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Abstract 11 

In the past 20 years, hyperspectral imaging has been widely investigated as an emerging, promising 12 

technology for evaluating quality and safety of horticultural products. This technology has originated from 13 

remote sensing and joins the domains of machine vision and point spectroscopy to provide superior image 14 

segmentation for the detection of defects and contaminations, and to map the chemical composition. Thanks 15 

to the advancements in instrumentation and data analysis in the past two decades, hyperspectral imaging 16 

technology has evolved into a powerful nondestructive inspection tool and the scope of applications in 17 

postharvest quality and safety evaluation has expanded tremendously. In this article, different imaging 18 

modes (reflectance, transmittance, fluorescence and Raman) and their combinations, and the potential for 19 

real-time acquisition of hyperspectral images at industry relevant speeds are first discussed in terms of their 20 

advantages and disadvantages. Next reviewed are different data processing/analysis methods and associated 21 

steps from data pre-processing over the spectral and spatial domains to the actual model building and 22 

performance evaluation. An overview is then given of hyperspectral imaging applications for external 23 

quality and defect evaluation, internal quality and maturity assessment, and food safety detection of 24 
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horticultural products. Finally, a brief discussion is presented on the challenges and opportunities in future 25 

development and application of hyperspectral imaging technology in food quality and safety evaluation of 26 

horticultural products. 27 

Keywords: Spectroscopy, imaging, fruit, vegetables, postharvest, quality, safety 28 

1. Introduction 29 

While the biological nature of horticultural products contributes to their high value as healthy sources of 30 

carbohydrates, vitamins and natural fibers, it also creates challenges with respect to the quality and safety 31 

assessment. Horticultural products are the result of a natural production process influenced by a wide range 32 

of factors such as genetics, environment, agronomic practices, etc. Moreover, horticultural products are not 33 

stable over time, but grow, mature, ripen and eventually perish as a result of metabolic processes during 34 

pre- and post-harvest periods. Consequently, their nutritional value, appearance and taste can vary widely 35 

between batches, and even within a batch. Hence, to ensure consumer satisfaction, the quality and safety of 36 

every product item should be inspected.  37 

Appearance (i.e., color, size, shape and surface texture) can often be used as a proxy for product quality 38 

and safety, thanks to the interaction of light with the pigments and microstructure in horticultural products. 39 

Consequently, visual inspection is widely used throughout the horticultural production chain for rapid and 40 

non-destructive evaluation and sorting of the produce. While sorting based on visual inspection is still 41 

widely used in the horticultural sector, the limitations of human operators in terms of speed, volume and 42 

subjectivity, have inspired researchers to develop automatic sorting lines based on machine vision where 43 

the human eyes are replaced by a camera, the brain by a computer and the hands by an actuation system 44 

(e.g. ejector or tipping buckets). The first applications of machine vision made use of panchromatic cameras 45 

where each picture element (pixel) acquires a value which is proportional to the average intensity over a 46 

wide wavelength range (e.g. 400-1000 nm). This results in a greyscale image which allows to segment 47 

objects such as fruits, stalks and punctures based on image contrast. Early in the 1980’s, Sarkar and Wolfe 48 
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(1985) already demonstrated this concept for tomato sorting. To increase the contrast between the relevant 49 

objects in the images, specific filters could be added in front of the camera to select a specific spectral 50 

portion.  51 

Human (color) vision that is sensitive to red, green and blue light can be mimicked by different optical 52 

configurations (e.g., sequentially placing bandpass filters in front of a camera). An efficient way involves 53 

the deposition of a patterned filter on the camera chip consisting of squares. The most popular filter pattern, 54 

known as the Bayer filter, involves squares of 4 pixels with 1 blue, 1 red and 2 green filters to acquire RGB 55 

(red-green-blue) images. In the 1990’s, RGB computer vision developed rapidly for quality grading and 56 

defect detection in the food industry (Brosnan and Sun, 2004) and on horticultural products such as apples 57 

(Throop et al., 1993) and tomatoes (Shearer and Payne, 1990). The significant increase in discriminating 58 

power provided by RGB imaging compared to panchromatic or monochromatic imaging inspired 59 

researchers to investigate the added value of utilizing more and other combinations of filters in the visible 60 

and near infrared (NIR) range. Imaging at multiple (typically 3-10) spectral bands is referred to as multi-61 

spectral. For example, Mehl et al. (2002) showed the value of multispectral imaging for defect detection in 62 

apples, while Noordam et al. (2004) demonstrated its efficacy for inline defect and disease detection in the 63 

production of French fries.  64 

In parallel with the investigations on computer vision for quality grading and sorting based on 65 

appearance, NIR spectroscopy, which covers the spectral region from 780 to 2500 nm that cannot be 66 

perceived by human eyes, was evaluated for rapid and non-destructive assessment of quality traits such as 67 

soluble solids content, titratable acidity and firmness (Nicolaï et al., 2007). In these studies, point 68 

measurements were performed in the visible (400-780 nm) and NIR (780 – 2500 nm) range with a spectral 69 

resolution of a few nm, providing spectral information at more than hundred wavebands, referred to as 70 

hyperspectral data. This allowed to obtain much more detailed information on the chemical composition of 71 

the samples. Early in the 1980’s, researchers in remote sensing had already demonstrated the possibility to 72 

scan the earth surface with such a high spectral resolution, which gave birth to a new field known as imaging 73 
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spectrometry or hyperspectral imaging (Goetz et al., 1985). The equipment for hyperspectral imaging used 74 

in remote sensing was extremely expensive. So, it took until the late 1990’s before this technology was 75 

introduced in food science (Gowen et al., 2007) and postharvest research (Lu and Chen, 1998; Martinsen 76 

and Schaare, 1998; Nicolaï et al., 2007) for more challenging classification tasks and mapping of the 77 

chemical composition, referred to as chemical imaging. 78 

In this article, the progress in hyperspectral imaging technology for quality and safety evaluation of 79 

horticultural products since its introduction 20 years ago is reviewed. First, the instrumentation and imaging 80 

modes are discussed with special attention for the challenges related to real-time implementation. Then, the 81 

different steps in hyperspectral data analysis are discussed. Finally, an overview is given of hyperspectral 82 

imaging applications for external quality and defect evaluation, internal quality and maturity assessment, 83 

and food safety detection, followed by a brief discussion on challenges and future research needs. 84 

