
A Classification of Memory-Centric Computing

HOANG ANH DU NGUYEN, Delft University of Technology

JINTAO YU, Delft University of Technology

MUATH ABU LEBDEH, Delft University of Technology

MOTTAQIALLAH TAOUIL, Delft University of Technology

SAID HAMDIOUI, Delft University of Technology

FRANCKY CATTHOOR, Inter-university Micro-Electronics Center (IMEC)

Technological and architectural improvements have been constantly required to sustain the demand of faster and cheaper computers.
However, CMOS down-scaling is suffering from three technology walls: leakage wall, reliability wall and cost wall. On top of
that, performance increase due to architectural improvements is also gradually saturating due to three well-known architecture
walls: memory wall, power wall and instruction level parallelism (ILP) wall. Hence, a lot of research is focusing on proposing and
developing new technologies and architectures. In this paper, we present a comprehensive classification of memory-centric computing
architectures; it is based on three metrics: computation location, level of parallelism and used memory technology. The classification
does not only provide an overview of existing architectures with their pros and cons, but also unify the terminology that uniquely
identifies these architecture, and highlight the potential future architectures that can be further explored. Hence, it sets up a direction
for future research in the field.

CCS Concepts: • Computer systems organization→ Special purpose systems; •Hardware→ Spintronics and magnetic technologies.

Additional Key Words and Phrases: Computation-in-Memory, Computer Architectures, Resistive Computing, Memory-centric Com-
puting

ACM Reference Format:
Hoang Anh DuNguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said Hamdioui, and Francky Catthoor. 2018. A Classification
of Memory-Centric Computing. 1, 1 (October 2018), 25 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

For several decades, technology scaling has provided a 43% performance gain for each successive node and cheaper
computers as a result of a higher operating frequency and lower cost per transistor, respectively [15, 53]. On top of that,
smart architectural improvements such as pipelining and cache hierarchies increased the computer performance up to
50% every two years [48]. However, CMOS scaling suffers from three main walls: leakage wall, reliability wall and cost
wall [44], while computer architectures also face three walls: memory wall, power wall and instruction level parallelism

Authors’ addresses: Hoang Anh Du Nguyen, Delft University of Technology, Melkeweg 4, H.A.DuNguyen@tudelft.nl; Jintao Yu, Delft University
of Technology, Melkeweg 4, J.Yu-1@tudelft.nl; Muath Abu Lebdeh, Delft University of Technology, Melkeweg 4, M.F.M.AbuLebdeh@tudelft.nl;
Mottaqiallah Taouil, Delft University of Technology, Melkeweg 4, M.Taouil@tudelft.nl; Said Hamdioui, Delft University of Technology, Melkeweg 4,
S.Hamdioui@tudelft.nl; Francky Catthoor, Inter-university Micro-Electronics Center (IMEC), , Francky.Catthoor@imec.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.475/123_4

2 H.A. Du Nguyen et al.

(ILP) wall [99]. In order to address these walls, novel technologies and architecture are under research to improve the
performance [53]. As a result, an enormous amount of computer architectures has been proposed recently. Therefore, a
complete classification of these architectures is needed; not only to have a useful way of describing and comparing
them, but also to have a clear view about what is explored and what not yet.

Limited work has addressed this problem. Most of the well-known classifications separate the processors from
the memory. Therefore, these classifications often are processor-centric based architectures, such as Flynn’s [35],
Skillicorn’s [117] and Shami-Hemani’s classification [112]. Although these classifications work well for processor-
centric architectures proposed in the past decades, they are not applicable to the emerging memory-centric architectures.
Other small-scale surveys mostly target a specific type of computer architectures such as vector processors, automata
processors or processing-in-memory architectures [23, 57, 68, 108, 113, 122, 125, 126]. These surveys only discuss a
limited part of the computer architecture classification, and in addition, do not contain the complete space of both
conventional processor-centric architectures and memory-centric architectures. Therefore, these surveys often make no
distinction between processing inside and near the memory. This leads to a confusion in terminology (e.g., processing-in-
memory, logic-in-memory, in-memory computing, near-memory computing, etc.). For example, Hybrid Memory Cube
is considered to be near-memory-computing [100], however, it is also referred to as processor-in-memory [3]. Some
recent classifications and reviews did mention those architectures in the context of technology development [93, 136].
However, these papers mostly targeted the technological feasibility instead of the characteristics and variants of such
computer architectures. In addition to the above, there are some architecture-related papers that briefly discussed
the features of emerging architectures [88, 90, 105]. However, they are incomplete, focus mostly on relatively narrow
aspects and only classify the architectures based on applications [88] and logic design methods [90, 105]. In short,
there is still a lack of systematic and complete classification that focuses on memory-centric computing or computer
architectures in general. This is exactly the target of this paper.

This paper presents a comprehensive classification of memory-centric computing, and discusses both conventional
and emerging computing architectures. The classification is based on three metrics: computation location, memory
technology and computation parallelism. The computation location indicates where the computations are performed
(e.g., near or far from the memory) and provides an insight regarding the severeness of the memory wall. The memory
technology, which provides characteristics of the memory, can enable new computer architectures (e.g., resistive
computing). The computation parallelisms specifies the type of parallelism that can be exploited in an architecture (e.g.
task level parallelism). With these distinct metrics, the classification covers all computing architectures in general and
memory-centric computing in specific. Note however that it does not make previous proposed classifications obsolete,
as they typically target specific sub-classes. In short, the contributions of this paper are the following:

• Unify the terminology for computer architectures such that it is applicable to all computing paradigms including
conventional, in-memory and near-memory computing.

• Propose a complete classification that includes both existing and emerging architectures.
• Explain one representative architecture of each sub-class in detail.
• Discuss and evaluate the main advantages and disadvantages of the different classes and selected architectures.
• Highlight the whole space of memory-centric computing, including the non-explored architectures.

The rest of this paper is structured as follows. Section 2 shows the metrics used in the classification, briefly introduces
the four classes, and provides a quantitative comparison among them. Sections 3, 4, and 5 present the characteristics of
the three memory-centric computing classes; the fourth class contains the traditional von Neuman architectures and is
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 3

Memory System in Package (SiP)

Memory core

Data mem
Bank i

SAs

R
o

w
 A

d
d

r.
 M

u
x

Data mem
Bank i

R
o

w
 A

d
d

r.
 M

u
x

Memory array

SAsPeripheral circuits

Extra logic circuits

Computational cores

Low BW

High BW

P
e

ri
p

h
e

ra
l

c
ir

c
u

it
s

2

1

3

4

High-Max BW

Fig. 1. Computer Architecture

out-of-the-scope of this paper. Section 6 discusses the pros and cons of this classification and compares its with existing
ones. Finally, section 7 concludes this paper.

2 CRITERIA AND CLASSIFICATION

In this section, we first present the set of metrics to classify computer architectures. Thereafter, we map the existing
architectures on our classification. Finally, we compare the classes qualitatively based on their most important metrics.

2.1 Classification Metrics

We propose several metrics to classify computer architectures based on the computing resources and memory. A
computer architecture or system consists of (one or more) memories and (one or more) computational units as shown
in Fig. 1. The memories can reside in a core (i.e., memory core) or System-in-Packages (SiP). A memory core consists
of one or more cell arrays (used for storage) and peripheral circuits (used to access the memory cells). Note that
register files and caches are not considered as storage here, as they are optimized for speed with relatively small
capacity and temporary storage [48]. Hence, the long term storage of data takes place in the higher layers such as main
memory and solid-state disks. Traditionally, the computing takes place in the computational cores. However, recently
architectures with computing power in the memory have been proposed [45, 98, 100]. In case the memory contains
additional logic circuits such as in Hybrid Memory Cubes (HMC) [100], we speak of a System in Package (SiP). With an
increasing distance from the main memory array, the available bandwidth (specified by BW in Fig. 1) reduces; note
that the bandwidth here is related to the memory bottleneck and will be discussed further in Section 2.3. Based on
these definitions, the following metrics are used to classify computer architectures: computation location, memory
technology and computation parallelism; they are discussed next.

Computation location: it indicateswhere the result of the computation is produced. A computation is defined here as
a primitive logic function (e.g., logical operations) or arithmetic operation (e.g., addition, multiplication). Fig. 1 indicates
the four possibilities where a computation result can be produced; they can be identified by four circled numbers. If the
result is produced within the memory core, (i.e., the computing takes places within one of the memories), the computer

Manuscript submitted to ACM

4 H.A. Du Nguyen et al.

Control unit
Execution

unit

Data
memory

Instruction
memory

(a) Task Parallelism

Control unit
Execution

unit 1

Local data memory
Instruction

memory

Execution
unit 2

Execution
unit N

...

Common control lines

(b) Data Parallelism

Control unit
Execution

unit 1

Local data memory
Instruction

memory

Execution
unit 2

Execution
unit N

...
Instruction

word

(c) Instruction Parallelism

Fig. 2. Three Types of Computation Parallelism

architecture is referred to as Computation-Inside-Memory (CIM). If the result is produced outside the memory core, the
architecture is referred to as Computation-Outside-Memory (COM). Both CIM and COM can be further sub-classified.

It is worth stressing that CIM architectures perform computations within the memory core. As already mentioned,
the memory consists of a memory array and the peripheral circuits. Specifically, depending on where the result of
the computation is produced, CIM architectures can be divided into two basic sub-classes. These sub-classes can be
combined into many hybrid combinations. We will describe this large space by focusing first on its two extreme sides:

• CIM-Array (CIM-A): In CIM-A, the computing result is produced within the array. Note that this is different
from a standard write operation. Typical examples of CIM-A architectures use memristive logic designs such as
MAGIC and imply [65, 71]. CIM-A architectures require always a redesign of cells to support such logic design,
as the conventional memory cell dimensions and their embedding in the bit- and wordline structure do not allow
them to be used for logic. A memory cell is namely heavily optimized in terms of processing stack and layout;
hence, any changes in the array access require a completely new cell design and characterization process as the
material stack of a memory array is specifically optimized for specific control voltages, current, etc. In addition,
modifications in the periphery are sometimes needed to support the changes in the cell changes. Therefore,
CIM-A architectures can be sub-divided into two groups: (1) basic CIM-A where only changes inside the memory
array are required, and (2) hybrid CIM-A where in addition to major changes in the memory array also minimal
to medium changes are required in the peripheral circuit. An example of basic CIM-A is an architecture that
performs computations using implication logic [75]. In this logic style, only one memory row is activated at a
time, and a number of columns (bits) are read out through sense amplifiers. Hence, due to the same usage as
in normal memory, the peripheral circuits do not require any modifications. An example of hybrid CIM-A is
an architecture that performs computations using MAGIC [71]; in this case, multiple memory rows are written
simultaneously; due to the high write currents modifications are required to the cell and medium changes in the
peripheral circuits are needed to activate the multiple rows.

• CIM-Periphery (CIM-P): In CIM-P, the computing result is produced within the peripheral circuitry. Typical
examples of CIM-P architectures contains logical operations and vector-matrix multiplications [21, 80, 134].
CIM-P architectures typically contain dedicated peripheral circuits such as DACs and/or ADCs [37, 111], and
customized sense amplifiers [80, 134]. Note that more radical changes in the peripheral circuit can be made in
the future (e.g., changing in control voltages leads to radical changes in voltage drivers and sense amplifiers, or
including a full functional processor inside memory banks). Even though the computational results are produced
in the peripheral circuits for CIM-P, the memory array is a substantial component in the computations. As the
peripheral circuits are modified, the currents/voltages applied to the memory array are typically different than in
the conventional memory. Hence, similarly as to the CIM-A sub-classes, the CIM-P architectures are also further

Manuscript submitted to ACM

A Classification of Memory-Centric Computing 5

divided into two groups: (1) basic CIM-P where only changes inside the peripheral is required, which means the
current levels should not be affected, and (2) hybrid CIM-P where the majority of the changes take place in the
peripheral circuit and minimal to medium changes in the memory array. An example of basic CIM-P is Pinatubo
logic [80]. Pinatubo activates two or more (but not many) rows of a memory array simultaneously during read
operations for computations; in addition to a customized sense amplifier to perform the logic operation, this
architecture also requires modifications in the address decoder to activate several rows. Note however, that
modifications in the cell/array are not required as the total read current is still small. An example of hybrid
CIM-P is ISAAC [111]. ISAAC activates all rows of a memory array at the same time during read operations to
perform a matrix vector product using an ADC read out circuit. This architecture accumulates currents in the
bitline that impose higher electrical loading in the memory array; hence, not only the periphery circuit is heavily
modified but also the cell requires changes due to the high bit-line current.

The difference between CIM-A and CIM-P classes is the location of producing results. The results of CIM-A architec-
tures are produced inside the memory array, which may sometimes require read-out operations to obtain the results for
further calculations; instead, in CIM-P the results are obtained directly after the operations and may sometimes need an
additional step to write the results back to memory. In order to perform computations, both sub-classes impact the
design of the memory core. However, in many/most cases both the cell and the peripheral circuitry require changes, i.e.,
they are hybrids. In case these changes affect mostly the cell, we speak of hybrid CIM-A, otherwise hybrid CIM-P.

