitly and formally as they essentially represent the boundary conditions in
which the agent system can guarantee its correctness. In constrast, a low-fidelity
environment model often consists of many implicit assumptions.

In concrete, our contributions are as follows. We propose a framework to
verify the decision making of robotic agents operating in open environments.
Our framework provides formalism to represent the discretization logics of the
perception information. The environment is represented by a set of LTL as-
sumptions on the perception information before the discretization. We employ
the NuXmv model checker that supports various types of systems and model
checking techniques, which allows us to represent environments at different lev-
els of fidelity. As the first demonstration of this ongoing research, we provide an
example of using the framework to verify an autonomous UAV agent performing
pylon inspection.

This paper is organized as follows. Section 2 discusses related work. Section
3 presents a general overview on the architecture of robotic agents. Section 4
describes our proposed framework. Section 5 presents an example of using the
framework. Finally, Section 6 draws conclusions and outlines future work.

2 Related work

Formally modeling environments remains one of the most challenging task for
verification. Different environment representations were proposed. Aminof et al.
[1] propose a framework for verifying multi-agent systems in parameterized grid-
environments. Rubin [13] presents a verification framework for mobile agents
moving on graphs. In [9, 10], the verification of multi-agent systems is performed
with environments modeled as Markov decision processes.

In [5, 7], the behavior of a homecare robot is verified where the environment
is modeled as a set of variables representing high-level sensor information such as
the fridge door is being open. Those variables can be set non-deterministically
at any time. In [17, 16], for the same verification task for a homecare robot,
the environment is represented as an agent in Brahms, an agent programming
language. The environment model is limited to the non-deterministic choice of
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actions of the Brahms agent. Morse et al. [12] represent the environment by a
probabilistic model where its actors have uncertainty in their actions’ outcomes.

A common limitation of these environment representations is that their ex-
pressiveness is limited, making it difficult to encode different assumptions on the
behavior of environments. So far, there has been little work focusing on formally
specifying environments for model checking. Most close to our work is the work
of Dennis et al. [4], where they proposed a verification methodology for agent’s
decision making in which one can specify environment assumptions as logical
formulas on the discretized incoming perceptions of the agent. Our work differs
from the work in [4] in that beside the decision making of the agent, we also
take into account the discretization logics of the perception information in the
verification by providing a formalism to represent the discretization logics. By
doing so, we allow environment assumptions to be specified on the information
before discretization.

3 Robotic agent architecture

In this section we provide an overview on the architecture of robotic agents.
Similar to other types of agents, robotic agents interact with environments via
sensing and acting.

Environment specification

Agent specification

Discrete decision 
makingMonitor Action

Perception 
algorithms

Motion planning & 
control algorithms

Sensors ActuatorsPhysical 
environment

Software components

Hardware components

Environment (uncontrollable components)

Fig. 1. A typical robotic agent architecture.

Figure 1 illustrates a typical architecture of robotic agents. Robotic agents
are cyber physical systems consisting of both software and hardware compo-
nents. They are equipped with sensors that provide raw sensing data about the
physical environment. The raw sensing data is then transformed to meaningful
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information by perception algorithms such as localization and obstacle de-
tection. The outputs of the perception algorithms are often continuous data, for
example, the location of the agent in a three dimensional Cartesian coordinate
system, or events such as commands from human operators. The perception
information is then discretized by monitors to symbolic information.

The symbolic information is then taken into account by the discrete de-
cision making component. The discrete decision making component performs
symbolic reasoning, for example, based on well-known Belief-Desired-Intention
(BDI) models or planning techniques [8] to select one or several actions to ex-
ecute. An action could be instantaneous, for example, sending a notification or
taking a picture, or it could be durative, for instance, moving to a location. When
an action is executed, it activates a set of motion planning and/or control
algorithms that compute and send commands to the agent’s actuators, which
in turns interact with the physical environment.

To verify the agent’s decision making, one needs to specify the agent system
and the environment in which the agent operates in. As discussed in Section 1,
we specify the environment as a set of logical assumptions. For the verification
problem, we need to define the boundary between the agent specification and the
environment specification. The boundary will in turn define how the assumptions
on the environment can be specified.

Environments are often modeled based on discrete variables provided by the
monitors. The effects of agent actions are either specified based on the discrete
variables or ignored. It is due to the complexity of the systems. Perception
algorithms are often black-box while motion planning and control algorithms
often involve complicated optimization processes on continuous domain, making
them non-trivial to be formally modeled and verified. Raw sensor data does not
have semantic meaning and actuator commands involve the complex dynamic
models of physical systems, making them difficult to be formally represented.