2.    Instrumentation and Imaging Modes 85 

2.1. Overview 86 

Instrumentation for hyperspectral imaging requires considering specific image acquisition approaches (i.e., 87 

point-scanning, line-scanning, area-scanning, and single shot or snapshot) and imaging or sensing modes 88 

(i.e., reflectance, transmittance, fluorescence and Raman), depending on the intended applications. Line 89 

and area scanning are widely used in hyperspectral imaging research for food quality inspection, and the 90 

former is well suited for inspecting food items moving along the production line. Snapshot or single shot is 91 

an emerging approach for hyperspectral image acquisition, which holds promise for real-time applications 92 

because of its fast imaging speed. Hyperspectral imaging can be implemented using one of the four sensing 93 

modes, or their combinations.  94 

In any hyperspectral imaging system, there are three essential devices, i.e., light source, wavelength 95 

dispersive element and area-array detector (Lu et al., 2017). The light source can be a broadband quartz-96 

tungsten-halogen (QTH), arc lamp, light emitting diodes (LEDs) or lasers. QTH lamps are most extensively 97 

used in hyperspectral imaging for food inspection, while narrowband LEDs and lasers are commonly used 98 
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as an excitation light source in fluorescence and Raman imaging measurements. With the rapid 99 

developments in LED technology in recent years, broadband LED lighting is increasingly used for 100 

hyperspectral imaging. The wavelength dispersive element is usually composed of a diffraction grating 101 

based imaging spectrograph or an electrically tunable filter (ETF) [e.g., liquid-crystal tunable filter (LCTF) 102 

or acousto-optic tunable filter (AOTF)]. Different types of wavelength dispersive elements are associated 103 

with different image acquisition approaches. The imaging spectrograph is used for line scanning 104 

measurements, while the ETF is used for area scanning. For the area detector, there are multiple options 105 

available as well in terms of image sensor, such as charge-coupled device (CCD) or complementary metal-106 

oxide-semiconductor (CMOS), and photo-sensitive elements: Silicon (Si), indium gallium arsenide 107 

(InGaAs) or mercury cadmium telluride (MCT). CCD represents the mainstream detectors for hyperspectral 108 

imaging, while CMOS is appealing and increasingly popular for real-time imaging applications. More 109 

detailed descriptions of these devices are given elsewhere (Lu et al., 2017; Qin, 2010). 110 

Over the past two decades, both custom-assembled and commercial hyperspectral imaging systems 111 

have been used for food quality and safety evaluation. The former are built using modular components as 112 

described above, which are amenable to further modifications and improvements for meeting specific 113 

application needs, while the later come as all-in-one, ready-to-use hyperspectral imaging systems suitable 114 

for general applications. 115 

2.2. Single Imaging Modes  116 

The nature of light-matter interactions forms the foundation for optical imaging technologies like 117 

hyperspectral imaging. As schematically shown in Figure 1, the light incident on a turbid medium (e.g. a 118 

biological tissue) can be back-reflected after absorption and multiple scattering events, or via energy 119 

transfer between light and particles in the medium emitted in a different form of radiation such as 120 

fluorescence or Raman scattering, usually at longer wavelengths. However, it may also be transmitted 121 

through the medium without being fully absorbed. These light-matter interaction processes enable 122 

hyperspectral imaging to be implemented in reflectance, transmittance, fluorescence or Raman scattering 123 

mode by measuring respectively the reflected, transmitted or emitted light signals. Each of these imaging 124 
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modes has different implications in quality and safety assessment of horticultural products (Lu et al., 2017; 125 

Qin et al., 2017a), and therefore will be described in detail. 126 

 127 

Figure 1. Schematic representation of light-matter interactions in a turbid medium illustrating four types of light that 128 

can be sensed in hyperspectral imaging, i.e., reflected, transmitted, fluorescence and Raman; the different color of 129 

the arrows for fluorescence and Raman scattering indicate that these photons have a different wavelength. 130 

2.2.1. Reflectance  131 

The standard configuration for reflectance imaging involves the use of diffuse light, as shown in 132 

Figure 2 (right). Diffusely or uniformly distributed light illuminates the sample, thus minimizing unwanted 133 

shadows or glares. This lighting mode is most extensively used in various machine vision applications for 134 

food product inspection (Cubero et al., 2011). Such diffuse light can be generated using a single line lamp 135 

or two line lamps symmetrically mounted around the object being imaged, as shown in Figure 2, or by 136 

mounting light sources within a hemispherical aluminum diffuser (Gómez-Sanchis et al., 2008a) or a 137 

lighting tunnel with an inner surface painted in white (Kleynen et al., 2005). As most horticultural produce 138 

is glossy and has a complex geometrical shape, it is recommended to optimize the positioning of the light 139 

sources based on ray tracing simulations (Keresztes et al., 2016b). 140 

An alternative illumination mode involves point lighting with a narrow high-intensity light beam (e.g., 141 

~1-2 mm in size), which can be generated by using point-like sources like lasers or focusing a broadband 142 

light beam, to interrogate biological samples. This creates a light scattering image at the surface of the 143 

sample, and by acquiring and analyzing scattering images from fruit samples, one could assess fruit texture 144 
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(e.g., firmness, porosity) and flavor [e.g., soluble solids content (SSC)] (Lu, 2004; Lu, 2007; Lu and Peng, 145 

2006; Wang et al., 2020). Moreover, based on light propagation models, the optical properties (i.e., 146 

absorption and scattering coefficients) of horticultural products can be estimated (Cen et al., 2012; Qin and 147 

Lu, 2008; Vanoli et al., 2020; Wang et al., 2020). Further information on this special variant of reflectance 148 

hyperspectral imaging and the methods to extract the optical properties from these measurements can be 149 

found in Lu et al. (2020) .  150 

The diffuse reflectance imaging mode usually probes the superficial regions of biological samples 151 

within several millimeters below the sample surface, depending on imaging hardware setup and optical 152 

properties of the sample. Hence, this imaging mode is commonly used to detect surface or near-surface 153 

characteristics of horticultural products, such as surface defects (Mehl et al., 2004; Qin et al., 2009a; Zhang 154 

et al., 2015a), subsurface bruising (Lu, 2003; Lu and Lu, 2017a; Xing and De Baerdemaeker, 2005) and 155 

tissue decay (Gómez-Sanchis et al., 2008a; Li et al., 2016).   156 

 157 

Figure 2. Schematic representation of reflectance imaging modes with point light (left) and diffuse illumination 158 