In COM classes, computations take either place in the extra logic circuits inside the memory SiP (3) or in the
traditional computational cores (4) such as CPU, FPGA, etc. In case of the former, the computations take place near the
memory core and the architecture is referred to as Computation-Outside-Memory Near (COM-N). In case of the latter,
the architecture is referred to as Computation-Outside-Memory Far (COM-F). Note that the bandwidth is still high for
COM-N as compared to COM-F, but lower than CIM-A and CIM-P.

Note that architectures where the computation takes place in difference places (e.g., array and peripheral) are
called composite architectures. Hence, they are compositions of the leaf nodes in our classification tree. In addition, an
architecture could have multiple primitive functions, each with a different computation location. Also these architectures
are considered to be composite.

In addition to the computation location, which specifies where the results are produced, it is possible to further
divide the classes using the computation method by specifying how the computation is performed. For example, CIM-A
often uses memristor-based computations such as IMPLY [14, 115], Snider [118], MAGIC [71]. CIM-P often uses current
summations such as Scouting logic [134], Ambit [110] and Pinatubo [80]. However, this metric is not included to the
classification for two reasons: (i) it is strongly coupled to the computational location, and (ii) it makes the classification
too complex and hence loses its simplicity. Nevertheless, including such a metric can be complementary to our work. A
further sub-classification based on this metric can be based on existing classifications as shown in [26, 105].

Memory technology: it indicates which technology is used to implement the memory array. The technologies
are either conventional charge-based memories such as DRAM/SRAM [85, 86, 92] or emerging non charge-based
memories [107]. The non charge-based memories can be further divided into different types based on their physical
mechanism: resistive [73, 107], "magnetic" memories [10, 19, 107], molecular memories [41, 77, 78, 102] or mechanical
memories [16, 42]. Resistive memories store the data as a resistance value; it includes Resistive RAM (RRAM) [129],
phase change memory (PCM) [73], etc. The resistance in RRAM is determined by the presence or absence of a conductive
filament between its two electrodes [107], while the resistance in PCM relies on a change between amorphous and

Manuscript submitted to ACM

6 H.A. Du Nguyen et al.

crystalline phases [104, 130]. Magnetic memories, such asMagnetic RAM (MRAM), store the data using themagnetization
direction of the free layer with respect to the hard or reference layer; it includes, for example, conventional magnetic
RAM [140] and STT-MRAM [36, 50]. The resistive and magnetic memories are organized in crossbars with cells placed
at each junction. The other types of memories, (i.e., molecular memories, mechanical memories) have not been shown to
be useful for computing yet; hence, they are not discussed further in this classification. It is worth mentioning that each
of these memory technologies has its own characteristics (read/write latency, endurance, capacity, etc.) and therefore
are deployed at different levels in the memory hierarchy [107]. Therefore, the memory technology does not only dictate
which CIM operations are technology-wise feasible, but also where in the memory hierarchy they take place.

Computation parallelism: it indicates the level of parallelism that can be exploited in a computer system; i.e., task,
data, and/or instruction level parallelism, as shown in Fig. 2. An architecture supports task level parallelism when it
contains multiple independent control units and multiple data memories (see Fig. 2a). The independent control units
can be used to execute multiple threads or instruction sequences from the same application concurrently; examples
are multithreading [30, 124] and multicore systems [40]. In data parallelism, a single control unit is used to apply the
same instruction concurrently on a collection of data elements (see Fig. 2b); note that all execution units share the same
control signals. The data elements can be processed using constant sizes (e.g., vector and array processor [28, 33]) or
varying sub-word sizes (e.g., SWAR (SIMD Within A Register) processor [34, 101]). In instruction level parallelism, a
single control unit is used to execute various instructions concurrently (see Fig. 2c); hence, the execution units have
different control signals. A further distinction can be made based on intra-instruction (e.g., pipe-lined processor [123]),
inter-instruction (e.g., VLIW processor [131]) parallelism, or a combination of them (e.g., speculative processor [87]).

The three above-mentioned metrics (i.e., computation location, memory technology and computation parallelism)
are dependent on each other. The computation location has a big impact on the feasibility of the other two metrics.
For example, realizing ILP in CIM-A is quite difficult or realizing COM-N with SRAM is not economically feasible.
Also the parallelism is not fully independent from the computation location and memory technology. For example,
data parallelism is often applied straightforward in CIM-A and CIM-P [27, 37]; however it is difficult to realize ILP in
CIM-A, while it is much easier in COM-N and COM-F due to the intrinsic pipeline stages in conventional processors.
The computation parallelism is also affected by the technology as the technology poses restrictions on the endurance.
For example, exploiting ILP in CIM-A architectures demands a high endurance as more writes are required to store
immediate stages and hence, are not attractive for emerging memories like RRAM and PCM with endurance limitations.

2.2 Classification

We classify the existing architectures based on the above discussed metrics; the result is shown in Fig. 3. The references
of the abbreviated architectures are listed in Table 1.

The classification contains 48 categories. Some categories, the ones located in red planes, show that a lot of work
has been done for that particular class. For the categories in the pink planes, a moderate number of work has been
done. To our best knowledge, no architectures exists in the blue planes; these fields are currently unexplored as they
received no attention yet from the research community or non-existing due to current restrictions of the technology;
these blue planes are not further discussed in this paper due to two main reasons: (1) scope of the paper; the technical
and economical feasibility of these planes requires an intensive discussion and is by itself a new contribution and (2)
space limitations. Later on, we will discuss several architectures from the red and pink planes.

The developments in memory-centric computing are shown in the timelime of Fig. 4; this shows the trend of
computing moving from COM-F to COM-N, CIM-A and CIM-P. In the figure, a larger circle indicates that more
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 7

DRAM

SRAM

ReRAM

MRAM

Low BandwidthCOM-F
COM-N

CIM-P
CIM-AHigh Bandwidth

Task

Data

Instruction

Multicore
GPU

Pipelined
VLIW

ProPRAM
ReGP

FlexRAM
VIRAM

DRAMA

A-PAGE
HIVE
D-AP

DIVA
HMC

HBC
AMC

DDN
S-Mem

Pinatubo
PRIME
CIMA
ReAP
R-AP

ISAAC
DPP

S-AP
Neural$
Compute$

DRISA-1T1C

MPU

DRISA-3T1C IMI
AMBIT

proc.
Vector

STT-CiM

CRS
CIM

PLiM

ReVAMP

Note that some blue blocks are not technology and economically feasible.

Fig. 3. Memory-centric Computing Classification

//

//

//CIM-A

CIM-P

COM-N

//Year

1997 1998 1999 2000 2001 2002 2012 2013 2014 2015 2016 2017 2018

VIRAM FlexRAM S-Mem DIVA HMC D-AP DRAMA AMC ReGP

ReAP PRIME S-AP R-AP

CRS MPU PLiM ReVAMP

DDN

ProPRAM

HBM HIVE

ISAAC

Pinatubo

Ambit

CIMA

STT-CiM

DPP

CIM

A-Page

DRISA-3T1C

IMI

Compute$

DRISA-1T1C

Neural$

Fig. 4. Memory-centric Computing Timeline

Table 1. Abbreviation List

Abbreviation Reference
DRISA-3T1C [79]
ReVAMP [9]
PLiM [38]
MPU [51]
CIM [27, 45]
CRS [115]
ISAAC [111]
DPP [37]
IMI [32]
AMBIT [110]
DRISA-1T1C [79]
S-AP [121]
Neural$ [29]
Compute$ [1]
Pinatubo [80]
PRIME [21]
CIMA [26]
ReAP [137]
R-AP [138]
STT-CiM [55]
DDN [20]
S-Mem [84]
A-PAGE [97]
HIVE [3]
D-AP [95]
DIVA [24]
HMC [49]
AMC [94]
HBM [83]
DRAMA [31]
FlexRAM [62]
VIRAM [69]
ProPRAM [128]
ReGP [91]
Pipelined [48, 123]
VLIW [82, 131]
Vector Proc. [22, 33, 101]
Multicore [52]
GPU [66, 96]

work has been proposed in that year. Note that the conventional architectures in COM-F are not memory-centric
and hence, are left out. The concept of merging computation and memory was introduced back in 1970 [120]. This
concept became popular around 1997 in COM-N architectures and was further developed until 2002. These COM-N
architectures, such as VIRAM [69] (initially named IRAM), DIVA [24] or FlexRAM [62], never commercialized due
to the limitations of embedded DRAM technology (i.e., costly fabrication process, and inefficient speed and memory

Manuscript submitted to ACM

8 H.A. Du Nguyen et al.

capacity trade-off [54, 63, 64]). After that, a long silent period in academia community was observed from 2002 to
2010. Meanwhile, industrial efforts have been invested to deploy large eDRAM in commercial COM-N systems such as
POWER7 processor [60], PlayStation2 [7] and Intel’s top-class CPUs [70]. From 2012 to 2016, new commercial COM-N
architectures based on novel 3D stacking technology have been proposed such as Hybrid Memory Cube (HMC) [49]
and High Bandwidth Memory (HBM) [83]. In the last several years, with the emerging of resistive technology, CIM-A
and CIM-P architectures started to become popular.

Note that many of the architectures are hybrid and/or composite which means that they can map into multiple
classes. In order to simplify Figure 3, the architectures are classified based on their dominant features. For example,
DPP exploits both ILP and DLP; however, DPP focuses more on performing various parallel operations using multiple
functional units, while it also processing a whole row/column inside the memory; hence, the dominant feature of DPP
parallelism is selected as ILP.

2.3 Qualitative Evaluation

In this subsection, we briefly compare the different computing types qualitatively using the most important classification
metric, i.e., the computation location. This metric dictates the type of data movements, computation requirements,
available bandwidth, memory design efforts, scalability, endurance requirement and maturity. With respect to the
computation requirements, we discuss whether the architectures require a specific data alignment and whether they
have the capability to realize complex functions. With respect to available bandwidth, we discuss the capability for
data communication between logic and storage units. With respect to the memory design efforts, we discuss the
modifications that are required for the cells, array, peripheral circuit and controller. With respect to the scalability, we
discuss the possibility to expand the design to increase the concurrent computing capacity. With respect to the endurance
requirement, we indicate the endurance level that the architecture demands in order to execute an application. With
respect to maturity, we do not only mean the readiness of the memory technology, but also the available programming
and software support, and current status (i.e., simulations, prototype or fabrication) for such architectures. With respect
to the applications, we roughly indicate the range of applications for each architecture class. The results are shown in
Table 2 and 3; their content will be discussed next.

Data movement outside the memory core indicates whether the data will remain in the memory core during
computing or transferred to outside computational units. It affects the memory bottleneck due to latency and the energy
consumption of data transfers. Both CIM-A and CIM-P architecture have a relatively low amount of data movement
outside the memory core, as the processing occurs inside the memory core. Therefore, they have potentials to alleviate
the memory bottleneck. Instead of moving data from the memory to the computational cores, the instructions are
moved and directly applied to the memory; these instructions typically operate on a large data set, hence a high
level of parallelism can be obtained. Note however that the current state of the art typically allows limited functions
to be implemented in these architectures. Therefore, complex functions would still require data movements to the
computational cores outside the memory. For COM-N and COM-F architectures, data is first read from the memory.
Thereafter, they are typically stored in registers before being fed to the processing units. The amount parallelism is
limited here due to constraints in the bandwidth, number of available registers and processing units.

Computation requirements include data alignment and the ability to implement complex functions efficiently.
Data alignment is required for all architectures. However, CIM-A and CIM-P classes perform computations directly on the
data residing inside the memory, and hence, the robustness and performance are impacted more by data misalignment.
Note that performing a data alignment cannot be handled by the host processors in in-memory computing architectures
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 9

Data
Move-
ment
outside
memory
core

Computation
requirements Available

band-
with

Memory design efforts

Scalability

Data
Align-
ment

Complex
function

Cells &
array

Periphery Controller

CIM-A No Yes High latency Max High Low/medium High Low
CIM-P No Yes High cost High-Max Low/medium High Medium Medium
COM-N Yes NR Low cost High Low Low Low Medium
COM-F Yes NR Low cost Low Low Low Low High
NR: Not Required

Table 2. Comparison among Architecture Classes in terms of Data Movement, Computation Requirements, Available Bandwidth and
Memory Design Efforts

Endurance
requirement

Maturity Applications

Software support
and Technology

Development

CIM-A High Emerging Simulation Data Intensive - Computational Complexity
(matrix multiplication [47], parallel addition [27])

CIM-P Medium Emerging Simulation
Data Intensive - Bitwise operations

(database processing [80, 109, 110], graph processing [2],
image processing [46, 110], security and biosequencing application [8])

COM-N Medium Commercialized Fabricated
General-purpose and Application-specific

(vector processing [25, 58, 94],
automata processing [95], neural computation [20])

COM-F Low Common Practise Fabricated General-purpose

Table 3. Comparison among Architecture Classes in terms of Endurance Requirement, Maturity and Applications

due to a far communication distance, while adding additional logic inside the memory core to handle this is also
not trivial. It requires an area overhead to temporary store operands and do the alignment with CMOS logic. For
other classes, the impact of data alignment is less severe; nevertheless, data misalignment can cause a performance
degradation in other classes as well.