Yet, monitors, the software components that discretize the outputs of per-
ception algorithms to symbolic information for decision making, are white-box
and can be formally represented. Including monitors in the agent specification is
beneficial in two aspects. First, discretization logics in monitors can be formally
verified together with the decision making, extending the boundary in which
formal guarantees can be provided on the agent system. Second, environment
assumptions can be specified on the outputs of perception algorithms, bringing
them closer to the actual system implementation and the physical environment.

Because of these reasons, in our proposed framework, the agent specification
includes the monitor components, the decision making component and the action
components, as shown in Figure 1. The other components are considered as the
environment in which the agent specification needs to be verified against. The
details on the agent specification and environment specification will be discussed
in the next section. Note that, monitor components have not received much
attention in previous work because previous verification effort only focuses on a
specific reasoning technique without considering them being embedded within a
system interacting with the physical environment.
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4 Verification framework

In this section we discuss the details of our proposed verification framework. Our
framework employs the NuXmv model checker as the computation engine and
uses the NuXmv specification language to specify the agent and the environment.
We now describe the formalism of the verification framework.

4.1 Discrete decision making

We consider discrete decision making components implemented as policies, a
popular representation of decision making logic as a result of advanced planning
or learning processes [15, 6, 14]. Note that, our framework is not restricted to this
specific decision making representation and can be extended to support different
discrete decision making mechanisms such as agent programming languages. For
instance, it has been shown in [7] that a complex set of robot decision making
rules can be automatically translated to the NuXmv modeling language.

A decision making policy is formally defined as follows.

Definition 1. A decision making policy is a tuple
∑

= (S,A, π) where

– S = {S1, S2, . . . , Sn} is a set of n discrete state variables, where each state
variable Si takes on values in some finite domain Dom(Si). We call S the
state vector.

– A = {a1, a2, . . . , am} is a set of m actions.
– π : S1×S2×· · ·×Sn → Aexec is a complete function that maps each value of

the state vector to a set of actions Aexec ∈ P(A), where P(A) is the power
set of A.

A decision making policy consumes the value of the state vector S provided
by the monitors and decides a set of actions Aexec to be executed at each
decision making cycle. The encoding of a decision making policy in a NuXmv
specification is straightforward. Each state variable is represented by a NuXmv
variable with the enumerated type. One remark is that a decision making policy
is often very large with many state-vector-to-action-set mappings. While it is
possible to represent each mapping in the NuXmv specification language, it
would result in a very large specification which is computationally expensive to
verify. Due to that, we first transform decision making policies to a compact
format. Since a decision making policy can be seen as a multi-output truth table
where the state vector values are inputs and the actions are Boolean outputs, one
can apply two-level logic minimization [3] to reduce the truth table to a set of
disjunctive normal forms (DNFs), that is, a disjunction of conjunctive clauses.
Each DNF represents the condition on the state vector in which an action is
executed at each decision making cycle.

We represent each action in the decision making policy as a symbol associated
with its corresponding DNF. At each decision making cycle, if the symbol is
true, that is, the DNF holds, the action is executed. Note that, the compact
representation of decision making policies is not the main contribution of this
paper. We aim at proposing a general framework in which different discrete
decision making mechanisms can be specified and verified.
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4.2 Monitor

Monitor components discretize information provided by perception algorithms.
At each decision making cycle, each state variable in the state vector is updated
by a monitor based on the most recent information received from the perception
algorithms. The monitor of a state variable is formally defined as follows.

Definition 2. A monitor M of a state variable is defined by a tuple M =
(I, S, sinit, δ) where

– I is a set of inputs. Each input can be either a numerical value, an enumer-
ated type value or an event.

– S is a finite, non-empty set of enumerated values. S is the domain of the
monitored state variable.

– sinit ∈ S is the initial value of the state variable.
– δ = I × S → S is the value transition function.

A monitor is essentially a finite-state machine (FSM) where each state of
the FSM corresponds to a value in the domain of the monitored state variable.
The three types of monitor inputs cover most of possible information provided
by perception algorithms. For example, spatial information such as locations,
distances and maps can be represented by numerical values, object classification
results can be represented by enumerated type values and notifications from
other components or human operators can be represented by events.

Each monitor manipulates the value of the corresponding state variable based
on the monitor’s inputs. An event input can be represented as a Boolean variable
that has the value true if the event is triggered. Enumerated type is supported
natively in NuXmv and numerical type can be either real number, integer number
or bounded integer number, depending on the concrete scenario or the fidelity
level of the environment.

