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ABSTRACT 

Dynamic ridesharing is a mobility service where car drivers offer available seats in their car for 

sharing with passengers whose origin and destination happen to be close to their traveled path. 

It has gained interest as a potentially sustainable form of mobility, because it offers additional 

mobility simply by exploiting unused capacity that would otherwise be lost, and therefore with 

minimal or no marginal social cost – this in contrast to other alternatives for the private car like 

ridehailing services or public transport. Dynamic ridesharing however consist of a two-sided 

market, giving rise to a chicken-and-egg problem: without sufficient demand for trips, there is 

little incentive for a driver to offer his rides for sharing; without sufficient rides being supplied, 

there is little opportunity for passengers to choose the service.  

In order to attain a critical mass to guarantee the operability of dynamic ridesharing, one option 

is to train context-aware software agents to recognize the driver’s mobility patterns and 

automatically predict and offer upcoming rides for sharing. To achieve this, this thesis develops 

an architecture of such a ridesharing app and the workflow of mobility history data collection 

and processing functions it should perform. It then develops enhanced iterative methods to 

identify in travel histories the user’s personal points of interest, typical arrival times or 

transitions between locations and other mobility patterns that could be exploited to anticipate 

a ride. Without constraining ourselves to specific prediction techniques, this thesis assumes that 

in general, the predictive performance of any learning method depends on the regularity and 

frequency of patterns in the travel history (among others), and it proposes and tests novel 

methods to extract these multi-day characteristics from empirical life-logging data.  

A key asset to understand whether the set of all automatically predicted trips in a region of 

interest would form an attractive supply for candidate ridesharing travelers, is simulation in 

various scenarios of the trips made and shared by a synthetic population. However, in existing 

synthetic travel demand, multiday characteristics of the trips are lacking, and hence one cannot 

determine which subset of all trips would be predictable and shareable by an automated 

ridesharing agent.  

To remedy this, the thesis proposes a method for generating synthetic multi-day trip demand 

for an urban region by merging through a newly developed form of statistical matching two 

complementary datasets: a set consisting of multi-day tracks from lifelogging data, and a second 

one with synthetic home tours for the same region network of Antwerp, Belgium. For successful 

matching, the intersection of both data sets should contain enough coincident characteristics; 

however, some of these matching features can only be discovered through appropriate data 

mining procedures. Through machine learning functions, describing the correlations that exist 

in the donor data between the matching features and the multiday characteristics, the missing 

multiday information was successfully transferred to the receptor database.  

Combined, the methodologies described in this research provide a way, based on the analysis of 

big data collected by mobile devices, to study how dynamic ridesharing could act as a mature 

travel mode in transport planning, and herewith to obtain recommendations for shared-mobility 

systems. 

 



 

 

 

ABSTRACT 

Dynamic ridesharing is een mobiliteitsdienst waarbij automobilisten lege stoelen in hun auto 

aanbieden om te delen met passagiers van wie de herkomst en bestemming zich langsheen hun 

afgelegde pad bevinden. Deze vorm van mobiliteit is potentieel duurzaam, omdat het extra 

mobiliteit biedt louter door het benutten van ongebruikte capaciteit die anders verloren zou 

gaan, en dus tegen weinig tot geen marginale sociale kosten - dit in tegenstelling tot andere 

alternatieven voor de eigen auto, zoals deeltaxi’s of openbaar vervoer. Dynamic ridesharing 

bestaat echter uit een tweezijdige markt, waardoor een kip-en-ei-probleem ontstaat: zonder 

voldoende vraag naar ritten is er weinig prikkel voor een chauffeur om zijn ritten te delen; 

zonder dat er voldoende ritten worden gedeeld, is er voor passagiers weinig neiging om voor 

deze dienst te kiezen. 

Om een kritische massa te bereiken voor dynamic ridesharing, is het een optie om 

contextbewuste softwareagenten te trainen om de mobiliteitspatronen van de bestuurder te 

herkennen en automatisch aanstaande ritten te voorspellen en aan te bieden om te delen. 

Hiertoe ontwikkelt dit proefschrift een architectuur voor een dergelijke ridesharing app en de 

workflow die deze zou moeten uitvoeren bij het verzamelen en verwerken van de reishistorie 

van de gebruiker. De thesis ontwikkelt ook verbeterde iteratieve methoden om in de reishistorie 

van de gebruiker diens persoonlijke attractiepolen, typische aankomsttijden of overgangen 

tussen locaties en andere mobiliteitspatronen te identificeren die kunnen worden gebruikt om 

een aanstaande rit vooraf te herkennen. Zonder ons te beperken tot specifieke 

voorspellingstechnieken, gaat dit proefschrift ervan uit dat in het algemeen de voorspellende 

kracht van een leermethode afhangt van de regelmaat en frequentie van patronen in de 

reisgeschiedenis (onder andere), en stelt het nieuwe methoden voor om deze multi-

dagkenmerken af te leiden uit empirische life-logginggegevens. 

Een belangrijke troef om te begrijpen of het totaalaanbod van alle automatisch gedeelde ritten 

in een studiegebied een aantrekkelijk aanbod zou vormen voor kandidaat-ridesharing-

gebruikers, is simulatie in verschillende scenario's van de ritten die gemaakt en gedeeld zouden 

worden door een synthetische populatie. Bij de bestaande synthetische verkeersvraag 

ontbreken echter de meerdaagse kenmerken van de ritten en daarom kan men niet bepalen 

welke subset van alle ritten voorspelbaar en deelbaar zou zijn door een automatische 

ridesharing-applicatie. 

Om hieraan tegemoet te komen, stelt het proefschrift een methode voor voor het genereren 

van een synthetische vraag met meerdaagse ritkenmerken in een stedelijke regio. Via een nieuw 

ontwikkelde vorm van statistische matching voegt deze twee complementaire datasets samen: 

een set bestaande uit meerdaagse tracks van life-logging data, en een tweede met synthetische 

huisgebaseerde tours voor hetzelfde regionale netwerk van Antwerpen, België. Voor een 

succesvolle matching moet de doorsnede van beide datasets voldoende overeenkomstige 

variabelen bevatten; sommige van deze gemeenschappelijke variabelen kunnen echter alleen 

worden ontdekt via geschikte dataminingprocedures. Door machine learning van functies die de 

correlaties beschrijven die bestaan in de donorgegevens tussen de gemeenschappelijke 

variabelen en de meerdaagse kenmerken, werd de ontbrekende meerdaagse informatie met 

succes getransfereerd naar de receptordatabase. Gezamenlijk bieden de methodologieën die in 

dit onderzoek worden beschreven een manier om, op basis van de analyse van big data 

verzameld door mobiele apparaten, te bestuderen hoe dynamic ridsharing zou kunnen fungeren 

als een volwassen reismodus in transportplanning, en om hiermee aanbevelingen te doen 

omtrent gedeelde mobiliteitssystemen. 
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1 INTRODUCTION 

As traffic congestion started rising some decades ago due to the increasing ownership of private 

vehicles and trips with low occupancy, for instance, high rates of commuting trips in cars with 

most seats being empty;  ridesharing programs such as carpooling have been proposed by 

authorities as alternatives to reduce travel times, allowing users to share trips by splitting costs 

with other users having common destinations. Recent forms of shared mobility include several 

services that enable users to share transportation resources, including, but not limited to 

bikesharing, carsharing, ridesharing, have evolved due to development of mobile and 

communication technologies. A simple definition of ridesharing is given in (1), which states that 

ridesharing is a mode of transportation in which individual travelers, having similar itineraries 

and time schedules, share a vehicle for a trip and split travel expenses. Other than 

spatiotemporal constraints can be added to the matching models, sometimes detours are 

required to pick up or drop-off passengers, and finally costs can include gas, tolls, or parking 

fees. Perhaps the biggest difficulty to enable ridesharing as a service, refers to the rise of a 

chicken-and-egg problem due to a two-sided market (2): on the supply side, a sufficiently large 

mass of passengers is required to encourage drivers to participate; on the demand side, 

passengers request availability of the service to a destination of interest in certain time frame. 

To tackle this problem, different strategies have been proposed in literature, including 

improvements to the matching algorithms(3,4), pricing schemes or evaluating the capability of 

ridesharing scenarios via simulation(5,6). Another approach, discussed in this research, can be 

to exhibit the potential aggregate supply to passengers for their trips, so that they can value the 

service and will be enthusiastic to use it. The omnipresence of mobile devices capable of 

exchanging information in real time, permits developing smart apps that can automatically 

discover this supply in mobility patterns of tracked users, providing smart assistance to 

passengers. For this, software agents must learn routines in patterns to provide estimates of the 

expected supply conditioned to specific passenger requirements.  

The mobility patterns let multi-day characteristics to be extracted from travel logs, so that an 

enriched synthetic population can be produced to evaluate this approach via simulation. Then 

different scenarios can be tested which differ from current research efforts.  

1.1 RESEARCH QUESTIONS 
The main objective of this research is evaluating in empirical mobility data, if it is possible to 

automatically anticipate sharable trips in order to exhibit an aggregate supply for ridesharing. 

To allow agents to predict mobility behavior, all possible types of context data must be mined 

to learn the patterns and the underlying relations, then the extracted multi-day data can be used 

to produce synthetic demand to simulate different scenarios. For this, multiple tasks must be 

completed which lead to the following questions: 

• Is it possible to retrieve a consistent travel history from tracking data by inferring 

trips between locations from the spatio temporal information? Which are the best 

techniques? 

• Is it possible to mine multiday mobility patterns from each user’s travel history in 

order to build trip prediction models conditioned to context information? Which 

methods must be used? 
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• Is it possible to transfer these multiday characteristics to synthetic populations to 

represent an entire region’s behavior in order to simulate different shared-mobility 

scenarios of interest? What are the possible ways to achieve this? 

• Is it possible to create simulations that mimic context-aware software agents, 

predicting ride matches at short term to evaluate different ridesharing scenarios? 

What kind of analysis and visualizations can be produced? 

The objective of this research is to answer these questions. They have been discussed in different 

papers that have been published (or at the time of writing have been submitted), and that are 

reproduced in integral form as chapters in this document. This manuscript is organized in the 

following way:  

• An introduction to the research topic is given together with the research questions 

• Full text of each publication is presented; they are introduced briefly in the remainder 

of this introduction. 

• Conclusions about the entire PhD research are provided together with some future 

directions 

1.2 LIST OF CHAPTERS 
The upcoming chapters in this manuscript correspond to the following published and submitted 

papers, which are now briefly described in this section. 

CHAPTER 1  

Introduction to the research topic, stating the research questions. 

CHAPTER 2 

Title: Anticipatory assistance for real time ridesharing in environments of pervasive computing 

This paper (7) sketches the entire workflow, providing a methodology to automatically detect a 

trip as a potential supply, since automated recognition and registration of shareable trips may 

contribute significantly to dynamic ride sharing deployment on a larger scale. For this, a tracking 

app was developed to detect each trip’s endpoints. This app was tested by integrating different 

state-of-the-art algorithms for trip detection and concepts to anticipate the shareable trips. The 

departure and arrival times were compared to those detected by commercial apps such as 

MOVES, resulting in smaller errors. 

CHAPTER 3 

Title: Discovering regularity in mobility patterns to identify predictable aggregate supply for 

ridesharing 

This paper (8) tackles the weaknesses found in previous approaches when mining data for 

mobility patterns. Furthermore, it describes a methodology to identify a predictable aggregate 

supply for ridesharing via routines discovered in users’ travel histories. The methodology 

empirically quantifies measures like the regularity and frequency of these patterns on a dataset 

consisting of 967 users scattered across different geographical areas. The sample exhibited high 

heterogeneity with respect to these measures (hence, of predictability, regardless of the 

prediction method). This paper shows how frequency of trip patterns decreases, while 

conditional regularity increases, when additional dimensions such as departure times are added 
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to the analysis. It was concluded that the traveler flexibility when accepting fewer regular trips 

is crucial to discover a larger supply, even when trips become less predictable.  

CHAPTER 4 

Title: An iterative method for extraction of trip endpoints from life-logging data 

This paper tackles the difficulties found in the data aggregation stage when retrieving the trip 

chains consisting of personal points-of-interest. It proposes a novel algorithm that combines 

spatial information with spatiotemporal patterns found in earlier chain links of the travel history, 

improving the detection of the upcoming locations by using the knowledge that is constantly 

learned. Tests were performed on a real-life dataset collected during a campaign in Ecuador, 

where students used an app that captured the user’s position at regular intervals. At last, results 

were compared to a well-known density-based method. These unique locations which appear 

several times in travel histories are called in this document a personal point of interest (POI). 

Their detection can be greatly improved by adding more attributes in the clustering procedure 

besides the typical spatiotemporal components, as soon as some mobility patterns with 

recurrent behavior are observed in a history, such as frequent transitions between POIs.  

CHAPTER 5 

Title: Producing multi-day synthetic populations for shared-mobility simulations from lifelogging 

datasets 

Given that producing data with multiday characteristics is a complex task; the last paper tackles 

the generation of this demand, providing a rather direct procedure to generate enriched 

synthetic populations for more realistic assessments. This can be achieved by combining typical 

single-day datasets, with travel behavior patterns extracted from lifelogging data collected by 

existing mobile apps. This augmented dataset suitable for ridesharing simulations, allows 

matching trips to be constrained by multiday characteristics. From this, novel complex scenarios 

not included in most previous works can be evaluated.  
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2 ANTICIPATORY AUTOMATED ASSISTANCE FOR REAL TIME RIDESHARING IN 

ENVIRONMENTS OF PERVASIVE COMPUTING 

Mendoza, I., Tampère, C., & Mekerlé, P. (2016). Anticipatory Assistance for Real Time 

Ridesharing in Environments of Pervasive Computing. 95th Annual Meeting of the 

Transportation Research Board. 95th Annual Meeting of the Transportation Research Board, 

Washington, D.C. 

2.1 ABSTRACT 
Dynamic ridesharing is a service for the transportation of passengers inside cities with intense 

traffic, which at the same time provides environmental, social and economic benefits. Although 

usually there are plenty of cars on the road, one of the challenges though is to collect sufficient 

information on supply: who is going where and is willing to pick up passengers? Since it is difficult 

to motivate people to manually register every trip as a potential supply, automated recognition 

and registration of shareable trips may contribute significantly to dynamic ride sharing 

deployment on a larger scale.  

Sharing rides in real time requires a fast agreement between drivers and passengers at very short 

notice. The reduction of human intervention via the automatic entry of the inputs required for 

a new ride request, under some assumptions, allows the extension of the generally small-time 

window available to attain the arrangement. This automation can be achieved by mining a user’s 

history to detect stay points in order to learn the mobility and behavioral patterns, allowing 

autonomous agents to predict upcoming ride requests and then propose shareable trips. 

This paper contributes by defining the architecture of such an agent, then testing a smartphone 

application that tracked a user’s activity for an extended period. An approach for trip 

segmentation via detection of stay points found in the collected data was evaluated, then 

compared to existing tracking apps. The results show that the design of context-aware 

ridesharing apps using this approach is possible, at last different directions for future work are 

proposed. 

Keywords: real time ridesharing, mobility patterns, data mining, context-awareness. 
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2.2 INTRODUCTION 
The arrival of context-aware mobile applications in recent years has allowed the evolution of on-

line services in different areas (9), improving the way information is provided based on current 

location, time, user profile information and other data obtained from sensors found today in 

modern mobile devices.  More recent applications in the Transportation domain deliver 

location-based services as in (10) to smartphone users in order to simplify the search process for 

real-time traffic status and transport-related information when it is integrated with web services 

that retrieve data from regularly updated databases situated in remote servers. 

Dynamic ride-sharing (DRS) is a particular type of cooperative travel service, where riders 

(passengers) let know their intentions to travel at very short notice, and then an agreement 

considering costs, pick-up and delivery details, has to be achieved among the participants before 

it is possible to serve the passenger. At the present time, ride-sharing has been identified as an 

important alternative with social and environmental benefits for the transportation of 

passengers (11). Some recent studied challenges about the topic can be found in (12). One 

notorious difficulty in peer-to-peer services like DRS is the chicken-and-egg problem: using the 

service is only interesting if there are sufficient suppliers offering rides; supplying rides is 

interesting if there is a reasonable chance of someone using it. This problem should be solved at 

the supply side of the rides: without supply, no passengers can choose to share rides; but 

without passengers, drivers may still offer the ride (albeit in vein) and hence create a basis for a 

community of DRS users to grow steadily. Yet, if any manual action or cost is involved in 

supplying rides, drivers will soon lose motivation to do so, especially when there are initially only 

few users. This calls for the action of offering rides to be supported by an automated system 

running in the background, so that it is transparent for the driver once installed.   

A second motivation for automated assistance of DRS supply is time. The interval between the 

time a request is presented and the latest possible departure time a driver can be on route to 

the pick-up location of the passenger is known as the ride-matching window (1). Since finding 

the optimal match is not a trivial task and the available time is usually short, a prompt support 

by the application is critical. The contribution of this paper is to take full advantage of the 

relevant information contained in the context perceived by mobile device sensors,  to allow 

agents make predictions about future trips as explained in (13) and then provide anticipatory-

assistance to a passenger before a new trip is expected to start. By this, they improve the user 

experience through reducing human intervention. 

This paper is organized as follows: section 1 introduces the problem and limits the scope of this 

research. In section 2 recent literature to help define the methods here mentioned is reviewed. 

Section 3 discusses the methodology and the implementation aspects to consider for a proposed 

context-aware architecture for anticipatory assistance in ride-sharing applications. The 

evaluation of the model and the results of a set of experiments on different scenarios are shown 

in section 4. Finally, section 5 presents the conclusions and defines some future work.  

2.3 LITERATURE REVIEW 
In this paper the identified mobility patterns (and the potential regular trips that can be shared) 

are intended to be used by agents in order to assist riders in the matching process by providing 

the driver candidates, that is, the input for the ride-matching optimization process. Literature 

related to mining raw data to identify travel patterns is summarized. 

In (14) “wearable” computers (like a GPS receiver) can be used as intelligent agents to assist 

users in a variety of tasks. By using location as the agent’s context, they cluster the GPS data to 
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find transitions between meaningful places and then to use this information as input for a 

Markov model in order to predict the next user’s location. In (15) the authors extent their work, 

by adding new contextual data to infer meaningful places by using a variation of k-means 

clustering. Reference (16) provides an architecture for the prediction of a user’s mobility, 

combining contextual information from many sources (i.e. user’s preferences) when the history 

of trip patterns is not available.  

In (17), the same classical clustering algorithm is applied to a very large data set of sensor 

observations over an extended period to find historical traffic. An alternative to k-means for the 

same task is presented in (18), where the authors list some of the drawbacks of this method and 

introduce a density-based approach called DJ-Clustering algorithm which is a modification of the 

DBSCAN algorithm originally introduced by (19). Other alternative introduced in (20) presents a 

non-parametrized Bayesian alternative to k-means for the automatic extraction of places from 

discontinuous GPS measurements.  

Some literature refers to these places as points-of-interest, this term is also widely used in 

navigation systems to refer important public places and will be used along this paper to avoid 

ambiguity, however in this context they are treated as personal and private places only relevant 

for a specific user.  

More recently in (21) the authors describe a detailed method to generate a location history by 

mining for “stay points” and the travel sequences among them. The output is organized in a tree-

based hierarchical graph. This is a complement for their previous work in (22) when they 

described the procedure for learning transportation modes from GPS raw data. An important 

contribution to automatic ride-sharing is presented in (23), in this work the authors mine travel 

records of several moving objects for trips with similar trajectories that were mapped to a road 

network to find shareable frequent routes. 

A very recent survey in mobility patterns found in GPS datasets is presented in (24), where the 

authors are supported by new studies to sustain the assumption that human mobility behaves 

in a highly regular way. They review some popular methods for future move prediction, 

transport mode detection, trajectory patterns and location-based activities recognition and they 

provide some directions for further research. Besides a GPS, an extensive list of sensors can be 

used to gather more enriched contextual information as explained in (25) to make predictions 

that are not only location-based.  A way of automation for dynamic ride-sharing by predicting 

future commutes, based on a range of data sources obtained from smartphones has been 

already treated in (26), here the authors use decision tree learning to extract logical rules from 

the dataset. 

Our approach differs from previous research in the sense that context just captured is used to 

know at short notice whether a ride share opportunity can be exploited, allowing the agent to 

make real time decisions only when there is a high level of confidence about a user’s future 

activity. Another contribution is the definition of a software architecture where dedicated 

modules run processes directly inside the smartphone, avoiding depending on persistent 

communication with a remote server and increasing the security level since user’s history 

remains safely stored in the device. Finally, the storage of points-of-interest for a trip origin and 

destination instead of the whole trajectory information reduces the amount of data to be 

processed, reducing computation effort on the client side. 
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2.4 METHODOLOGY 
The information an agent needs for providing a ride-matching candidate according to the 

literature is mainly: 

From Passengers, the prediction of an upcoming trip, containing: 

• Current and next locations (a trip origin and destination) 

• Time estimates for arrivals/departures 

• Passenger specific constraints 

From Drivers, the list of recurrent shareable trips, containing: 

• Current and next locations (a shareable trip origin and destination) 

• Occupancy/capacity of private vehicle 

• Time estimates for arrivals/departures 

• Tolerable detour distance 

Assuming the vehicle occupancy could be measured, the rest of information can be obtained by 

a procedure illustrated as an architecture (Figure 1) joining different modules. The most relevant 

components are described in this document. 

 

Figure 1. Architecture for Automatic Ridesharing 

2.4.1 Tracking Module 

This module is responsible of collecting contextual information from different sources. It is 

intended to be an interface between the physical (or virtual) sensors and the rest of the software 

modules, converting raw data into a more understandable format. As stated in the literature 

provided in the previous section, most of the traditional techniques took only advantage of 

spatial coordinates. However as explained in (25) and (27), the availability of other sources can 

increase the accuracy of the estimations of a user’s position, by combining elements like Wi-Fi 

based positioning , mobile phone positioning, etc. In some cases when GPS is not available like 
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in indoor environments other sensors (accelerometers, gyroscopes, etc.) can help tracking a 

vehicle position as illustrated in (28). 

The time interval between two consecutive GPS points is not always constant, mainly due to 

signal loss or because another source makes a point available earlier. In (29) the authors 

demonstrate the importance of having a “long enough gap” between GPS measures in order to 

preserve battery power, and based on some experimentation they suggest that an interval of 5 

seconds for the majority of tracking applications can still provide reliable data. The time 

representations used in our prototype are UNIX timestamps that represent times in 

milliseconds, making them feasible for being used in formulas. 

2.4.2 Mining Module 

This module involves the detection of those locations that are relevant for the user and the 

transitions among these locations. As mentioned before, in order to make predictions about a 

user’s next moves, the raw data collected by sensors have to be processed in order to identify 

some meaningful points in order to reduce the amount of data for further analysis.   