As the primitive operations in CIM-A and CIM-P are limited, architectures in these classes face challenges in
computing complex functions such as arithmetic operations with integer or floating point numbers. As a result, a lot of
primitive operations are required to realize such complex functions, if even possible. For example, a multi-bit addition
in CIM requires multiple single-bit addition as primitive operations and communication operations between these
single-bit additions [27]. On top of that, each primitive step that involves a write operation in a memristor based CIM
architecture suffers from a high latency due to its high write time. In addition, current CIM-P architectures require a
high cost to implement a diverse set of arithmetic operations as their efficiency today is mainly limited to bitwise logical
operations and matrix vector multiplications. Moreover, providing complex functionality using peripheral circuits in
CIM-P is difficult, due to limited available area on the memory core. Note that despite these drawbacks, the performance
can be still high when sufficient parallelism is exploited, e.g., by operating on multiple crossbars in parallel. Furthermore,
data doesn’t have to be transferred to the main processor and hence, the energy and performance can be improved. In
COM-N and COM-F, computations are performed by CMOS circuits which contain mature, optimized and if needed,
dedicated functional units. However, the main bottleneck comes from the many additional data transfers through the
memory hierarchy.

Manuscript submitted to ACM

10 H.A. Du Nguyen et al.

Available bandwidth specifies how much data can be transferred between the computational and storage units.
This metric is important as it affects the amount of parallelism that can be exploited. The available bandwidth is
considered as similarly as bandwidth specification of multiple level in the memory hierarchy; hence it includes four
ranges: max (TBs), high (10 GBs), medium (GBs) and low (MBs) [13]. Note that these terms are used for nowadays’
memory technology as the exact bandwidth values are subject to change with new or different technologies. CIM-A
architectures may exploit the maximum bandwidth, as operations happen inside the memory array. CIM-P architectures
have a bandwidth range from high to max, depending on the complexity of the peripheral circuitry. Note that the
peripheral circuits can be complex, e.g., when large customized sense amplifiers are used. Therefore, the placement
of such sense amplifiers may be limited due to area constraints. In such cases, still a relative high bandwidth can be
realized. For COM-N, the bandwidth is bounded by on-chip interconnections between the memory core and extra logic
circuits; for example, in Hybrid Memory Cube [100] the bandwidth is limited by the number of TSVs and available
registers. This bandwidth for TSV is considered high in comparison with COM-F, where the bandwidth is even lower
due to off-chip interconnections [132].

Memory design efforts specifies the required efforts needed to modify the memory (as a storage entity) to make it
realized also the computing functionality. In some cases, it is very difficult (or may be even practically impossible) to
modify the cells, array, periphery and controller. CIM-A architectures require a redesign of the cell in order to make the
computing feasible. Re-characterizing the cell requires a huge effort and induces a huge cost. Other classes, except for
hybrid CIM-P, do not require this modification due to the usage of standard memory cells. In terms of changes in the
periphery, CIM-P architecture require complex read-out circuits as the output value of two or more accessed cells may
end up in multiple levels. Moreover, complex peripheral circuits (i.e., ADC, DAC) limit the scalability when they exhibit
internal bottlenecks and could also dominate the area of the memory core when the memory sizes are small. Hence,
CIM-P is mainly useful for larger sizes. Other classes, except for hybrid CIM-A, can utilize existing optimized read-out
circuits, and hence do not require modifications in the periphery. In terms of memory controller, the complexity reduces
from high to low for CIM-A, CIM-P, COM-N and COM-F, respectively. CIM-A architectures require a complex controller
as it is responsible for both controlling the crossbar (consisting of a large number of states, each controlling different
voltage drivers) and handling data transfer (which involves the usage of buffers/registers to store temporary values).
CIM-P architectures have relatively simpler controllers as the computations are constructed in a similar manner as for
conventional memory (read/write) operations. The difference is that they typically have to deal with more in-memory
operations. COM-N and COM-F architectures utilize the memory in a conventional way, and hence, standard memory
controllers can be used.

Scalability specifies how easy or hard is it to scale up the architecture in order to maintain parallelism level. CIM-A
has a low scalability due to several reasons such as the lack/ complexity of interconnect network within the memory
array it needs, and the difficulty in isolating logic units to ensure parallel executing. CIM-P has a medium scalability
as the limited amount of resources inside peripheral circuits makes it difficult to fit large and complex logic units;
the complexity of the periphery circuits is the main bottleneck . COM-N also has a medium scalability for the same
reason; even though the logic layer of memory SiP has more processing resources than peripheral circuits, it cannot
accommodate many complex logic units. COM-F has high scalability due to a mature interconnect network and large
space for logic devices.

Endurance requirement specifies how many write operations can be performed before the memory of the ar-
chitecture starts to fail. A memory that needs a higher number of writes will have a lower lifetime when both have
technology-wise the same endurance. Three ranges can be specified for the architectures: a high endurance requirement
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 11

(i.e. much higher than DRAM endurance 1015 [139]); a medium endurance requirement approximately equal to DRAM
endurance; and a low endurance requirement much less than the DRAM endurance. CIM-A has in general a high
endurance requirement due to the need of multiple write steps to perform simple Boolean functions. CIM-P has a
lower endurance requirement as operations are performed during read operations [134]. Nevertheless, results have to
be still written back to the memory in order to perform complex functions. As CIM-A and CIM-P architectures are
typically based on emerging devices such as memristors, their endurance could be a potential issue. Similarly to CIM-P,
COM-N architectures operate closely to the memory and have to write back the results to the main memory due to
the absence/limited number of registers and caches. In contrast, COM-F architectures have a much lower endurance
requirement as computations are performed using CMOS and the results of the operations are rarely written back to
the main memory due to the usage of registers and caches.

Maturity does not only refer to how feasible/reliable the memory technology is, but also how much software
support exists and the development status of the architectures in the classes. As CIM-A and CIM-P are relatively
new concepts and typically resistive based, lots of work has still to be done to realize these architectures both from a
hardware and software point of view. Resistive memories and non-volatile memories in general are typically under
research development. For example, the limited endurance puts a constraint on the amount of computations that can be
performed in resistive CIM-A architectures. Programming languages, compilers, simulators still need to be developed
in general for these architectures. In COM-N class, several architectures have been prototyped in the industry and
therefore, they are more mature than CIM-A and CIM-P. Architectures in COM-N have also more software support
as they are equipped with tool chains that allow product development on these architectures; for example, Micron’s
automata processor is already commercialized and is programmed in Automata Network Markup Language (ANML) [95].
COM-F architectures are today’s conventional von Neumann architectures. They have the highest maturity from both
technological point and software support. With respect to the development status, CIM-A and CIM-P architectures
mostly are verified using simulations, either cycle-accurate simulations [4, 12] or circuit verification simulation (i.e.,
HSpice). COM-N and COM-F architectures are further developed; they have been demonstrated in prototypes and
commercial products [100, 103]. In general, COM architectures are more mature than CIM architectures.

Applications that run effectively on the architectures are also described in Table 3. In general, CIM architectures can
be more efficient than COM architectures for certain data intensive applications as they are less affected by the memory
bottleneck. For CIM-A architectures and several CIM-P architectures (e.g., Pinatubo, CIMA, STT-CiM), there are currently
limited types of operations can be efficiently performed on these architectures; hence, limited range of applications can
be mapped on these architectures. For example, CIM-A architectures focus more on arithmetic operations such as matrix
multiplication [47], parallel addition [27]. CIM-P architectures focus on bulk bitwise applications such as database
processing, graph processing, image processing, security and biosequencing application [2, 8, 46, 80, 109, 110]. COM-N
architectures are used for both general-purpose and application-specific. A limited number of COM-N architectures are
considered as general purpose computers such as FlexRAM [61] and SM [84]. Other COM-N architectures targets specific
applications such as vector processing (e.g., VIRAM [58], DIVA [25], AMC [94], etc.), automata processing (D-AP [95]),
and neural computation (DDN [20]). COM-F architectures are mostly designed for general-purpose applications.

3 COMPUTATION-IN-MEMORY - ARRAY (CIM-A)

The CIM-A class contains mostly resistive computing architectures that use memristive-based logic circuits [26] to
perform computations and resistive RAM (RRAM) as memory technology. The resistive logic circuits may implement
different design styles such as stateful logic [75], IMPLY [72], MAGIC [71], CRS-based logic [115], etc. These design

Manuscript submitted to ACM

12 H.A. Du Nguyen et al.

This is the author’s version of an article that has been accepted for IEEE JETCAS. Changes were made to this version by the publisher prior to publication.

The final version of record is available at DOI: http://dx.doi.org/10.1109/JETCAS.2015.2398217

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the

IEEE by sending an email to pubs-permissions@ieee.org.

2

nomenclature is introduced and the basic CRS logic concept is

summarized. Then the inherent carry calculation capability of

CRS devices is highlighted. In section III the novel adder

schemes are explained, and in section IV the operation is

verified by dynamical pulse simulations. In section V a

comparison to Lehtonen’s and Kvatinsky’s adder approaches

is drawn. Finally, in section VI the work is summarized and an

outlook is given.

II. COMPLEMENTARY RESISTIVE SWITCH-LOGIC

A. Passive crossbar arrays

Ultra dense ReRAM-based memory architectures will be

hybrid architectures with a standard CMOS component which

is responsible for controlling the passive crossbar arrays.

These arrays will be fabricated on top of the CMOS layers in

the backend of line (BEOL) [7]. In general, the size of the

crossbar arrays should be sufficiently large to justify the

control circuit overhead. Thus, either appropriate selector

devices are required at each cross point, or complementary

resistive switches should be applied [9].

The basic idea underlying our approach is to extend the

application of hybrid CMOS/crossbar architectures from pure

memory operations towards logic-in-memory operations, by

enabling a sequential access to the crossbar array devices [15].

Fig. 1a depicts a possible layout. The system could consist of

many arrays and one control unit, which coordinates and

addresses the signals to the specific wordlines (wl) and bitlines

(bl). A typical array size could be for example 128 by 128

lines. Fig. 1a shows a system using CRS crossbar devices with

only two arrays (A0 and A1) and an array size 3 by 5 to

illustrate the basic concept. The structure of array A0 is

depicted below this system section, showing that every

intersection of a word- and bitline is a CRS cell. These CRS

cells will be referred to as AzCRSwlxbly (cmp. Fig. 1), where

Az denotes the name of the array, in which the cell can be

found, wlx denotes the wordline of the cell and bly denotes the

bitline. Thus the CRS cell A0CRSwl2bl0 is found in array A0

at intersection wl2 and bl0.

Fig. 1 (a) Expected system section layout, which consists of two Arrays (A0

and A1) and a control unit. (b) Each array has three wordlines (wl0, wl1 and

wl2) and five bitlines (bl0, bl1, bl2, bl3 and bl4). The three red marked cells are

used to compute a two bit addition.

The control unit enables free communication between all lines

and is a key element for consecutive logic.

B. Complementary Resistive Switches

CRS cells consist of two anti-serially connected ReRAM cells.

A basic CRS operation in sweep mode is depicted in Fig. 2a.

Both logic values ‘0’ and ‘1’ are represented by an in total

high resistive state, since one cell is in HRS. ’0’ is represented

by LRS/HRS and ‘1’ by HRS/LRS. The ‘ON’ state is only a

transition state, which is reached while changing the inner

state from ‘0’ to ‘1’ or back. Here a half select scheme (e.g.

[19]) is applied, so that there are three different voltage levels

available at the word- and bitlines, low, high and ground. The

devices need steep switching kinetics, since the devices must

enable switching with the maximum voltage across the device

for a given time period. Additionally, the cells must prevent

switching if half of the maximum voltage is applied during the

same time period. Note that a very steep switching kinetic is

an intrinsic feature of resistive switching devices [20, 21], thus

passive crossbar arrays are feasible.

C. CRS single-bit logic operations

In [15] we introduced a CRS compatible ‘stateful’ logic

approach. Fig. 2b represents a CRS cell as a finite state

machine with two states. To switch from ‘0’ to ‘1’ the high

potential, which is represented by the logical one ‘1’, needs to

be applied at the wordline and the low potential, logical zero

‘0’, at the bitline of the cell. Otherwise the machine will stay

in the ‘0’-state. To switch from ‘1’ to ‘0’ the low potential

needs to be applied at the wordline and the high potential at

the bitline of the cell. Otherwise the cell will stay in the ‘1’-

state.

The general logic equation to represent this behavior is given

by [15]:

() () RIMP ' NIMP 'Z wl bl Z wl bl Z= + (1)

where wl is the wordline connected to the device and bl the

bitline, Z’ is the device state prior to the application of the

signals at wl and bl, and Z is the device state after applying the

signals. As follows, if the device is in state ‘1’ (Z’ = ‘1’), the

cell performs a reverse implication (RIMP) if the cell is in

state ‘0’ (Z’ = ’0’) an inverse implication (NIMP) is

performed. 14 out of 16 Boolean functions are directly

feasible within this approach [15]. The XOR and XNOR

functions can only be realized with a second CRS cell. Note

that a computation on more than one device is feasible, if the

wl or bl input is the same for these computations on different

devices.