(right).  159 

2.2.2. Transmittance  160 

In transmittance imaging, as illustrated in Figure 3(left), the incident light and the camera are positioned 161 

on opposite sides of the sample with an angle of detection around 180°. Compared to reflectance imaging, 162 

such configuration is advantageous in detecting internal quality characteristics of samples, such as internal 163 
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defects (Ariana and Lu, 2008a; Huang et al., 2013; Qin and Lu, 2005; Xing et al., 2008), given the fact that 164 

only light passing through the whole sample is measured. To yield detectable signals, transmittance imaging 165 

requires a high-intensity light source and a high-sensitivity detector (Ariana and Lu, 2008b). This makes it 166 

relatively costly and more difficult to implement in practice. Transmittance measurements may be 167 

influenced by product size and shape, since light attenuation within the product is dependent on the travelled 168 

light pathlength. Another issue is that clear-cut images cannot be readily obtained by transmittance imaging, 169 

because in most tissues the transmitted light has undergone many scattering events. In the reported 170 

applications on defect detection (Ariana and Lu, 2008a; Huang et al., 2013; Qin and Lu, 2005; Xing et al., 171 

2008), (low-resolution) transmittance images were analyzed mostly for spectral features rather than defect 172 

visualization, which essentially reduces transmittance imaging to transmittance spectroscopy (Clark et al., 173 

2003; Han et al., 2006).  174 

As a compromise between diffuse reflectance and transmittance imaging, a semi-transmittance imaging 175 

mode has been suggested (Pan et al., 2017), where the light illumination area is separated from the imaging 176 

area by a specified distance or angle [Figure 3(right)]. This allows to acquire more information from the 177 

inside of the sample than the reflectance mode, because the measured light has gone through a minimal 178 

depth of tissue below the surface. This interactance imaging mode has been used in several studies (Pan et 179 

al., 2017; Wang et al., 2013).  180 

 181 

 182 

Figure 3. Schematic illustration of transmittance (left) and interactance (right) imaging modes.  183 
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2.2.3. Fluorescence  184 

Biological materials, upon excitation by absorbing ultraviolet (UV) radiation or short-wavelength visible 185 

light, can emit longer-wavelength radiation. This phenomenon is known as fluorescence. Typical 186 

fluorescence spectra of plant materials are characterized by emission peaks in the blue, green, red and far-187 

red regions, spanning a spectral range from 400 to 800 nm (Buschmann and Lichtenthaler, 1998). The blue 188 

and green fluorescence can be produced by cinnamic acids, while chlorophylls produce emission peaks in 189 

the red and far-red range (Buschmann et al., 2000). Imaging fluorescence emissions, especially at these 190 

four wavebands, provides a means for diagnosis of plant health conditions (Lichtenthaler and Miehe, 1997), 191 

and also for quality and safety inspection of horticultural products (Kim et al., 2002; Zhang et al., 2012).  192 

In fluorescence imaging, the excitation light is critical for achieving high-yield fluorescence emissions. 193 

For example, radiation in the UV-A spectral region (long-wavelength UV in the 310-400 nm range) 194 

effectively excites the fluorophores in plant materials. Figure 4 shows two typical setups for hyperspectral 195 

fluorescence imaging. As in reflectance imaging, the light source and detector are generally positioned at 196 

the same side of the sample, and either broadband xenon arc lamps with high-intensity UV output or lasers 197 

or LEDs at appropriate wavelengths are used for sample excitation. In fluorescence imaging, it is important 198 

to control possible experimental artifacts due to ambient light or excitation light being detected. A simple 199 

technique illustrated in Figure 4(left) involves the installation of a shortpass filter (e.g., <400 nm) in front 200 

of the excitation light source and a longpass filter (e.g., >400 nm) in front of the camera (Kim et al., 2001b). 201 

Another way is to employ a time-gated detection system, in which a pulsed excitation light source (e.g., a 202 

short pulse laser) is used for excitation and the detection is electronically delayed relative to the excitation 203 

(Birlouez-Aragon et al., 2008). In addition, researchers have also used continuous-wave lasers coupled to 204 

a computer-controlled mechanical shutter, as shown in Figure 4(left), for fluorescence excitation (Noh and 205 

Lu, 2007). Under UV-A excitation, hyperspectral fluorescence images are typically captured in the 420-206 

750 nm range, which covers the blue to far red region (Kim et al., 2001b; Kim et al., 2002). Like reflectance 207 

imaging, fluorescence imaging also probes superficial regions of samples and is mainly used to detect 208 
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surface and near-surface characteristics. It is commonly used for food safety applications, such as detecting 209 

fecal contaminations and foreign materials (Kim et al., 2002; Mo et al., 2017a).  210 

 211 

Figure 4. Schematic of fluorescence imaging using broadband lamps (right) and laser for excitation.  212 

2.2.4. Raman  213 

Hyperspectral Raman imaging, which is a two-dimensional (2-D) advancement over Raman spectroscopy 214 

that measures Raman scattering (Matousek and Morris, 2010), is a relatively recent technique for food 215 

quality and safety inspection. A hyperspectral Raman imaging system shares some similar requirements 216 

with the fluorescence imaging described above. Both Raman and fluorescence are weak (low-probability) 217 

processes (the former is even weaker), requiring an intense excitation light source and high-performance 218 

detector to ensure adequate signal quality. Moreover, they require blocking the excitation light from the 219 

detection end. For Raman measurements, an additional challenge is posed by the strong background of 220 

auto-fluorescence emission in many plant materials, which is generally several orders of magnitude stronger 221 

than the Raman signal. Such fluorescence interference needs to be eliminated or suppressed to avoid it from 222 

masking the Raman signal. To this end, the excitation is typically performed with diode lasers at 785 or 223 

830 nm, because they generate less fluorescence than lasers at shorter wavelengths (Qin et al., 2016). A 224 

beam splitter at the excitation wavelength is preferentially used in Raman imaging to direct the incident 225 

light to the sample and resulting Raman-shifted light to the detector. As the Raman signals are very weak, 226 

commercial Raman imaging systems typically have small imaging areas at millimeter scales or less (for 227 

microscopic applications). Hence, there is a need to custom-design a macro-scale Raman imaging system 228 
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for inspecting food items (Qin et al., 2010). Applications of hyperspectral Raman imaging have been 229 

reported on chemical mapping of horticultural products (Qin et al., 2011b; Qin et al., 2017b). 230 