2.4.2.1 Points-of-interest detection 

A subset of consecutive GPS points that have been collected can be joined into traces on a map. 

It can be noticed that those segments where the points are denser indicate positions where the 

user has spent more time wandering around a same geographic region than other segments 

where points clearly suggest a trajectory (Figure 2(a)), as stated in (24). Reference (21) call these 

regions stay points which is the term that is going to be used along this paper. 

Definition 1  A stay point is the representation of the geographical region formed by a subset of 

consecutive GPS points found inside a GPS log  𝐺 = {𝑝1, 𝑝2, . . , 𝑝𝑚 , 𝑝𝑚+1, . . , 𝑝𝑜 , . . , 𝑝𝑛−1, 𝑝𝑛} , 

starting at 𝑝𝑚  up to 𝑝𝑜  where the distance  𝑑(𝑝𝑚, 𝑝𝑖)  for  𝑚 < 𝑖 ≤ 𝑜  is not greater than a 

parameter 𝐷𝑡ℎ, and the time spent inside the region 𝑝𝑜 . 𝑡 − 𝑝𝑚 . 𝑡 is at least 𝑇𝑡ℎ. 

Which means that 𝑝𝑚  and every 𝑝𝑖  must be directly density-reachable, where 𝑝𝑚  is called the 

arrival point and 𝑝𝑜  the departure point, 𝑑(𝑝1, 𝑝2) is the great-circle distance between two 

points 𝑝1 and 𝑝2, 𝐷𝑡ℎ is a distance threshold that specifies the search radius which depends on 

the expected application (scale of interest), and  𝑇𝑡ℎ is the minimum time the user has to stay 

inside this region in order to be detected. 

 

 

Figure 2. (a) A stay point defined by arrival and departure points and a centroid. (b) Collection stay points at 
the end of the day. (c) Stay points forming clusters at the end of larger time intervals. 
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Definition 2  The prototype of stay point 𝑠 is a virtual point that represents the set of consecutive 

points 𝑝𝑚 , 𝑝𝑚+1, . . , 𝑝𝑜 for the stay point that starts at point 𝑚. This prototype has the following 

data structure and notation: 

𝑠. 𝑙𝑎𝑡 =  
1

|𝑃|
∑ 𝑝𝑖 . 𝑙𝑎𝑡𝑜

𝑖=𝑚   Average latitude 

𝑠. 𝑙𝑜𝑛 =  
1

|𝑃|
∑ 𝑝𝑖 . 𝑙𝑜𝑛

𝑜
𝑖=𝑚   Average longitude 

𝑠. 𝑎𝑟𝑟 =  𝑝𝑚 . 𝑡  Arrival time to the region 

𝑠. 𝑑𝑒𝑝 =  𝑝𝑜 . 𝑡  Departure time  

From this point on, the prototype will be used to refer to the corresponding stay point. The 

implementation of a mechanism to retrieve stay points prototypes is presented in Algorithm 1, 

where chronological scanning is not guaranteed but is not required as long as the neighborhood 

of an unobserved point can be found. Figure 2(b) shows an example of a one-day journey with 

the regular “extended” stops a user does during the day, which also let know the transitions 

between these stay points. Because a stay point is a single instance of an extended stop, a single 

location can have as many stay points as visits it has received. During larger intervals, stay points 

form relevant clusters on locations with high attraction levels for a single user, see Figure 2(c). 

Their size help obtaining a location’s rank.  

Algorithm 1. Heuristic for Stay point detection. 

 

Definition 3  A Point-of-interest (POI) is a frequently visited location by a single user, which owns 

a semantic meaning and can be obtained by joining all the stay points that are density-reachable 

at a distance not higher than 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 into a cluster 𝐶 of size at least 𝑚𝑖𝑛𝑉𝑖𝑠𝑖𝑡𝑠.  

The data structure for a point-of-interest 𝑃𝑂𝐼𝑘  represented by a cluster 𝐶𝑘  containing the 

corresponding stay points, has the following attributes. 

𝑃𝑂𝐼𝑘 . 𝑙𝑎𝑡 =
1

|𝐶𝑘|
 ∑ 𝑠𝑖 . 𝑙𝑎𝑡𝑠𝑖 ∈ 𝐶𝑘

   Average latitude 

𝑃𝑂𝐼𝑘 . 𝑙𝑜𝑛 =
1

|𝐶𝑘|
∑ 𝑠𝑖 . 𝑙𝑜𝑛𝑠𝑖 ∈ 𝐶𝑘

  Average longitude 

In (30) and (31) the authors suggest different approaches to build “personal maps” by looking 

for transitions between these significant places from GPS data. These transitions allow the 

creation of association rules (32) that allow predictions of the future movements of a user.  

2.4.2.2 Temporal Patterns 

The clusters of stay points formed on each personal point-of-interest (POI), can be sub-clustered 

by the time dimension. This allows to find patterns in arrival and departure times. In other 

words, it is possible to know the time of the day a user regularly arrives and leaves a point-of-
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interest. Let 𝐶𝑘 represent the cluster of stay points on a point-of-interest 𝑘 and  𝑑𝑡(𝑠𝑖 , 𝑠𝑗) be the 

distance in time between two stay points 𝑠𝑖  and 𝑠𝑗. For instance, for arrival times: 

𝑑𝐴(𝑠𝑖 , 𝑠𝑗) =  |𝑠𝑖 . 𝑎𝑟𝑟 − 𝑠𝑗 . 𝑎𝑟𝑟|                 𝑠𝑖 , 𝑠𝑗  ∈  𝐶𝑘 

Algorithm 2. Cluster stay points into points of interest. 

 
 

Therefore, a similar approach to that used when clustering the stay points that were close in 

space can be used. That is, for each stay point 𝑠𝑖 ∈ 𝐶𝑘 inside cluster 𝐶𝑘 the algorithm searches 

for the neighborhood, 

𝑁𝐴(𝑠𝑖) = {𝑠𝑗  ∈  𝐶𝑘  | 𝑑𝐴(𝑠𝑖 , 𝑠𝑗)  ≤  𝑚𝑎𝑥𝑇𝑖𝑚𝑒}, 𝑠𝑖 ≠ 𝑠𝑗 

Where 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 is a parameter that expresses proximity between two time measures, joining 

the stay points in 𝐶𝑘  that are density-reachable by the arrival time attribute. Now for the 

departure times: 

𝑑𝐷(𝑠𝑖 , 𝑠𝑗) =  |𝑠𝑖 . 𝑑𝑒𝑝 − 𝑠𝑗 . 𝑑𝑒𝑝|                 𝑠𝑖 , 𝑠𝑗  ∈  𝐶𝑘 

𝑁𝐷(𝑠𝑖) = {𝑠𝑗  ∈  𝐶𝑘 | 𝑑𝐷(𝑠𝑖, 𝑠𝑗)  ≤  𝑚𝑎𝑥𝑇𝑖𝑚𝑒}, 𝑠𝑖 ≠ 𝑠𝑗  
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One more time, joining only those stay points in 𝐶𝑘 that are density-reachable by the departure 

time attribute. This procedure forms smaller clusters inside  𝐶𝑘 , keeping only those which 

cardinalities are at least 𝑚𝑖𝑛𝐹𝑟𝑒𝑞. Two different clustering arrangements for a single POI are 

then obtained: one for the arrival times and another one for the departure times namely 𝐶𝑘
(𝑎𝑟𝑟)

 

or 𝐶𝑘
(𝑑𝑒𝑝)

.  

Finally, the set of frequent (average) arrival times to 𝑃𝑂𝐼𝑘 is: 

𝑃𝑂𝐼𝑘 . 𝑎𝑟𝑟(𝑓𝑟𝑒𝑞) = {𝑓(𝐶1), 𝑓(𝐶2), . . , 𝑓(𝐶𝑛)},        𝐶𝑖  ∈  𝐶𝑘
(𝑎𝑟𝑟)

 

𝑓(𝐶𝑖) =
∑ 𝑠𝑖 . 𝑎𝑟𝑟𝑠𝑖 ∈ 𝐶𝑖 

|𝐶𝑖|
 

(1) 

Equivalently, for the departure times from 𝑃𝑂𝐼𝑘: 

𝑃𝑂𝐼𝑘 . 𝑑𝑒𝑝(𝑓𝑟𝑒𝑞) = {𝑔(𝐶1), 𝑔(𝐶2), . . , 𝑔(𝐶𝑛)},        𝐶𝑖  ∈  𝐶𝑘
(𝑑𝑒𝑝)

 

𝑔(𝐶𝑖) =
∑ 𝑠𝑖 . 𝑑𝑒𝑝𝑠𝑖 ∈ 𝐶𝑖 

|𝐶𝑖|
 

(2) 

So by sub-clustering with respect to time-of-the-day, it is also possible to anticipate the 

departure time to a particular POI, when the user’s current location is known (which happens to 

be the origin for the next trip). 

2.4.2.3 Next Location Prediction 

A set of different mobility patterns that represent the different transitions between points-of-

interest together with the frequent arrival and departure times observed in the complete 

location history can be created. When a new stay point is identified by the smartphone, the 

agent will try to match this one with one of the recognized points-of-interest based on some 

similarity criterion. 

Definition 4 Let Π =  {𝑃𝑂𝐼𝑖} be the set of all recognized points-of-interest for the same user, 

where 𝑖 is an internal identifier. A reference point-of-interest for a new stay point 𝑠 is the 

nearest neighbour in Π within a radius of at most m𝑎𝑥𝑅𝑎𝑑𝑖𝑢𝑠.  

𝑃𝑂𝐼𝑟𝑒𝑓(𝑠) = argmin
𝑝𝑜𝑖∈𝑁(𝑠)

𝑑(𝑝𝑜𝑖 , 𝑠) , 𝑁(𝑠) = {𝑝𝑜𝑗 ∈ Π | 𝑑(𝑝𝑜𝑗 , 𝑠) ≤ 𝑚𝑎𝑥𝑅𝑎𝑑𝑖𝑢𝑠} (3) 

It can be assumed that if a reference point-of-interest cannot be found for a recently detected 

stay point, then the user has arrived to a brand new location, being a sufficient reason to 

conclude that the current user’s behavior will not fit any known mobility pattern so far.  

Taking a look to the location history, only for those transitions between frequent stay points, 

(those that have already been matched to a point-of-interest) the transition chains among 

points-of-interest visited at a pre-defined time interval (E.g. daily tours) are obtained. Each of 

these unique transition chains of length at least 2, will be called in this paper a mobility pattern, 

and Ω is the collection of all of them in the location history. With this information, a procedure 

to predict the next point-of-interest given the current one (or a previous sequence of two or 

more POIs) is illustrated below. 

Before proceeding, only a subset of Ω′ that includes those patterns that are similar to the current 

chain formed by the last 𝑚 POIs is assumed to be used. This way, the search is reduced to only 
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those days where the user exhibited a mobility behavior similar to that during the current day 

(i.e. typically a same mobility pattern can be found among the same days of the week).  

Now let 𝐹Ω′(𝑃𝑂𝐼𝑖) give the number of times 𝑃𝑂𝐼𝑖  appears in Ω′ followed by another point-of-

interest, also 𝐹𝑖(𝑃𝑂𝐼𝑘) denote the number of times 𝑃𝑂𝐼𝑖  directly precedes another point-of-

interest 𝑃𝑂𝐼𝑘  in Ω′. Let 𝑃𝑂𝐼(𝑡) be the current known point-of-interest for a stay point identified 

at time step 𝑡, then the conditional probability that POI “j” POIjfollows “i” in the chain becomes: 

𝑝𝑖𝑗= 𝑃𝑟𝑜𝑏(𝑃𝑂𝐼(𝑡+1) = 𝑃𝑂𝐼𝑗|𝑃𝑂𝐼(𝑡) = 𝑃𝑂𝐼𝑖) =
𝐹i(𝑃𝑂𝐼𝑗) 

𝐹Ω′(𝑃𝑂𝐼𝑖)
 (4) 

This way, the next point-of-interest at time step 𝑡 + 1 only depends on the current one at time 𝑡, 

becoming a Markov chain, with a state-space equal to the list of points-of-interest in Ω′. Because 

it can be assumed that trips headed to the same POI are not possible (or useful), then 𝑝𝑖𝑖=0. 

Finally, the selected point-of-interest to follow the current one, when 𝑃𝑂𝐼(𝑡) = 𝑃𝑂𝐼𝑖, is: 

𝑃𝑂𝐼(𝑡+1) = argmax
𝑃𝑂𝐼𝑗 ∈ Ω

𝑝𝑖𝑗            𝑖 ≠ 𝑗  (5) 

Also, let  𝑛𝑒𝑥𝑡𝐴𝑟𝑟(𝑡) = {𝑡𝑘  ∈  𝑃𝑂𝐼𝑘 . 𝑎𝑟𝑟(𝑓𝑟𝑒𝑞) | 𝑡𝑘 > 𝑡}, be the list of recurrent arrival times to 

𝑃𝑂𝐼𝑘  after time 𝑡 , only for transitions from 𝑃𝑂𝐼(𝑡) in Ω′ . Then the time a user will arrive to 

𝑃𝑂𝐼(𝑡+1) is the closest time in the future. 

𝑃𝑂𝐼(𝑡+1) . 𝑎𝑟𝑟 =  min
𝑡𝑘 ∈ 𝑛𝑒𝑥𝑡𝐴𝑟𝑟(𝑡)

𝑡𝑘  (6) 

The set of association rules with an implicit probability can be built and updated every time a 

new mobility pattern is added, this way the agent will refer to these rules to make decisions 

about the further actions to take.  

2.4.2.4 Finding shareable trips  

The next location prediction allows to infer a coming request by a potential passenger so that 

the demand of the whole set of riders can be obtained for a close time in the future. On the 

supply side (drivers), future shareable trips are also inferred from their mobility patterns with 

the only difference that users with the role of driver make trips by using a private vehicle (besides 

assuming other constraints to be explained later). It must be taken into consideration that 

opposed to most of the current popular ride-sharing apps, neither drivers are part of a 

transportation company nor did they specify to serve passengers. Also, mapping trajectories to 

a road network is essential to reduce complexity.  

 A user (and the attached agent) can change the role based on the recognition of the travel 

mode. Some work on this topic can be found in (22) or (33). The following notation will be used 

to define the ride sharing problem. 

• 𝑑𝑒𝑡(𝑚𝑎𝑥) , Maximum detour distance (km).  𝛾, Vehicle occupancy (busy seats inc. 

driver), 

• 𝑄, Vehicle capacity. 𝑃𝑜(𝑟) ,𝑃𝑑(𝑟) Passenger’s origin and destination, 

• 𝑃𝑜(𝑑),𝑃𝑑(𝑑) Driver’s origin and destination. 𝑃𝑝(𝑟), Passenger’s pick-up location, 

• 𝑃𝑞(𝑟), Passenger’s drop-off location.  𝑃𝑖. 𝑎(𝑚𝑖𝑛), Earliest possible arrival time to 𝑃𝑖, 

• 𝑃𝑖. 𝑎(𝑚𝑎𝑥), Latest possible arrival time to 𝑃𝑖. 𝑃𝑖. 𝑑(𝑚𝑖𝑛), Earliest possible departure 

time to 𝑃𝑖, 𝑃𝑖. 𝑑(𝑚𝑎𝑥), Latest possible departure time to 𝑃𝑖. 
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It is also appropriate to define the total detour from the original path a driver 𝑑 follows to travel 

from an origin POI 𝑃𝑜(𝑑) to a destination POI 𝑃𝑑(𝑑) in order to pick-up and drop-off a passenger 

𝑟 at different locations as: 

ℎ𝑉 = 𝑑𝑉(𝑃𝑜(𝑑), 𝑃𝑝(𝑟)) + 𝑑𝑉(𝑃𝑝(𝑟),𝑃𝑞(𝑟)) + 𝑑𝑉(𝑃𝑞(𝑟),𝑃𝑑(𝑑)) (7) 

𝑑𝑒𝑡(𝑡𝑜𝑡)(𝑑, 𝑟) =  ℎ𝑉 − 𝑑𝑉(𝑃𝑜(𝑑),𝑃𝑑(𝑑)) (8) 

Here, 𝑑𝑉(𝑃1
(𝑟), 𝑃2

(𝑟)) represents the total travelled distance by car from points-of-interest 

𝑃1
(𝑟) to 𝑃2

(𝑟) by using the shortest possible (most efficient) path inside a network  𝑁 . 

Also 𝑃𝑝(𝑟) and 𝑃𝑞(𝑟) are the corresponding pick-up and drop-off locations. In other words, the 

total detour is the amount of extra distance the driver’s vehicle has to travel to serve a passenger 

compared to the original trip. Next the total-walk-distance a rider still must travel if being served 

is computed (i.e. the overall residual distance a passenger has to walk in the trip), defined as the 

distance using the shortest possible path by foot in 𝑁 from the current location (origin) to the 

pick-up location plus the distance from the drop-off location to the actual final destination. 

𝑤(𝑡𝑜𝑡)(𝑑, 𝑟) =  𝑑𝑊(𝑃𝑜(𝑟), 𝑃𝑝(𝑟)) + 𝑑𝑊(𝑃𝑞(𝑟), 𝑃𝑑(𝑟)) (9) 

This means that in some situations, a rider requires an extra effort to be served by a potential 

driver. This distance is different than that by car since links can be used in both directions and is 

normally symmetric. A maximum walk distance 𝑤(𝑚𝑎𝑥) can then be another constraint the 

passenger can specify when requesting a new ride. Reference (1), defines some ride-sharing 

patterns for single and multiple passengers with and without detours. 

Definition 5  A shareable trip is a supply-side trip by a driver 𝑑 with a private vehicle from points-

of-interest 𝑃𝑜(𝑑) to 𝑃𝑑(𝑑), where 𝛾 < 𝑄 and assuming the desire of the driver to participate. 

This definition can be extended to a shareable trip that can be used to fulfil a specific request by 

a rider 𝑟 at time 𝑡. The feasible set of candidate drivers must follow these constraints for a ride-

sharing pattern with no walk segments, that is 𝑤(𝑡𝑜𝑡)(𝑑, 𝑟) = 0  and 𝑃𝑜(𝑟) = 𝑃𝑝(𝑟) , 𝑃𝑑(𝑟) =

𝑃𝑞(𝑟). 

The earliest time the driver can leave the current location to serve a passenger must be in the 

future, that is 𝑃𝑜(𝑑). 𝑑(𝑚𝑖𝑛) > 𝑡 

The latest time a passenger can be picked up, must still make possible to arrive to the drop-off 

location at the latest possible arrival time under the expected travel time.  

𝑃𝑜(𝑟). 𝑑(𝑚𝑎𝑥) = 𝑃𝑑(𝑟). 𝑎(𝑚𝑎𝑥) − 𝑡𝑣(𝑃𝑜(𝑟), 𝑃𝑑(𝑟)) (10) 

The arrival time at the pick-up location must be compatible with the expected time window.  

𝑃𝑜(𝑟). 𝑑(𝑚𝑖𝑛) ≤ 𝑃𝑜(𝑑). 𝑑(𝑚𝑖𝑛) + 𝑡𝑣(𝑃𝑜(𝑑), 𝑃𝑜(𝑟)) ≤ 𝑃𝑜(𝑟). 𝑑(𝑚𝑎𝑥) (11) 

The arrival time at the drop-off location must be compatible with the expected time window.  

𝑃𝑑(𝑟). 𝑎(𝑚𝑖𝑛) ≤ 𝑃𝑜(𝑟). 𝑑(𝑚𝑎𝑥) + 𝑡𝑣(𝑃𝑜(𝑟), 𝑃𝑑(𝑟)) ≤ 𝑃𝑑(𝑟). 𝑎(𝑚𝑎𝑥) (12) 

This set will be the input for a ride-matching optimization problem performed on an external 

application or module. An extensive list of methods for this optimization problem can be found 

in (34), (35), (36) and (3), however they are out of the scope of this paper. Some common 

objectives include minimizing 𝑑𝑒𝑡(𝑡𝑜𝑡)(𝑑, 𝑟), or 𝑤(𝑡𝑜𝑡)(𝑑, 𝑟), as well as costs, the total travelled 
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time or distance. For an agent that tries to start the request automatically as soon as context 

has been changed (a visit to a POI has been identified), variable 𝑡 can be replaced by 

𝑃𝑜(𝑟). 𝑑𝑒𝑝(𝑚𝑖𝑛) that together with other time estimations can be inferred directly from the 

temporal patterns discovered in the location history. 

2.4.3 Inference module 

Because a user does not want to receive notifications unless the agent is confident that it is 

important, the agent must take the decision of going ahead with providing the service or 

desisting only when the certainty of requiring the service is high.  

Supervised learning techniques for classification can be applied to make this decision, as long as 

some observations could be collected from previous use of the application. Each observation 

can be labeled as positive whenever the user has decided to use the service and negative 

otherwise. Besides this label, other values of attributes captured from the current context are 

preserved, namely time of the day, current and next location, weather report, travel mode, 

related activity, etc. This way as soon as the agent expects a new trip and finds some potential 

shareable trips for a ride, a rank classifier will tell how strong a new ride requirement prediction 

is and proceed to notify the user if a certain threshold is exceeded. 

The best value for this threshold can be evaluated with a ROC curve to find that value that 

produces the highest recall and the lowest false positive rate at the same time. The notification 

system details are a topic for future research. Although prediction quality is required to 

anticipate a shareable trip and a passenger’s request, this module must also have be in charge 

of finding similarities among trips’ schedules and paths, in order to propose matches for 

ridesharing. 

2.5 EVALUATION 
A first test to assess the accuracy of our heuristic for identifying the stay points from data 

collected by a mobile device GPS during a whole day was done with a controlled experiment.  

In (34), a round-trip journey also referred in literature as a tour is mentioned as a potential 

requirement for a ride-sharing scenario, where riders place two trip announcements so the 

agreement is accepted only if a confirmed return to the origin is also offered.   Our experiment 

will be designed as a tour plan defined in the following way. 

A tour 𝑇 can be defined as a chain of trips between pairs of locations that starts and terminates 

at the same point, that is, a sequence of 𝑛 trips among 𝑛 different locations where the 

destination of the last trip is identical to the origin of the first one. 

Τ = 〈𝜏1→2, 𝜏2→3, . . , 𝜏𝑛−2→𝑛−1, 𝜏𝑛−1→𝑛, 𝜏𝑛→1〉 

Where 𝜏𝑖→𝑖+1 represents the trip between locations 𝑖 and 𝑖 + 1. A tour can be also represented 

by a sequence of 𝑛 − 1 visited locations where the user spends a time greater than 𝑇𝑡ℎ (i.e. stay 

points) together with their arrival and departure time, after excluding the unique 

arrival/departure location which is not considered for the detection procedure.  