Equation (1) must be considered as the basic equation to

develop a synthesis tool for CRS-logic. For Borghetti’s imply

logic a few approaches for such a tool were presented [17, 22].

D. CRS carry bit and sum bit calculation

An adder is the first step from basic logic operations towards

complex arithmetic operations, since in CMOS all basic

arithmetic operations (multiplier, divider and substractor) are

Control

Unit

Array A0
Array A1

bl4 bl3 bl2 bl1 bl0

wl0

wl1

wl2

bl4 bl3 bl2 bl1 bl0

wl0

wl1

wl2

bl2
bl1

bl0

bl3bl4

wl2

wl1
wl0

A0CRSwl2bl0

a)

b)

Fig. 5. Complementary Resistive Switch-logic Crossbar Array (CRS) [115]

styles can be further classified, as presented in [105]. In addition to resistive computing, computations can be performed
using DRAM cells as demonstrated in [79] which will be explained later.

Few architectures have been proposed in this class; they are Complementary Resistive Switch (CRS) [115], Computation-
in-Memory (CIM) [27, 43, 45], Memristive Memory Processing Unit (MPU) [51], Programmable Logic-in-Memory Com-
puter (PLiM) [38], ReRAM based VLIW architecture (ReVAMP) [9], A DRAM-based Reconfigurable In-Situ Accelerator
with a 3T1C cell design (DRISA-3T1C) [79]. Most of the architectures, except for REVAMP, have similar organizations.
They contain a memristor crossbar (except for DRISA-3T1C) that is used for both storage and computation and a
controller that applies the voltages to the memory array. Each architecture uses a different logic style and controller; for
example, CRS, MPU, and PLiM use CRS-based logic, Memristive-Aid loGIC (MAGIC), and majority logic, respectively,
while CIM can use any logic styles. ReVAMP uses a different architecture and integrates the resistive memory in a
pipelined processor in which the memory replaces both the cache and register file. It optimizes traditional pipelined
processors by combining the execution, memory and write-back in a single stage. DRISA-3T1C contains a DRAM
memory array and performs NOR instructions by reading two rows simultaneously and writing the results back via the
sense amplifier to another row. During the read, the capacitances of the accessed cells will discharge the bitline via a
transistor when one or both cell values are high; only when both capacitance values are zero the bitline remains high.
As examples, we only describe the CRS and ReVAMP architectures next in more detail; they are the latest proposed
architectures that represent a basic CIM-A and hybrid CIM-A architectures, respectively. Due to page limitations, only
one representative figure is used to describe each architecture.

3.1 Basic CIM-A architecture

CRS architecture was proposed in 2014 by A. Siemon, et al., from RWTH Aachen University [115]. It is a memristor
based architecture that exploits data level parallelism using implication logic. The architecture consists of multiple
crossbars and a control unit (as shown in Fig. 5 [115]). The crossbar stores and performs logic operations using CRS
cells; a CRS cell consists of two resistive switches or resistive RAMs. The control unit distributes signals to the intended
addresses (wordlines and bitlines) to perform operations on the crossbars.

The crossbar is controlled by a sequence of operations including: write-in (WI), read-out (RO), write-back (WB), and
compute (CP). Before the operations can be performed, the crossbar part used for computation is once entirely reset to
a logic value 0. The WI operation writes a logic value into a memristor. The RO operation reads a logic value from
a cell; the logic output value is determined by the sense amplifier. The RO operation is destructive and changes the
value of the memristor to logic value 1. The task of the WB operation is to recover the destroyed value. Finally, the CP
instructions are used to execute the implication logic gates [81, 115]. The data transfer between CRS cells is carried out
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 13

Instruction
Memory

(IM)

Data
out

Read
Address

Update PC

PC

Instruction Fetch
(IF)

PC

Instruction
Decode

&
 Control
Signal

Generation

Primary Inputs

Wl

Instruction Decode
(ID)

Wc

Cc

Mc

PIR

DMR
WD

Sou
rce

S
e

le
ct

WDX(1+WD)
crossbar

W
o

rd

S
e

le
ct

‘0’

‘1’

WD

1+WD

1

1

Execute
(EX)

...

...
R

o
w

 D
eco

der
Sense Amplifiers

Column Decoder

WD

Data and Computation
Memory (DCM)

Data line

Control line

Write
Circuit

Fig. 6. ReRAM based VLIW architecture (ReVAMP) [9]

through the control unit using a RO and WB operations; in other words, the control unit reads a value of the source
CRS cell and writes this value into the destination cell.

In addition to the general characteristic of CIM-A described in Table 2 and 3, CRS has the following advantages: (i) it
is less impacted by the sneak path currents due to the usage of CRS cells. The cell’s resistance is always equivalent to
high resistance, hence, sneak path currents are eliminated. However, variations in resistances will make such paths
practically unavoidable unless a 1T2R cell is used, (ii) CRS logic requires fewer cells to perform computations than Fast
Boolean Logic (FBL) [133]. However, it also has the following limitations: (i) the latency of the primitive functions varies
and requires read-out instructions to determine the voltages that have to be applied, (ii) the RO operation is destructive,
hence, a WB operation is required after each RO operation, which increases the latency and energy of computations,
(iii) the data tranfer method is indirect as it is based on the read-out and write-back scheme. As all cells have high
resistance, direct copying of cells in the crossbar is not applicable, (iv) the control unit imposes a high overhead as it is
responsible for both controlling the crossbar (requiring a large number of states) and transferring data (which involves
the usage of buffers/registers to store temporary values), (v) the architecture requires additional compiling techniques
and tools to convert conventional Boolean logic functions to implication logic. This architecture was only evaluated at
circuit level using adders. Therefore, it is hard to make general conclusions on the performance and the applicability of
this architecture.

3.2 Hybrid CIM-A architecture

ReVAMPwas proposed in 2017 by D. Bhattacharjee, et al., from Nanyang Technological University [9]. It is a memristor
based architecture that exploits data parallelism using majority logic. The architecture consists of an Instruction Fetch
(IF), Instruction Decode (ID), and Execute (EX) stage (as shown in Fig. 6 [9]). The IF block fetches instructions from the
Instruction Memory using the program counter (PC) as address, and puts the resulting instruction in the Instruction
Register (IR). The ID block decodes the instruction and generates control signals which are placed in the control registers
of the EX block. The EX stage finally executes the instruction.

The IF and ID stages are similar to those of the traditional five-pipelined RISC architecture. The IF stage includes an
Instruction Memory (IM) and a Program Counter (PC). The ID stage contains registers (IR and Primary Inputs), and
an Instruction Decode and Control Signal Generation. The EX stage consists of several registers (i.e., Data Memory

Manuscript submitted to ACM

14 H.A. Du Nguyen et al.

Register (DMR), Primary Input Register (PIR), Mux control (Mc) register, Control (Cc) register, Wordline (Wc) register),
as well as a crossbar interconnect, wordline select multiplexer, data Source Select multiplexer, and a Write circuit to
control the crossbar that stores data. Once an instruction is fetched and decoded in IF and ID, respectively, the control
registers in EX are filled with suitable values. These values control the multiplexers that are responsible for applying
the right control signals to the crossbar. Depending on the operation, primary inputs from PIR or data retrieved from
the crossbar stored in DMR can be used for the next operation. The crossbar interconnect permutes the inputs and
control signals (indicated by Cc) to generate the voltages that need to be applied to the memory crossbar. The Write
circuit applies these voltages to the targeted wordline address (indicated by Wc).

In addition to the general characteristic of CIM-A described in Table 2 and 3, ReVAMP has the following advantages:
(i) the data transfer may include direct (within the crossbar based on copying resistance values) and indirect (based
on read-out/write-back) schemes, (ii) the crossbar is based on only one device per cell, resulting in a more compact
architecture as compared with other architectures which make use of two devices per cell (i.e., Complementary Resistive
Switch CRS [115]), (iii) the architecture does not suffer destructive reads as is the case for CRS architecture [115],
hence the write energy might be less due to the absence of a write back operation. However, it also has the following
limitations: (i) the latency of majority primitive functions varies depending on the functional complexity; in addition,
before any operations are applied to the cells, these cells first have to be read-out in order to determine the appropriate
control voltages, (ii) the architecture has to deal with sneak path currents. Possible solutions as mentioned above, (iii)
the EX stage is complex as it integrates both the control signals for memory and computations. Therefore, it is not easy
to pipeline this architecture, as the EX stage will consume more time than the other stages; i.e., the stages IF, ID, and
EX are not balanced, (iv) the architecture requires additional compiling techniques and tools to convert conventional
Boolean logic functions to majority logic gates. The architecture is simulated and evaluated using EPFL benchmarks [5]
and compared against PLiM [38], which is based on a resistive memory with the same logic style.

4 COMPUTATION-IN-MEMORY - PERIPHERY (CIM-P)

The CIM-P class consists of architectures which perform computations during read-out operations (i.e., two or more
word lines are activated simultaneously) using special peripheral circuitry. Such operations are typically analog in
nature. As there are less restrictions on the functionality of the cell, various memory technologies can be used in this
category such as DRAM, SRAM and non-volatile memory technologies.

A medium number of architectures have been proposed in this class: Resistive Associative Processor (ReAP) [137], A
Processing-in-Memory Architecture for Neural Network Computation in ReRAM-based Main Memory (PRIME) [21], A
Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic (ISAAC) [111], In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology (Ambit) [110], A Processing-in-Memory Architecture
for Bulk Bitwise Operations (Pinatubo) [80], In-Memory Intelligence (IMI) [32], Compute Caches (Compute$) [1],
A DRAM-based Reconfigurable In-Situ Accelerator with 1T1C design (DRISA-1T1C) [79], Computation-in-Memory
Accelerator (CIMA) [26], Computing inMemory Spin-Transfer TorqueMagnetic RAM (STT-CiM) [55], Cache Automaton
(S-AP) [121], Neural Cache (Neural$) [29], RRAM Automata Processor (R-AP) [138], Data Parallel Processor (DPP) [37].

These architectures fundamentally perform computations in the same way by activating multiple rows simultaneously
in the memory and using generally specialized sense amplifiers and/or ADC converters to get the results. ReAP performs
computations by implementing Content-addressable-Memory (CAM) operations using look-up-tables (LUTs). PRIME
and ISAAC perform vector-matrix multiplications for neural applications. Ambit, IMI, Compute$, DRISA-1T1C, Pinatubo,
CIMA, STT-CIM, Neural$ and DPP perform computations using customized sense-amplifiers only; Ambit, IMI and
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 15

S
T

E
 1

Symbol Vec s

W-bit
input

Routing
Matrix

A
ct

iv
e

 V
ec

 a
Follow Vec f

D
ec

o
d

er

A
cc

ep
t V

e
c

c

A

S
T

E
 2

S
T

E
 N

1 2 3

Q + symbol classes P δ CΣ

(a) General Architecture for Automata Processor [138]

SA

Ref

SASA

Input
symbol

Symbol Vec

STE

(b) Used as STEs

SA

Ref

SASA

Inputs

Outputs

(c) Used as routers

Fig. 7. Resistive RAM Automata Processor (R-AP) [138]

DRISA-1T1C use DRAM, Compute$ and Neural$ uses SRAM, while the rest is based on non-volatile memory. These
architectures can only perform logical operations except for IMI, DRISA-1T1C, Neural$ and DPP which also perform
more complex functions by having additional logic inside the peripheral circuits. S-AP and R-AP implement inner
product operations in automata processors. S-AP is implemented using SRAM technology while R-AP uses non-volatile
memory. As examples, we only describe the R-AP and DPP architectures next in more details; they are the latest
proposed architectures that represent basic CIM-P and hybrid CIM-P architectures, respectively.

4.1 Basic CIM-P architecture

R-AP was proposed in 2018 by J. Yu, et al., from Delft University of Technology [138]. The architecture targets an
automata processor which exploits data level parallelism by performing computations using state machines. An automata
processor contains two main components: the State Transition Elements (STEs) and the routing matrix; the STE stores
the accepting states, while the routing matrix stores the state transitions as shown in Fig. 7a [138]. The automata
processor accepts one input symbol at a time, generates next active states and decides whether a complete input string
is accepted or not.

The architecture consists of STEs and a routing matrix which are implemented using RRAM technology. Each RRAM
column corresponds to an STE which stores the accepting states in RRAM cells, as shown in Fig. 7b [138]. The input
symbol is fed to all the STEs simultaneously. The sense amplifiers collect a dot-product results of a vector-matrix
multiplication. The output of the STE together with the routing matrix are used to determine the next active states, as
shown in Fig. 7c [138]; this process is carried on until all input symbols are processed. In case the one or more final
active states are part of the acceptance states, it means that the input string has been matched with the corresponding
pattern of the acceptance state. Note that data transfer inside the automata processor is carried out using the routing
matrix.