2.3. Integrated Imaging Modes 231 

2.3.1. Integrated Reflectance and Transmittance  232 

Integrated reflectance and transmittance imaging, compared to implementing them individually, has 233 

the advantage of simultaneous evaluation of external (e.g., color, size and surface defects) and internal (e.g., 234 

firmness, SSC and internal defects) quality characteristics of horticultural products. Ariana and Lu (2008b, 235 

2008c, 2010) pioneered such reflectance-transmittance integrated hyperspectral imaging concept. It is well 236 

recognized that many biological tissues are almost opaque to visible light in the region of 400-675 nm 237 

because of strong light scattering and absorption, while red-NIR light in the region of 675-1000 nm has 238 

deeper tissue penetration. This motivated the development of the integrated reflectance and transmittance 239 

imaging system illustrated in Figure 5, in which the visible light was used for reflectance measurements to 240 

assess surface quality characteristics of samples, and the red-NIR light was used in transmittance imaging 241 

for internal quality assessment. The visible light was generated using a QTH lamp with light output filtered 242 

by a shortpass filter at the cut-off wavelength of 675 nm, and the red-NIR light was generated using a 243 

higher-power QTH lamp. Hyperspectral images covering the full wavelength range from 400 to 1000 nm 244 

were acquired using a single CCD camera. It should be noted that shortpass filters at other cut-off 245 

wavelengths (e.g., 700 nm) could also be used to lend measuring flexibility to the system. The integrated 246 

hyperspectral imaging system has demonstrated its effectiveness for the inspection of pickling cucumbers, 247 

whole pickles and blueberries (Ariana and Lu, 2008c, 2010; Leiva-Valenzuela et al., 2014; Lu and Ariana, 248 

2013).  249 

The broadband QTH lamps are inefficient, since the generated light above a cut-off wavelength is fully 250 

wasted and results in a considerable heat generation. Improvements were made to the above integrated 251 

imaging system by replacing the original QTH lamps with white LED lamps covering the 400-700 nm 252 

spectral region for reflectance imaging, and an NIR LED lighting module in the 700-1000 nm range for 253 
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transmittance imaging (Cen et al., 2014). The use of white LEDs eliminates the need for a shortpass filter 254 

to de-mix reflectance and transmittance measurements.  255 

 256 
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Side view End view
  257 

Figure 5. Schematic of an integrated hyperspectral reflectance and transmittance imaging prototype. 258 

2.3.2. Integrated Reflectance and Fluorescence  259 

Although both reflectance and fluorescence imaging are suited for detection of surface and subsurface 260 

characteristics of food commodities, they are based on different principles of light-matter interactions and 261 

may not be equally effective for specific applications. In general, reflectance imaging has a broader scope 262 

of applications, while fluorescence imaging was shown to be more sensitive for detecting some exogenous 263 

contaminants such as animal feces (Kim et al., 2001a; Kim et al., 2007) and certain stress-induced defects 264 

such as chilling or freezing damage (Slaughter et al., 2008). This suggests that the complementary use of 265 

both techniques may lead to a more versatile inspection tool.  266 

Researchers at the U.S. Department of Agriculture Agricultural Research Service (USDA/ARS) in 267 

Beltsville, Maryland pioneered the technique of  integrating reflectance and fluorescence imaging for food 268 

quality and safety assessment (Kim, 2015; Kim et al., 2007; Kim et al., 2001b; Kim et al., 2008; Lefcourt 269 

et al., 2006b). Figure 6 shows such an integrated hyperspectral imaging system in conjunction with a 270 

commercial fruit sorting machine, for the detection of fecal contamination and surface defects on apples 271 

using fluorescence and reflectance measurements, respectively. This system was equipped with an electron-272 
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multiplying CCD (EMCCD) camera, which is low-light sensitive, and two different light sources, a QTH 273 

lamp and a high-intensity UV-A lamp, enabling both fluorescence and reflectance measurements, 274 

respectively (Kim et al., 2007). A similar configuration integrating hyperspectral reflectance and 275 

fluorescence imaging, in which a diode laser at 408 nm was used for fluorescence excitation and a focused 276 

QTH light beam for reflectance measurement, was investigated for assessing apple maturity parameters 277 

(Noh et al., 2007). However, results for firmness, titratable acid and SSC prediction were relatively poor, 278 

compared to conventional point spectroscopy. 279 

 280 

Figure 6. Schematic illustration (left) and photo (right) of an online hyperspectral reflectance and fluorescence line-281 

scan imaging system. Reproduced with permission from Kim et al. (2007).   282 

2.4. Real-time Imaging  283 

Real-time hyperspectral imaging is faced with significant challenges, because of the need to acquire and 284 

process large volumes of image data at tens to hundreds of wavelengths. So far, the number of publications 285 

on real-time (full-spectrum) hyperspectral imaging for food quality and safety inspection is still limited. 286 

Keresztes et al. (2016a) implemented pixel-based early apple bruise detection using short-wave infrared 287 

(SWIR) hyperspectral imaging in real-time. However, the reported speed of 0.3 m/s was still short of 288 

meeting the industry needs. An alternative solution is to implement a line-scanning hyperspectral imaging 289 

system in multispectral mode, thus significantly reducing the workload of image acquisition and processing. 290 
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In addition, snapshot based hyperspectral imaging systems could provide opportunities for online 291 

application for quality and safety inspection of horticultural products. Several companies are now offering 292 

commercial systems for sorting seeds, nuts, fruit and vegetables in fresh, dried and processed form based 293 

on line-scan hyperspectral imaging mode (e.g. Insort Gmbh, Kirchberg an der Raab, Austria; TOMRA 294 

Systems ASA, Asker Municipality, Norway; Key Technology Inc., Walla Walla, WA, USA). 295 

2.4.1. Line-scanning Mode 296 

A line-scanning hyperspectral imaging system for real-time inspection needs dedicated hardware (e.g., 297 

efficient lighting, fast data acquisition and transfer devices, and powerful computers), well-decided working 298 

parameters (e.g. line-scanning spatial resolution and the number of wavelengths) and efficient software (e.g. 299 

image processing algorithms and implementations, and software architecture) (Park and Yoon, 2015). 300 