Τ = 〈𝑠1, 𝑠2, … , 𝑠𝑛−1〉 

A design of a tour plan in this format can be built, however the arrival and departure times must 

be updated after the tour is completed according to the actual times registered manually by the 

user, since they can vary from those in the original plan.  
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2.5.1 Initial Calibration 

The success of the heuristic for detecting stay points depends on the correct identification of the 

arrival and departure GPS points. This requires the proper calibration of the two thresholds 

𝑇𝑡ℎ  and 𝐷𝑡ℎ and can be stated as an optimization problem. 

Let Τ′ = 〈�̂�1, �̂�2, … , �̂�𝑘〉 with 𝑘 ≠ 𝑛 − 1  be a sequence of k ≠ n-1detected stay points identified 

with our heuristic. Each of them confronted with the original tour plan (i.e. �̂�𝑖  ∈ 𝑇′ is identified 

as stay point 𝑠𝑖 ∈ 𝑇 based on their high proximity).Moreover, some actual stay points may not 

be detected and some “ghost” stay points corresponding to short unavoidable stops could be 

included. A possible objective is the minimization of the total time error expressed as the sum 

of the differences between the detected and the actual times of arrivals and departures 

(expressed as UNIX timestamps in milliseconds).  

𝑇𝑇𝐸 = ∑ (|�̂�𝑖 . 𝑎𝑟𝑟 − 𝑠𝑖 . 𝑎𝑟𝑟| )

𝑠𝑖 ∈ (𝑇∩𝑇′)

+ ∑ (|�̂�𝑖 . 𝑑𝑒𝑝 − 𝑠𝑖 . 𝑑𝑒𝑝|)

𝑠𝑖 ∈ (𝑇∩𝑇′)

+ 𝛼|𝑇 − (𝑇 ∩ 𝑇′)| 13 

The parameter 𝛼 is a penalty in milliseconds for the actual stay points in the tour plan that 

couldn’t be discovered (assuming there are no problems due to a bad GPS signal). A constraint 

could be the mean proximity error, defined as: 

𝑀𝑃𝐸 = 
∑ 𝑑(�̂�𝑖,𝑠𝑖)𝑠𝑖 ∈ (𝑇∩𝑇′)

|𝑇∩𝑇′|
, 𝑀𝑃𝐸 ≤ 𝑃𝑡ℎ 14 

Which demands that the detected stay point’s average latitude and longitude must be close 

enough to the actual stay point’s coordinates.  

A tour can be defined as a journey consisting of various trip legs and starting at home location. 

To test the stay point detection, a home-based tour consisting of 5 unique destinations was 

tracked to fetch coordinates when using an average 5-second interval as suggested in (29). As 

expected, the visits to a same place were registered as different stay points, located close to 

each other forming clusters of different sizes. With 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = 20𝑚 and 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 = 3 , four 

out of five different points-of-interest were identified. Discarding the non-detected location, the 

total time error for different values of 𝑇𝑡ℎ and  𝐷𝑡ℎ comprising the 2342 tracked points was 

computed. A good approximation was found at  𝑇𝑡ℎ = 5 𝑚𝑖𝑛 ,  𝐷𝑡ℎ = 40 𝑚𝑒𝑡𝑒𝑟𝑠  when 

constrained to 𝑃𝑡ℎ = 35 𝑚𝑒𝑡𝑒𝑟𝑠, resulting in a TTE of 618 seconds. With this parameter values, 

the detected departure and arrival times for each location can be found in Table 1. It has to be 

taken into account that the app attempts retrieving the user’s position every 5 seconds, but if 

accuracy is low because it is cloudy or users are indoors, the point is discarded; so that the 

number of collected points is generally smaller than expected. 

The process reported a mean distance error of 25 meters between the actual locations and the 

detected coordinates, moreover an average time error of about 2 minutes when detecting the 

arrival and departure times. This seems to be an acceptable error for applications that do not 

demand high precision estimating times. For instance dynamic ride-sharing, since the agent will 

try to make an arrangement for a ride much earlier than the estimated departure time and then 

the pick-up and delivery times will be confirmed and updated by the participants before 

achieving an agreement. 
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Table 1. Detected time windows for the studied tour 

Location Actual time window Detected time window 

Home 9:15 – 9:30 9:17 – 9:30 

Work 9:40 – 12:20 9:41 – 12:21 

Alma 3 12:25 – 13:25 12:26 – 13:26 

VUB Auditorium 14:59 – 17:30 14:57 – 17:30 

VUB Complex 17:37 – 18:45 17:37 – 18:46 

 

2.5.2 Further Experiments 

Additional GPS data from 15 anonymous users during 17 days with different GPS usage rates in 

home-based tours were analyzed for stay points. Results are summarized in Table 2. The small 

number of points-of-interest detected during this time interval, indicate that the number of 

locations recurrently visited was small and suggests that the patterns during a larger interval will 

still be very limited. These results should be combined with information about the travel mode 

used on each regular trip in order to identify shareable trips among the participants. The mobility 

patterns for all these users are not enumerated, but given the proximity found among the points-

of-interest in space and time, chances for matches are high.  

 

Table 2. Stay points detection and unique locations for 17 days of tracking data on different users. 

User Processed points Detected stay points Unique Points of Interest 

1 2530 29 3 

2 6677 15 3 

3 12614 20 2 

4 4030 21 3 

5 541 3 1 

6 2103 6 2 

7 3343 2 0 

8 4840 10 1 

9 5063 7 2 

10 6761 36 5 

11 2725 10 1 

12 1791 4 1 

13 1310 11 2 

14 2739 15 2 

15 1027 7 3 

total 58094 196 31 



 

18 

 

2.6 CONCLUSIONS 
A list of experiments to validate the approach presented in this paper were performed. It could 

be evidenced that with a proper calibration of the parameters a decent approximation of the 

actual localization of the points-of-interest can be achieved, together with a close estimate of 

the arrival and departures times. However, sometimes the way a user moves inside a same 

location avoids capturing stay points. It was observed that those places where users stay 

“motionless” are more likely to be detected, and also that using a low time threshold is 

preferred.   

Richer contextual information like detecting the connection to a known WI-FI network, detecting 

when the smartphone has been plugged to the AC outlet, detecting a relevant reduction in 

speed, etc., should be added to the mining process in order to increase the opportunities of 

detecting relevant points. It could be observed that the number of mobility patterns and 

recurrent shareable trips of a user is rather small due to the uniformity in a person’s mobility 

behavior, and that applying a simple Markov chain of higher order make the agent to take 

decisions with a relative confidence on determining forthcoming trips, however better AI 

methods for sequence learning and prediction should be applied including not just location for 

the classification but also more other attributes. 

It can be determined that taking into account other forms of contextual information from 

different sources, not just from physical sensors in the smartphone but from web services and 

remote databases, an early assistance at short notice by an agent seems completely possible. 

The match between passengers and drivers through the detection of recurrent regular trips in 

the demand side and the discovery of shareable trips in the supply side in an automatic way, is 

a realistic contribution for dynamic ride-sharing systems, thanks to the ubiquitous environments 

present in modern cities. 

The approach described in this paper to detect stay points and then to perform trip 

segmentation, permits defining a general architecture for context-aware apps for ridesharing, 

which can provide automatic suggestions based on tracking data, easily retrieved by most 

existing apps in modern mobile devices. 

2.7 FUTURE WORK 
At least three main concerns can be addressed. First, the addition of new context information, 

specifically the detection of transport mode in order to improve the method to recognize stay 

points when a Walk-leg is detected. Other sources like WI-FI network, detecting when the 

smartphone has been plugged to the AC outlet among others are also important. The methods 

for prediction of next locations can be improved and updated to include this new enriched 

mobility patterns. 

Second, the change of scenario from ridesharing to another transportation application. Context-

awareness increase the automatic tasks that can be executed by existing systems, so that 

autonomous agents can provide a better assistance to users. Some possible scenarios to be 

enriched may be: trip planning, traffic alert systems, self-driving vehicles, etc. A disadvantage of 

the approach used in Algorithm 2 to identify a point-of-interest from a cluster of stay points, is 

that chains of stay points being spatially close (which can be expected in large travel histories 

consisting of several unique locations), could be incorrectly merged into very large points-of-

interest. Adding more attributes to the clustering procedure or using a different approach not 

only based on distances could be helpful in future applications. 
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Thirdly, the use of better state-of-the-art methods in the rest of the process, for instance in the 

prediction of the next location, could be included. One may think of patterns in other context 

data than location information, e.g. calendar data, in actions typically preceding a trip (like 

checking only for traffic or weather conditions). 

Also, machine learning techniques for the inference stage should be selected and tested. 

Moreover, it may be needed to not only predict next location and departure time of upcoming 

shareable trips, but also if there are constraints that may render a trip non-shareable, e.g. 

because the travel mode will not be the car or because the trip will be under too tight time 

constraints to allow for detours for pick-up and drop-off (e.g. to be discovered from calendar 

items or schedules of activities at the destination location). 
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3 DISCOVERING REGULARITY IN MOBILITY PATTERNS TO IDENTIFY 

PREDICTABLE AGGREGATE SUPPLY FOR RIDESHARING 

Mendoza, I., Rydergren, C., & Tampère, C. M. J. (2018). Discovering Regularity in Mobility 

Patterns to Identify Predictable Aggregate Supply for Ridesharing. Transportation Research 

Record. 

3.1 ABSTRACT 
Heterogeneous data collected by smartphone sensors offer new opportunities to study a 

person’s mobility behavior. The mobility patterns extracted from the travel histories found in 

these data, allow agents residing in mobile devices to model transitions between visited 

locations. This permits upcoming trips to be predicted after observing a set of events and 

assistance can be planned in advance. When several agents cooperate, the forecasted trips 

made by multiple users can provide a potential supply for shared mobility systems such as 

dynamic ridesharing. These trips must be sufficiently regular and frequent to be reliably 

announced as shareable trips.  

This paper describes a methodology to identify a predictable aggregate supply for ridesharing 

via mobility patterns discovered in users’ travel histories. It empirically quantifies measures like 

regularity and frequency of these patterns, on a dataset consisting of 967 users scattered in 

different geographical areas. The sample exhibits high heterogeneity with respect to these 

measures (hence, of predictability, regardless of the prediction method). This paper shows how 

frequency of trip patterns decreases while regularity increases, when additional dimensions 

such as departure times are added to the analysis. It was concluded that the flexibility of the 

travelers on accepting less regular trips, is vital to discover a larger supply. These results provide 

insights to develop future applications taking advantage of this approach, to increase ridesharing 

rates, allowing a critical mass to be more easily attained. 

Keywords: Ridesharing, Mobility Patterns, Trip Prediction, Mobility Behavior. 
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3.2 INTRODUCTION 
Mobile applications on modern devices can track a user's activity, producing logs that are used 

for sports and health purposes; other apps in the "life-logging" category use sensors that allow 

users to track themselves for an entire day, recording a full chain of events. The heterogeneous 

data collected by these apps through the sensors of a mobile device, including but not limited 

to global positioning systems (GPS), accelerometers or gyroscopes, can also provide insights 

about the person’s mobility behavior after being processed.  The distinctive information found 

in these data is the chain of activities carried out during the day, including visited locations, the 

time spent on these places and more characteristics depending on the complexity of the 

algorithms.  

Data mining techniques, allow extracting mobility patterns from travel histories constructed 

from these logs, making it possible to identify regular transitions between repeatedly visited 

locations. These transitions can be conditioned to some detected state or context defined by 

attributes such as: the current location, time of the day or the day of the week. The regularity of 

these patterns enables the prediction of future trips; so that software agents residing in a user’s 

mobile device can autonomously decide about planning a service assistance in advance.  

One of the transport services that could potentially benefit from this approach is dynamic 

ridesharing, when multiple agents cooperate within a region. If daily car trips with available seats 

made by multiple users could be predicted for a certain time interval, day or destination; 

information about a potential supply for ridesharing matching an upcoming ride request, could 

be inferred and announced earlier. Ridesharing passengers could for instance visualize the 

expected supply, consisting of potential shareable trips to a destination of interest compatible 

with their own schedules. This visual information could display hotspots where the expected 

trips will occur, so that passengers can find suitable pickup points to enable ridesharing. The 

possible software applications using this approach, may provide an instrument to attain a critical 

mass for ridesharing services by promoting an increase in number of participants. In this context, 

a critical mass refers to having a minimum number of drivers, so that passengers can find supply 

for a ride requirement; but at the same time, having a minimum number of passengers, letting 

drivers that want to share their trip costs find sufficient demand for requests. This paper 

proposes a solution from the supply perspective: assuming that without supply, no passengers 

can choose to share rides; but without passengers, drivers may still offer the ride and hence 

create a basis for a community of ridesharing users to grow steadily. 

The objective of this paper is to define a methodology to estimate a supply of shareable trips for 

ridesharing, which can be conditioned to a context, based on the analysis of trip frequency and 

regularity in travel histories. Then, a subset of these trips with a minimum level of regularity is 

used to produce visualizations of the potential supply. The key concept of trip regularity is 

explored empirically in a dataset of travel histories of 967 users scattered in different 

geographical areas. The present paper is organized as follows: the first section introduces the 

context of the research and states the paper’s objective, then a literature review of related 

efforts is presented. The next section describes the proposed methodology, followed by a 

discussion of the results obtained from the empirical data, and in the end the conclusions and 

potential future work is presented. 
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3.3 LITERATURE REVIEW 
Ridesharing has received considerable attention in recent transportation-related research; This 

alternative mode of travel helps mitigate traffic congestion as the number of vehicles is reduced, 

providing environmental and social benefits. A review of some recent research and possible 

future directions on ridesharing can be found in Furuhata et al.(1), where authors also provide 

the following unified definition: “ridesharing is a transportation mode in which individual 

travelers share a vehicle for a trip, with the purpose of splitting travel costs among users with 

similar itineraries and time schedules”. Some of the suggested improvements included better 

ride-matching strategies, pricing systems and multi-modal integration so that ridesharing is 

combined with another travel mode to complete a trip. An important statement which led to 

the current research, states that “the complexity of this problem increases the importance of 

assistance by software agents to enable personalized travel planning and execution”. Some 

relevant literature related to this research is studied in the following paragraphs. 

An attempt to enable ridesharing through a recommender system, implemented as a web-based 

platform that uses large-scale smartphone’s mobility data is presented in Bicocchi & Mamei (37). 

Here, the authors extracted information from two datasets containing mobility traces to identify 

potential rides. Routines consisting of repeated transitions on certain days of the week between 

a user’s frequent locations, were found when mining trips endpoints; then rides were matched 

based on similarities between the origins and destinations of different users’ routines. Recently 

in (38), the previous work was extended through a set of methods, which analyse urban mobility 

traces to recognize matching rides along similar routes. A list of optimization alternatives for 

ride-matching can be found in Agatz et al. (34)and a review of techniques to extract different 

mobility patterns can be found in Lin & Hsu (24). 

In Cici et al. (39), the authors provided an upper bound for the potential reduction of traffic in 

three different cities through ridesharing. Mobility patterns concerning home and work 

locations found in data from different heterogeneous sources were extracted, then an algorithm 

for matching users with similar patterns considering additional constraints such as social 

distance was proposed. Another research exploring the impact of ridesharing on congestion 

using mobile phone data is presented in Alexander & González (5). Here, the authors extracted 

the average daily origin-destination (OD) matrix per travel mode from mobile phone data to 

match trips with spatiotemporal similarities. Then, the impacts on congestion were evaluated 

by considering different adoption rates.  

The potential benefits of introducing meeting points in a ridesharing system to attain a critical 

mass is evaluated in Stiglic et al.  (40). There, the authors used simulation to measure the impact 

of picking up and dropping off passengers at locations different than the actual origins or 

destinations, obtaining a significant increase in the number of matched trips. Later in (41), the 

research was extended by adding flexibility in departure and detour times. At last, a research 

performed in Goel et al. (42) provides a method to choose the best locations for these pickup 

points based on Voronoi diagrams. Some existing approaches for evaluating regularity in 

mobility patterns can be found in Williams et al. (43),Wang et al. (44) or Zhong et al. (45). High 

regularity of trips leads to a low randomness or entropy in a choice set of destinations; these 

metrics are extensively used in literature for attribute selection, particularly in classification 

models such as decision trees(46).  

The present paper extends these contributions by using travel data acquired from modern 

smartphone’s tracking apps; later, after a multi-step datamining process, spatial characteristics 

of potential “sharable” trips are inferred and announced as hotspots to find ridesharing 

opportunities if patterns are sufficiently regular.  
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3.4 METHODOLOGY 
In this section, the required methods to attain the paper’s objective are elaborated. These 

methods include the extraction of personal points of interest and mobility patterns, when trips 

occur under certain conditions. Then, frequency and regularity measures are formulated so that 

a subset of candidate trips can be proposed as the potential aggregate supply for ridesharing.  

3.4.1 Extracting Personal Points of Interest 

To recognize recurrent visits to a same location in a travel history, the captured spatial 

coordinates of the trip’s endpoints cannot be used directly. Given that coordinates are estimates 

of a user’s position, they can be different on every new visit to a same location. Some methods 

for detecting trip’s endpoints can be found in (21) or (7), and the problem of labelling endpoints 

as visits to known or new locations in (14), (15). In this paper, a frequently visited location in a 

user’s travel history will be called a personal point of interest (POI). Typical approaches in 

literature to identify these spatial patterns, use density-based clustering techniques such as 

DBSCAN or OPTICS. The latter also allows a hierarchy to be obtained, allowing POIs to be 

extracted at a desired scale (i.e. buildings, neighborhoods, regions, etc.). A general density-based 

procedure used for the extraction of POIs is now explained.  

Let us assume a dataset 𝐻 consisting of travel histories from multiple users with data collected 

by a smartphone app. Then, a travel history 𝐻𝑣 defined as a chain of trips 𝑏1, 𝑏2, …𝑏𝑁 between 

endpoints where a user 𝑣 stops during the day to start a new activity is created. The following 

notation describes each trip 𝑖’s characteristics. 

• 𝑏𝑖 . 𝑜 Origin coordinates {latitude, longitude}, ∀𝑏𝑖 ∈ 𝐻𝑣 

• 𝑏𝑖 . 𝑑 Destination coordinates {latitude, longitude}, ∀𝑏𝑖 ∈ 𝐻𝑣 

• 𝑏𝑖 .𝑚 Travel mode, ∀𝑏𝑖 ∈ 𝐻𝑣 

• 𝑏𝑖 . 𝑠 Departure time in 24-hour notation, ∀𝑏𝑖 ∈ 𝐻𝑣 

• 𝑏𝑖 . 𝑒 Arrival time in 24-hour notation, ∀𝑏𝑖 ∈ 𝐻𝑣  

• 𝑏𝑖 .𝑤 Day type, 𝑤 ∈ {𝑤𝑒𝑒𝑘𝑑𝑎𝑦,𝑤𝑒𝑒𝑘𝑒𝑛𝑑}, ∀𝑏𝑖 ∈ 𝐻𝑣 

Then, the spatial dataset containing coordinates of trips’ endpoints to be clustered is: 

𝑆 = {𝑥1, 𝑥2, … , 𝑥2𝑁  | ∀𝑏𝑖 ∈ 𝐻𝑣 : 𝑥𝑖 ∈ {𝑏𝑖 . 𝑜, 𝑏𝑖 . 𝑑}} 

 The distance between two points, which is typically the Euclidean distance after 

transforming coordinates to a Cartesian system (47) is denoted by 𝑑𝑖𝑠𝑡(𝑥1, 𝑥2) , then the 

neighborhood of a point 𝑥𝑖  as shown in Figure 3Error! Reference source not found.(a) with 

points directly reachable at a radius 𝜀 ≥ 0 is: 

𝑁𝜀(𝑥𝑖) = {𝑥𝑗 ∈ 𝑆\{𝑥𝑖} | 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) ≤ 𝜀} 
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Figure 3. (a) Neighborhood of a point. (b) Complete neighborhood of the same point. (c) Trip endpoints in a 
travel history and (d) their clustering structure when 𝑚𝑖𝑛𝑃𝑡𝑠 = 5 

The complete neighborhood 𝑁′𝜀(𝑥𝑖) shown in Figure 3 (b), consists of all merged points in 

neighborhoods of those previously discovered, that is, 

𝑁′
𝜀(𝑥𝑖) = 𝑁𝜀(𝑥𝑖) ∪ 𝑁𝜀(𝑥𝑗) ∪ 𝑁𝜀(𝑥𝑘) ∪..                     ∀𝑥𝑗 ∈ 𝑁𝜀(𝑥𝑖), ∀𝑥𝑘 ∈ 𝑁𝜀(𝑥𝑗), .. 

Algorithm 3. Finding the complete neighborhood. 

 

Algorithm 4. Entire density-based procedure. 

 



 

26 

 

The process to obtain 𝑁′𝜀(𝑥𝑖) is presented in  

Algorithm 3, and the final density-based procedure to find the set 𝐶 of repeated locations in 

Algorithm 4, where complete neighborhoods are included in the final result only if a minimum 

number of points (visits) specified by parameter 𝑚𝑖𝑛𝑃𝑡𝑠 ∈ ℤ is reached, otherwise they are 

tagged as noise, see Figure 3 (c ,d). Then, the set of POIs in user 𝑣’s travel history is: 

𝐶𝑣𝑚𝑖𝑛𝑃𝑡𝑠, 𝜀 = {𝑐𝑖 ∈  𝐶 | 𝑚𝑖𝑛𝑃𝑡𝑠 ≤ |𝑐𝑖|} 

3.4.1.1 Identifying Transitions between POIs  

Following this process, the trip endpoints are tagged to identify the cluster they belong to, so 

that all visits to the same location have the same label. That is, assuming 𝑢𝑘 is a unique identifier 

for cluster 𝑐𝑘  and 𝑥′𝑖  the label on point 𝑥𝑖, then: 

𝑥′
𝑖 = {

𝑢𝑘                       𝑖𝑓 𝑥𝑖 ∈ 𝑐𝑘

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 Let 𝑢0 be a label to denote endpoints at non-frequent locations, that is those not included in a 

cluster. The following new notation is required for the updated trip 𝑖’s characteristics. 