In addition to the general characteristic of CIM-P described in Table 2 and 3, R-AP has the following advantages: (i)
the architecture is used as a read-favoured accelerator, which has a positive impact on the endurance due to infrequent
use [17, 127]. Only when the automata changes, the STEs and routing matrix have to be updated, (ii) automata processing
can be used to perform both logical and arithmetic operations in general, (iii) data can be transferred using both direct
and indirect schemes, (iv) the architecture uses non-volatile memory, hence consumes low energy and has a small
footprint, (v) the automata processing techniques and tooling are quite mature, hence it is feasible to explore many
applications using automata processing. However, it also has the following limitations: (i) the modified peripheral
circuitry (row drivers) might pose high overhead in the memory system, (ii) the architecture requires additional

Manuscript submitted to ACM

16 H.A. Du Nguyen et al.

...

...

Ex
te

rn
al

 IO

XB

Router
S+A

Inst. Buf

LUT..

...

...

...

...

...

... ...

...

RRAM XB

S+H

D
A

C

DAC ADC
ADC
S+A

Reg

ReRAM
PU

ReRAM
PU...

ReRAM
PU ... ReRAM

PU

...

...

Reg.
File

H-tree

TileTiled architecture

Cluster

Memory Array /
Processing Unit

DAC

DAC

S and Hold
ADC

DAC

DAC

D
AC

D
AC

D
AC

D
AC

(b)

Figure 1. In-Memory Processor Architecture. (a) Hierarchical Tiled Structure (b) ReRAM array Structure

– –

Figure 2. In-situ ReRAM array operations.

crossbar topology. A shared bus facilitates communication
inside a cluster. A hierarchical topology inside the tile limits
the network power consumption, while providing sufficient
bandwidth for infrequent communication typical in data-
parallel applications.
Each memory array can be thought of as a vector process-

ing unit with few SIMD lanes. The processor adopts a SIMD
execution model. Each array is mapped to a specific instruc-
tion buffer. All arrays mapped to the same instruction buffer
execute the same instruction. Every cycle, one instruction
is read out of the each instruction buffer and multi-casted
to the memory arrays in the tile. The execution model is
discussed in detail in Section 4.
The processor evaluated in this paper consists of 4,096

tiles, 8 clusters per tile, and 8 memory arrays per cluster.
Each array can store 4KB of data and has 8 SIMD lanes of 32
bits each. Consequently, the processor has aggregate SIMD
width of two million lanes, aggregate memory capacity of
1GB and 494mm2 area. The resolution of ADC and DAC is
set to 5 and 2 bits.

2.2 Instruction Set Architecture
The proposed Instruction Set Architecture (ISA) is simple and
compact. Compared to a standard SIMD ISA, In-memory ISA
does not support complex (e.g. division) and specialized (e.g.

shuffle) instructions because these are hard to do in-situ in-
memory. Instead, compiler transforms complex instructions
to a set of lut, add and mul instructions as discussed later.
The ISA consists of 13 instructions as shown in Table 1. Each
ReRAM arrays executes the instruction locally, hence the
operand addressing modes reference rows inside the array
or local registers. The instructions can have a size of up to 34
bytes. Now we discuss the functionality and implementation
of individual instructions.
1) add The add instruction is an n-ary operation that adds
the data in rows specified by <mask>. The <mask> is a 128-bit
mask which is set for each row in the array that participates
in addition. Figure 2 (a) shows an add operation. The mask
is fed to word-line DACs, which is used to apply a Vdd (’11’)
or Vdd/2 (’10’) to the word-lines. A ’1’ in the mask activates
a row. Each bit-cell in a ReRAM array can be abstractly
thought of as variable resistor. Addition is performed inside
the array by summing up currents generated by conductance
(=resistance−1) of each bit-cell. A sample and hold (S + H)
circuit receives the bit-line current and feeds it the ADC
unit which outputs the digital value for the current. The
result from each bit-line represents the partial sum for bits
stored in that bit-line. Aword or data element is stored across
multiple bit-lines. An external digital shifter and adder (S +
A) combines the partial sums from bit-lines. The final result

Session 1A: New Architectures ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

3

Fig. 8. Data Parallel Processor (DPP) [37]

compiling techniques and tools to perform conventional Boolean logic functions using automata processing. The
architecture has been validated using circuit level simulations and evaluated against S-AP [121].

4.2 Hybrid CIM-P architecture

DPP was proposed in 2018 by D. Fujiki, et al. from University of Michigan [37]. DPP is a RRAM-based architecture
that exploits instruction and data level parallelism by performing computations using a combination of RRAM-based
dot-product operations and LUTs. The architecture consists of multiple RRAM tiles connected as an H-tree; each tile
has multiple clusters and some logic units (as shown in Fig. 8 [37]). Tiles and clusters form a SIMD-like processor that
performs the parallel operations. The architecture is considered as a general purposed architecture as it can perform all
primitive functions such as logical, arithmetic, shift and copy operations.

In addition to clusters, each tile has several units to support the computations including instruction buffer, Shift and
Add (S+A), and router. Each cluster additionally has one or more computational units; they are Shift and Add (S+A),
Sample and Hold (S+H), DAC and ADC, a LUT and register file (as shown in the right part of Fig. 8). While reading from
the high latency RRAM, other units are simultaneously used for processing. Therefore, the S+H is used to read data (in
the form of a current) from the RRAM array and temporarily store it. Once that data is needed, it is fed to an ADC to
convert the analog value to a digital value. The S+A is used to perform carry propagation in a multiple-bit addition.
DAC is used to apply a digital value to the RRAM array with an appropriate control voltage. Some complex functions
that cannot be realized with these units are performed using LUTs and register file in each cluster. Data transfer can be
performed by enabling two memory rows for direct copy operations, or using the buffers and read-out operations for
indirect copy operations.

In addition the general characteristic of CIM-P described in Table 2 and 3, DPP has the following advantages: (i)
computations include both logical operations and simple arithmetic operations (i.e., addition, multiplication), (ii) Data
can be transferred using both direct and indirect schemes, (iii) the architecture uses non-volatile memory, hence
consumes low energy and has a small footprint, (iv) this architecture is claimed to be general purpose, hence it can
exploits existing instruction set, compiling techniques and tools, as well as applications. However, it also has the
following limitations: (i) the architecture uses non-volatile memory as main memory, which may impact the life time
due to limited endurance [17, 127], (ii) as the sense amplifies are complex, a trade-off between area and bandwidth has
to be made.
Manuscript submitted to ACM

A Classification of Memory-Centric Computing 17

register bank inside the HMC to perform operations. The
HIVE instructions pass through the pipeline in the same way
as a memory load operation. HIVE instructions that do not
require memory addresses, such as HIVE lock and unlock,
will bypass the Address Generation Unit (AGU) and wait to
be transmitted inside the Memory Order Buffer (MOB). All
HIVE instructions are placed inside the MOB to be delivered
to the memory subsystem. These instructions wait inside the
MOB for an answer from the HMC, which returns the status of
the operation as successful or raises exceptions. The processor
uses these instructions’ status to control execution flags, such
as overflow and not-a-number, among others.

HIVE instructions that perform loads and stores work
with virtual addresses. Therefore, the addresses have to be
translated by the Translation Look-aside Buffer (TLB) and
checked for correct permissions to access the given address
range. After passing through the TLB, the requests follow the
cache memory hierarchy, bypassing the memory caches. The
cache directory needs to be changed as well, to ensure a write-
back of all the modified data in the range at which the specific
HIVE instruction will operate. Although we implement HIVE
in an out-of-order processor, in-order processors could also be
modified to work with the HIVE instructions. It is important
to note that all modifications inside the processor are also
required to make use of the new ISA present in the HMC
specification. Thus, we expect that only minor changes inside
the processor are required to support the HIVE instructions.

D. HMC Modifications

When HIVE receives a HIVE lock instruction, it has to lock
the mechanism to operate only for the thread that requested the
lock. In case the memory is already locked, the lock instruction
is sent back to the requester with a fail status. When a lock
is granted, the HIVE instructions are able to perform their
operations. Locking the mechanisms avoids that one thread
modifies the content of registers that are being used by a
different thread. This locking system can also be used to power
gate or clock gate all HIVE resources after a certain period of
time, reducing the energy overhead during idle periods. Normal
memory access requests (both reads and writes) can still be
serviced while HIVE is locked, such that other threads that do
not use HIVE can continue to execute.

To perform vector instructions inside the DRAM, we
require three main logic additions to the HMC, a HIVE
sequencer, a register bank, and the vector functional units.
Figure 2 illustrates HIVE inside an HMC 2.0 module, with
32 vaults and 8 banks per vault. HIVE can be easily adapted
to different HMC layouts (such as different numbers of banks
per vault or row buffer sizes). In our mechanism, the HIVE
sequencer handles the instructions in-order until they can
be executed and sends the status after the instructions are
executed. During HIVE load/store operations, the sequencer
is also responsible for broadcasting the 8 KB request split
into 128 sub-requests of cache line size (64 bytes). Each sub-
request is sent to its respective vault controller.

The additional register bank inside HIVE is used to store
the sub-requests coming from any vault/bank inside the HMC.
Each register can handle 128 positions of 64 bytes each (8,192
bytes in total). Thus, sub-requests can be issued to different

Cross-bar switch

Vault 0
logic

16
lanes

16
lanes

16
lanes

16
lanesLinks

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

Memory
partitions
(DRAM
layers)

...Logic
layer

Read
buffer

Write
buffer

DRAM sequencer

Vault controller
HMC vaults

HIVE controller

HIVE controller
Register

bank

Functional
units

HIVE
sequencer

Stat. Inst.

Data

Stat/Rqst

HIVE inst.

Fig. 2: HMC module with our mechanism architecture.

vaults/banks to increase performance. HIVE interacts with
the DRAM devices only during load and store operations by
copying data to and from the HIVE registers. Therefore, our
mechanism does not require new DRAM signals.

HIVE executes instructions in-order, but its functional units
act as a restricted data-flow processor. A given operation can
start as soon as the registers are ready. To support this data-
flow, we use a flag associated with each register that indicates
if the operand is ready. Each HIVE instruction needs to erase
this flag for its destination register, and re-enables it whenever
the instruction becomes ready. This system allows the DRAM
to open rows from different banks in parallel, and also ensures
that once a HIVE instruction requires operands that are not
ready yet, execution will stall. When registers are ready, the
functional units operate in several steps (HIVE cycles) to
process the entire register. The number of steps depends on
the number of functional units. We explore the performance
trade-offs of the number of functional units in Section IV.

All functional units operate at the frequency of the HMC
vault controller. After completion, each HIVE instruction sends
a status to the processor, such that our instructions behave
similarly to a normal memory request. These acknowledgment
signals provide important information for the processor regard-
ing the status of each operation, such as overflow, division-by-
zero and other exceptions. For instance, in the Intel AVX-512
instruction set, 17 bits are enough to provide the information
regarding the operation status [24]. For the evaluation of our
mechanism, we consider an acknowledgment of 64 bits in
order to correctly simulate the impact of the transmission of
the status bits on the final performance. Note that the number
of status bits does not increase linearly with the operation size.
For example, between AVX-128 and AVX-512, only two bits
were added, because only a single flag is raised if one or more
sub-operations cause an exception.

IV. EXPERIMENTAL EVALUATION OF HIVE

This section presents the simulation environment, the appli-
cation kernels and the evaluation results of HIVE. To simplify
the explanations, we refer to SSE+DDR and SSE+HMC when
executing an application that uses SSE instructions in a system
with DDR or HMC memory modules respectively. We refer to

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1251

(a) HMC Module with HMC Instruction Large Vector Extensions (HIVE) [3]

... ...

Shared Memory
Array

C
o

lu
m

n

V0 V1 Vn Row

Word

L1 Cache

Sequential Processor
Se

q
u

e
n

ce
r

PU

PU

...

N
O

C
 + R

ed
u

ctio
n

 tre
e PU

LLC

SIMD

(b) Resistive GP-SIMD (ReGP) [91]

Fig. 9. Examples of COM-N Architectures

The architecture potential was simulated and evaluated against CPU Intel Xeon E5-2697 using a subset of PARSEC
benchmarks [11] and against GPU NVIDIA Titan XP using Rodinia benchmarks [18].

5 COMPUTATION-OUT-MEMORY - NEAR (COM-N)

The COM-N class consists of architectures that perform computation using additional logic units outside the memory
core but inside the memory SiP. These architectures were proposed in the past and evolved through different memory
technologies ranging from conventional DRAM, embedded DRAM to emerging memory technologies such as RRAM.

Many architectures have been proposed in this class: Vector Intelligent RAM (VIRAM) [58, 67, 69, 98], Active
Page(A-Page) [97], Advance Intelligent Memory System (FlexRAM) [62], Modular Reconfigurable Smart Memories
(S-Mem) [84], Data-intensive Architecture (DIVA) [24, 25], Hybrid Memory Cube (HMC) [56, 100], Active Memory Cube
(AMC) [94], Micron Automata Processor (D-AP) [95], A machine-learning supercomputer (DDN) [20], An Architecture
for Accelerated Processing Near Memory (DRAMA) [31], High-Bandwidth Memory (HBM) [59, 74, 83, 119], A Near
Data Computing Architecture using Non-Volatile Memory (ProPRAM) [128], Resistive GP-SIMD (ReGP) [91], HMC
Instruction Large Vector Extensions (HIVE) [3].