EMCCD is a low-light-sensitive camera that achieves fast image acquisition (<1 ms exposure times) and 301 

data transfer rates. An important feature of the EMCCDs is that they provide either contiguous or non-302 

contiguous partial readout ability, which allows to readily implement a hyperspectral imaging system in a 303 

multispectral imaging mode at several discrete wavelengths. This hyperspectral-multispectral approach, 304 

pioneered by USDA/ARS researchers at Beltsville, Maryland, was used for inspecting apples for surface 305 

defects and fecal contaminants at a rate of 3-4 apples per second (Kim, 2015; Kim et al., 2007; Kim et al., 306 

2008) and for inspecting poultry carcasses at an inspection rate of 140-180 birds/min for wholesomeness 307 

(Chao et al., 2007; Chao et al., 2010; Yang et al., 2009) and fecal contaminations (Park et al., 2011; Yoon 308 

et al., 2011). The technology for wholesomeness detection of broiler chickens (Chao et al., 2014; Chao et 309 

al., 2010) is now being commercialized, but its rate for fruit inspection still falls short of the industrial needs 310 

(e.g., 10 apples per second). Compared to poultry inspection, inspection of horticultural commodities, such 311 

as apples, is faced with two special challenges, i.e., whole surface inspection and reducing the false positives 312 

caused by the presence of stem and calyx tissues (Keresztes et al., 2017). The stem and calyx regions may 313 

be isolated based on the geometric features of products (Xing et al., 2007) or through supervised image 314 

segmentations (Unay and Gosselin, 2007).   315 
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2.4.2. Snapshot Mode 316 

Snapshot or single shot imaging captures the entire three-dimensional (3-D) (x, y, λ) data cube through a 317 

single detector integration event, without scanning in either spatial or spectral domain. Compared to 318 

scanning based image acquisition, snapshot is advantageous in high optical throughput, lack of artifacts 319 

associated with scanning and increased compactness thanks to the absence of moving components. The 320 

technique thus offers a very promising solution to real-time imaging. However, the spatial and spectral 321 

resolutions for snapshot systems are typically lower compared to line-scanning systems. 322 

There are a number of techniques that support snapshot spectral imaging, such as computed tomography 323 

imaging spectrometer, coded aperture snapshot spectral imager and image mapping spectrometry (Hagen 324 

and Kudenov, 2013). Recently, novel snapshot imagers based on pixel-level monolithic integration optical 325 

filters have become commercially available (Geelen et al., 2015; Geelen et al., 2013, 2014). These snapshot 326 

imagers enable fast hyperspectral measurements. For example, Geelen et al., (2015) acquired 170 datacubes 327 

of size 217×409×25 pixels per second in the region of 600-900 nm  at lower spatial and spectral resolutions. 328 

Snapshot hyperspectral imaging has been applied in the biomedical field (Kester et al., 2011; Pichette 329 

et al., 2016) and unmanned aerial vehicle based precision agriculture (Yue et al., 2017), but its application 330 

for horticultural product quality assessment is still at the infancy stage (Rungpichayapichet et al., 2017).  331 

3. Hyperspectral Image Analysis  332 

Hyperspectral image data are high-dimensional both spectrally and spatially. Therefore, both conventional 333 

methods that are commonly used in image and spectroscopic analysis and specific techniques that pertain 334 

to hyperspectral image data are needed in order to accomplish detection tasks. Basically, the raw 335 

hyperspectral data are sequentially subjected to five main treatment steps: data preprocessing, spectroscopic 336 

and image analysis, modelling and performance evaluation (Figure 7). In the context of machine learning 337 

for data analysis, all the data treatments prior to modeling can be loosely referred to as feature extraction. 338 

In the following subsections, only the principle or concept of these treatments is covered and the reader is 339 

referred to relevant literature for further details.  340 



16 
 

Data

pre-processing

Spectroscopic 

analysis

Image analysis

Modeling 
Hyperspectral 

data

Performance 

evaluation

 341 

Figure 7. Flowchart of the main steps for hyperspectral image analysis. 342 

3.1. Data Pre-processing  343 

Data or image pre-processing involves radiometric correction, noise reduction and removal of other image 344 

artifacts related to illumination and spectral responses. Radiometric correction aims to correct for the 345 

variation in the spectral response of different detector units, like pixels in a CCD or CMOS area-array, and 346 

the non-flat geometry of samples. Flat-field corrections are most commonly used, in which reference and 347 

dark images are acquired and the corrections are done pixel by pixel for individual wavelengths (λ) 348 

according to the following equation:  349 
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where I  indicates the intensity value in a raw image, darkI  is the image acquired under dark environment 351 

(i.e. the light source is turned off and the camera lens is covered with an opaque cap), and standardI  is the 352 

image for a flat standard target. A flat Spectralon panel (Labsphere, Inc., Sutton, NH, USA), which has a 353 

uniform reflectance rate of 98% or higher for the entire visible and near-infrared region, is widely used for 354 

acquiring a reference image, although other types of reference panels may also be used. Fluorescence 355 

imaging, however, typically requires different targets that produce strong fluorescence emissions at 356 

corresponding wavelengths (Noh et al., 2007). For surface-curved samples, further geometric corrections 357 

for reflectance images may be required based on the actual 3-D geometry or surface contour of the samples 358 

(Gómez-Sanchis et al., 2008b; Peng and Lu, 2008).  359 

Denoising is a routine practice for processing images acquired by an imaging system. Various filtering 360 

methods, in either spatial-domain or Fourier-domain, are widely used for noise reduction (Gonzalez and 361 
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Woods, 2008). Dimension reduction methods, like principal component analysis (PCA) (Saeys et al., 2019) 362 

and maximum noise fraction (MNF) (Green et al., 1988; Lee et al., 1990), also enable separation of the 363 

noise component. In addition, bi-dimensional empirical mode decomposition (BEMD) provides an adaptive 364 

data-driven method for noise removal, while also removing image vignetting (Lu and Lu, 2018b). Apart 365 

from noise, raw hyperspectral images may suffer from glares or dark spots resulting from the imperfection 366 

of imaging optics or the presence of abnormalities on the sample surface. These alter the intensities of the 367 

pixels at each waveband and consequently the spectral and spatial features in the images. These artifacts 368 

may be removed by applying a statistics filter (e.g., median filter) or image segmentation (Lange, 2005; Lu 369 