• 𝑏𝑖 . 𝑜′ Trip origin’s label, ∀𝑏𝑖 ∈ 𝐻𝑣 

• 𝑏𝑖 . 𝑑′ Trip destination’s label, ∀𝑏𝑖 ∈ 𝐻𝑣 

• 𝑢0 Label for “noise” points, where |𝑐0| < 𝑚𝑖𝑛𝑃𝑡𝑠 

Two trips 𝑏𝑖 and 𝑏𝑗 by the same person are then assumed to have the same origin-destination 

(OD) pair if 𝑏𝑖 . 𝑜
′ = 𝑏𝑗 . 𝑜

′ ∧ 𝑏𝑖 . 𝑑
′ =  𝑏𝑗 . 𝑑

′ , even though their actual endpoints’ coordinates 

could be different. If the travel history is consistent it should be expected that 𝑏𝑖 . 𝑑
′ = 𝑏𝑖+1. 𝑜

′,

∀𝑏𝑖 ∈  𝐻𝑣 , producing a reliable chain of trips. After transitions between pairs of POIs are 

identified, regularity and frequency of these transitions with respect to their travel histories can 

be quantified.  

3.4.1.2 Regularity of Transitions between POIs 

In this paper, regularity of a certain trip characteristic (i.e. destination) is defined as the relative 

frequency of that characteristic in a user’s travel history, conditioned to a state defined by other 

characteristics; this relative aspect distinguishes regularity from frequency. Frequency is the 

number of events per unit of time; it denotes the probability that something happens, such that 

the expected number of events in a period is found as 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑥 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑. On the 

other hand, regularity is the relative frequency of an event 𝑖 within a user’s pattern: it denotes 

the probability that among all possible events in the given conditions, 𝑖 is the current one. Values 

closer to 1 are more regular and hence easier to predict.  

A high frequency does not necessarily imply high regularity or vice versa. For instance, an event 

(e.g. to travel from A to B) may be rare (e.g. only once per month), yet any time the person 

resides in A his next move may be to go to B, hence his move is 100% regular, conditional on 

residing in A. An agent observing this person for a while and identifying its current location to 

be A, may therefore have an easy job predicting B as the next destination. Inversely, a person 

may very frequently travel between C and D (e.g. twice per day); nevertheless, when residing in 

C, there may be 5 more very frequent destinations other than D, which makes the trip C-D 

frequent but not very regular when only conditioned on residing in C. Therefore, an agent that 

knows its current position in C, cannot predict the next destination with confidence. The 
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following functions provide different measures of regularity of a destination in a user 𝑣’s travel 

history.  

Let 𝑦𝑖,𝑗 be the number of trips in 𝐻𝑣 between POIs 𝑢𝑖 and 𝑢𝑗: 

𝑦𝑖,𝑗 = |{𝑏 ∈ 𝐻𝑣  | 𝑏. 𝑜′ = 𝑢𝑖 ∧  𝑏. 𝑑′ = 𝑢𝑗}| (15) 

Let 𝑉 be the set of all users with consistent travel histories. Passengers requesting a ride to a 

location 𝑞 could potentially use trips toward the destination’s neighborhood.  

𝑁𝜑(𝑞) = {𝑏. 𝑑′ ∈  𝐻 | 𝑑𝑖𝑠𝑡(𝑏. 𝑑′, 𝑞) ≤ 𝜑} , where            

𝐻 = ⋃ 𝐻𝑣

𝑣 ∈ 𝑉

 

That is, 𝑁𝜑(𝑞) contains all POIs destinations in every user’s travel history nearby location 𝑞, 

where 𝜑 could denote the maximum distance a passenger is willing to walk from the drop-off 

location. Let P be the number of unique POIs in a user’s travel history, the total number of inter-

cluster trips to destination 𝑢𝑗 ∈ 𝑁𝜑(𝑞), also including origins in 𝑢0 is: 

𝑦∗,𝑗 = ∑𝑦𝑝,𝑗

𝑃

𝑝=0
𝑗≠𝑝

 (16) 

The regularity of a 𝑢𝑗 with respect to other destinations in 𝐻𝑣, is defined by: 

 

𝑅𝑣(𝑢𝑗) = 𝑃(𝑢𝑗|𝑣) =
𝑦∗,𝑗

|𝐻𝑣|
 (17) 

That is, the probability that user 𝑣 visits location 𝑢𝑗 without being conditioned to any current 

state. On the other hand, the frequency, measured in number of visits per day to 𝑢𝑗 is: 

𝑓(𝑢𝑗) =
𝑦∗,𝑗

𝑇𝑣
 (18) 

where 𝑇𝑣, is the size of user 𝑣’s travel history in days. The total number of trips from an origin 

POI  𝑢𝑖, including destinations in 𝑢0 is: 

𝑦𝑖,∗ = ∑𝑦𝑖,𝑝

𝑃

𝑝=0
𝑖≠𝑝

 (19) 

The regularity of transitions to 𝑢𝑗 (OD regularity) from an origin 𝑢𝑖 is then: 

𝑅𝑣(𝑢𝑗|𝑢𝑖) =
𝑦𝑖,𝑗

𝑦𝑖,∗
 (20) 

Also, transitions conditioned to a certain departure time interval can be evaluated. First, the 24-

h format of departure times used in the dataset is transformed to a discrete value, so that trips 

with similar times can be clustered in a same group. Consider a finite number of time segments 

𝜔  during the day. For instance, with a time interval Δ𝑡 = 15 𝑚𝑖𝑛, a day consists of 𝜔 = 96 
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segments. The resulting departure and arrival time periods are 𝑏. 𝑠′ = ⌊
𝑏.𝑠

Δ𝑡
⌋ + 1   and 𝑏. 𝑒′ =

⌊ 
𝑏.𝑒

Δ𝑡
⌋ + 1 respectively, with values: {𝑥 ∈ ℤ | 1 ≤ 𝑥 ≤ 96}. Then the regularity of destination 𝑢𝑗 

conditioned to an origin and departure is: 

𝑅𝑣(𝑢𝑗|𝑢𝑖, 𝑠𝑘) =
𝑦𝑖,𝑗,𝑘

𝑦𝑖,∗,𝑘

 (21) 

where 𝑦𝑖,∗,𝑘, represents the number of trips starting from 𝑢𝑖 at departure period 𝑠𝑘 , defined as: 

𝑦𝑖,∗,𝑘 = |{𝑏 ∈ 𝐻𝑣  | 𝑏. 𝑜′ = 𝑢𝑖 ∧  𝑏. 𝑠′ = 𝑠𝑘}| (22) 

while 𝑦𝑖,𝑗,𝑘, considers only those to destination 𝑢𝑗, that is: 

𝑦𝑖,𝑗,𝑘 = |{𝑏 ∈ 𝐻𝑣  | 𝑏. 𝑜′ = 𝑢𝑖 ∧  𝑏. 𝑑′ = 𝑢𝑗 ∧  𝑏. 𝑠′ = 𝑠𝑘}| (23) 

At last, the frequency of these trips would be: 

𝑓(𝑢𝑗|𝑢𝑖, 𝑠𝑘) =
𝑦𝑖,𝑗,𝑘

𝑇𝑣
 (24) 

More dimensions can be added, although the number of trips constrained to the new conditions 

is significantly reduced, as well as their frequency. These new conditions can include day type: 

𝑏𝑖 .𝑤 ∈ {𝑤𝑒𝑒𝑘𝑑𝑎𝑦,𝑤𝑒𝑒𝑘𝑒𝑛𝑑} and travel mode: 𝑏𝑖 .𝑚 ∈ {𝑐𝑎𝑟, 𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡}.  

Definition. The overall regularity 𝑅𝑣(𝑢𝑗|𝜃)  of destination 𝑢𝑗  in travel history of user 𝑣 , 

conditioned to a multidimensional state 𝜃 = (𝜃1, 𝜃2, . . ), is defined as the regularity (and hence 

predictability) of a trip’s destination identified by 𝑢𝑗, based on all the information in 𝜃 an agent 

can access when deciding to announce a potential trip. 

3.4.2 Identifying the Aggregate Supply 

Contrary to selecting the location with the highest probability to be the next trip’s destination, 

as done by a typical predictor (i.e. a classifier), all patterns above a minimum regularity value are 

considered by the agent.  So that, when a threshold 𝜌 is applied to filter out unreliable trip 

predictions, the expected trips of user 𝑣 conforming conditions stated in 𝜃 are: 

𝐻𝑣,𝜌(𝜃) = {𝑏 ∈ 𝐻𝑣  |∀𝑗 ∈ 𝜃: 𝑏. 𝜃𝑗 = 𝜃𝑗  ∧  𝑅𝑣(𝑏. 𝑑′|𝜃) ≥ 𝜌} 

For a specific passenger’s request to location 𝑞; the fraction of the aggregate supply, that is, the 

car trips subset that could potentially be used for ridesharing is: 

𝐻𝜌(𝜃, 𝑞) = {𝑏 ∈ 𝐻𝜌(𝜃) | 𝑏. 𝑑′ ∈ 𝑁𝜑(𝑞) ∧ 𝑏.𝑚 = ′𝑐𝑎𝑟′}, where 

𝐻𝜌(𝜃) = ⋃ 𝐻𝑣,𝜌(𝜃)

𝑣 ∈ 𝑉

 

The relevance of a trip pattern when presented to a passenger, depends on how accurately it 

can be predicted and how frequent it is. Then the relevance of trip 𝑏𝑖  can be quantified by: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ×  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. Regularity denotes the probability of making a trip conditioned 

to some known state, and allows identifying which characteristics are relevant to correctly 

predict a specific destination; then predictability is a function of regularity and correlates 

positively (the more regular the more predictable), so that they can be used interchangeably.  
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Figure 4. (a) Origins (red circles) of trips neighboring a location (blue circle), acting as ridesharing hotspots 
which relevance is denoted by the radius size, (b) Trip’s paths, where relevance is specified by line weight. 

A first visualization highlights the origins of this predicted aggregate supply, so that these 

hotspots can be used by passengers as pickup points. A hypothetical example (including real 

trips with assumed paths) is shown in Figure 4 (a), where origins of trips in 𝐻𝜌(𝜃, 𝑞) denoted by 

red circles, have different relevance for passengers, which is indicated by their radius size.  Let 

𝑟𝑖 be the circle’s radius for trip 𝑖’s origin, then: 

𝑟𝑖 = 𝜆𝑅𝑣(𝑏𝑖. 𝑑′|𝜃) × 𝑓(𝑏𝑖 . 𝑑′|𝜃),           ∀𝑏𝑖 ∈ 𝐻𝜌(𝜃, 𝑞) (25) 

where 𝜆 , is a configurable scaling parameter to correctly visualize the plot. Another useful 

information are the predicted paths used by those trips so that passengers can find a ride on 

route as shown in Figure 4 (b). The line weight of links in a network 𝐺 = (𝑉, 𝐸) can represent 

the link relevance, calculated by: 

𝑤𝑒 = 𝜆 ∑ 𝑅𝑣(𝑏𝑖. 𝑑′|𝜃) × 𝑓(𝑏𝑖. 𝑑′|𝜃) 𝑧𝑙,𝑒

 𝑏𝑖 ∈ 𝐻𝜌(𝜃,𝑞)

 (26) 

where 𝑤𝑒 is the line weight for link 𝑒 ∈ 𝐸, 𝑧𝑙,𝑒 ∈ {0,1} is a binary variable indicating whether link 

𝑒 is included in the predicted path of trip 𝑏𝑖 and 𝜆 again a scale factor for visualization. The line 

weight is then determined by the number of trips using that link, and also by each trip’s 

predictability and frequency. 

3.5 RESULTS AND DISCUSSION 
The above methods are now applied to a dataset with the travel histories of various users 

collected through a smartphone tracking application called MOVES. The dataset is briefly 

described below. 

3.5.1 Dataset Description 

The MOVES dataset contains travel histories of users in different geographical areas represented 

by unimodal trip chains. The variation in size of travel histories with respect to the number of 

days and trips is presented in Figure 5 (a, b). 
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Figure 5. Heterogeneity in travel histories in MOVES dataset. (a) Size in days, (b) in number of trips. (c) 
Distribution of travel distance and (d) time in the dataset. 

To evidence the need of further filtering, as expected when treating big data, a summary of the 

main characteristics of this dataset is given: 

• 967 unique registered users as well as travel histories. 

• 692,306 registered trips in 1,070 days. 

• The time frame of travel histories ranges from 2 to 928 days. 

 

The travel modes automatically inferred by the app are walking, running, cycling and 

motorized vehicles; the app cannot differentiate trips by private cars from public transport.  

The distributions of travel distance and time per travel mode are plotted in Figure 5 (c, d); 

outliers corresponding to very infrequent trip’s characteristics have been filtered out by 

using Tukey’s method (48). These plots exhibit high heterogeneity in data, nevertheless 

most trips are short both in time and distance.  
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Figure 6. Variation in number of POIs per travel history: (a) those with a minimum of 5 occurrences in the entire 
history, (b) those with at least 2 visits per week. (c) Regularity and (d) frequency of the OD patterns 

The patterns studied in the next section were extracted from histories with at least 30 days of 

tracking, reducing the number of users to 573. The travel mode of trips was not considered in 

the study either. 

3.5.2 Extraction of mobility patterns  

Since parameter 𝜀, corresponding to the search radius for the data mining procedure must be 

previously calibrated, trips which lengths are found at a distance smaller than this value were 

previously filtered out since they are possibly not useful for ridesharing. This avoids including 

very short trips (not useful for ridesharing), nevertheless circuits with the same origin and 

destination are still allowed. The heterogeneity in number of POIs per user, when 𝜀 =

200 𝑚𝑒𝑡𝑒𝑟𝑠 and 𝑚𝑖𝑛𝑃𝑡𝑠 = 5 is presented in Figure 6 (a). Here, many POIs per user were found 

due to the low number of required visits specified by parameter  𝑚𝑖𝑛𝑃𝑡𝑠; nevertheless, the 

number of actual points of interest a user regularly visits is much smaller, as seen in Figure 6 (b) 

when only those with at least two visits per week were considered.  

The following patterns correspond to repeated trips between the same pair of origins and 

destinations (OD patterns) after removing intra-cluster trips, when constrained to a minimum of 

observations denoted by a parameter 𝑚𝑖𝑛𝑇𝑟𝑖𝑝𝑠 . The pattern’s regularity, indicating the 

probability of the trip’s destination conditioned to an origin, and the frequency denoting the 

average number of times the pattern was observed per day are presented in Figure 6 (c, d). 
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Table 3. List of Most Regular Users with respect to their OD Patterns 

User ID OD patterns Trips in patterns Average frequency Average regularity POIs 

U777 3 67 0.35 0.81 2 

U992 3 109 0.54 0.71 3 

U603 3 562 0.39 0.68 3 

U000 3 236 0.3 0.65 2 

U873 3 142 0.68 0.61 3 

U211 3 166 0.32 0.6 3 

U980 3 43 0.41 0.58 4 

U552 2 87 0.29 0.93 2 

U589 2 159 0.4 0.9 3 

U519 2 176 0.61 0.85 3 

 

Table 4. List of Most Regular Users with respect to their OD-Departure Patterns 

User ID ODD patterns Trips in patterns Average frequency Average regularity POIs 

U516 4 53 0.44 0.99 3 

U254 2 44 0.33 0.98 3 

U925 2 21 0.31 0.96 3 

U992 2 74 0.55 0.95 3 

U098 2 33 0.34 0.94 3 

U777 2 50 0.39 0.88 3 

U040 2 93 0.37 0.87 3 

U730 2 42 0.34 0.86 3 

U282 2 40 0.43 0.85 3 

U661 2 67 0.47 0.83 3 

 

The users with the largest number of OD patterns are now presented in Table 3, when a 

minimum regularity level of 0.5 and a minimum frequency of two trips per week are applied. 

The columns have the following meaning: a unique user pseudo-identifier, the number of OD 

patterns, the number of trips in history contained in the OD patterns, the average daily 

frequency, the average regularity and at last, the number of unique POIs observed in the 

patterns.  

Next, with respect to spatiotemporal regularity, the users with most patterns are displayed in 

Table 4 when adding departure time intervals, with parameters 𝑚𝑖𝑛𝑇𝑟𝑖𝑝𝑠 = 5  and ∆𝑡 = 15 

minutes. The corresponding regularity and frequency of these patterns can be seen in Figure 7 

(a, b). As noticed, when more dimensions are added to the analysis, the number of trips and 

their frequency are reduced, therefore, the supply for more specific requests (e.g. those also 
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including a desired arrival time) will be reduced; nevertheless, regularity and therefore 

predictability of patterns rises due to the increased availability of context information.  

Table 5. List of Most Regular Users with respect to their OD-Arrival Patterns 

User ID ODA patterns Trips in patterns Average frequency Average regularity POIs 

U516 4 57 0.48 1 3 

U966 3 80 0.33 1 3 

U873 3 65 0.31 0.96 3 

U867 2 38 0.35 1 3 

U992 2 77 0.57 0.97 3 

U254 2 43 0.33 0.96 3 

U980 2 22 0.31 0.92 3 

U282 2 37 0.39 0.89 3 

U777 2 48 0.38 0.88 3 

U040 2 91 0.36 0.86 3 

 

The most regular users with respect to OD-arrival patterns, which includes trips between 

repeated OD pairs arriving at regular times are displayed in Figure 7(c, d) shows the 

corresponding frequency and regularity of these patterns. Accuracy in predictions is always 

wanted; nevertheless, if agents are less demanding when announcing upcoming trips, the 

potential aggregate supply would be sufficiently large to encourage passengers to participate. 

The findings support the idea that stronger trip patterns only involve a few POIs per travel 

history, as observed in the last two tables and previously suggested by Figure 6 (b).  As the pickup 

hotspots of the potential aggregate supply conditioned to a hypothetical ride request, include 

all predictable patterns; collecting several data about the current context is necessary, however, 

an agent should select only a few characteristics to announce the predicted trips, since looking 

for too specific and predictable patterns would produce a short or even empty supply. 

3.5.3 Dealing with other datasets 

The methods used in this paper can be used with datasets from other existing tracking apps, as 

long as trip chains can be retrieved containing spatiotemporal characteristics. Accuracy 

regarding mainly the collection of spatial data may differ; because even though sensors and 

operating system programming interfaces are shared among mobile apps, each app may have 

its own inference and aggregation methods. Another wanted information, not included in the 

previous analysis is the used travel modes. MOVES unfortunately does not differentiate 

motorized vehicles; though in some cases, modes can be inferred from existing data such as 

waypoints and instant speeds.  It must be noticed that databases consisting of raw data directly 

retrieved from sensors, should first be converted to a trip chain format; this means that trip 

endpoints (stay points) must be identified prior to data mining procedures.  
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Figure 7. (a) Variation in regularity when adding departure period, (b) frequency of the OD-departure patterns. 
c) Variation in regularity when adding arrival period, (d) frequency of the OD-arrival patterns. 

A main concern for research using user data is privacy. An appropriate data collection 

mechanism to certify that information is stored anonymously and with the explicit user’s 

consent is compulsory. The methodology described in this paper, does not require tracks to be 

stored in a remote server; instead these can reside in the smartphone for their further use by 

software agents, avoiding the needless flow of data through insecure channels. At last, the 

predicted aggregate supply consisting of the announced trips by other agents, does not need to 

include any driver’s contact information. 

3.6 CONCLUSIONS AND FUTURE WORK 
A methodology to learn mobility patterns at different levels from smartphone data collected by 

apps tracking a user’s daily activities has been presented, together with different measures to 

evaluate their relevance for ridesharing. The origins and trajectories of the predicted trips 

through these patterns, represent hotspots for ridesharing where passengers may find potential 

aggregate supply conditioned to their ride requirements. For ridesharing, regularity that allows 

accurate predictions of mobility patterns, and frequency are important to discover a realistic 

supply. It has been shown that mobility regularity can be identified from smartphone data via 

data mining procedures, although heterogeneity in the travel histories is high. The number of 

patterns and their frequency have been found to decrease when more trip characteristics are 

considered, although regularity and prediction accuracy with respect to a set of conditions will 

increase. Flexibility on accepting trips with lower regularity, as well as different pickup windows 

or locations from their actual origins, is important to discover a larger aggregate supply. The 

method described in this paper is believed to allow the design of future apps that will help 

increasing ridesharing rates. 
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 Some future directions may include adding travel mode in mobility patterns, since 

the users’ role in ridesharing depends on this characteristic. The regular trajectories of an OD 

would be a nice addition in order to share parts of the trip, instead of matching users only by 

the trip endpoints. 

The potential of ridesharing may be evaluated on specific regions via other datasets or activity-

based simulators. The latter approach can be attained through the generation of a synthetic 

population consisting of users with heterogenous mobility behavior; for instance, by transferring 

the distributions found in patterns extracted from datasets generated by tracking apps to 

another dataset containing demographic data. Each possible scenario for the simulation would 

involve different ridesharing penetration rates, as well as thresholds of regularity and frequency, 

so that in each case the supply announced by an agent is different. Additionally, given the 

importance of having consistent travel histories (which affects efficiency of proposed approach), 

and that this highly depends on the correct detection of the unique locations visited in a history, 

using better techniques for this task or producing new algorithms is a key aspect in future 

research.      
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4.1 ABSTRACT 
Retrieval of travel chains from users' travel histories is required for the construction of travel 

behavior models; detecting the end points of a trip in places like home or workplace is one of 

the initial and possibly most important steps to acquire these chains. Several research efforts 

have been reported in this field, mainly using density-based data mining algorithms. However, 

they are sensitive to spatial parameters that must be calibrated beforehand, providing wide-

ranging results in different settings in travel stories. This document proposes a novel algorithm 

that combines spatial information with spatio-temporal patterns found in previous link chains 

of a travel history, automatically constructed from life-logging data, improving prediction of the 

next trip using the knowledge that is continuously learned. Finally, experiments are carried out 

on real-life data sets to test the proposed method and the results obtained are compared with 

a popular density-based method, showing an improvement in the detection of the real end 

points of the trip, as long as patterns or regular behavior can be detected in travel stories. 
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4.2 INTRODUCTION 
In the field of transportation planning, retrieval of travel chains from users' travel histories is a 

key aspect of modeling travel behavior; This ordered sequence of visited locations allows 

anticipating the next stop(s) in a travel chain through trained models with the observed data, 

allowing a decision-making plan for future mobility behavior. 

Detecting travel endpoints in frequent places such as: home or workplaces is one of the initial 

and possibly most important steps to correctly identify these chains. Several approaches have 

been reported. However, they are sensitive to spatial parameters that need to be calibrated 

beforehand, providing wide-ranging results across different scenarios in travel histories, 

especially when locations of different sizes exist. For example, different locations (houses, 

shopping malls, stadiums) can naturally cover areas with different dimensions. This makes it 

difficult to calibrate the detection algorithms and may produce incorrect travel chains, since 

using a large clustering radius will merge neighboring locations covering small areas, and the use 

of a small radius will detect several independent locations instead of one single large place. 

4.2.1 Definitions  

To understand the complexity of translating spatio-temporal data to travel chains, a few 

definitions must be established based on current literature about the topic.  