These architectures mainly differ as a consequence of using different technologies. VIRAM, FlexRAM, SM, DIVA,
and DRAMA are based on embedded DRAM technology and try to integrate processing units near the main memory;
FlexRAM integrates multiple single-core processors with caches, SM a reconfigurable processor, VIRAM and DIVA a
vector processor, and DRAMA a Coarse-grain reconfigurable accelerators. A-Page is based on reconfigurable DRAM
architecture which integrates conventional DRAM into an FPGA; it implements the reconfigurable logic near the
main DRAM memory. HMC, AMC, HBM, and HIVE are based on 3D-stacked DRAM; HMC and HBM support general
computing, while AMC and HIVE are optimized for VLIW and vector processing, respectively. DaDianNao, D-AP, ReGP,
and ProPRAM utilize logic units that are located near the memory. DaDianNao and D-AP implements a neural network
and an automata processor, respectively with very simple logic units inside the conventional DRAM. ReGP integrates
a simplified SIMD processor near non-volatile memory. ProPRAM utilizes existing logic units near the non-volatile
memory to perform simple computations such as addition and logical operations. As an example, we only describe the
HIVE and ReGP architectures next in more details; They are the most recent architectures proposed in COM-N class.

Manuscript submitted to ACM

18 H.A. Du Nguyen et al.

HIVE was proposed in 2016 by M. A. Z. Alves, et al., from Federal University of Rio Grande do Sul [3]. HIVE is a
Hybrid Memory Cube (HMC) [56, 100] based architecture that performs large vector operations inside the logic die
of a HMC. The architecture consists of a host processor and a HMC module that is extended with a HIVE, as shown
in Fig. 9a [3]. The host processor, not shown in the figure, is a pipelined-like architecture with six stages; it fetches,
decodes, renames, dispatches, executes and commits a sequence of instruction. If an instruction fragment has to be
executed using in-memory instructions, the processor diverts the instruction fragment to the HMC module. HMC
module executes the fragment and returns the result back to the processor.

HMC module consists of multiple DRAM layers, logic vaults, HIVE controller, a crossbar switch and multiple-lane
links to host processor (as shown in the left side of Fig. 9a). The data is stored in multiple DRAM layers and retrieved by
the HIVE. The HIVE controller contains a register bank, functional units and a HIVE sequencer (as shown in the bottom
right of Fig. 9a). The logic vaults contains a vault controller, write and read buffer, and a DRAM sequencer (as shown
in the top right of Fig. 9a). Once the HIVE sequencer receives an instruction, it locks the involved memory address
space; if the memory has already been locked, the requested instruction returns a fail status to processor; otherwise, a
memory synchronization occurs by flushing related cache data into DRAM. The logic vaults and HIVE subsequently
execute the instructions by reading data to read buffers and register bank, performing operations using functional units,
and (optional) storing into memory using write buffers. The operations in HIVE are based on vector operations that
operate on 8KB of data at a time executed by the 32 logic vaults and HIVE functional units. As the amount of data is
large, a DRAM sequencer and HIVE sequencer schedule these operation accordingly. The results can be collected in
register banks and sent back to the host processor through the crossbar switch and links.

In addition to the general characteristic of COM-N described in Table 2 and 3, HIVE comes with the following
advantages: (i) the parallelism is high due to vector processing on 8KB of data, (ii) the architecture uses HMC which
is mature, commercialized and has some advantages such as high performance, high bandwidth, low power, high
density [56, 100]. However, it also has the following limitation that the architecture has a complex HMC module which
has a control, communication and programming overhead. The architecture is simulated and evaluated using some
integer (vector search and memory reset/set operations) and floating-point (vector sum, matrix stencil, and matrix
multiplication) kernels against three baseline platforms; both HIVE and baseline platforms are based on the Intel Atom
processor. Like HIVE, the three baseline platforms have also additional processing capacities; for the baseline platforms
they are as follows: 1) HMC instructions using HMC 2.0 memory [49] (HMC+HMC), 2) 128-bit SSE instructions with
DDR-3 1333 modules (SSE+DDR) and 3) 128-bit SSE instructions with HMC 2.0 (SSE+HMC).

ReGP was proposed in 2016 by A. Morad, et al., from Technion-Israel Institute of Technology [91]. ReGP is a RRAM
memory based architecture that exploits data parallelism by attaching a SIMD-like processing unit to the resistive
memory, as shown in Figure 9b [91]. The architecture consists of a sequential processor (which is a conventional
processor), its L1 and LLC cache, sharedmemory array and SIMD processor. The sequential processor executes traditional
code and controls the SIMD processor in a master-slave mode. The SIMD processor executes parallel instructions on
the data stored in the shared memory array.

The SIMD processor contains multiple processing units (PUs), a sequencer and a Network on Chip (NoC) with
reduction tree. Each PU contains registers, a single bit full-adder and a function generator to perform arithmetic and
logical operations. The sequencer receives instructions from the sequential processor and assigns them to PUs. The PUs
load data from the shared memory array and perform the requested operations. If required, the NoC and reduction
trees are used to perform more complex functions.

Manuscript submitted to ACM

A Classification of Memory-Centric Computing 19

In addition to the general characteristic of COM-N described in Table 2 and 3, ReGP comes with the following
advantages: (i) the parallelism is high due to multiple parallel processing units, (ii) the architecture uses non-volatile
memory, hence consumes a low amount of energy and has a small footprint, (iii) the architecture can reuse compilers,
programming languages and tools from SIMD architectures. However, it also has the following limitation that the
operations within the processing units are simple; complex functions such as floating point operations can cause a
high overhead. The architecture is simulated and evaluated against CMOS GP-SIMD [90] using a benchmark for dense
matrix multiplications [89].

6 DISCUSSION

This section aims to first evaluate the completeness of the proposed classification. Thereafter, we compare it with
existing work in the field. Finally, we discuss the limitations of this work and propose directions for future work.

6.1 Completeness

The proposed classification presented in Fig. 3 is complete and comprehensive. These points can as follows be proven: (i)
theoretically, due to the exploration of all the possible classes derived from the classification metrics, and (ii) practically,
by mapping all existing memory-centric architectures on the classification.

Theoretically, the classification contains four main classes derived from the "computation location" (first metric);
both inside and outside, approximately close or distant from the memory core. Moreover, the second metric consists of
both charge-based and non-charge-based memories. Finally, the parallelism metric ranges from instruction, to data and
task levels. Each metric is in it self complete, and therefore, the entire classification is complete. The classification does
not only contain the existing solutions, but also highlights the potential future solutions that can be further explored
(e.g., classes in blue spaces in Fig. 3). Note that hybrid architectures are also covered in this classification. For example,
a conventional architecture (COM-F) with accelerator in CIM-P class (e.g., ReAP, ISAAC, CIMA) is considered a hybrid
architecture, i.e., a COM-F/CIM-P hybrid.

Practically, it contains an overview of the most existing computer architectures and places them in perspective. In
addition, the classification can be used to illustrate the past and future trends (see Fig. 4). Moreover, it clearly depicts
a shift from conventional processor-centric architectures towards memory-centric architectures based on emerging
technologies (3D stacking, RRAM, etc.).

6.2 Related work

Comparison with traditional/processor-centric architecture classifications: conventional classifications like
Flynn’s [35], Skillicorn’s [117] and Shami-Hemani’s [112] classification are quite comprehensive and were considered
complete at the time they were published. However, these classifications focus on processor-centric architectures
and, hence they can only be used to classify conventional architectures (i.e., architectures in COM-F class). Aside
from the above mentioned classifications, some publications on COM-N class have presented intensive architectural
reviews [23, 113, 116]. However, they have a restricted focus on near-memory-processing architectures based on 2D,
2.5D, and 3D-stacked DRAM. Signh’s classification [116] is the most recent work that provides a review of near-memory
computing architectures, i.e. COM-N architectures. It classifies architectures mainly based on the memory hierarchy
and processing type (e.g., programmable unit, fixed functional unit and reconfigurable unit). Moreover, it evaluates the
architectures based on multiple characteristics of memory, processing, evaluation tools, interoperability, and application
domains. However, the classification is not easy to use as the metrics are not systematic. Furthermore, it is not clear if

Manuscript submitted to ACM

20 H.A. Du Nguyen et al.

the classification is complete and if it covers all ranges of near-computing architectures. Last but not least, in comparison
with the aforementioned classifications, our proposed classification goes one step further to cover both conventional
and emerging architectures by having the additional classes CIM-A and CIM-P. Moreover, the proposed classification is
so broad that several of its classes are not explored yet. New architectures in these unexplored areas can be easily added
to the classification. In addition, our proposed classification uses three selective metrics which create distinctive and
easy-to-use terminologies, classes and sub-classes.

Comparisonwith recent/emerging architecture classifications: recent surveys and classifications for emerging
architectures have been proposed by Mittal [88] and Reuben [105]. Mittal’s classification only tries to link architectures
with their applications. Specifically, the classification discusses three unconventional architectures: processing-in-
memory, machine learning and neural network based architectures using RRAM. They mostly focus on applications
containing dot-product operations in the RRAM crossbar. This classification is not complete, as RRAM in particular
and emerging memory technology in general can also be used to implement other functions such as bitwise logic
operations [80, 134], arithmetic operations using implication logic [71, 114], Boolean logic[118, 133], etc. Reuben’s
classification classifies existing resistive logic design methods into three classes: in-memory, near-memory and out-of-
memory computing. The near-memory class has three sub-classes without identifiers (e.g., they are based on how data
moves out of the memory array; this includes data movements (1) between consecutive logic levels, (2) for computing
each Sum-of-Products, (3) for computing each logic gate). This classification, however, tries to redefine the terminologies
without defining clear generic metrics for each class. Instead, each class uses different criteria to distinguish between
their sub-classes. Therefore, it is not a systematic and comprehensive classification, which makes it difficult to use in
identifying and exploring architectures. Moreover, it is difficult to judge if the classification is complete. Furthermore,
the classification focuses only on resistive memories, while other emerging memory technologies are also promising.
Overall, both Mittal and Reuben classifications are not complete and comprehensive enough to classify all architectures.

6.3 Future directions and challenges

Memory-enteric computing is seen as one of the promising solution to alleviate (even if partially) the memory bottleneck.
Not only the communication between the processing core and the main memory will be significantly reduced, but also
the energy consumption; the data communication on its own is extremely energy consuming. Implementing CIM based
on DRAM or emerging memristive devices seems to be more realistic than using on chip SRAMs. Although SRAM
technology is more CMOS compatible when it comes to manufacturing, the cost per bit for such technology is much
higher than that of other memory technologies. Hence, the overall cost of large capacity SRAMs (which is needed
for CIM) is by far much higher; for the same capacity, SRAM consumes much more area/power compared to DRAM
and non-volatile memories. In addition, the two main directions that are currently explored are CIM-A and CIM-P,
in which CIM-P is more feasible than CIM-A due to the complex underlining memory technology. CIM-P requires
less effort and modification in the memory core (mainly in the periphery). Moreover, CIM architectures do not make
conventional architectures obsolete; in fact, multicore architectures with caches are relevant for applications with high
data locality, while CIM architectures can be only used efficiently for certain specific applications [106]. Furthermore,
building appropriate simulators and tools for CIM architectures based on technology calibrated models will enable a
real estimation of the potential of such architectures [6, 39, 76, 135].

It is worth mentioning that the focus of this paper is to propose a unified terminology and classification instead of
presenting a survey. In our future work we will present a survey that intensively discusses all architectures.

Manuscript submitted to ACM

A Classification of Memory-Centric Computing 21

7 CONCLUSION

In this paper, we have proposed a classification using three metrics: computational location, memory technology and
level of parallelism. We have used the most important metric, i.e. computational location, to describe and evaluate the
four main classes (and the selected architectures therein). The work shows that architectures do not only require to
be memory bottleneck free, but also energy and area efficient. In order to accomplish that, the architectures must be
implemented with the right technologies. The relationship and dependency between the architecture and technologies
becomes stronger for memory-centric computing architectures. This work also showed that new architectures typically
emerge after new technology developments (e.g., introduction of 3D stacking and RRAM). Our classification unifies the
prior work and aims to provide a comprehensive and unique terminology for memory-centric computing architectures.
Finally, the classification does not only present an overview of existing architectures, but also predicts the potential of
future architecture variants, including hybrid architectures that may combine different strengths of the different classes.

ACKNOWLEDGMENTS

The results presented in this paper have been obtained in the framework of the project "Computation-in-memory
architecture based on resistive devices" (MNEMOSENE), which has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 780215.

REFERENCES
[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das. 2017. Compute caches. In High Performance Computer Architecture

(HPCA), 2017 IEEE International Symposium on. IEEE, 481–492.
[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. 2016. A scalable processing-in-memory accelerator for parallel graph processing. ACM SIGARCH

Computer Architecture News 43, 3 (2016), 105–117.
[3] M. A. Alves, M. Diener, P. C. Santos, and L. Carro. 2016. Large vector extensions inside the HMC. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2016. IEEE, 1249–1254.
[4] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A. Navaux. 2015. SiNUCA: A Validated Micro-Architecture Simulator.. In

HPCC/CSS/ICESS. 605–610.
[5] L. Amarú, P.-E. Gaillardon, and G. De Micheli. 2015. The EPFL combinational benchmark suite. In Proceedings of the 24th International Workshop on

Logic & Synthesis (IWLS).
[6] A. BanaGozar, K. Vadivel, S. Stuijk, H. Corporaal, S. Wong, M. A. Lebdeh, J. Yu, and S. Hamdioui. 2019. CIM-SIM: computation in Memory SIMuIator.