et al., 2017a). 370 

3.2. Spectroscopic Analysis  371 

Spectroscopic or spectral analysis deals with hyperspectral data in the spectral domain and prepares them 372 

for future multivariate modeling. It mainly includes spectral corrections and transformations, and 373 

dimensionality reduction. In addition to the aforementioned radiometric correction, spectral corrections, 374 

which are aimed at removing multiplicative scattering effects, baseline shifts and other unwanted systematic 375 

variations, are often needed, and they include multiplicative scatter correction (Isaksson and Næs, 1988), 376 

de-trending and standard normal variate transformation (Barens et al., 1989), and orthogonal signal 377 

correction (Westerhuis et al., 2001; Wold et al., 1998). These corrections may simplify the relationships 378 

between the spectra and the quality traits of interest and can thus improve the performance of the subsequent 379 

models. Data transformations, such as derivatives and logarithms, may also lead to improved spectral 380 

interpretability. For example, second-order derivatives are found to be effective in removing baseline shifts 381 

and enhancing spectral peak or valley positions. These corrections and transformations are commonly 382 

known as spectral preprocessing (Saeys et al., 2019; Varmuza and Filzmoser, 2009).  383 

Dimensionality reduction, as a key step in the spectroscopic analysis, aims to reduce the number of 384 

dimensions of the spectral data. It simplifies data visualization, reduces computational cost, helps to identify 385 

or enhance useful spectral features, and improves model accuracy and reliability. There are two main types 386 

of dimension reduction methods: transformation and feature selection. The former reduces the 387 
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dimensionality of the data through a transformation (e.g., moving and rotating), while retaining the 388 

information content as much as possible (van der Maatten et al., 2009). They include PCA, kernel PCA, 389 

independent component analysis (ICA), linear discriminant analysis (LDA), multivariate curve resolution 390 

(MCR), and so on. With PCA, which is by far the most popular dimension reduction method for spectral 391 

data, the original correlated spectral variables are replaced by a smaller number of uncorrelated linear 392 

combinations capturing the largest part of the variation in the data (Cowe and McNicol, 1985; Saeys et al., 393 

2019).  394 

Feature selection aims to select a number (much lower than the original dimension) of important 395 

features (i.e., wavelengths in the spectral analysis) relevant for the modeling tasks under study. Wavelength 396 

selection is essential for implementing hyperspectral imaging in a multispectral mode for online, real-time 397 

applications. There are three types of feature selection methods, i.e., filter, wrapper and embedded methods 398 

(Chandrashekar and Sahin, 2014; Saeys et al., 2007). The filter methods perform feature selection by 399 

thresholding on a certain measure based on the importance of variables [e.g., loading weights of principal 400 

components (PCs), correlation coefficient, mutual information, variable importance in projection (VIP) 401 

scores, etc.] derived from the dataset (the thresholding is sort of a filtering operation). This generally does 402 

not involve a learning algorithm. The features selected in this way may not be optimal for subsequent 403 

classification or regression purposes. The other two types of methods relate to specific learning algorithms. 404 

The wrapper methods use a search algorithm to find a subset of relevant features, and the model construction 405 

is wrapped within the search process. Since the model has to be trained for each subset of features, the 406 

wrapper methods are more computationally intensive than the filter methods. Examples of wrapper methods 407 

are sequential selection algorithms (Pudil et al., 1994) and partial least squares (PLS) based feature selection, 408 

such as uninformative variable elimination (UVE) (Centner et al., 1996), genetic algorithm (GA)-PLS 409 

(Leardi and González, 1998), competitive adaptive reweighted sampling (CARS) (Li et al., 2009) and 410 

interval partial least squares (Norgaard et al., 2000). The embedded methods embed the feature search 411 

process into the model construction, which may be more efficient than the wrapper methods. Random forest 412 

(RF) based (Díaz-Uriarte and de Andrés, 2006), neighborhood component feature selection (Yang et al., 413 
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2012) and support vector machine (SVM) based feature selection algorithms (Guyon et al., 2002; 414 

Maldonado et al., 2011) are examples of wrapper methods. In addition, there are also other methods that 415 

combine (e.g. filter-wrapper), or even go beyond the scope of, the above methods. For more comprehensive 416 

reviews on feature selection methodologies the reader is referred to Chandrashekar and Sahin (2014) and 417 

Guyon and Elisseeff (2003).  418 

3.3. Image Analysis 419 

Image data play a crucial role in detecting spatial and morphological quality characteristics of horticultural 420 

products (e.g., size, shape and defects), as opposed to spectral data for chemical constituents. The goal of 421 

image analysis is to enhance, segment and extract image features pertaining to the quality characteristics of 422 

interest, which correspondingly requires image enhancement, image segmentation and texture analysis. In 423 

conventional machine vision, these methods are applied to the panchromatic or monochromatic images. 424 

While it is also possible to apply them to the individual images in a hyperspectral dataset, they are 425 

computationally intensive. Therefore, these methods are typically applied to a virtual image where the 426 

spectral data has been combined with one of the models discussed in Section 3.4 to obtain a chemical map 427 

or an image with maximal contrast. 428 

Image enhancement provides an image with visually enhanced contrast and clarity. It can either be 429 

performed in the spatial or frequency domain linearly or nonlinearly. The spatial-domain linear methods 430 

are most commonly used, which include linear stretching, gamma transformation and histogram 431 

equalization (Gonzalez and Woods, 2008). These methods only stretch the global distribution of image 432 

intensities, which may not work well for specific tasks like edge detection. Spatial filtering, with a designed 433 

derivative filter mask is well suited for edge detection. A large family of unsharp masking operators based 434 

on emphasizing high-frequency information in the image provide another means for image enhancement 435 

(Ramponi et al., 1996). Many more advanced, often less efficient, methods rely on modifying the traditional 436 

histogram equalization method (Arici et al., 2009; Celik, 2012), because the shape of an image histogram 437 

provides a measure of image contrast. In addition, the BEMD method discussed above is also effective for 438 

image enhancement based on removing image noise and illumination vignetting (Lu and Lu, 2018b). 439 
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In most computer vision applications, image segmentation is a critical step to simplify higher-level 440 

vision tasks. For quality inspection of horticultural products, it involves two basic steps: background 441 

removal (i.e., extraction of the major objects such as fruit in the image) and segmentation of regions of 442 

interest (ROIs) (i.e., defects to be detected). If the image is captured under a well-controlled environment 443 