A stay point, or simply "stay" is defined as a small geographic region around a centroid with 𝑥, 

𝑦  coordinates, where a user dwells for a minimum time 𝑡  to carry out some activity, some 

common examples are a school, workplace or shopping. This concept is important because it 

allows estimating the time and location of the end points of a trip between two successive stays; 

so that the origin, destination, departure, and arrival times can be inferred. In addition, the 

captured points can define the trajectory of the trip. In general, 𝑥  and 𝑦  are obtained by 

calculating the centroid of the data points collected during the stay (when the user is not 

moving) and 𝑡 should be chosen wisely so that very short breaks are discarded, also requiring to 

calibrate this parameter beforehand. 

A personal point of interest (POI) is defined as a recurring destination in a user's history with 

respect to a minimum number of visits (in absolute terms or relative to a time unit). They can be 

common among various users (e.g. schools, shopping malls) but also personally relevant (e.g., 

home, friend's house). Every time a same location is visited, a new stay with different 

coordinates is added (since the position of a user can only be approximated by triangulation). 

Identifying a POI requires grouping the coordinates of several stays through a search radius 𝜀 

depending on how small or how large a POI can be and requires a minimum number of points 𝛾 

(i.e. visits). Note that with 𝛾 = 1, one would obtain all possible unique destinations visited by a 

user in the travel history. In the reviewed literature, POIs are also referred to as significant 

places, significant locations, semantic locations, and more. 

A travel chain of order n is a sequence of n subsequent POI’s, therefore a trip is the smallest of 

these chains when 𝑛 = 2, that is a single link joining the origin and its destination. Then, a travel 

history can be defined as the largest possible travel chain for a single user, considering all trips 

made since the user was tracked for the first time. It consists of subsequent unique destinations 

that can be repeated (a single destination can appear several times in different trips). Moreover, 

it keeps expanding as new stays are identified.  

The three definitions include procedures for their detection or generation, called in this 

document: stay detection (or travel segmentation), POI labeling, and travel chain generation.  
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4.2.2 Paper contribution 

Since generation of travel histories depends on a correct detection of stays and POIs, and these 

concepts are strongly related to the calibration of the before-mentioned parameters, many 

attempts have been made in previous research to overcome these difficulties. In contrast to 

mobility data from surveys or certain apps where users need to specify locations and times 

explicitly, lifelogging allows tracking mobility behavior in a passive way taking advantage of the 

omnipresence of smartphones. One disadvantage is that continuous access to location services 

is required, also abundant sampling and high precision of sensors are desired. Additionally, GPS 

coordinates are only estimates the accuracy of which depends on different factors as cited in 

(49), making it more difficult to correctly retrieve the actual user’s travel history. 

This paper proposes a novel iterative algorithm to improve the detection of the upcoming POI’s 

from a set of stay points by using the previously learned knowledge. This is achieved by 

combining spatial information with patterns found in earlier chain links of the travel history. 

Then, these patterns allow estimating the probabilities of the origin-destination pairs at certain 

departure times, so that POI labels are decided considering not only the proximity to a known 

visited location, but also the a priori likelihood of that location, inferred from temporal variables 

and correlations between the visited locations. In contrast to most approaches, this new 

approach incrementally improves POI detection and consistency of travel histories as new 

information is acquired. This supports producing better models for next-trip prediction or 

unsupervised learning. To illustrate the methodology, some tests are first performed on a single 

user’s history to evaluate the classification performance. Then, several histories with 

heterogeneous spatial information are parsed, showing that our algorithm can detect the 

correct POI label in the trip chain and is much less sensitive to search distances than classical 

density-based techniques such as (50) or (51). 

This document is organized as follows:  

• An introduction stating the intended contribution of this paper is presented, together 

with a review of recent literature and the exhibited limitations. 

• The proposed algorithm is introduced and tested on a fraction of a single user’s 

history from a real-world dataset. 

• Tests are performed on several users’ travel histories with heterogeneous spatial 

information from the same dataset. 

• The conclusions and recommendations for future work are given. 

4.3 LITERATURE REVIEW 

The current section provides of related literature on production of travel histories, including the 

aspects mentioned before, that is stay detection (called in many ways throughout the literature), 

POI labeling and travel chain generation. In some cases, they only cover part of the process or 

they do not give details about the big data collection techniques.  

One of the first contributions can be found in (14). In this paper, Ashbrook and Starner clustered 

GPS data into meaningful locations at multiple scales to produce a Markov model that can be 

consulted by intelligent agents for a variety of context-aware applications. They used a threshold 

𝑡 of 10 minutes for stay detection and then a variant of the K-means family of algorithms (52) to 

find the POIs. At last the model is produced after computing the probabilities of the transitions. 

Later in (15), they extended their work by improving the stay-detection algorithm when a loss in 
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GPS signal (specially inside buildings) is detected to determine whether a user has reached a 

new location.  

In (51), Zhou et al. replaced the K-means variants by density-based clustering, which allows 

clusters of arbitrary shapes and classifies unusual points into noise (since not every point may 

be considered a meaningful place). The introduced algorithm is called DJ-Cluster and is based on 

the classical DBSCAN. At last they added a few temporal constraints to reduce computation 

times. Later in (18), the authors extended their work when classifying a POI by its relevance 

based on the number of visits and frequency of each location. Other authors in (53), recycle DJ-

Cluster for next-trip prediction by using the POIs transitions to produce a Markov Chain of order 

𝑛, that is the next state (POI) depends on the past states. They called this model a 𝑛-MMC, which 

stands for Mobility Markov Chain considering the sequence of the 𝑛 previously visited POIs. 

In (54), Kang et al. presented one of the first approaches mentioning a source different than GPS. 

They used Wi-Fi access points to approximate a user’s position. When a client device (e.g. 

smartphone) explores for nearby access points, it receives their mapped geographic coordinates 

and then estimates its position by computing the coordinates’ centroid. At last, they used 

temporal features to cluster points into unique stays prior to detect POIs. In (15), authors also 

used raw GPS data. Once stays had been identified with the typical procedure, they used a 

relational Markov network to label (classify) the POIs (which they call activities such as: at home, 

at work, shopping) based on attributes such as: activity duration, time of the day, day of the 

week and so on. Finally, they used unsupervised learning techniques to learn transportation 

routines between pairs of POIs, such as: frequent trajectories. Later in (55), they used previous 

knowledge to learn only based on transport routines, locations such as bus stops and parking 

lots where the user frequently changes the mode of transportation. In (20), Nurmi et al. 

presented a non-parametric algorithm for place identification called Dirichlet Process Clustering 

(DPCluster) algorithm. Its main feature is guessing the correct number of POIs based on 

probability distributions. It consists of two phases: first they grouped some points into clusters 

and labeled the remaining data as noise; and then they re-estimated the labels by finding the 

cluster which has the largest likelihood to generate the point. At last, they pruned the results by 

dropping those clusters with high inter-cluster variance or short cumulative stay time. 

In (21), Zheng et al. used a direct way to detect stay points. They looked for regions where GPS 

points are clustered together, that is where consecutive measures are close given a specified 

radius. Then they evaluated the “stay time” computed by the difference in time between the 

oldest point (that one with the lowest timestamp) and the newest. If this difference exceeds a 

given threshold, a stay is found, and trips are segmented. At last, for each user they extracted 

locations of interest, then produced clusters of stays that belong to several users into tree 

hierarchies at a region level before mining POI’s sequences. Besides the temporal aspects, most 

approaches so far use DBSCAN extensions to rely on the detection of stops in trajectories 

assuming those regions are denser with respect to those when the user is moving. In (56), 

authors updated this algorithm by replacing the 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠  parameter to estimate density,  

with a new measure (taken from data fields theory (57)) which quantifies the interaction with 

other points instead of looking for points in a neighborhood . 

In (58), the authors identified stay points like in previous efforts but also including the instant 

speed of each GPS point, so that stays must only be found on very low speed traces. Later, they 

use OPTICS (50) and K-Means (52) to cluster neighboring points into POIs. Finally, they split or 

merged clusters by considering reverse geocoding information as well as temporal features.  

Another approach to merge neighboring clusters in case there is enough evidence of common 

patterns can be read in (59), where authors used various data sources such as: sleep periods, 
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battery charge sessions, and physical activity based on step counts via wearable devices. This 

drastically improves stay detection by increasing the clustering dimensionality. 

In (60), Lee at al. notably improved stay detection using a super-state model to describe a user’s 

transitions. Each super state is composed of proportions of 5 different representative states: 

staying indoors, moving indoors, staying outdoors, walking, and in-transport. Then, patterns are 

detected when transitions between two different (or equal states) occur. The algorithm decides 

whether a user has stopped moving to start an activity, allowing detecting a new stay. In (61), 

Bhattacharya et al. proposed a method called POI-ID to rank a set of POIs given some stay’s data 

points. For this, they increased the accuracy of a POI’s coordinates from a set of unreliable GPS 

points belonging to a stay. For each of these GPS points they sampled 𝑚 synthetic points inside 

a confidence circle (assuming GPS measures are normally distributed), then they joined 

consecutive synthetic points with line segments. At last, they rank known POIs to snap a stay, 

based on how often the segments intersect each POI’s geometry defined by a polygon. An 

alternative approach is given in (62), where stays’ coverage areas based on the points they 

contain are transformed into polygons or geometries of interest, via a fixed grid for a specific 

region. Stays are finally matched to well-known POIs if geometries are similar. 

With respect to travel chains which is relevant for next-trip prediction and for retrieving a travel 

history, in (32), the authors divided a region into cells so that they can mine patterns on inter-

cell transitions. Then they inferred association rules to predict the next cell in the chain. In (63), 

Ying et al. extracted what they call semantic trajectories per user, defined as sequences of 

labeled locations (what in this document is called a POI) and then clustered trajectories from 

several users with similar geographic behavior. At last they illustrated a framework called 

SemanPredict that uses both the semantic and the geographic patterns for the next-location 

prediction. In (64), Pappalardo et al. exploited collective information and a gravity model to drive 

the movements of an individual when exploring new places in a region. They used the relevance 

of POIs (measured by the total visits made by other users and its distance to the user’s origin) to 

decide about the next trip’s destination. In (65), Feng et al. analyzed the next-location prediction 

problem as a multi-classification problem with a limited discrete-location list. They trained a 

recurrent neural network with sequences of spatiotemporal points (POI label and timestamps). 

A similar approach using Bayesian networks for location prediction when conditioned to 

previous states can be read in (66). 

More literature on processing trajectory data for different purposes such as: POI detection, next-

location prediction, or mining mobility patterns for a specific objective can be found in (67) and 

(68).  The algorithm presented in this paper, improves the detection and labeling of POIs from a 

set of stay points produced on the initial stage of the travel history generation from life-logging 

data. The main difference is the iterative aspect which is regularly learning new patterns as new 

data is available. This allows errors in POI labels to be corrected to form accurate travel chains.  

4.4 METHODOLOGY 
This paper proposes a novel algorithm called Iterative POI detection (IPD) to label points-of-

interest and retrieve an accurate travel chain by iteratively mining patterns in existing data in a 

travel history. The general process includes the following steps, which are summarized in the 

flow chart of Figure 8 and is now explained. It is assumed that the endpoints of each trip have 

already been detected by a segmentation procedure such as (21). 



 

42 

 

1. At a first stage, an initial subset 𝑇0 of 𝑛 trips from a non-processed travel history 𝑇 is 

used to find a starting set of unique locations by exploring neighboring stays using 

some initial radius 𝑟, as will be described in the details of the initialization process.  

2. Each POI relevance is estimated based on the trips it attracts, so that marginal 

probabilities where no other events are considered are computed. Then, origin-

destination patterns, that is recurrent transitions between pairs of POI’s are learned, 

and conditional probabilities under other events (arrival time, stay time, previous 

location, etc.) for a given POI are estimated too.  

3. Next, as data comes available a new subset of trips 𝑇𝑛 is included in the analysis  

4. POI labels for these new trips are allocated and labels of previous stay points are re-

assigned if necessary, according to a similarity function that considers the learned 

patterns and probabilities in previous steps. An iterative process begins looping 

between steps 2, 3 and 4 using a new radius increased by a factor 𝑔 to explore further 

until no more trips in 𝑇 are left and until re-labeling ends in the inner loop. 

5. At last, the final trips chain 𝑇𝑓 is retrieved after filtering out infrequent transitions, 

which differs from the initial trips set since it has POI labels instead of only stays’ 

coordinates. 

 

Figure 8. Workflow for Iterative Detection of Points-of-interest. 

This process implemented at a high level in Algorithm 5, which includes the following 

instructions: 

• In line 2, a first set of trips 𝑇0 (sufficiently large to find some recurrent behavior) is 

fetched from history via function 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑠(). 

• In line 3, the initial set of personal points of interest “𝑝𝑜𝑖𝑠” is retrieved via density-

based clustering applying a search radius 𝜖 in function 𝑖𝑝𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(). 

• In line 4, the trips are copied to travel history 𝑇𝑓 
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• In line 5, a new subset of trips arrives in 𝑇𝑛 

• In line 6, the search radius is increased by a factor 𝑔 

• In line 7, the new trips are added to history 𝑇𝑓 

• In line 8, via  𝑖𝑝𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑒()  every stay point found in 𝑇𝑓  is labeled as the most 

probable POI in “𝑝𝑜𝑖𝑠”. Internally the classifier is re-calibrated and data are re-

labeled until convergence is achieved. Then, a new list of “𝑝𝑜𝑖𝑠” is returned together 

with the updated travel set. 

• Lines 5 to 8 are repeated every time a new subset 𝑇𝑛 arrives 

• In line 10, trip chains are checked in 𝑇𝑓  via function 𝑖𝑝𝑑𝐶ℎ𝑎𝑖𝑛()  to filter out 

inconsistencies in the travel history before returning it. 

The details of implementation are given in further sections and illustrated with sample data. The 

dataset to be used is first described. 

Algorithm 5. Iterative POI detection - main procedure 

 

Algorithm 5 consists of two loops, the “outer” loop is about fetching new trips with 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑠() 

as they are available. The inner loop implemented inside 𝑖𝑝𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑒() is labeling old and new 

stays then updating the probabilities so that labels are again assigned. At the end, stays converge 

to the expected labels and probabilities to the actual values.  

4.4.1 Dataset description 

To evaluate the algorithm’s classification performance, a dataset consisting of tracking data with 

some previously labeled POIs must be used so accuracy performance can be measured. For this, 

data were collected for a period of 3 months, via a mobile app specifically developed for research 

purposes from a sample of 638 college students in the city of Cuenca in Ecuador.  

The resulting dataset of the campaign contains around 50,000 trips. To illustrate the algorithm, 

a small sample called dataset A from the travel history of a single user who was asked to 

manually log her trips in a separate file is to be used for validation purposes.  

The stay points of 20 consecutive days in this user’s travel history are displayed in Figure 9, 

different colors state different POI’s which can cover areas of different size. One can imagine 

that using only distance-based data mining can yield different clustering structures depending 

on the radius size for the agglomerative procedure. The two most relevant clusters that in fact 

include several smaller-size clusters of stay points are highlighted in the figure, where most 

labeling mistakes occur. 
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Figure 9. Stay points on a map for a unique user in the studied dataset. Circles denote the two most relevant 
clusters. 

4.4.2 Step 1: Initialization of Iterative POIs detection 

The unprocessed data taken from most mobile apps contain information about each stay point’s 

coordinates captured by GPS and a timestamp. That is, the full trajectory has already been 

segmented into a chain of 𝑛  stays, usually detected where the user decreased the speed 

considerably and indicates where a trip ends, and possibly the origin of the next trip via methods 

described in the literature review section. This first task then reduces to clustering the stays by 

distance and labeling them with the same POI unique identifier (POI-UI) to represent visits at 

different moments to a same location. 

An initialization process is required to have a preliminary set of POIs which are assumed to be 

reliable and that will guide the iterative procedure of the algorithm. This trustworthy set should 

not be difficult to find given that at least home and work locations are expected to appear in 

most day tours. 

4.4.2.1 Initialization: Radius-based clustering 

The key aspect in this first step is parsing a first fraction of the travel history, so that the initial 

set of POIs is discovered, which allows finding some initial user patterns. The semi-supervised 

approach requires data mining to assign labels to some observations so that a model can be 

trained, which will need continuous calibration as new data is available.   Since relevant locations 

per user can change over time as well as patterns, using only a fraction (e.g.  a couple months) 

is sufficient and necessary to have a model with the most recent behavior. 

Let a data point (stay) 𝑖 that needs to be clustered have at least the following attributes:  

𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖) location of stay point 𝑖, 

𝑡𝑖 Timestamp of arrival to stay point 𝑖, 

so that, if 𝑆 is a subset of all stays in a user’s travel history, then they will be parsed in the order 

they were captured, that is: 𝑡𝑖+1 > 𝑡𝑖                ∀𝑖 ∈ 𝑆 
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The criterion to join a new stay point to an existing cluster in this first task, is solely based on 

spatial data but unlike most density-based methods, the distance to the cluster’s centroid is used 

so that the coverage area remains relatively small. Let 𝑚𝑘 = (�̅�𝑘 , �̅�𝑘) denote the centroid’s 

location of existing cluster 𝑘, then the dissimilarity between this cluster and any stay point 𝑖 is 

measured by the Euclidean distance to the cluster’s centroid 𝑚𝑘: 

𝑑𝑘,𝑖 = 𝑒𝑢𝑐. 𝑑𝑖𝑠𝑡(𝑚𝑘 , 𝑠𝑖) =  √(�̅�𝑘 − 𝑥𝑖)2 + (�̅�𝑘 − 𝑦𝑖)2 

in which:   �̅�𝑘 = 1 𝑓𝑘⁄ ∑𝑥𝑖                    �̅�𝑘 = 1 𝑓𝑘⁄ ∑𝑦𝑖 , 

where 𝑓𝑘 is the number of stay points contained in cluster 𝑘, and 

{(𝑥𝑖, 𝑦𝑖), (𝑥𝑖+1, 𝑦𝑖+1), . . (𝑥𝑓𝑘
, 𝑦𝑓𝑘

), } are the coordinates of every stay point in 𝑘. Then, given a 

maximum search radius 𝑟, a stay point 𝑗 is assigned the closest (most similar) in a set of 𝐶 

existing clusters, that is: 

𝑐∗ = argmin
𝑘∈𝐶

(𝑑𝑘,𝑖) , subject to: 𝑑𝑘,𝑖 ≤ 𝑟 

Subsequently, the assigned cluster’s centroid is incrementally updated after including any new 

stay point. If no cluster is reachable from the current stay point 𝑖 within radius 𝑟, a new cluster 

is created containing solely 𝑖 .  At the end of this process, as illustrated in Figure 10, a first 

clustering structure is obtained containing a set 𝐶 of unique POIs identifiers equal to the number 

of clusters, where each cluster contains at least one element, that is:        𝑓𝑘 ≥ 1,             ∀𝑘 ∈ 𝐶, 

 

Figure 10. Task 1: Stay points are parsed in the order they appear, then clustered according to their similarity 
measured as the distance between each new point 𝑠𝑖 and an existing cluster's centroid 𝑚𝑘 = (�̅�𝑘, 𝑦𝑘). 
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Algorithm 6. Initialization of the Iterative POI detection 

 

This process (shown in Algorithm 6) allows all stay points to be labeled with a POI identifier for 

the location they represent. The rest of trips’ stay points in the travel history that were not 

analyzed (given that new data can be available as it is collected) will be assigned a new POI 

identifier (one per trip) or merged to the existing clusters in posterior steps. The reason of using 

the cluster’s centroid instead of a point in the border to measure the similarity with a given 

external stay point, is that search is constrained to minor areas producing small clusters that can 

be merged later if patterns are similar. Some partial results of the initialization process when 

using the first 60% of trips in dataset A are presented in Figure 11, where labels show the cluster 

ID to which the stay points belong. 
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Figure 11. Results of initialization process in stay points of dataset A. Numbers denote each cluster’s labels. 

4.4.2.2 Origin-based conditional probability 

Let 𝑦𝑘 be the number of all trips in a travel history to destination 𝑢𝑘; similarly let 𝑦𝑚,𝑘 be the 

number of trips found from origin 𝑢𝑚 to 𝑢𝑘, then the conditional probability of POI 𝑢𝑚 given 

destination 𝑢𝑘is: 

𝑃𝑟(𝑝𝑖−1 = 𝑢𝑚| 𝑝𝑖 = 𝑢𝑘) = 𝑦𝑚,𝑘 𝑦𝑘⁄  

So that, after a large amount of observations, the relative frequency of every pair of consecutive 

POI identifiers 𝑝𝑖 → 𝑝𝑖+1 in a travel history,  can help estimating the probability of having seen a 

certain POI before the current destination identified as  𝑢𝑘.  

4.4.2.3 Arrival time-based conditional probability 

The list of registered arrival times to a certain POI can be retrieved from the timestamps of the 

matching stay points with the same POI identifier, that is: 𝐴(𝑘) = { 𝑡𝑖  | 𝑝𝑖 = 𝑢𝑘}, where 𝑡𝑖 is the 

timestamp of stay 𝑖 , and 𝑝𝑖  its POI identifier. A probability density function 𝑓(𝑡)  can be 

approximated by smoothing the time stamps’ frequencies distribution via kernel density 

estimation (69). Then the conditional probability of a certain arrival time given a subset of trips 

with destination 𝑢𝑘 is: 

Pr (𝑡 = 𝑡𝑖|𝑝𝑖 = 𝑢𝑘) =  𝑓(𝑡) =
1

𝑛ℎ
∑𝐾 (

𝑡𝑖 − 𝑡𝑗
ℎ

)

𝑛

𝑗=1

 

where 𝑛 = |𝐴(𝑘)|, that is the number of registered arrivals to destination 𝑢𝑘; 𝐾 a kernel function 

(generally a Gaussian distribution) and ℎ  a bandwidth parameter, which the larger it is, the 

better the curve fits the frequencies of the distribution.  