In International Workshop on Software and Compilers for Embedded Systems. ACM, 1–4.
[7] J. Barth, D. Plass, E. Nelson, C. Hwang, G. Fredeman, M. Sperling, A. Mathews, T. Kirihata, W. R. Reohr, K. Nair, et al. 2010. A 45 nm SOI embedded

DRAM macro for the POWERâĎć processor 32 MByte on-chip L3 cache. IEEE Journal of Solid-State Circuits 46, 1 (2010), 64–75.
[8] G. Benson, Y. Hernandez, and J. Loving. 2013. A bit-parallel, general integer-scoring sequence alignment algorithm. In Annual Symposium on

Combinatorial Pattern Matching. Springer, 50–61.
[9] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay. 2017. ReVAMP: ReRAM based VLIW architecture for in-memory computing. In 2017 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 782–787.
[10] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam. 2017. Spintronics based random access memory: a review. Materials

Today (2017).
[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: Characterization and architectural implications. In Proceedings of

the 17th international conference on Parallel architectures and compilation techniques. ACM, 72–81.
[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. 2011. The gem5

simulator. ACM SIGARCH Computer Architecture News 39, 2 (2011), 1–7.
[13] E. Bolotin, D. Nellans, O. Villa, M. O’Connor, A. Ramirez, and S. W. Keckler. 2015. Designing efficient heterogeneous memory architectures. IEEE

Micro 35, 4 (2015), 60–68.
[14] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams. 2010. Memristive switches enable stateful logic operations via

material implication. Nature 464, 7290 (2010), 873–876.
[15] S. Borkar. 1999. Design challenges of technology scaling. Micro, IEEE 19, 4 (Jul 1999), 23–29. https://doi.org/10.1109/40.782564
[16] R. Cabrera, E. Merced, and N. Sepúlveda. 2013. A micro-electro-mechanical memory based on the structural phase transition of VO2. physica status

solidi (a) 210, 9 (2013), 1704–1711.

Manuscript submitted to ACM

https://doi.org/10.1109/40.782564

22 H.A. Du Nguyen et al.

[17] M.-F. Chang, C.-H. Chuang, M.-P. Chen, L.-F. Chen, H. Yamauchi, P.-F. Chiu, and S.-S. Sheu. 2012. Endurance-aware circuit designs of nonvolatile
logic and nonvolatile SRAM using resistive memory (memristor) device. In Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific. IEEE, 329–334.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing. In
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on. Ieee, 44–54.

[19] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts, S. Wang, et al. 2010. Advances and future prospects
of spin-transfer torque random access memory. IEEE Transactions on Magnetics 46, 6 (2010), 1873–1878.

[20] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al. 2014. Dadiannao: A machine-learning supercomputer. In
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 609–622.

[21] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016. PRIME: a novel processing-in-memory architecture for neural network
computation in ReRAM-based main memory. In ACM SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 27–39.

[22] G. Conte, S. Tommesani, and F. Zanichelli. 2000. The long and winding road to high-performance image processing with MMX/SSE. In Computer
Architectures for Machine Perception, 2000. Proceedings. Fifth IEEE International Workshop on. IEEE, 302–310.

[23] J. P. C. de Lima, P. C. Santos, M. A. Z. Alves, A. C. S. Beck, and L. Carro. 2018. Design Space Exploration for PIM architectures in 3D-stacked
memories. In Computer Frontier. ACM, 295–308.

[24] J. Draper, J. T. Barrett, J. Sondeen, S. Mediratta, C. W. Kang, I. Kim, and G. Daglikoca. 2005. A prototype processing-in-memory (PIM) chip for the
data-intensive architecture (DIVA) system. Journal of VLSI signal processing systems for signal, image and video technology 40, 1 (2005), 73–84.

[25] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen, C. W. Kang, et al. 2002. The architecture of the DIVA
processing-in-memory chip. In Proceedings of the 16th international conference on Supercomputing. ACM, 14–25.

[26] H. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey. 2017. Memristive devices for computing: Beyond CMOS and beyond von Neumann.
In Very Large Scale Integration (VLSI-SoC), 2017 IFIP/IEEE International Conference on. IEEE, 1–10.

[27] H. A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and K. Bertels. 2017. On the implementation of computation-in-memory parallel adder.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 8 (2017), 2206–2219.

[28] P. Dudek and S. Carey. 2006. General-purpose 128/spl times/128 SIMD processor array with integrated image sensor. Electronics Letters 42, 12
(2006), 678–679.

[29] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, and R. Das. 2018. Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks. arXiv preprint arXiv:1805.03718 (2018).

[30] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen. 1997. Simultaneous multithreading: A platform for next-generation
processors. IEEE micro 17, 5 (1997), 12–19.

[31] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. 2015. DRAMA: An architecture for accelerated processing near memory. IEEE
Computer Architecture Letters 14, 1 (2015), 26–29.

[32] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning. 2017. In-Memory Intelligence. IEEE Micro 37, 4 (2017), 30–38.
[33] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. 2008. Intel AVX: New frontiers in performance improvements and energy efficiency. Intel

white paper 19 (2008), 20.
[34] R. J. Fisher. 2003. General-purpose SIMD within a register: Parallel processing on consumer microprocessors. (2003).
[35] M. Flynn. 1966. Very high-speed computing systems. Proc. IEEE 54, 12 (Dec 1966), 1901–1909. https://doi.org/10.1109/PROC.1966.5273
[36] G. Fuchs, N. Emley, I. Krivorotov, P. Braganca, E. Ryan, S. Kiselev, J. Sankey, D. Ralph, R. Buhrman, and J. Katine. 2004. Spin-transfer effects in

nanoscale magnetic tunnel junctions. Applied Physics Letters 85, 7 (2004), 1205–1207.
[37] D. Fujiki, S. Mahlke, and R. Das. 2018. In-Memory Data Parallel Processor. In Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems. ACM, 1–14.
[38] P.-E. Gaillardon, L. Amar, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. De Micheli. 2016. The programmable logic-in-memory (PLiM)

computer. In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 427–432.
[39] M. Gao, G. Ayers, and C. Kozyrakis. 2015. Practical near-data processing for in-memory analytics frameworks. In 2015 International Conference on

Parallel Architecture and Compilation (PACT). IEEE, 113–124.
[40] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. 2006. Introduction to Intel Core Duo Processor Architecture. Intel Technology Journal 10, 2

(2006).
[41] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, et al. 2007. A 160-kilobit

molecular electronic memory patterned at 10 11 bits per square centimetre. Nature 445, 7126 (2007), 414.
[42] B. Halg. 1990. On a micro-electro-mechanical nonvolatile memory cell. IEEE Transactions on Electron Devices 37, 10 (1990), 2230–2236.
[43] S. Hamdioui, K. L. M. Bertels, and M. Taouil. 2017. Computing device for âĂĲbig dataâĂİ applications using memristors. US Patent 9,824,753.
[44] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi, H. M. Elsayed, H. Corporaal, and K. Bertels. 2017. Memristor for computing:

Myth or reality?. In Proceedings of the Conference on Design, Automation & Test in Europe. European Design and Automation Association, 722–731.
[45] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao, F. Catthoor, D. Wouters, L. Eike, et al. 2015. Memristor based

computation-in-memory architecture for data-intensive applications. In Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition. EDA Consortium, 1718–1725.

[46] J. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim. 1999. Optical image encryption based on XOR operations. Optical Engineering 38, 1 (1999), 47–55.
Manuscript submitted to ACM

https://doi.org/10.1109/PROC.1966.5273

A Classification of Memory-Centric Computing 23

[47] A. Haron, J. Yu, R. Nane, M. Taouil, S. Hamdioui, and K. Bertels. 2016. Parallel matrix multiplication on memristor-based computation-in-memory
architecture. In High Performance Computing & Simulation (HPCS), 2016 International Conference on. IEEE, 759–766.

[48] J. L. Hennessy and D. A. Patterson. 2011. Computer architecture: a quantitative approach. Elsevier.
[49] HMC. 2018. Hybrid Memory Cube Specification 2.1. http://hybridmemorycube.org/
[50] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al. 2005. A novel

nonvolatile memory with spin torque transfer magnetization switching: Spin-RAM. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE
International. IEEE, 459–462.

[51] R. B. Hur and S. Kvatinsky. 2016. Memristive memory processing unit (MPU) controller for in-memory processing. In Science of Electrical Engineering
(ICSEE), IEEE International Conference on the. IEEE, 1–5.

[52] IBM. 2014. Power 4 - The First Multi-Core, 1GHz Processor.
[53] ITRS. 2010. ITRS ERD report. http://www.itrs.net
[54] S. S. Iyer and H. L. Kalter. 1999. Embedded DRAM technology: opportunities and challenges. IEEE spectrum 36, 4 (1999), 56–64.
[55] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan. 2017. Computing inmemorywith spin-transfer torquemagnetic RAM. arXiv preprint arXiv:1703.02118

(2017).
[56] J. Jeddeloh and B. Keeth. 2012. Hybrid memory cube new DRAM architecture increases density and performance. In VLSI Technology (VLSIT), 2012

Symposium on. IEEE, 87–88.
[57] Z. Jianwu, Z. Danying, et al. 2008. Survey on microprocessor architecture and development trends. In Communication Technology, 2008. ICCT 2008.

11th IEEE International Conference on. IEEE, 297–300.
[58] D. Judd, K. Yelick, C. Kozyrakis, D. Martin, and D. Patterson. 2001. Exploiting on-chip memory bandwidth in the VIRAM compiler. In Intelligent

Memory Systems. Springer, 122–134.
[59] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim. 2017. HBM (High Bandwidth Memory) DRAM Technology and Architecture. InMemory

Workshop (IMW), 2017 IEEE International. IEEE, 1–4.
[60] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. 2010. Power7: IBM’s next-generation server processor. IEEE micro 30, 2 (2010), 7–15.
[61] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas. [n. d.]. FlexRAM: Toward an advanced Intelligent Memory

system. In 2012 IEEE 30th International Conference on Computer Design (ICCD) (2012). 5–14. https://doi.org/10.1109/ICCD.2012.6378608
[62] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas. 2012. FlexRAM: Toward an advanced intelligent memory system.

In Computer Design (ICCD), 2012 IEEE 30th International Conference on. IEEE, 5–14.
[63] D. Keitel-Schulz and N. Wehn. 1998. Issues in embedded DRAM development and applications. In Proceedings of the 11th international symposium

on System synthesis. IEEE Computer Society, 23–31.
[64] D. Keitel-Schulz and N. Wehn. 2001. Embedded DRAM development: Technology, physical design, and application issues. IEEE Design & Test of

Computers 18, 3 (2001), 7–15.
[65] K. Kim, S. Shin, and S.-M. Kang. 2011. Stateful logic pipeline architecture. In 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

IEEE, 2497–2500.
[66] D. Kirk et al. 2007. NVIDIA CUDA software and GPU parallel computing architecture. In ISMM, Vol. 7. 103–104.
[67] C. Kozyrakis. 2002. Scalable vector media-processors for embedded systems. Technical Report. CALIFORNIA UNIV BERKELEY COMPUTER SCIENCE

DIV.
[68] C. Kozyrakis and D. Patterson. 2002. Vector vs. superscalar and VLIW architectures for embedded multimedia benchmarks. In Proceedings of the

35th annual ACM/IEEE international symposium on Microarchitecture. IEEE Computer Society Press, 283–293.
[69] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, et al. 1997. Scalable

processors in the billion-transistor era: IRAM. Computer 30, 9 (1997), 75–78.
[70] N. Kurd, M. Chowdhury, E. Burton, T. P. Thomas, C. Mozak, B. Boswell, P. Mosalikanti, M. Neidengard, A. Deval, A. Khanna, et al. 2014. Haswell: A

family of IA 22 nm processors. IEEE Journal of Solid-State Circuits 50, 1 (2014), 49–58.
[71] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser. 2014. MAGIC–Memristor-aided logic. IEEE

Transactions on Circuits and Systems II: Express Briefs 61, 11 (2014), 895–899.
[72] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser. 2014. Memristor-based material implication (IMPLY) logic: design

principles and methodologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, 10 (2014), 2054–2066.
[73] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. 2010. Phase change memory architecture and the quest for scalability. Commun. ACM 53, 7 (2010),

99–106.
[74] J. C. Lee, J. Kim, K. W. Kim, Y. J. Ku, D. S. Kim, C. Jeong, T. S. Yun, H. Kim, H. S. Cho, Y. O. Kim, et al. 2016. 18.3 A 1.2 V 64Gb 8-channel 256GB/s

HBM DRAM with peripheral-base-die architecture and small-swing technique on heavy load interface. In Solid-State Circuits Conference (ISSCC),
2016 IEEE International. IEEE, 318–319.