In our framework, the inputs of monitors represent the operating environ-
ments of agents. For example, a grid-map environment can be encoded using
numerical inputs. A detail analysis on the scalability of the proposed frame-
work, for example, how the size of the environment impacts the verification
performance, is the subject of future work.

4.3 Environment assumptions

Instead of building a model for the environment, in the proposed verification
framework, one can specify the environment as a set of LTL assumptions on the
inputs of monitors and the values of action symbols which represent whether an
action is executed at each decision making cycle.

An LTL formula specifies a condition on an infinite execution trace of the
system. LTL extends first-order logic with time notion via supporting temporal
operators such as always (G) and eventually (F ). In this work we use an extended
version of LTL supported by NuXmv that also consists of past operators such
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as previous state (Y ). For a complete syntax of the LTL version used, we refer
readers to [2].

An LTL formula holds if it is true for every possible infinite execution trace of
the system. An LTL property is verified against the conjunction of environment
assumptions by checking whether the following LTL formula holds.

φassumptions ⇒ φproperty (1)

4.4 Trade-off between completeness and fidelity

The underlying model checker used in our framework, NuXmv, supports the
verification of both finite and infinite systems. The main trade-off between the
completeness of the verification and the fidelity level of environment models is
made on the specification of numerical variables in the set of monitor inputs
I. If a numerical variable has an infinite domain, that is, its type is real or
unbounded integer, the system becomes infinite. For infinite systems, NuXmv
employs approaches extended from Bounded Model Checking (BMC) to perform
verification. BMC verifies a system by searching for a counter-example of a
bounded length that violates properties. BMC is incomplete as it might miss a
counter-example if the bounded length is not large enough.

For the verification to be complete, the specified system must be finite. As
numerical monitor inputs such as distance and battery level are often infinite,
one needs to represent them approximately as bounded integers. Doing so makes
the system finite at the cost of lowering the fidelity level of environment models.
Depending on concrete applications, such approximation might affect the validity
of verification results.

5 Example

We demonstrate our framework through an example where an autonomous UAV
performs pylon inspection. The mission of the UAV is to autonomously visit
predefined inspection points around pylons while taking into account safety re-
quirements. The UAV system in the example was developed within the scope of
the SafeDroneWare project1 and has been deployed in a real UAV platform.

5.1 Monitor inputs

The following monitor inputs are provided by the perception components.

1. distance to point[3]: The flying distances between the current position of the
UAV to each inspection point. In this model we assume that there are three
inspection points.

2. distance to landing location: The flying distance between the current posi-
tion of the UAV to the landing location.

1 https://www.imec-int.com/en/what-we-offer/research-portfolio/safedroneware
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3. altitude: The current altitude of the UAV.
4. battery: The current battery level of the UAV.
5. manual control on: A request from the human operator to manually control

the UAV.
6. manual control off : A request from the human operator to stop manually

controlling the UAV.
7. mission start: The human operator gives the UAV permission to start the

mission.
8. mission abort: A request from the human operator to abort the mission.
9. configure mission: The mission has just been configured.

10. communication status: The status of the communication link, which is con-
tinuously monitored by a third-party software component. The communica-
tion link can have three states: stable, degraded and lost.

11. obstacle detection status: The status of the obstacle detection component.
A perception component is responsible for monitoring the state of all the
hardware and algorithms performing obstacle detection. The state of the
obstacle detection component can be either stable or lost.

The monitor inputs 1-4 are of numerical type, the inputs 5-9 are events and
the remaining inputs are of enumerated type.

5.2 Monitors

The decision making policy of the UAV contains 16 state variables. The monitor
of each state variable is specified using the NuXmv specification language accord-
ing to Definition 2. Due to the lack of space, we only discuss three representative
monitors. The complete specification is available online2.

The state variable S manual control request ∈ {on, off} represents whether
the human operator wants to control the UAV manually. This state variable is
updated based on two events manual control on and manual control off . As
shown in Figure 2, every time the UAV receives a manual control on event,
S manual control request turns to on until a manual control off event is re-
ceived.

off on

manual_control_on

manual_control_off

Fig. 2. The FSM for the state variable S manual control request.

The state variable S battery ∈ {ok, low, critical} indicates the battery level
of the UAV based on predefined thresholds. Figure 3 illustrates the FSM of the
monitor for the S battery variable.