4.4.2.4 Distance-based conditional probability  

At last, the likelihood of a given POI 𝑢𝑘 should also decline as the distance to location 𝑠𝑖  of stay 

point 𝑖 increases, which can be estimated by a so-called distance decay function, like for instance 

the following expression (70):   

𝑧𝑘,𝑖 = 1 (𝑑𝑘,𝑖)
2

⁄  
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Then, the conditional probability of a stay-point to belong to a POI 𝑢𝑘  at certain distance is 

proportional to this measure and can be approximated by: 

𝑃𝑟(𝑠 = 𝑠𝑖  | 𝑝𝑖 = 𝑢𝑘) =  
𝑧𝑘,𝑖

∑ 𝑧𝑗,𝑖𝑗∈𝐶
 

4.4.3 Step 3: Update stay point labels to best matching POI 

After probabilities have been computed, the analyzed subset is extended by including a new 

fraction of the trips and then new stay points can be labeled, additionally also labels of the “old” 

ones can be updated. To decide the best matching label (POI), the joint probability is calculated 

by assuming events are exclusive, that is: 

Pr(𝑢𝑘, 𝑢𝑚, 𝑡𝑖 , 𝑠𝑖) =  

𝑃𝑟( 𝑝𝑖−1 = 𝑢𝑚|𝑝𝑖 = 𝑢𝑘  ) ×  𝑃𝑟(𝑡 = 𝑡𝑖|𝑝𝑖 = 𝑢𝑘) × 𝑃𝑟(𝑠 = 𝑠𝑖|𝑝𝑖 = 𝑢𝑘) ×  𝑃𝑟(𝑝𝑖 = 𝑢𝑘)  

with 𝑃𝑟(𝑝𝑖 = 𝑢𝑘) = 𝑟𝑘, in other words, the prior probability equals the relative frequency of the 

POI. 

Then, the best matching POI for stay point 𝑖, with arrival time 𝑡𝑖 and location 𝑠𝑖  at iteration 𝑗 is: 

𝑝𝑖
(𝑗) = argmax

𝑘∈𝐶
(Pr(𝑢𝑘 , 𝑢𝑚, 𝑡𝑖 , 𝑠𝑖))  

where 𝑢𝑚, is the identifier of the previous stay point in the chain.  

In this way, the POI sequence patterns can help finding “mistakes” in the travel chains by 

updating each stay point label to the best matching (most expected) POI. After labels have been 

updated, probabilities can be re-calculated and labels re-updated, this iterative process 

continues until no more trips are left in history and convergence is observed.  

The final travel history must then match the actual sequence of POIs visited by the user, which 

possibly contains a reduced list of unique POIs compared to the initial list after the first task.  

The final clustering structure of the complete procedure implemented in Algorithm 7 is 

presented in Figure 12. 

 

 

 

Figure 12. Clustering structure of IPD (complete procedure) 
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In contrast to other algorithms as DBSCAN, IPD can classify stay points by using multidimensional 

patterns instead of only using distance or temporal variables. For instance, the structure with 

DBSCAN with 𝜀 = 180 is shown in Figure 13. 

 

 

 

Figure 13. Clustering structure of DBSCAN when using a large radius, stays are clustered into three POI’s. 

The first snapshot (left figure) has merged all stay points; if a smaller 𝜀 = 100  is used, the 

structure shown in Figure 14 is obtained, where many clusters were produced splitting clusters 

into smaller parts in both figures. It must be noticed that only five POIs actually exist in both 

snapshots, but since the user used different parking slots they seem to be more as the covered 

area is larger. 

For dataset A, the resulting POIs configurations of each method when snapping cluster centroids 

to the closest actual POI on the map of each method are displayed in Table 6. In the following 

tables, only the DBSCAN method with small 𝜀 is used since it provided better results than the 

former. 

 

 

 

Figure 14. Clustering structure of DBSCAN when using a smaller radius, stays are clustered into five POI’s. 
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Table 6. Comparing size of detected clusters with each method snapped to the closest actual POI. 

ACTUAL POIs  IPD  DBSCAN 

LABEL SIZE 
 

LABEL SIZE 
 

LABEL SIZE 

A 14 ← 1 15 ← 1 15 

B 2 ← 2 2 ← 2 2 

C 3 ← 3 3 ← 3 3 

E 2 ← 4 2 ← 4 2 

F 1 ← 5 1 ← 5 1 

G 6 ← 6 6 ← 6 8 

H 14 ← 7 13 ← 7 11 

I 1 ← 8 1 ← 8 1 

K 1 ← 9 1 ← 9 1 

L 2 ← 10 2 ← 10 2 

 

Table 7. Confusion table that compares the classification performance of (left) DBSCAN and (right) IPD. Left 
margin labels are actual values and headers are predictions. 

 DBSCAN 
 

IPD 

 
 

A B C E F G H I K L 
  

A B C E F G H I K L 

R
EF

ER
EN

CE
 

A 14 0 0 0 0 0 0 0 0 0 
 

A 14 0 0 0 0 0 0 0 0 0 

B 0 2 0 0 0 0 0 0 0 0 
 

B 0 2 0 0 0 0 0 0 0 0 

C 0 0 3 0 0 0 0 0 0 0 
 

C 0 0 3 0 0 0 0 0 0 0 

E 0 0 0 2 0 0 0 0 0 0 
 

E 0 0 0 2 0 0 0 0 0 0 

F 0 0 0 0 1 0 0 0 0 0 
 

F 0 0 0 0 1 0 0 0 0 0 

G 0 0 0 0 0 6 0 0 0 0 
 

G 0 0 0 0 0 6 0 0 0 0 

H 1 0 0 0 0 2 11 0 0 0 
 

H 1 0 0 0 0 0 13 0 0 0 

I 0 0 0 0 0 0 0 1 0 0 
 

I 0 0 0 0 0 0 0 1 0 0 

K 0 0 0 0 0 0 0 0 1 0 
 

K 0 0 0 0 0 0 0 0 1 0 

L 0 0 0 0 0 0 0 0 0 2 
 

L 0 0 0 0 0 0 0 0 0 2 

TOTAL 15 2 3 2 1 8 11 1 1 2  15 2 3 2 1 6 13 1 1 2 

One of the difficulties of tacking this task only as a clustering problem is that optimization is 

oriented to reducing the intra-cluster variance; however for instance detecting incorrectly two 

small clusters instead of one actual large cluster of stay points will yield a lower variance on 

average, and clusters of one single point will even have zero variance. Moreover, large clusters 

will naturally have large variances as POIs can have arbitrary shapes and sizes, so that variances 

do not necessarily reflect the real performance of a certain algorithm. 

 When seeing the plots, it seems that the DBSCAN with small 𝜀  produces a more natural 

clustering, however given inaccuracy in GPS measures, finding some points closer to the centroid 

of an incorrect cluster is frequent. As this is a classification problem, a better measure of 

performance is achieved by comparing the predicted against the reference POI labels.  
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The average recall (true positive rate) for DBSCAN was 90.95%, while for IPD was 97.14%, where 

the recall 𝑇𝑃𝑅(𝑘) for a specific POI identifier 𝑢𝑘 can be computed by: 

𝑇𝑃𝑅(𝑘) =
|{𝑖 ∈ 𝑆 | 𝑝𝑖 = 𝑢𝑘 ∧ 𝑝�̂� = 𝑢𝑘}|

|{𝑖 ∈ 𝑆 | 𝑝�̂� = 𝑢𝑘}|
 

where, 𝑆 in the set of all stay points in a user’s history, 𝑝𝑖 is the POI identifier of stay point 𝑖 

assigned by IPD and 𝑝�̂� is the actual POI the point belongs to.  That is, this measure provides the 

proportion of stay points correctly labeled as 𝑢𝑘 which is expected to be close to 100% for a 

good performing classifier. Similarly, the false positive rate (expected to be small) can be 

computed by: 

𝐹𝑃𝑅(𝑘) =
|{𝑖 ∈ 𝑆 | 𝑝𝑖 = 𝑢𝑘 ∧ 𝑝�̂� ≠ 𝑢𝑘}|

|{𝑖 ∈ 𝑆 | 𝑝�̂� ≠ 𝑢𝑘}|
 

The average false positive rate for DBSCAN was 1.90%, while for IPD was 1.06%; in this small 

sample IPD is clearly more accurate. As a final remark about this step, at least two more 

conditional probabilities considering the attributes: day of the week and travel mode could be 

included in the previous formula.  

4.4.4 Computation time 

Since the proposed algorithm has an iterative nature, its complexity is affected by the dataset 

size (number of analyzed stay points as well as the number of features included in the model. In 

order to evaluate the computational complexity, the algorithm was run on a set of increasing-

sizes portions of the dataset previously used. At last, the computational run time was fitted using 

models such as linear 𝑂(𝑛), quadratic 𝑂(𝑛2), logarithmic 𝑂(log𝑛) among others. The results 

are presented in Figure 15, where it suggest a quadratic to cubic form as the closest complexity 

type when models are compared via a Mean Squared Error measure. This fact states that 

computation efforts increase rapidly as travel histories become larger. 

 

Figure 15. Computational time evaluation of IPD. 
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4.5 STEP 4: RETRIEVING CONSISTENT TRIPS CHAIN 
From the travel chain in the previous step, final patterns consisting of subsets of POI sequences 

of different lengths and their characteristics can be obtained. This is an optional step; however, 

it makes the algorithm useful for most applications in real life. 

Let 𝐻 be a travel history written as the full sequence of POI identifiers {𝑝1, 𝑝2, . . , 𝑝𝑛−1, 𝑝𝑛} for 

the visited stay points by a certain user; a simplified lagged matrix of sequences of length 2 is: 

[
 
 
 
 

𝑝1 𝑝2

𝑝2 𝑝3

⋮ ⋮
𝑝𝑛−2 𝑝𝑛−1

𝑝𝑛−1 𝑝𝑛 ]
 
 
 
 

 

For sequences of any length 𝐿 ∈ ℤ+, where 1 < 𝐿 < 𝑛,  the following matrix is obtained. 

[

𝑝1 ⋯ 𝑝𝐿−1 𝑝𝐿

𝑝2 ⋯ 𝑝𝐿 𝑝𝐿+1

⋮ ⋱ ⋮ ⋮
𝑝𝑛−𝐿+1 ⋯ 𝑝𝑛−𝐿 𝑝𝑛

] 

The matrix can then be rewritten as a set of POI sequences of length 𝐿: 

𝐻(𝐿) = {< 𝑝1, … , 𝑝𝐿 >,< 𝑝2, … , 𝑝𝐿+1 >,… ,< 𝑝𝑛−𝐿+1, … , 𝑝𝑛 >} 

Let 𝑋 be a POI sequence of length 𝐿, the absolute frequency of 𝑋 in the travel history is: 

𝑓𝑟𝑒𝑞(𝑋) = |{ℎ ∈ 𝐻(𝐿) | ℎ = 𝑋}| 

and the relative frequency or support of 𝑋 is: 

𝑠𝑢𝑝𝑝(𝑋) =
|{ℎ ∈ 𝐻(𝐿) | ℎ = 𝑋}|

|𝐻(𝐿)|
 

𝐻 = {𝑋 ∈ 𝐻(𝐿) | 𝑠𝑢𝑝𝑝(𝑋) > 𝜑}, with 1 < 𝐿 < 𝑛 

Then, applying a threshold 𝜑 > 0, the POI sequence patterns of any length are retrieved. 
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Algorithm 7. Updating stay point labels according to maximum likelihood. 

 

The generation of a correct and consistent travel chain is critical for modeling transitions of 

mobility behavior. This algorithm will be proven to converge to the actual chain compared to 

solely density-based techniques in the next section. Several applications take advantage of travel 

chains since this allows location prediction to provide different services, a recent review on 

techniques for location prediction based on trajectory data can be found in (67).  

For dataset A, the sequence patterns of length two (origin-destination patterns) when using a 

minimum support of two trips per pattern are displayed in Table 8. 
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Table 8. Origin-destination patterns for dataset A, when applying a minimum frequency of 2 trips. 

Origin destination frequency relative frequency 

H G 5 0.10869565 

H A 3 0.06521739 

B A 2 0.04347826 

G G 3 0.06521739 

G C 3 0.06521739 

G A 3 0.06521739 

C A 3 0.06521739 

A H 8 0.17391304 

A B 2 0.04347826 

A L 2 0.04347826 

L A 2 0.04347826 

 

Applying this minimum support, filters out some POIs as seen in the last table; allowing the 

actual personal points of interest to be identified instead of listing all unique visited destinations 

as so far. Nevertheless, it depends on the application of interest since the real travel history can 

only be retrieved after all locations have been used (even when they were visited just once).  

The same procedures illustrated in this section are to be applied to a larger dataset with trips 

from several users. It can be imagined that numerous apps can take advantage of the approach 

described in this paper to develop smart features. 

4.6 FURTHER EXPERIMENTS AND DISCUSSION 
In this section, the algorithm is used on a second dataset called B, with an entire travel history 

from life-logging data collected for an anonymous user during the campaign. This new data set 

covers an area much larger than data set A and contains 454 trips made in 3 months, after 

displacements of less than 200 meters in length were filtered out. A snapshot of the area 

containing most of these non-processed trips is shown in Figure 16, together with the 

convergence of the IPD algorithm that took to complete . It shows how the number of POIs is 

reduced after each iteration of the re-labeling process. In real life situations, permanent tracking 

is provided so that chunks of data are repeatedly collected; in particular for this example, 60% 

of data was used in the initialization process and all the remaining 40% in the next steps, 

attaining convergence in 24 iterations in the inner loop. After the initialization stage 201 early 

centroids were detected and reduced at the end of the relabeling process to 75 unique 

destinations. 
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 Figure 16. (left) Stay points in dataset B before using IPD and (right) convergence after using the entire dataset 
when relabeling. 

At last, a personal point of interest must have a minimum support, that is a minimum number 

of visits (application-dependent), the higher the required support the lower the quantity of POIs. 

In Figure 17 this fact can be observed when applying different thresholds, then in the same figure 

(right) a fraction of the corresponding POIs on the map for a support of 15 visits. 

 

 

Figure 17. (left) Number of Personal Points of interest in travel history of dataset B for different support values 
and (right) the corresponding POIs for a support of 15 visits. 
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Figure 18. Temporal patterns of POI identified as “home”. 

The temporal patterns of the most visited POI (cluster 7) that is the assumed home location, are 

shown in Figure 18, where this user (student) mostly leaves this location around noon or at 7pm, 

and then returns around 3pm or 9pm. The origin-destination (OD) patterns in step 4, for 

sequence patterns of length 𝐿 = 2 with a minimum support of 5% are displayed in Table 9. 

Table 9. OD patterns for home location (cluster 7) 

Origin Destination Frequency Proportion 

4 7 39 8.59% 

42 7 30 6.61% 

58 7 28 6.17% 

7 14 29 6.39% 

7 2 31 6.83% 

7 42 40 8.81% 

7 5 25 5.51% 

4.7 CONCLUSIONS AND FURTHER WORK 
Because of the mobility patterns found in early stages of travel histories, detection of personal 

points-of-interest (locations recurrently visited) can be greatly improved by adding more 

attributes in the clustering procedure besides the typical spatiotemporal components. If some 

mobility patterns can be observed in a history, such as: arrival times or the frequent POI’s 

transitions, the classification of stay points into the best fitting POI label can be decided.  

Compared to traditional techniques for POI detection, the iterative algorithm presented in this 

paper uses the knowledge regularly learned from a travel history to improve detection of the 

upcoming trip endpoints (origins or destinations). It can be expected that accuracy will increase 

as more information is collected, allowing a specific classification model to be generated per 
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user history, which is robust enough to adapt to upcoming changes in the user’s mobility 

behavior, as it is automatically calibrated (and probabilities are updated) as new knowledge is 

learned. Moreover, calibration require old trips in history to be disregarded so that only recent 

behavior is included in the model; this can be achieved by training the classifier at a fixed time 

interval basis (e.g. daily) using only the 𝑛 previous records in history (e.g. only the 𝑛 trips made 

in the last months). 

Some issues to be mentioned that could affect the performance of the algorithm can be 

identified. The results of the initial clustering carried out by the first task depend on the number 

of initial POIs. It must be large enough to identify some of the user’s mobility patterns, but small 

enough so that stay points in the border of two or more clusters are not merged but instead 

their labels decided on further stages. Also, the computation time is always longer than most of 

DBSCAN and K-means variants because clustering and re-labeling is repeated until achieving 

convergence; the complexity in run time fits a quadratic shape as shown earlier in Figure 15. It 

can be expected that in larger travel histories, the number of required iterations and 

computation time will rapidly increase, so that again mobile devices should collect and consume 

data, but the presented algorithm should run on the server side possibly one time a day to 

process new daily trip chains. 

Two main improvements can be suggested for future work. First, including new trip 

characteristics to the classification inputs such as day of the week or travel mode, allowing new 

correlations to be discovered with the visited location. At last, a general framework to develop 

specialized mobility apps can be defined making it possible to trigger location- or pattern-based 

services. 
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5.1 ABSTRACT 
Evaluating ridesharing potential is a trend in current research efforts because it provides 

additional mobility alternatives without extra vehicles on the road. Nevertheless, in most 

studied scenarios, the demand produced by surveys and demographic information does not 

include multi-day characteristics of a trip such as its frequency. Yet, this is important for 

estimating the supply of rides, as the recurrence/regularity of a trip may affect the likelihood for 

a driver taking the effort of registering the trip as being available for sharing. Likewise, if 

automated apps are used to recognize patterns in one’s trips and pro-actively offer them for 

sharing, the successful anticipation of such apps may again depend on the regularity of the trip.  

Multi-day data are however complex to produce. In this paper, a data-driven procedure is 

proposed to generate an enriched synthetic demand for more realistic assessments. This can be 

achieved by combining standard single-day datasets and travel behavior patterns, which can be 

extracted after mining lifelogging data collected by most existing mobile apps. The enriched 

datasets, produced after transferring information from one dataset to a receptor via statistical 

matching techniques, will constrain matching trips by multi-day characteristics. This approach 

allows simulations of complex scenarios, enhancing the evaluation of shared mobility systems 

for planning better strategies. 

Keywords: Ridesharing, lifelogging data, datamining, travel behavior, hot-deck imputation. 
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5.2 INTRODUCTION 
The widespread deployment of current mobile technology has increased the interest in shared 

mobility systems. One such systems is dynamic or real-time ridesharing. We discuss here the 

form of ridesharing, where citizens who make a car trip decide to offer the available free seats 
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in their vehicle to potential passengers, with origins and/or destinations on (or close to) their 

route. The supply of rides in dynamic ridesharing thus depends on the car trips that are being 

made, and the probability that the driver (or an automated app on his behalf) decides to offer 

the ride for sharing. As dynamic ride sharing creates mobility supply without adding additional 

vehicles on the road, it has attracted researchers and policy makers as a potentially sustainable 

form of transport. Many studies have evaluated its potential, as a stand-alone system, or in 

combination with public transport (e.g. as a feeder service)(71,72).  

Most studied scenarios in microscopic simulations make use of demand produced by surveys 

and demographic information, which does not include multi-day characteristics. Yet, such 

characteristics may be important for estimating the supply of rides, as the recurrence/regularity 

of a trip may affect the likelihood that a driver takes the effort of registering the trip as being 

available for sharing. For instance, drivers may have the habit of sharing their regular commute 

trips, but not irregular ones like doing groceries. Or on the contrary, they may only share the less 

recurring trips for which they already consult their phones for traffic info or navigation. Traffic 

info and navigation apps may even be adapted to encourage sharing these trips with a click of a 

button. Likewise, if automated apps would be used to recognize patterns in one’s trips and pro-

actively offer them for sharing, the successful anticipation by such apps may again depend on 

the regularity of the trip. These are just examples showing that multi-day travel demand patterns 

may be relevant for creating alternative potential ridesharing scenarios.  

Because producing this type of multi-day demand can be a complex task, this paper provides a 

rather direct procedure to generate enriched synthetic demand with multi-day characteristics 

for more diverse, realistic assessments. This is achieved by combining synthetic populations 

containing typical average-day datasets, with mobility patterns extracted from lifelogging data 

which can easily be collected by existing mobile apps.  

The information extracted from these big data, consisting of several heterogeneous sources, 

constantly collected by lifelogging apps; allows patterns of travel behavior to be identified so 

that multi-day characteristics produce augmented datasets. This information can further be 

exported to a synthetic population, via statistical matching techniques (73–75), to generate a 

dataset suitable for multi-day simulations. In the context of ridesharing applications, these 

resulting datasets let matching trips to be constrained by the multi-day features, allowing novel 

complex scenarios not included in most previous research efforts to be evaluated by simulators. 

The contribution of this paper yields on the generation of this multi-day synthetic demand, from 

information already available on most lifelogging apps and public online data sources, providing 

a framework that combines different techniques for general purposes. Examples of multi-day 

characteristics identified in the mobility patterns extracted from the lifelogging datasets are: a 

weekday rate, a trip’s average daily occurrence, the trip’s frequency relative to other trips in the 

travel history (called regularity in this document), allowing different ridesharing scenarios such 

as supply consisting of regular weekday trips in certain time window and location (8). 

This document is organized as follows:  

• A literature section that aims at these two aspects: generation of synthetic demand 

from lifelogging datasets and evaluation of shared-mobility systems containing multi-

day characteristics.  

• The proposed methodology is explained in depth, which provides a framework 

combining different techniques to produce the multi-day synthetic population. 
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• As a proof of concept, a few uncommon scenarios that can be evaluated via the 

enriched dataset are presented. 

• A discussion of the results and future research directions. 

5.3 LITERATURE REVIEW 
The following literature is studied considering two aspects. Firstly, we review the generation of 

activity-based demand for traffic simulations from data sources of different forms. We state how 

this paper’s approach improves the detection of multi-day characteristics by using lifelogging 

data. Secondly, we review the evaluation of shared-mobility systems (mainly ridesharing), 

paying attention to the applied constraints. We state how the generated demand in the previous 

step allows assessing ridesharing in new ways. Matching optimization is not discussed in this 

document, however for recent review on algorithms for shared mobility scenarios can be found 

in (76). 

5.3.1 Generation of synthetic demand from lifelogging datasets 

These contributions mainly focus on creating activity-based demand for traffic simulations from 

data sources of different forms (a.k.a. population synthesis). In this context, one of the most 

relevant and earliest efforts came from (77) by using iterative proportional fitting procedures 

(IPFP) to solve the population synthesis problem. The method completes a contingency table for 

the joint probabilities of several variables, where the fixed marginals are taken from some 

census summary tables. Then the probabilities are transformed into absolute numbers, and 

lastly, individual observations from a separate disaggregate sample (e.g. surveys) are drawn to 

create the synthetic population.  

In (78) the authors updated the procedure in (77) to avoid zero-cell values in the contingency 

tables, then combined two public datasets. One data set is the “Public Use Microdata Sample” 

(PUMS), which contains disaggregate records about individual people and housing units; the 

other set are the U.S. Census Records from where the joint distributions of most 

sociodemographic variables were obtained. 

In recent years, tools such as URBANSIM (79) have been used to model urban systems, trusting 

on its detailed agent-level interactions to avoid the assumed demand homogeneity of previous 

models. This way, demand is produced in a disaggregate form where each agent’s destination 

and travel mode for a single day is decided based on the demographic data. One of the first 

attempts to review the state of the art of population synthesis for the recent type of agent-based 

microsimulations is presented in (80), where other tools such as PopGen (81) are mentioned. All 

of them follow a similar approach, which can be summarized in two steps: a fitting stage where 

the contingency table is created by aggregating statistics from a population sample, then an 

allocation stage where individual agents are sampled from the previous proportions by adding 

some heterogeneity in the process. More recently in (82), the authors developed a disaggregate 

tour-based mobility demand model, including a departure time choice model to detect the 

effects of increasing congestion; they called the synthesizer PopSim. In the last years, the 

Flemish government developed a tour-based synthetic population for the region of Flanders, 

Belgium that can be used in several simulators, called the strategic persons models of Flanders 

v4.1.0 (83). 