(e.g., in an enclosed dark chamber and with a clearly different background), simple thresholding techniques, 444 

in conjunction with morphological operations (e.g., filling and erosion), may suffice to remove the 445 

background from the image (Lu and Lu, 2017b). However, the second step normally requires more 446 

dedicated efforts, depending on the contrast of the ROI with its surroundings. In fruit defect detection, a 447 

large variety of morphological and textural properties for different types of defects complicate the accurate 448 

segmentation of these defects. For instance, surface russeting, which is a common web-like surface defect 449 

of fruits, is notoriously difficult to segment (Leemans and Destain, 2004). Apart from thresholding methods, 450 

other segmentation methods include edge-, region-, graph-, normalized cuts-, active contours, level sets, 451 

classification-based image segmentation, etc. (Sonka et al., 2015; Szeliski, 2011). These can be further 452 

categorized into unsupervised and supervised methods. Unsupervised methods are more straightforward to 453 

use, but computationally intensive and the outcome can vary considerably. On the other hand, supervised 454 

methods are typically more reliable and faster. However, they require manual labelling of the objects in a 455 

set of training images, which is tedious and prone to error. Semi-supervised segmentation strategies have 456 

been proposed to combine the advantages of both approaches (van Roy et al., 2017).    457 

It should be noted that the difficult second-step image segmentation may be avoided in defect detection 458 

tasks. For example, in fruit sorting for defects, a suboptimal yet still acceptable solution is to eliminate 459 

defective fruit without providing specific information (e.g., location and shape) on the defects. So, only 460 

image-based classifications are needed, thus avoiding defect segmentation (Kavdir and Guyer, 2008; Lu 461 

and Lu, 2018a). 462 

Apart from color and intensity differences, humans also largely rely on texture differences for detecting 463 

objects and shapes. Therefore, texture analysis has been proposed as an alternative method to identify 464 

objects and shapes in an image. Texture in an image can be quantitatively defined by a diversity of features 465 
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that represent tonal and structural properties of the zones in an image (Haralick, 1979). Among the most 466 

extensively used features are the Haralick texture measures, statistical geometric features, local binary 467 

pattern (LBP), shape descriptors and statistical moments (Nixon and Aguado, 2012). In particular, LBP 468 

features (Ojala et al., 2002) have gained much attention in various classification tasks thanks to their 469 

superior performance. Essentially, a basic LBP is derived from a 3×3-pixel block by comparing the center 470 

pixel with its neighbors to yield an 8-bit binary pattern. This is then converted into a single decimal code 471 

for the center pixel. Finally, the LBP features are defined as the histogram of the codes for an entire image. 472 

Improvements have been made to the primitive LBP for achieving scale and rotation invariance (Ojala et 473 

al., 2002; Pietikainen et al., 2011). In addition, there are other well-known texture features or descriptors, 474 

e.g., Gabor-filter based features (Kamarainen et al., 2006), SIFT , HOG  and SURF (Szeliski, 2011), just to 475 

name a few. One may use only one type of features or an ensemble of multiple types of features, with or 476 

without feature selection as described in Section 3.2, for model construction, which is discussed next.  477 

3.4. Modeling 478 

The goal of hyperspectral data analysis is to build a predictive or classification model. To exploit the high-479 

dimensional nature of hyperspectral data, the model should be multivariate, and depending on specific 480 

detection tasks, it is either quantitative for providing numerical predictions (e.g. determining the 481 

concentration of chemical constituents), or qualitative to perform classifications (e.g. defect detection). 482 

Both types of models are constructed based on learning from the given data. Hence, separate data sets are 483 

required for training, validating (for model optimization) and testing the model (Marsland, 2015; Varmuza 484 

and Filzmoser, 2009; Saeys et al., 2019).   485 

There are numerous multivariate techniques for quantitative modeling, mainly including multiple linear 486 

regression (MLR), principal component regression (PCR), partial least squares regression (PLSR), artificial 487 

neural networks (ANN), support vector regression (SVR), and kernel based learning methods (Scholkopf 488 

and Smola, 2002; Varmuza and Filzmoser, 2009; Saeys et al., 2019).  489 

Developing qualitative models is the domain of pattern classification in machine learning (Hastie et al., 490 

2009). The classification can be done by defining a linear (linear discriminant analysis – LDA) or quadratic 491 
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(quadratic discriminant analysis - QDA) discrimination function by combining the original variables. 492 

Alternatively, the classification of samples can be based on the class memberships of the samples which 493 

are most similar (closest) to the sample to be classified. This classification can then be done based on a 494 

majority vote (k nearest neighbors – k-NN) or a distance weighted function of the memberships (support 495 

vector machines - SVM, least squares support vector machines - LS-SVM and other kernel methods). As 496 

the spectral variables are typically highly correlated, it may be more interesting to define these functions 497 

based on the PC scores. Alternatively, the classifier can be based on disjoint PCA models for the different 498 

classes (soft independent modelling of class analogies - SIMCA). The regression methods, i.e., MLR, PCR 499 

and PLSR, can be also readily extended for classification purposes by coding dummy response variables 500 

for different classes and adopting a proper discrimination rule (e.g. LDA). A typical example of such an 501 

extension is PLS-discriminant analysis (PLS-DA).  502 

Instead of combining the different variables in one discrimination function, a decision tree can be 503 

constructed by placing thresholds on the different variables to assign the samples to the different classes. 504 

Random forests, which is based on an ensemble of decision trees aided with a bootstrap aggregating 505 

sampling strategy (Breiman, 2001), is an emerging and increasingly popular classifier. Driven by 506 

technological advancements in computing capacity, deep neural networks (DNNs, as opposed to traditional 507 

shallower ANNs) or deep learning are becoming the workhorse for various large-scale machine learning 508 

tasks (LeCun et al., 2015). In particular, convolutional neural networks (CNNs) have enjoyed remarkable 509 

success in image classification and object detection, because they integrate feature extraction in the spectral 510 

and spatial domain with classification, and automatically learn low-level up to high-level abstractions from 511 

raw images.  512 

The details of these methods and the guidelines to efficiently use these for multivariate calibration of 513 

spectral sensors for postharvest quality evaluation are beyond the scope of this article. Therefore, the 514 

interested reader is referred to the review paper on this topic which has recently been published in this 515 

journal (Saeys et al., 2019). 516 
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3.5. Performance Evaluation 517 