2 https://github.com/hoangtungdinh/paams20-supplemental-material
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ok low critical

critical_range

critical_range
low_range

low_range
ok_range

ok_range

Fig. 3. The FSM for the state variable S battery. The ranges are defined as follows.
critical range : battery < critical threshold
low range : critical threshold ≤ battery < low threshold
ok range : battery ≥ low threshold

The state variable S pylon inspection keeps track of whether the UAV has
inspected all the predefined points. To model the monitor of this state variable,
we define an extra variable point index to keep track of inspected points. Note
that, the UAV must visit the points in a predefined order. Every time the current
point is reached, that is, the distance to the point is 0, the value of point index is
increased. S pylon inspection turns to complete when all the points are visited.
Figure 4 shows the FSMs of point index and S pylon inspection with three
predefined inspection points.

0 1 2 3

distance_to_point[0] = 0

distance_to_point[1] = 0

distance_to_point[2] = 0

not_complete complete

point_index = 3

point_index

S_pylon_inspection

Fig. 4. The FSMs representing point index and S pylon inspection.

5.3 Properties and environment assumptions

We present three example properties to be verified.

1. The UAV must always land at the predefined landing location.

G(altitude = 0⇒ distance to landing location = 0) (2)

2. The UAV must only fly once it has received the mission start event. (The
LTL operator O means that the expression holds in at least one previous
time step).

G(altitude > 0⇒ O(mission start = true)) (3)
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3. The UAV must eventually visit all the predefined points.

F (point index = 3) (4)

During the verification process, we derive environment assumptions, both by
our application knowledge and by counter-examples returned by NuXmv.

The first type of assumptions is the effects of the action execution on the
environment. For example, the altitude of the UAV will increase when the UAV
executes the take off action and will decrease to 0 only when the UAV executes
the land action.

G(take off ⇒ next(altitude) > altitude) (5)

G((next(altitude) = 0 ∧ altitude > 0)⇒ land) (6)

Another assumption is that the UAV only changes its location, that is, the
distances between the UAV and other locations are changed, by executing actions
involving the movement of the UAV. Also, it can only change its location while
it is flying.

G((next(distance to point) 6= distance to point∨
next(distance to landing location) 6= distance to landing location)

⇒ ((go to landing location ∨manual control ∨ go to point)∧
altitude > 0))

(7)

We also need to assume that at the beginning, the UAV is landed at the
landing location.

altitude = 0 ∧ distance to landing location = 0 (8)

Note that, not all properties require the same assumptions. For example, the
following assumptions are specifically to guarantee Property 3. For the UAV to
complete the inspection, it must eventually receive a configure mission event
and a mission start event. In addition, the human operator must never abort
the mission, that is, the UAV must never receive a mission abort event.

F (configure mission = true) (9)

F (mission start = true) (10)

G¬(mission abort = true) (11)

The last example assumption is that eventually, the UAV is never blocked.

FG(go to point ∧ point index < 3∧
next(distance to point[point index]) < distance to point[point index])

(12)

Due to the lack of space, we do not include all assumptions and properties.
However, we believe that the example assumptions and properties are represen-
tative enough to understand the proposed framework. We verified the properties
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with two different models. In the first model, all numerical monitor inputs are
specified as of type real. In the second model, all numerical monitor inputs are
specified as of type bounded integer so that NuXmv can apply complete model
checking techniques. In both models, NuXmv is able to verify all properties and
return counter-examples if a property is violated within a few seconds. The gen-
erated counter-examples were useful as they helped us realize possible failure
situations that we did not think of at the design time. Thanks to the counter-
examples, we were able to derive and state explicitly all necessary assumptions
for the properties to hold.

6 Conclusions

Verifying autonomous robotic agents is challenging due to the complexity of their
operating environments. In this paper, we propose a framework to model and
verify the decision making of autonomous robotic agents. The proposed frame-
work makes a clear separation between the agent modeling and the environment
modeling. Formalism to specify the discretization logics of the perception infor-
mation is provided. The environment in the proposed framework is specified as
a set of LTL assumptions on perception information. An example of verifying
an autonomous UAV performing pylon inspection was provided to demonstrate
the usability of the framework.

We experience that many complicated assumptions can be represented in
our framework, although it requires expert knowledge in LTL to encode the
assumptions. Future studies are required to validate and explore the applicability
of the framework on different robotic agent systems, as well as to analyze the
computational complexity of the framework. Moreover, patterns for specifying
assumptions on different parts of systems such as actions’ effects can be derived.
We also plan to extend the framework so that it can take into account the
verification of motion planning and control components.
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