The previously mentioned contributions are mostly based on traditional data collection 

methods; however, the uprising of big data allows demand datasets to be produced by 

lifelogging-related procedures. Some relevant literature is mentioned. For instance, in (84), 

authors studied human mobility patterns by analyzing mobile phone data to conclude that 
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despite the diversity of each user’s travel history, humans follow simple reproducible patterns 

that could be used for urban planning and agent-based models. Later in (85), they used similar 

data to construct origin-destination matrices, allowing the aggregate demand to be 

automatically generated instead of using surveys. More recently in (86), they used data mining 

techniques to define a framework that can be used to evaluate patterns in a region of interest, 

based on the extrapolation of mobility patterns found in (Call Detail Records) CDR data and then 

tested for the Singapore metropolitan area. Lastly in (87), authors used a similar approach to 

create the OD matrices for Senegal after aggregating the mobile phone data into inter-district 

trips and then extrapolating based on census data. 

Even though population synthesizers in the papers discussed so far can generate heterogeneous 

demand for multiple days, the approach described in this paper enhances those efforts by 

adding unique multi-day characteristics per trip, such as the trip’s frequency in a specific day of 

the week, which can only be inferred after finding a user’s mobility patterns. More about 

demand modelling for transport research via big data can be found in (88) and (89). 

5.3.2 Evaluation of shared-mobility systems containing multi-day data 

Some research efforts related to evaluation of shared-mobility systems (mainly ridesharing) 

devote special attention to the use of disaggregate demand data and multi-day characteristics 

from mobility patterns. For instance, in (39), authors assessed the potential of ridesharing within 

de cities by combining CDR with social networks data from Twitter and Foursquare, in order to 

match users with similar spatiotemporal patterns. They added a constraint called social distance, 

quantifying the number of friends that users have in common. They hypothesize that the larger 

the distance, the smaller the chance to share a ride. In (5), authors used CDR data to infer an 

average daily origin-destination (OD) matrix. Then, by assuming an adoption rate, they proposed 

ridesharing matches to finally assess the impact on congestion. A different point of view can be 

found in (90), (7) and (8), where big data was used to suggest ridesharing hotspots based on the 

regularity of mobility patterns: the stronger the pattern, the more relevant the hotspot will be 

for taking passengers to similar destinations. 

 A different use of collected disaggregate data to evaluate ridesharing is taken in (91) and (92). 

There, authors proposed a method to improve ride-matching rates, by increasing the destination 

choice set with new alternative destinations. The set consisted of locations for certain types of 

activity, taken from public databases of points-of-interest. Later in (93), they extended the 

matching process by adding social-network links for joining people. They called this approach a 

collaborative activity-based ridesharing, where detour tolerances and willingness to share rides 

with friends are assumed. 

These approaches use mobile phone records to improve or evaluate ridesharing scenarios, using 

mobility patterns when available, so that users are matched across typical variables such as 

spatio-temporal or social distances. The approach of the current paper enhances the previous 

research efforts, by learning some multi-day characteristics from a separate sample and then 

transferring this knowledge to a synthetic demand to be able to extrapolate to a population 

level. Finally, these characteristics containing information about the frequency and regularity of 

each trip are used to match the trips. This approach allows evaluating ridesharing in complex 

scenarios, where the likelihood of trips being offered for sharing may depend in one way or 

another on the multi-day attributes. 
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5.4 METHODOLOGY 
The main idea for evaluating ridesharing multi-day scenarios, is to match trips from a dataset 

that contains the extra characteristics and using this information to add new constraints. To 

obtain this type of dataset, two or more heterogeneous sources must be combined, assuming 

that they were sampled from the same population and that they are statistically similar with 

respect to the shared variables. The entire procedure is introduced in Figure 19. At least two 

datasets are required, a first “𝐷” that has multi-day characteristics but does not have enough 

observations to draw faithful conclusions for the population it represents; and a second “𝑅” that 

is large and/or representative enough to characterize the study population and faithfully 

represents an average weekday of the case study, nevertheless it does not have multi-day 

characteristics. The contribution of this paper is to define a formal procedure to produce a third 

enriched dataset “𝑅 +” by merging 𝐷 and 𝑅; this demand will contain both desirable properties, 

that is, multi-day characteristics and enough observations. Each step is described in the following 

sections.  Since 𝑅 is the largest dataset, it is suitable for simulating ridesharing experiments and 

from this point on this will be called the “Receptor”. Similarly, dataset 𝐷 containing the desired 

multi-day characteristics coming from lifelogging data collected by mobile devices, will be called 

in this context the “Donor”.  The class of methods used to transfer information from 𝐷 to 𝑅, is 

known in literature as statistical matching (74). 

Let 𝑋 be the list of characteristics (variables) describing each observation (trip) in a travel history, 

including but not limited to travel time, travel distance, travel mode or trip frequency. Also, let 

𝑋𝑀 be the set of characteristics that can be found in both datasets, 𝑌 those that are unique to R 

and 𝑍  those unique to D. The observations on each dataset we have the following 

characteristics: 

• 𝑋𝑅 = 𝑋𝑀 ∪ 𝑌  , trip characteristics for observations in dataset 𝑅 

• 𝑋𝐷 = 𝑋𝑀 ∪ 𝑍  , trip characteristics for observations in dataset 𝐷 

Where 𝑋 = 𝑋𝑀 ∪ 𝑌 ∪ 𝑍  are all the possible characteristics for a trip if both datasets were 

merged so that the intersection 𝑋𝑀 = 𝑋𝑅 ∩ 𝑋𝐷  the matching (common) variables. This new 

enriched dataset will be called R+. 

In general terms, the steps illustrated in Figure 19 involve the following tasks: 

• Datasets 𝐷 and 𝑅 are collected via lifelogging apps and other sources. Both having 

some matching variables 𝑋𝑀 in common. 

• Even though some variables in both datasets could be matched to populate 𝑋𝑀, by 

only performing unit conversions or simple operations, some others are initially 

“hidden” and can only be discovered after data mining procedures. Therefore, an 

extended set 𝑋𝑀 +  of matching variables must be found to increase chances of 

finding similarities in the datasets. 

• The multi-day information in 𝐷 to be transferred is mined from the lifelogging data 

via discovery of mobility patterns. At this point the original 𝐷  and 𝑅  have been 

extended producing 𝐷′ and 𝑅′. 

• In order to transfer the multi-day information to 𝑅′, regression models are learned 

from information contained in the matching variables in 𝐷′.  

• Alternatively, to accelerate transferability, trips in 𝐷′ are first classified into donor 

classes so that specific models per class can be produced. 

• Receptor dataset is enriched by predicting the multi-day characteristics via models 

trained in the previous step producing 𝑅 +. 
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Figure 19. Combining datasets to get an enriched multi-day dataset 

5.4.1 Datasets Description 

For this research, two sets of sample data are available. 𝐷 was obtained by an app specially 

developed for a campaign called Transmob (94) to track multi-modal trips with around 85,000 

observations in the region of Antwerp. In this dataset, trips are automatically registered; 

moreover, personal information is hidden. Furthermore, no socio-demographic data is provided. 

Similarly, 𝑅 is a synthetic population provided by the Flemish Government (83) and contains 

around 1 million single-day home-based tours in different departure periods, following a 

procedure similar to (82). The latter also includes a large number of socio-demographic and 

economic variables such as age, household size, income, among others. Both datasets cover the 

study area of Antwerp in Belgium so that they belong to the same population.   

Since 𝑅  lacks multi-day information, as mentioned earlier, the task is to import these 

characteristics from 𝐷 through methods described in Figure 19 and elaborated in the following 

sections. The most relevant attributes found in each dataset are described below, after raw data 

was aggregated into trip records by some trip segmentation algorithm such as (21) and (56). 
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Table 10. Trip characteristics in both datasets. 

 Name Description Dataset 

𝑜𝑖 Origin location of trip 𝑇𝑖 Coordinates (𝑥, 𝑦) of location where trip starts 𝐷, 𝑅 

𝑒𝑖 Destination location of trip 𝑇𝑖  Coordinates (𝑥, 𝑦) of location where trip ends  𝐷, 𝑅 

𝑎𝑖  Arrival time to destination of trip 𝑇𝑖  Time of the day in minutes 𝑎𝑖 ∈ [0, 1440)   𝐷 

𝑠𝑖 Starting time from origin of trip 𝑇𝑖  Time of the day in minutes 𝑑𝑖 ∈ [0, 1440)   𝐷, 𝑅 

𝑚𝑖 Travel mode of trip 𝑇𝑖  𝑚𝑖 ∈ {motorized, bicycle, walking} 𝐷 

𝑢𝑖 User unique ID A user ID of the person that is being tracked.  𝐷 

𝑎𝑑𝑖  Arrival date of trip 𝑇𝑖 day, month and year  𝐷 

𝛿𝑖 Purpose of trip 𝑇𝑖 𝛿𝑖 ∈ {work, education, recreational, shopping} 𝑅 

    

That is, each record in the dataset is a unimodal trip (single trip leg). In our donor and receptor 

datasets, only the origin, destination, and departure time are common. However, it is preferable 

to have multiple matching variables to increase the chances of finding good, specific “twins” 

between datasets. We will do so by inferring hidden characteristics as a key step, which is 

elaborated in the further section. 

5.4.2 Discovering hidden characteristics 

This section explores some options to increase the number of characteristics 𝑥 ∈ 𝑋𝑀 that are 

common to both datasets (see Figure 20). A first relevant characteristic is inferred by paying 

attention to each trip’s direction, so that trips can be classified into inbound, tangential, and 

outbound with respect to some region’s centroid 𝑐.   

 

Figure 20. Extending matching variables to increase chances of finding similarities between both datasets. 
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5.4.2.1 Radial-tangential movements 

For this, 𝑐  is located by clustering all destinations’ coordinates for trips on weekdays and 

morning peak hours, so that city’s downtown area is assumed to occupy the location of the 

largest cluster, attracting the majority of commuting trips in the morning. The clustering 

algorithm for this task must be agglomerative using a dissimilarity measure like this one: 

𝑑𝑘,𝑖 = min
𝑝𝑗∈𝐾

{𝑑(𝑝𝑗 , 𝑝𝑖)} 

Where 𝑑𝐾,𝑖 is the dissimilarity between cluster 𝐾 and some external point 𝑝𝑖 with coordinates 

[𝑝𝑖 . 𝑥 , 𝑝𝑖 . 𝑦], computed as the distance from 𝑝𝑖 to the closest point 𝑝𝑗  already contained in 𝐾. 

Likewise, function 𝑑(𝑝𝑗 , 𝑝𝑖)  provides the euclidean distance between two points after 

conversion of the spherical coordinates. The most attractive (largest) cluster of the resulting 

clustering structure 𝐶, where 𝑐 will reside is identified by: 

𝐶∗ = argmax
𝐶𝑘∈𝐶

{|𝐶𝑘|} 

Lastly, the assumed region’s centroid denoted by  𝑐 = [𝑐𝑥  , 𝑐𝑦] is the centroid of this cluster, 

where: 

𝑐𝑥 =
∑  𝑝𝑗 . 𝑥𝑝𝑗 ∈ 𝐶∗

|𝐶∗|
 𝑐𝑦 =

∑  𝑝𝑗 . 𝑦𝑝𝑗 ∈ 𝐶∗

|𝐶∗|
 

For instance in Figure 21-1, for a sample drawn from dataset 𝐷 that mostly contains trips around 

the Antwerp region, the relative size of each found cluster is given in Table 11. 

Table 11. Size of clusters of trip endpoints. 

Cluster ID Size (%)  Cluster ID Size (%) 

1 7.7%  5 0.3% 

2 1.3%  6 1% 

3 87.8%  7 1.6% 

4 0.3%    

The densest area includes clusters 1 to 3 (see Figure 21-2), where the largest cluster (with ID 3) 

is used to extract the region’s attraction centroid (Figure 21-3), that is the center of the “hottest” 

spot in the heatmap. This point on the map is displayed in Figure 21-4. The direction of any trip 

(radial or tangential) relative to 𝑐 can be measured in the following way. Let 𝑢𝑖⃗⃗  ⃗ be the trip vector, 

with 𝑜𝑖  and 𝑒𝑖  as the corresponding initial and terminal points. Similarly, let 𝑣𝑖⃗⃗⃗   be the trip-to-

centroid vector, with 𝑜𝑖  and 𝑐  as the corresponding initial and terminal points, then the trip 

direction 𝑟𝑖 is the cosine of the angle between both vectors  defined as: 

𝑟𝑖 =
𝑢𝑖⃗⃗  ⃗ . 𝑣𝑖⃗⃗⃗  

‖𝑢𝑖⃗⃗  ⃗‖‖𝑣𝑖⃗⃗⃗  ‖
 

The values 𝑟𝑖 can take describe the following behavior:  

close to +1 Trip movement is radial going towards 𝑐 (= inbound) 

close to -1 Trip movement is radial going in the opposite direction of 𝑐 (= outbound) 
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close to 0 Trip movement is tangential 

 

Figure 21. Finding a region’s attraction centroid, (1) trip destinations in D, (2) densest area containing three 
clusters, (3) largest cluster and its centroid and (4) inferred region’s centroid.  

For the same sample dataset 𝐷, the radial movement is displayed in Figure 22, where most trips 

have radial movements (approaching and moving away from the centroid of the assumed 

region).  

5.4.2.2 Hubs of commercial activity 

Another variation of the region’s center concept is to consider a set of centers (hubs) of 

commercial activity specially visited in rush hours, that is all the “hot” spots of minimum 

temperature in the heatmap instead of one single point. To obtain this information, a different 

approach can be taken and a dataset of public points of interest categorized by activity type is 

required. 
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Figure 22. (left) Histogram of radial movement in dataset D, (right) behavior at different times of the day. 

Fortunately these data sources are available online via open data projects such as (95) and (96). 

Let 𝑝𝑖 = (𝑝𝑖
𝑥, 𝑝𝑖

𝑦, 𝑝𝑖
𝑐) be a public POI 𝑖 found in some public database, and its main attributes 

𝑝𝑖
𝑥 , 𝑝𝑖

𝑦 the location’s cartesian coordinates and 𝑝𝑖
𝑐 a given category. Then consider only those 

POIs that indicate some commercial activity in the category attribute such as: 

𝑝𝑖
𝑐 ∈ {"restaurant", "architect office", "pub", "cafe", "bank",…} . 

Then a set of clusters 𝐼 = 𝐼1, 𝐼2, . . 𝐼𝑛 is obtained, where the dissimilarity measure between two 

neighboring POIs 𝑝𝑖  and 𝑝𝑗  is its projected distance according to coordinates 𝑝𝑖
𝑥, 𝑝𝑖

𝑦  via a 

modified version of DBSCAN. A measure of the intra-cluster heterogeneity can be the average 

square distance of each POI 𝑝𝑖 to cluster 𝐼𝑘’s centroid 𝑐𝑘, defined as: 

𝜎(𝐼) =
1

|𝐼𝑘|
∑𝑑(𝑐𝑘 , 𝑝𝑖)

2

𝑖

, 𝑝𝑖 ∈ 𝐼𝑘 

At last, hubs (clusters) of commercial activity 𝐼 = 𝐼1, 𝐼2, . . 𝐼𝑚  should be found at zones with a 

dense concentration of POIs of certain categories, namely, those clusters for which the number 

of POIs exceeds 𝑛𝑚𝑖𝑛 and the intra-cluster heterogeneity does not exceed 𝜎𝑚𝑎𝑥.  

𝐼 = {𝐼𝑘 ∈ 𝐼 | 𝜎(𝐼) ≤ 𝜎𝑚𝑎𝑥  ∧  |𝐼𝑘| ≥ 𝑛𝑚𝑖𝑛} 

A measure 𝛽𝑖  to establish whether a trip 𝑖  was made to one of these centers could be the 

distance to the closest one. That is: 

𝛽𝑖 = min
𝑗 ∈  𝐼

  {𝑑(𝑒𝑖 , 𝑗)} 

Where 𝑑(𝑒𝑖, 𝑗) is the distance from trip 𝑖’s destination to the closest POI found in the border of 

activity center 𝑗 ∈  𝐼. This measure is expected to be smaller for regular trips in the morning 

peak, since trips to work locations are expected to happen during this time interval. For the 

previous sample in dataset D, the results are displayed in Figure 23. 
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Figure 23. (left) Histogram of distance to activity hubs for destinations in dataset D, (right) behavior at different 
times of the day. 

5.4.3 Acquiring multi-day knowledge 

The next step is to define which multi-day attributes are intended to be transferred. For this, we 

need to define the data structure in 𝐷, consisting of travel histories generated from lifelogging 

data. The donor dataset must allow retrieving special information regarding a user’s mobility 

behavior during several days through the detected routines. This is possible via lifelogging apps 

that collect spatiotemporal information about a user’s activity. The trip segmentation of these 

spatiotemporal data between the detected origins and destinations produces a travel history 

between unique destinations (97). 

Assuming a fraction of consistent chains can be retrieved from a travel history, the complete 

sequence of unique destinations, where an origin or destination can appear multiple times is: 

 𝑝1 → 𝑝2 → 𝑝3 → 𝑝1 → 𝑝3 → 𝑝4 → ⋯ 

Every subsequence of length two produces a new trip. Let 𝑎𝑑𝑖  and 𝑒𝑖, be the arrival date and the 

destination respectively of any trip 𝑇𝑖 in history 𝑇, then the number of trips in a single date 𝑡 to 

a unique destination 𝑝 is: 

𝑦[𝑑𝑎𝑦=𝑡,   𝑝] = |{ 𝑇𝑖 ∈ 𝑇  |  𝑎𝑑𝑖 = 𝑡 ∧  𝑒𝑖 = 𝑝}| 

For the entire list of dates Φ in a travel history 𝑇, the average daily frequency of 𝑝 is: 

𝑓(𝑝) =
∑ 𝑦[𝑑𝑎𝑦=𝑡,   𝑝]𝑡 ∈ Φ

|Φ|
 

Moreover, the average daily frequency of an OD pair (any “origin-destination“combination) is: 

𝑓(𝑞, 𝑝) =
∑ 𝑦[𝑑𝑎𝑦=𝑡,   𝑞,𝑝]𝑡 ∈ Φ

|Φ|
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where, 𝑦[𝑑𝑎𝑦=𝑡,   𝑞,𝑝] is the number of trips in a single date 𝑡 from origin 𝑞 to destination  𝑝, that 

is: 

𝑦[𝑑𝑎𝑦=𝑡,   𝑞,𝑝] = |{ 𝑇𝑖 ∈ 𝑇  |  𝑎𝑑𝑖 = 𝑡 ∧ 𝑜𝑖 = 𝑞 ∧ 𝑒𝑖 = 𝑝}| 

Likewise, the relevance of a unique destination 𝑝 can be measured as the number of trips it 

attracts relative to the total number of trips in the history (how relevant the location is for the 

user). 

𝑟(𝑝) =
|{ 𝑇𝑖 ∈ 𝑇  |  𝑒𝑖 = 𝑝}|

|𝑇|
 

Then, the relevance of any OD pair called OD regularity (8) in this paper for a non-empty history 

|𝑇| > 0, would be: 

𝑟(𝑞, 𝑝) =
|{ 𝑇𝑖 ∈ 𝑇  | 𝑜𝑖 = 𝑞 ∧  𝑒𝑖 = 𝑝}|

|𝑇|
 

Now let 𝑎_𝑑𝑜𝑤𝑖 be the day of the week trip 𝑇𝑖 arrives to destination, then the probability of OD 

(𝑞, 𝑝) on certain day of the week 𝑘 can be measured by: 

𝑤[𝑎_𝑑𝑜𝑤=𝑘,   𝑞,𝑝] =
|{ 𝑇𝑖 ∈ 𝑇  | 𝑜𝑖 = 𝑞 ∧  𝑒𝑖 = 𝑝 ∧ 𝑎_𝑑𝑜𝑤𝑖 = 𝑘}|

𝑟(𝑞, 𝑝) × |𝑇|
 

Which is only possible to compute if there are trips from 𝑞 𝑡𝑜 𝑝, so that 𝑟(𝑞, 𝑝) ≠ 0. If 𝑘 = 0 for 

“Sundays”, then the weekday rate for OD (𝑞, 𝑝)  (where values close to 0 entails higher 

frequencies on weekends and close to 1 on weekdays) is: 

𝑤(𝑞, 𝑝) =  ∑ 𝑤[𝑑𝑜𝑤=𝑘,   𝑞,𝑝]

𝑘∈{1,..,5}

 

The distribution of each OD multi-day characteristics in 𝐷 is presented in Figure 24. 

 

Figure 24. Histograms of multi-day characteristics in dataset D. 
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So far, with techniques in the methodology, matching variables in both datasets can been 

extended with the  inferred trips, increasing matching rates and discovering new behavior that 

correlates with the multi-day information in the donor; the way to transfer it to the receptor is 

now explained in the following section. 

5.4.4 Creating specific models 

After sufficient matching characteristics are found in both datasets, the next step is to find pairs 

of comparable observations (twins) regarding these variables, so that all or part of the remaining 

characteristics can be transferred. That is, given any observation 𝑑𝑖 in the donor dataset: 

𝒅𝒊 = [𝑥1
(𝑖) , 𝑥2

(𝑖), . . ,  𝑧1
(𝑖), 𝑧2

(𝑖), . . ],        𝑥𝑘
(𝑖) ∈ 𝒙𝑴

(𝑖),    𝑧𝑘
(𝑖) ∈ 𝒛(𝑖),    ∀𝒅𝒊 ∈ 𝐷 

Another observation 𝑟𝑗 in the receptor can be matched, so that some multi-day characteristics 

of interest in 𝒛(𝑗) that are missing can be transferred, producing an enriched observation 𝑟𝑗
+. 