[75] E. Lehtonen, J. H. Poikonen, and M. Laiho. 2014. Memristive stateful logic. In Memristor Networks. Springer, 603–623.
[76] J. D. Leidel and Y. Chen. 2016. Hmc-sim-2.0: A simulation platform for exploring custom memory cube operations. In 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 621–630.
[77] C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, et al. 2004. Multilevel memory based on molecular devices.

Applied Physics Letters 84, 11 (2004), 1949–1951.
Manuscript submitted to ACM

http://hybridmemorycube.org/
http://www.itrs.net
https://doi.org/10.1109/ICCD.2012.6378608

24 H.A. Du Nguyen et al.

[78] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, C. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, et al. 2003. Fabrication approach for molecular memory
arrays. Applied physics letters 82, 4 (2003), 645–647.

[79] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie. 2017. Drisa: A dram-based reconfigurable in-situ accelerator. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 288–301.

[80] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. 2016. Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging
non-volatile memories. In DAC. IEEE.

[81] E. Linn, R. Rosezin, S. Tappertzhofen, R. Waser, et al. 2012. Beyond von Neumann–logic operations in passive crossbar arrays alongside memory
operations. Nanotechnology 23, 30 (2012), 305205.

[82] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerrieri. 2003. A VLIW processor with reconfigurable instruction set for embedded
applications. IEEE Journal of solid-state circuits 38, 11 (2003), 1876–1886.

[83] J. Macri. 2015. AMD’s next generation GPU and high bandwidth memory architecture: FURY. In Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE,
1–26.

[84] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. 2000. Smart memories: A modular reconfigurable architecture. ACM SIGARCH
Computer Architecture News 28, 2 (2000), 161–171.

[85] A. Maislos et al. 2011. A new era in embedded flash memory. Flash memory summit (2011).
[86] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens. 2002. Challenges and future directions for the

scaling of dynamic random-access memory (DRAM). IBM Journal of Research and Development 46, 2.3 (2002), 187–212.
[87] P. Marcuello, A. González, and J. Tubella. 1998. Speculative multithreaded processors. In Proceedings of the 12th international conference on

Supercomputing. ACM, 77–84.
[88] S. Mittal. 2018. A Survey of ReRAM-Based Architectures for Processing-In-Memory and Neural Networks. Machine Learning and Knowledge

Extraction 1, 1 (2018). https://doi.org/10.3390/make1010005
[89] A. Morad, L. Yavits, and R. Ginosar. 2014. Efficient dense and sparse Matrix multiplication on GP-SIMD. In Power and Timing Modeling, Optimization

and Simulation (PATMOS), 2014 24th International Workshop on. IEEE, 1–8.
[90] A. Morad, L. Yavits, and R. Ginosar. 2015. GP-SIMD processing-in-memory. ACM Transactions on Architecture and Code Optimization (TACO) 11, 4

(2015), 53.
[91] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar. 2016. Resistive GP-SIMD processing-in-memory. ACM Transactions on Architecture and Code

Optimization (TACO) 12, 4 (2016), 57.
[92] O. Mutlu. 2013. Memory scaling: A systems architecture perspective. In Memory Workshop (IMW), 2013 5th IEEE International. IEEE, 21–25.
[93] R. Nair. 2015. Evolution of memory architecture. Proc. IEEE 103, 8 (2015), 1331–1345.
[94] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y. Cher, C. H. Costa, J. Doi, C. Evangelinos, et al. 2015. Active memory cube: A

processing-in-memory architecture for exascale systems. IBM Journal of Research and Development 59, 2/3 (2015), 17–1.
[95] H. Noyes et al. 2014. MicronâĂŹs automata processor architecture: Reconfigurable and massively parallel automata processing. In Proc. of Fifth

International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies.
[96] NVIDIA. 2012. Tesla K20X GPU Accelerator Board Specification.
[97] M. Oskin, F. T. Chong, and T. Sherwood. 1998. Active pages: A computation model for intelligent memory. Vol. 26. IEEE Computer Society.
[98] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. 1997. A case for intelligent RAM. IEEE micro

17, 2 (1997), 34–44.
[99] D. A. Patterson. 2006. Future of computer architecture. In Berkeley EECS Annual Research Symposium (BEARS), College of Engineering, UC Berkeley,

US.
[100] J. T. Pawlowski. 2011. Hybrid memory cube (HMC). In Hot Chips 23 Symposium (HCS), 2011 IEEE. IEEE, 1–24.
[101] A. Peleg and U. Weiser. 1996. MMX technology extension to the Intel architecture. IEEE micro 16, 4 (1996), 42–50.
[102] M. Radosavljević, M. Freitag, K. Thadani, and A. Johnson. 2002. Nonvolatile molecular memory elements based on ambipolar nanotube field effect

transistors. Nano Letters 2, 7 (2002), 761–764.
[103] R. Ramanathan. 2006. Intel® Multi-Core Processors. Making the Move to Quad-Core and Beyond (2006).
[104] S. Raoux, F. Xiong, M. Wuttig, and E. Pop. 2014. Phase change materials and phase change memory. MRS bulletin 39, 8 (2014), 703–710.
[105] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon, and S. Kvatinsky. 2017. Memristive logic: A framework for evaluation and

comparison. In Power and Timing Modeling, Optimization and Simulation (PATMOS), 2017 27th International Symposium on. IEEE, 1–8.
[106] M. T. A. S. M. L. G. S. P. S. S. F. C. S. D. F. G. R. G. K. A. R. L. B. Said Hamdioui, Hoang Anh Du Nguyen. 2019. Applications of computation-in-memory

architectures based on memristive devices. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition. EDA Consortium,
486–491.

[107] G. S. Sandhu. 2013. Emerging memories technology landscape. In Non-Volatile Memory Technology Symposium (NVMTS), 2013 13th. IEEE, 1–5.
[108] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore. 2003. Exploiting ILP, TLP, and DLP with the

polymorphous TRIPS architecture. In ACM SIGARCH Computer Architecture News, Vol. 31. ACM, 422–433.
[109] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry. 2015. Fast bulk bitwise AND and OR in DRAM.

IEEE Computer Architecture Letters 14, 2 (2015), 127–131.

Manuscript submitted to ACM

https://doi.org/10.3390/make1010005

A Classification of Memory-Centric Computing 25

[110] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry. 2017. Ambit: In-memory
accelerator for bulk bitwise operations using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 273–287.

[111] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar. 2016. ISAAC: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[112] M. Shami and A. Hemani. 2012. Classification of Massively Parallel Computer Architectures. In Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International. 344–351. https://doi.org/10.1109/IPDPSW.2012.42

[113] P. Siegl, R. Buchty, and M. Berekovic. 2016. Data-centric computing frontiers: A survey on processing-in-memory. In Proceedings of the Second
International Symposium on Memory Systems. ACM, 295–308.

[114] A. Siemon, S. Menzel, A. Chattopadhyay, R. Waser, and E. Linn. 2015. In-memory adder functionality in 1S1R arrays. In 2015 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1338–1341.

[115] A. Siemon, S. Menzel, R. Waser, and E. Linn. 2015. A complementary resistive switch-based crossbar array adder. IEEE journal on emerging and
selected topics in circuits and systems 5, 1 (2015), 64–74.

[116] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and A.-J. Boonstra. 2018. A Review of Near-Memory Computing
Architectures: Opportunities and Challenges. In Proceedings of the 21st Euromicro Conference on Digital System Design (DSD).

[117] D. Skillicorn. 1988. A taxonomy for computer architectures. Computer 21, 11 (Nov 1988), 46–57. https://doi.org/10.1109/2.86786
[118] G. Snider. 2005. Computing with hysteretic resistor crossbars. Applied Physics A: Materials Science & Processing 80, 6 (2005), 1165–1172.
[119] K. Sohn, W.-J. Yun, R. Oh, C.-S. Oh, S.-Y. Seo, M.-S. Park, D.-H. Shin, W.-C. Jung, S.-H. Shin, J.-M. Ryu, et al. 2017. A 1.2 V 20 nm 307 GB/s HBM

DRAM with at-speed wafer-level IO test scheme and adaptive refresh considering temperature distribution. IEEE Journal of Solid-State Circuits 52,
1 (2017), 250–260.

[120] H. S. Stone. 1970. A logic-in-memory computer. IEEE Trans. Comput. 100, 1 (1970), 73–78.
[121] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw, D. Sylvester, and R. Das. 2017. Cache Automaton. In Proceedings of the 50th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 259–272. https://doi.org/10.1145/
3123939.3123986

[122] J. Suh, E.-G. Kim, S. P. Crago, L. Srinivasan, and M. C. French. 2003. A performance analysis of PIM, stream processing, and tiled processing on
memory-intensive signal processing kernels. In ACM SIGARCH Computer Architecture News, Vol. 31. ACM, 410–421.

[123] M. R. Thistle and B. J. Smith. 1988. A processor architecture for Horizon. In Supercomputing’88.[Vol. 1]., Proceedings. IEEE, 35–41.
[124] D. M. Tullsen, S. J. Eggers, and H. M. Levy. 1995. Simultaneous multithreading: Maximizing on-chip parallelism. In ACM SIGARCH Computer

Architecture News, Vol. 23. ACM, 392–403.
[125] M. Vestias and H. Neto. 2014. Trends of CPU, GPU and FPGA for high-performance computing. In Field Programmable Logic and Applications (FPL),

2014 24th International Conference on. IEEE, 1–6.
[126] B. Wang, M. Torres, D. Li, J. Zhao, and F. Rusu. 2016. Performance Implications of Processing-in-Memory Designs on Data-Intensive Applications.

In Parallel Processing Workshops (ICPPW), 2016 45th International Conference on. IEEE, 115–122.
[127] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi. 2014. Endurance-aware cache line management for non-volatile caches. ACM Transactions on Architecture

and Code Optimization (TACO) 11, 1 (2014), 4.
[128] Y. Wang, Y. Han, L. Zhang, H. Li, and X. Li. 2015. ProPRAM: exploiting the transparent logic resources in non-volatile memory for near data

computing. In Proceedings of the 52nd Annual Design Automation Conference. ACM, 47.
[129] R. Waser. 2012. Redox-based resistive switching memories. Journal of nanoscience and nanotechnology 12, 10 (2012), 7628–7640.
[130] R. Waser and M. Aono. 2007. Nanoionics-based resistive switching memories. Nature materials 6, 11 (2007), 833.
[131] S. Wong, T. Van As, and G. Brown. 2008. ρ-VEX: A reconfigurable and extensible softcore VLIW processor. In ICECE Technology, 2008. FPT 2008.

International Conference on. IEEE, 369–372.
[132] W. A. Wulf and S. A. McKee. 1995. Hitting the memory wall: implications of the obvious. ACM SIGARCH computer architecture news 23, 1 (1995),

20–24.
[133] L. Xie, H. A. D. Nguyen, M. Taouil, and K. Bertels Said Hamdioui. 2015. Fast boolean logic mapped on memristor crossbar. In Computer Design

(ICCD), 2015 33rd IEEE International Conference on. IEEE, 335–342.
[134] L. Xie, H. A. D. Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and S. Hamdioui. 2017. Scouting Logic: A Novel Memristor-Based Logic

Design for Resistive Computing. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 335–340.
[135] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li. 2018. PIMSim: A Flexible and Detailed Processing-in-Memory Simulator. IEEE Computer

Architecture Letters 18, 1 (2018), 6–9.
[136] J. J. Yang, D. B. Strukov, and D. R. Stewart. 2013. Memristive devices for computing. Nature nanotechnology 8, 1 (2013), 13–24.
[137] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar. 2015. Resistive Associative Processor. CAL (2015).
[138] J. Yu, L. Xie, M. Taouil, and S. Hamdioui. 2018. Memristive Devices for Computation-In-Memory. In Design, Automation and Test in Europe DATE.
[139] S. Yu and P.-Y. Chen. 2016. Emerging memory technologies: Recent trends and prospects. IEEE Solid-State Circuits Magazine 8, 2 (2016), 43–56.
[140] J.-G. Zhu. 2008. Magnetoresistive random access memory: The path to competitiveness and scalability. Proc. IEEE 96, 11 (2008), 1786–1798.

Manuscript submitted to ACM

https://doi.org/10.1109/IPDPSW.2012.42
https://doi.org/10.1109/2.86786
https://doi.org/10.1145/3123939.3123986
https://doi.org/10.1145/3123939.3123986

	Abstract
	1 Introduction
	2 Criteria and Classification
	2.1 Classification Metrics
	2.2 Classification
	2.3 Qualitative Evaluation

	3 Computation-in-Memory - Array (CIM-A)
	3.1 Basic CIM-A architecture
	3.2 Hybrid CIM-A architecture

	4 Computation-in-Memory - Periphery (CIM-P)
	4.1 Basic CIM-P architecture
	4.2 Hybrid CIM-P architecture

	5 Computation-out-Memory - Near (COM-N)
	6 Discussion
	6.1 Completeness
	6.2 Related work
	6.3 Future directions and challenges

	7 Conclusion
	Acknowledgments
	References