𝒓𝒋 = [𝑥1
(𝑗), 𝑥2

(𝑗), . . ,  𝑦1
(𝑗), 𝑦2

(𝑗), . . ],        𝑦𝑘
(𝑗) ∈ 𝒚(𝑗),   ∀𝒓𝒋 ∈ 𝑅 

𝒓𝒋
+ = [𝑥1

(𝑗), 𝑥2
(𝑗), . . ,  𝑦1

(𝑗), 𝑦2
(𝑗), . . ,  𝑧1′

(𝑖),  𝑧2′
(𝑖), . . ],         𝑧𝑘′(𝑖) ∈ 𝒛′(𝑖),     𝒛′(𝒊) ⊆ 𝒛(𝑖),     ∀𝒓𝒋 ∈ 𝑅 

Basically, there are two ways to achieve the “transfer” process, a first attempt is to enrich an 

observation 𝒓𝒋  in 𝑅  by finding the nearest neighbor 𝒅𝒊  in 𝐷  that is statistically similar with 

respect to the common characteristics 𝑋𝑀 . Another approach is to approximate a set of 

functions 𝑓: ℝ𝑚 → ℝ through training data in 𝐷 to estimate each of the missing characteristics 

𝒛′ = [𝑧1′, 𝑧2′, . . 𝑧𝑛′]𝑇,  based on values in 𝒙𝑴 = [𝑥1, 𝑥2, . . 𝑥𝑚]𝑇, that is: 

𝑧𝑘
′(𝑗) = 𝑓(𝒙𝑴

(𝑗)),         ∀𝒓𝒋 ∈ 𝑅 

For the following steps, the second alternative of learning functions is used. This way, it is not 

necessary to have as many observations in the donor as in the receptor; also, trip characteristics 

are not just copied from the donor, but instead values are approximated for similar observations. 

In order to generate the functions, the principal components that correlate with the multi-day 

variables are identified in the next section. 

5.4.4.1 Identifying correlated components 

Since not all the matching variables are required to learn the family of functions, studying those 

that correlate with the multi-day characteristics is a relevant step. For instance, by using k-means 

(52) with 𝑘 = 3  with respect to OD regularity 𝑟(𝑞, 𝑝) , three clusters of trips classified into: 

regular, barely regular and non-regular were produced. The differences between regular and 

non-regular trips for some characteristics are presented in Figure 25, where some correlation 

can already be seen, the red curves being the regular trips and blue curves the non-regular ones.  
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Figure 25. Correlations between regularity and other trip characteristics. Red curves are regular, blue curves 
are non-regular.  

In the case of radial movement, correlation with regularity can be noticed if it is evaluated 

together with departure time. For instance, Figure 26 shows departure time in the horizontal 

axis and the radial movement in the vertical axis. It can be observed that most regular trips (large 

black spots) have radial movements and occur around rush hours. Similarly, most regular trips’ 

destinations are close to commercial hubs and occur during rush hours, as seen in Figure 27. 

One possible approach to exploit these correlations is to produce a decision tree whose splits 

are decided by measuring the amount of randomness contained in the subsets for each attribute 

(characteristic) via entropies (98), so that datasets with clear patterns will produce small values. 

For a given multi-day attribute 𝑧𝑘′ ∈  𝒛′, which possible values can be grouped in 𝑛 classes with 

corresponding probabilities 𝑝1, 𝑝2, . . , 𝑝𝑛, the entropy ℎ𝑘 can be defined as: 

ℎ𝑘 = − ∑𝑝𝑐
(𝑘) log2 𝑝𝑐

(𝑘)

𝑛

𝑐=1

 

 

Figure 26. Correlation of regularity with departures and radial movement. Black large dots are regular trips. 
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Figure 27. Correlation of regularity with departure time and hubs proximity. Black large dots are regular trips. 

The highest value of ℎ𝑘  will occur when all classes of characteristic 𝑧𝑘′  have the same 

probability, meaning high randomness, and the lowest when there is a predominant class. The 

probability 𝑝𝑐
(𝑘) of an observation having class 𝑐 in attribute 𝑘 can be computed by: 

𝑝𝑐
(𝑘) =

|   {𝑥𝑘
(𝑖) = 𝑐 | 𝒅𝒊 ∈ 𝐷}  |

|𝐷|
 

If  𝐷1
(𝑞), 𝐷2

(𝑞), . . , 𝐷𝑁
(𝑞) ⊆ 𝐷 are the subsets produced when splitting dataset 𝐷 by a matching 

variable 𝑥𝑞 ∈ 𝒙𝑴, then the new average entropy ℎ̅𝑘
(𝑞)

 of these 𝑁 subsets is expected to change, 

so that the information gain 𝐼𝑘
(𝑞) is: 𝐼𝑘

(𝑞) = ℎ𝑘 − ℎ̅𝑘
(𝑞)

 

where  

ℎ̅𝑘
(𝑞)

=

−∑ ∑  𝑝𝑐,𝑗
(𝑘,𝑞) log2 𝑝𝑐,𝑗

(𝑘,𝑞)𝑛

𝑐=1

𝑁

𝑗=1

𝑁
 

The probability 𝑝𝑐,𝑗
(𝑘,𝑞) of an observation in the subset 𝐷𝑗

(𝑞) having class 𝑐 in attribute 𝑘 is: 

𝑝𝑐,𝑗
(𝑘,𝑞) =

|   {𝑥𝑘
(𝑖) = 𝑐 | 𝒅𝒊 ∈ 𝐷𝑗

(𝑞)}  |

|𝐷𝑗
(𝑞)|

 

The best attribute for a split is selected by: 

argmax
𝑥𝑞∈𝒙𝑴

𝐼𝑘
(𝑞) 

By taking not only the best attribute, but all those 𝑥𝑘
′ ∈ 𝒙𝑴

′ with a minimum information gain 

𝜑 and 𝒙𝑴
′ ⊆ 𝒙𝑴, the best matching variables that describe the multi-day characteristic 𝑧𝑘′ are 

chosen. The function is updated to: 

𝑧𝑘
′(𝑗) = 𝑓(𝒙𝑴′(𝑗)),     where 𝒙𝑴

′ = {𝑥𝑞 ∈  𝒙𝑴 | 𝐼𝑘
(𝑞) ≥ 𝜑}       ∀𝒓𝒋 ∈ 𝑅 
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A reduced version of a decision tree for a sample in dataset D is shown in Figure 28, so that 

characteristics correlated with a trip’s regularity are learned, after transforming the task into a 

classification problem where 0 denote the non-regular trips and 1 the regular ones (see again 

Figure 25). In this plot, three characteristics were used for the splits, then at least these ones 

should become part of the matching variables in both datasets in order to transfer regularity. 

The same approach is used to identify correlations with the other multi-day attributes.  

 

Figure 28. Decision tree to separate regular trips from non-regular to identify characteristics correlated with 
regularity. 

5.4.4.2 Creating donation classes 

In order to reduce effort in generating the regression models with the entire donor, an 

interesting approach (99) is to have clusters of trips with related characteristics and then a family 

of regression functions for each cluster. That is, at first instance an observation in the receptor 

is assigned a cluster of similar trips by using the matching variables found in the donor, and then 

a function is used to transfer specific information. A clustering procedure on trips in 𝐷 will help 

identify groups of trips sharing the same characteristics. A variation of the original k-means 

algorithm (52) is used and the optimal number of clusters or donation classes 𝑘∗ is evaluated by 

minimizing the intra-cluster variance. 

𝑘∗ = arg min
𝑘∈𝐾

∑∑‖𝑐𝑖 − 𝑥𝑗‖
2

𝑛𝑖

𝑗

𝑘

𝑖=1

 

∀𝑖: 𝑛𝑖 ≥ 𝛿 

Where 𝑘 , is tested for a finite number of clusters 𝐾 = {1,2, . . , 𝑘𝑚𝑎𝑥}  ,  𝑥𝑗  refers to each 

observation, 𝑛𝑖 is the number of observations in cluster 𝑖 and 𝑐𝑖  its centroid. For each donation 

class we have a separate set of functions to estimate the missing characteristics. For the same 

sample of D, when 𝑘𝑚𝑎𝑥 = 20, the optimum  𝑘∗𝑒𝑞𝑢𝑎𝑙𝑠 2; characteristics of the two donation 

classes are presented in Figure 29 and Figure 30. 
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Figure 29. Distributions for three matching variables in donation class A. 

In these figures, the two most prominent classes (morning and afternoon trips) are presented. 

Since trips in 𝑅 must be assigned to one of the donation classes, a classifier is required. Using a 

decision tree, the performance on a validation set of 197 trips is displayed in Table 12, providing 

an average accuracy of above 97%. 

Table 12. Confusion matrix to evaluate performance of Binary Classification of donor classes by random forests. 

Reference / prediction Donor class A Donor class B  

Donor class A 78 2 80 

Donor class B 3 114 117 

 

Figure 30. Distributions for three matching variables in donation class B. 
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5.4.5 Transferring information 

 In previous steps, a regression model for the OD regularity has been produced with each 

donation class in 𝐷 by using as inputs the three relevant components identified in the previous 

stages (i.e. travel time, radial movement, and departure time). The same approach is taken for 

the other two multi-day characteristics: weekday rate and OD daily frequency; but including the 

already predicted characteristics for every new regression. So that after assigning trips to the 

donation classes, the regression performance (on a separate validation set) of the different 

models when 80% of data is used for training set and 20% for the validation set is presented in 

Figure 31 and Figure 32, where random forests (100) were used due to their high performance 

as reported in (101).  

 

Figure 31. Performance on the validation set of the models for three multi-day characteristics in class A. 

 

Figure 32. Performance on the validation set of the models for the three multi-day characteristics in class B. 
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In these plots, the blue lines are regression lines fitting the points and the red lines are 

references for perfect predictions. The estimates for regularity and frequency are slightly 

underestimated, predicting trips to be less regular than they actually are. This bias may or may 

not affect the simulations depending on the kind of scenarios. In order to predict each multi-day 

feature, the following inputs were used when training each model (see Table 13). 

Table 13. Inputs for each specific model. 

Predicted feature Inputs 

OD regularity Travel time, radial movement, departure time 

OD daily frequency OD regularity, Travel time, radial movement, departure time 

OD weekday rate OD daily frequency, OD regularity, Travel time, radial movement, 

departure time 

5.4.5.1 Populating a receptor with multi-day data 

The next step is classifying trips in 𝑅  as one of the donation classes and then using the 

corresponding functions created with the regression models. Since both datasets are known to 

belong to the same population, no further validation for compatibility is required. Moreover, 

the binary classifier allows knowing the probability of a record to belong to certain class, then if 

this probability is low for several observations, that is, if uncertainty is high, increasing the 

number of donation classes is an option.  

 

Figure 33. Trips in dataset R, after classification into donation classes. 
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Figure 34. Distributions of the transferred multi-day in R+. 

The results of transferring the three multi-day characteristics (OD regularity, OD daily frequency 

and weekday rate) from dataset 𝐷 to a sample in 𝑅 consisting of 230,000 trips, via models for 

the corresponding variables and donation classes, producing the enriched dataset 𝑅 +  are 

displayed in Figure 34. The third plot confirms that 𝑅 + contains mainly weekday trips, which 

was expected given that demand datasets of this type normally represent an average weekday. 

Moreover, 𝑅 + should exhibit more regular trips than D as confirmed in  Figure 35. This enriched 

dataset now allows simulations to be constrained to these multi-day characteristics, so that 

various transport and traffic-related services can be modelled for different scenarios. Next 

section provides some examples. 

 

Figure 35. Comparing regularity on trips in dataset D and R+. 
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5.4.5.2 Shared mobility use cases 

Having multi-day data in simulations is advantageous for evaluating complex scenarios, where 

OD regularity (probability) express the chance of predicting the trip by a software agent, and OD 

daily frequency the chance of finding that trip on the road. For instance, by adding assumed 

trajectories through shortest path algorithms (102) for illustration purposes only, it is possible 

to find trips on specific routes. 

A first example considers all trips an app could predict for a certain OD, that is starting or going 

through an origin on the way to a known destination. Since originally, trip endpoints in dataset 

𝑅 are zone-based, the assumed “exact” locations for origins and destinations were sampled 

within each zone’s polygon. Moreover, trajectories were added via Dijkstra’s algorithm (103). 

For instance, the plot in Figure 36 shows the expected trips for overlapping a destination (blue 

circle), when daily frequency is set above 0.025 and departures occur after 12h00.  

It may seem like there are many options to reach this destination by sharing rides. However, 

suppose that the ridesharing application is not capable of recognizing trips for sharing, unless 

they are sufficiently regular so that the agent has had ample opportunity to learn and predict 

this trip in a user’s pattern. Then, in the same figure, the trips have been divided into predictable 

(regular) and unpredictable when the required minimum regularity of any OD is set above 0.01. 

The green trips in the right plot would thus be done, but they would be missed for ridesharing 

for lack of regularity. In addition, in this plot, the roads where the trips that can potentially be 

shared can be identified, suggesting the locations of the access points to pick up passengers. In 

the same example, each trip was considered shareable if any part of the traveled path was not 

more than 300 m (maximum walking distance) from the destination, and departures occurred 

between 8:00 and 11:00. 

 

Figure 36. (left) Expected frequent trips to the marked blue circle, (right) predictable trips in red and non-
predictable in green. 
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Figure 37.Expected non-regular trips between marked places, (left) weekday trips and (right) weekend trips. 
Origin denoted by red circle and destination by blue circle. 

Another example shows a scenario where the ridesharing app would not be designed to 

recognize, predict and share regular trips, but rather shares trips for which the user first consults 

a navigation application. It can be expected that these are the less recurrent trips, so this 

ridesharing app design would capture more non-regular trips that can potentially be shared. The 

plot in Figure 37 shows the expected trips overlapping an origin (red circle) and destination (blue 

circle), when the daily frequency and regularity of the OD is set bellow 0.025 and 0.01 

respectively. In the plot, the trips have been divided into weekday and weekend trips. It can be 

imagined that more detailed information can be extracted when adding temporal constraints. 

5.5 CONCLUSIONS AND RECOMMENDATIONS 
This paper has shown how multi-day information discovered in the logs of lifelogging apps can 

be transferred to another dataset, as long as they belong to the same population. Additionally, 

a subset of correlated matching variables must exist or can be inferred via data mining 

techniques, so that matching rates between datasets are boosted. Learning regression models 

on the donor, allows the receptor to be populated with additional trip characteristics; making it 

possible to generate a multi-day synthetic population with several characteristics. Potential uses 

for this enriched receptor include traffic simulations with multi-day constraints, as well as 

complex matching procedures for shared-mobility applications. Besides the multi-day 

characteristics, the socio-demographic and economic information already found in the receptor, 

will permit adding constraints to trips proposed as supply such as car ownership or income 

levels. 

Since the probability of finding supply is approximated by the trip’s daily frequency and 

predictability via its regularity, it is possible to simulate exceptional scenarios where an app 

makes predictions about the upcoming trips. Several applications of shared mobility can benefit 

from this approach because lifelogging data is continuously produced by existing mobile apps, 

allowing the automated generation of multi-day demand for simulation. 

Data quality is important in R+ as simulations for several scenarios of the region of interest 

should lead to accurate predictions, and then to better decision-making for authorities and 

transport planners. This decreases risk of wrong judgments of implemented strategies in the 

study region and leads to steady improvements in mobility. 
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It can be imagined that if the actual supply could be extracted for a region (e.g. ridesharing 

campaigns where users register as drivers and include a list of the actual trips to share), so that 

it can be compared with the predicted trips by the app, some issues can be expected such as:  

• Incorrect predictions of paths or departure times (false positives) 

• Regular trips not being offered because these patterns have not yet been observed 

in the travel histories (false negatives) 

• Vehicles’ occupancy already reaching capacity (i.e. no more empty seats). 

• drivers are simply not willing to share their rides with strangers 

Nevertheless, risks get smaller as apps becomes smarter; such difficulties could be overcome by 

improving next trip prediction via better modelling, apps can confirm with drivers their 

willingness to participate in ridesharing, and occupancy can be measured or even predicted by 

smart sensors. 
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6 OVERALL CONCLUSIONS 

This section aims to give answers to the research questions stated in the introduction of the 

document, by looking at the discussion of results after each publication. At the end of the 

document some future directions are also provided. 

Is it possible to retrieve a consistent travel history from tracking data by inferring trips 

between locations from the spatio temporal information?  

It could be evidenced that with data mining techniques and a proper calibration of the spatial 

parameters, a good approximation of the actual location of the stay points (and points-of-

interest) can be achieved, together with a close estimate of the arrival and departures times. 

Nevertheless, there is space for improvement by adding more variables to the clustering 

procedure since mobile devices can collect lots of contextual information. Based on this principle 

it was found that mobility patterns in early stages of travel histories, greatly improve detection 

of personal points-of-interest (locations recurrently visited). For instance, known transitions 

between POIs help deciding whether a stay point must be labelled as a new unique location or 

as a place already seen in travel history. This way, POI detection becomes an iterative process, 

since chains of POIs allow extracting mobility patterns, but then these patterns improve 

detection of future POIs.  

This approach allows customized POI classifiers for each user and the acquired knowledge 

constantly expanding, that not only includes spatio-temporal characteristics as in most research 

efforts, re-calibrates the existing models to improve performance. Additional variables can be 

explored such as day of the week and travel mode; these dimensions will provide more types of 

mobility patterns that can possibly improve classification performance. 

Is it possible to mine multiday mobility patterns from each user’s travel history in order to 

build trip prediction models conditioned to context information?  

A methodology to learn these multi-dimensional mobility patterns from smartphone data at a 

user level has been provided, together with different measures to evaluate the multi-day 

characteristics of a trip. As soon as recurrent behavior is observed in a travel history, patterns 

can be learned, including but not limited to personal points of interest, typical arrival times or 

transitions between them. The new characteristics based on these patterns include: 

- weekday rates, that is, how often the trip occurs on weekdays or weekends 

- average daily frequency, how often the trip occurs during an average day 

- OD regularity, how likely it is that the trip occurs when some prior information is 

known 

These characteristics can be conditioned to knowledge previously observed by a software agent 

such as: an origin (current location), certain day of the week, time of the day, or any other sensed 

information. In the case of regularity, this measure provides the conditional probability of 

inferring the next trip and can be used later for simulating special scenarios. It has been shown 

that the multi-day information can be extracted via data mining techniques, although 

heterogeneity in travel histories is high (some users are more predictable than others). The 

number of patterns and their frequency have been found to decrease when more trip 

characteristics are considered, although regularity and hence prediction accuracy with respect 

to a set of conditions will increase.  
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Is it possible to transfer these multiday characteristics to synthetic populations to represent 

an entire region’s behavior in order to simulate different shared-mobility scenarios of 

interest?  

In this research, an approach fusing two datasets was studied. The first set consists of multi-day 

tracks from lifelogging data and the second one, synthetic home tours validated for a specific 

region. It has already been demonstrated that the extraction of multi-day characteristics is 

possible, as long as patterns can be found in the tracks. These characteristics have been proven 

to correlate in a certain degree with others such as: travel time, trip distance or departure times. 

There are some other characteristics not directly measured but that can also be computed, such 

as proximity to hubs of commercial activity or radial-tangential displacements. Then, the multi-

day information can be transferred to a statistically compatible dataset, if a subset of the 

correlated matching variables can be found between both datasets, so that machine learning 

techniques produce models trained in the donor dataset to predict the missing data in the 

receptor.  

This enriched receptor continues to be a representative sample of the population of the region, 

since the same probability distributions of each variable are kept; however, dimensionality has 

been expanded by discovering the new "hidden" travel features, which was only possible after 

data mining of the lifelogging data. 

Is it possible to create simulations that mimic context-aware software agents, predicting ride 

matches at short term to evaluate different ridesharing scenarios?  

The enriched receptor allows traffic simulations to include multi-day constraints, which is very 

useful for evaluation of shared mobility services such as ridesharing. For instance, scenarios 

where an app makes predictions (via conditional regularity) about the upcoming trips. Since 

lifelogging data is being produced all the time by existing mobile apps, this approach is 

convenient. 

The simplest case is OD regularity, that is, the probability of a trip to certain destination when 

only the origin (current location) is known. Then, this value indicates how likely it is to predict 

the upcoming trip by an agent at short term, that is as soon as the location of the current trip 

has been identified. Moreover, this predictability measure can be constrained to other variables 

besides origin, so that conditional probabilities are used. For instance, this allows simulating the 

prediction of a trip conditioned to a certain time window and travel mode; so that predictions 

for pairs of users allow providing ride matches at short term in simulations. When trip 

trajectories are added, via simulation or via mining frequent routes between specific ODs 

complex scenarios are obtained.  

Examples of these unique ridesharing scenarios could include: 

- Ride matches predicted by agents during a morning peak between pairs of ODs. 

- Ridesharing supply predicted by agents to reach a train station in certain time 

window from a given origin. 

- Predicted hotspots of ridesharing (carpooling) supply to certain destination for 

certain day of the week. 
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7 FUTURE WORK 

Some improvements are suggested on each stage of the research, moreover new steps are also 

proposed to continue with the research of new instances. 

Data collection and aggregation 

In general terms, the accuracy of the classifiers used for next-trip prediction and labelling 

personal points-of-interest can be increased by having more and more diverse contextual 

information, coming from sensors, remote servers and other agents. More experiments 

comparing different state-of-the-art techniques for next-trip destination using as input the 

enhanced context are required. At last, designing novel enriched context-aware systems for 

transport-oriented applications, taking advantage of the collected big data and continuous 

development of mobile technology. Examples of such context may include all kind of real time 

information, as well as proximity and interaction with other agents. Moreover, socio-

demographic, and economic information explicitly entered by users (e.g. car ownership, 

household size), could become strong predictor of shareable trips. 

Mining mobility patterns 

Exploring additional “hidden” information by data mining techniques, allows mobility behavior 

of different class to be extracted. An enhancement of this research will be retrieving novel 

patterns that are not only based on spatio-temporal characteristics, but from specialized 

sensors, and even from unseen relations between existing variables. Based on these patterns, 

more multi-day characteristics could be obtained such as frequent paths of a trip, at user level 

or for a group of users with common behavior. 

Demand generation 

From this point of view, creating an enriched synthetic population with multi-day characteristics 

will benefit from extending the number of matching variables, as well as adding new multi-day 

variables to allow simulations with new constraints for more complex scenarios. The receptor 

dataset used in this research had zone-based home tours starting at fixed time windows; a nice 

addition would be to produce an activity-based population, where each agent has plans of 

sequential trip legs. Then, trips’ endpoints will have specific coordinates with precise departure 

times. However, the best enhancement would be to make multi-day plans by using the 

probabilities of the expected trips for individual days of the week. 

Multi-day simulations to test shared mobility 

About this aspect, simulations in a multi-day format for several scenarios are possible. Shared 

mobility includes bikesharing, ridesharing, carsharing and other forms. Using the approach in 

this research to produce this class of demand, allows evaluating the potential of a service 

assuming some penetration rate, as well as planning strategies for their implementation and 

others. The multi-day characteristics allow splitting regular and non-regular trips, pretending 

when trips can be predicted by apps; moreover, demand for macro and microscopic simulations 

consisting of several days permit evaluating implementation effects in a long term. 
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