Quantitative and qualitative models should be evaluated using performance metrics. For quantitative 518 

models, root-mean-square error (RMSE), standard error of prediction (SEP) and bias are the most frequently 519 

used metrics for the absolute error, while the coefficient of determination (R2) is the most popular relative 520 

metric (Varmuza and Filzmoser, 2009; Saeys et al., 2019).   521 

Qualitative models are usually evaluated against classification accuracy, which is defined as the number 522 

of correctly classified samples divided by the total number of samples, or the number of correctly classified 523 

samples for a specific class divided by the number of samples of that class. The accuracy calculated over 524 

all classes is the overall classification accuracy. However, only using the overall accuracy for model 525 

evaluation may create an accuracy paradox (i.e., a model with a high overall accuracy may have a low 526 

predictive power), since it gives no information on the classification performance for specific classes. 527 

Hence, apart from overall accuracy, it is highly recommended to provide the classification results for 528 

individual classes, such as false positive and false negative rates (or true positive and true negative rates). 529 

A confusion matrix gives a more complete and balanced evaluation of a model. In the special case of binary 530 

classification (i.e. discrimination between two classes), the metrics such as precision, recall, receiver 531 

operator characteristic curves (ROCs) as well as the overall accuracy are most commonly reported 532 

(Marsland, 2015). It should also be noted that in hyperspectral imaging, the classification level can be 533 

reported at the pixel level as well as at the object level. As the latter is typically what is most of interest 534 

from a practical point of view, it is highly recommended to evaluate the performance on that level. 535 

4. Applications  536 

The first applications of hyperspectral imaging for postharvest quality and safety inspection were reported 537 

in the late 1990s (Lu and Chen, 1998; Martinsen and Schaare, 1998). Thanks to the advancements in 538 

instrumentation and data analysis, hyperspectral imaging technology has evolved into a powerful 539 

nondestructive inspection tool and the scope of applications in postharvest quality and safety evaluation 540 

has expanded tremendously during the past 20 years and resulted in commercial applications on sorting 541 
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machines. These applications mainly fall into three categories, i.e., external quality and defect evaluation, 542 

internal quality and maturity assessment, and food safety detection. This section gives a summary review 543 

of representative and updated research in these areas of applications. 544 

4.1. External Quality and Defect Evaluation 545 

The external quality of horticultural produce is evaluated for such attributes as size, shape, color, and the 546 

presence or absence of surface defects, which are among the most important factors in pricing horticultural 547 

products on the market. Size and shape can be readily evaluated using conventional machine vision, while 548 

color and defects, especially the latter, require a more effective modality like hyperspectral imaging. 549 

Defects can also occur beneath the surface or are hidden inside the products. Hyperspectral imaging in 550 

reflectance mode, in general, is limited to detecting surface defects or subsurface defects within a few mm 551 

of depth. While transmittance or interactance mode allows light to penetrate deeper into the tissues, it could 552 

not provide good quality images of internal tissue defects because the light detected by the hyperspectral 553 

imaging system has gone through multiple scattering events. Table 1 summarizes the major applications of 554 

hyperspectral imaging for color and defect evaluation.  555 

Color is an important quality indicator for horticultural products, especially for perishable products like 556 

vegetables which require special efforts for color retention during postharvest handling. Hyperspectral 557 

imaging provides abundant, well-resolved spectral information and is thus well suitable for more precise 558 

color measurements than RGB imaging. Ariana and Lu (2008c) measured skin and flesh colors of pickling 559 

cucumbers using hyperspectral imaging in different imaging modes (i.e., reflectance, transmittance and 560 

their combination). Reflectance imaging mode was found to be the most effective for skin color 561 

measurement with R2 values of 0.79 and 0.70 for chroma and hue, respectively. However, all three imaging 562 

modes resulted in poor flesh color measurements. In a later study, the authors reported on measuring surface 563 

color of pickles by directly integrating hyperspectral reflectance imaging data over the 500-675 nm range, 564 

instead of building predictive models (Ariana and Lu, 2010). In applying hyperspectral imaging to measure 565 

the color of vine tomatoes, van Roy et al. (2017) reported that the direct method, which is similar to the one 566 
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used in Ariana and Lu (2010), performed poorly and was sensitive to intensity variation due to fruit 567 

curvature and glossiness, while multivariate modeling performed better. In addition to color measurements 568 

on intact products, hyperspectral imaging has been used for color-based quality inspection of fresh cut 569 

products, such as discriminating sound and discolored areas in fresh-cut lettuce (Mo et al., 2015). 570 

Table 1. Applications of hyperspectral imaging for external quality and defect detection of horticultural products 571 

Imaging mode Applications Reference 

Quality attribute Product  

Reflectance Color Lettuce Mo et al. (2015) 

Tomato van Roy et al. (2017) 

Surface or visual 

defects 

Apple Lee et al. (2008); Mehl et al. (2002, 2004) 

Citrus Li et al. (2011); Qin et al. (2008)  

Peach 

 

Hazelnuts 

Li et al. (2016); Liu et al. (2020); Zhang et al. 

(2015a)  

Moscetti et al. (2015) 

Physiological 

disorders 

Apple ElMasry et al. (2009); Huang and Lu (2010); Li et 

al. (2019); Nicolaï et al. (2006) 

Cucumber Cheng et al. (2004); Liu et al. (2005) 

Peach Liu et al., (2020); Pan et al. (2016) 

Subsurface bruising 

 

 

 

 

 

 

Apple Baranowski et al. (2013); ElMasry et al. (2008);  

Keresztes et al. (2016b); Lu et al. (1999); Lu 

(2003); Xing et al. (2005); Xing and De 

Baerdemaeker (2005); Xing et al. (2007)  

Mushroom Gowen et al. (2008) 

Potato 

Strawberry 

Lopez-Maestresalas et al. (2016) 

Nagata et al. (2006) 

Transmittance Internal defects Blueberry Zhang et al. (2017); Zhang et al. (2020) 

https://www.mdpi.com/1424-8220/15/11/29511/htm
https://www.sciencedirect.com/science/article/abs/pii/S0925521416305828
https://link.springer.com/article/10.1007/s11694-008-9046-0
https://elibrary.asabe.org/abstract.asp?aid=7790
https://www.sciencedirect.com/science/article/abs/pii/S0925521415301514
https://www.sciencedirect.com/science/article/pii/S0168169915001003
https://www.sciencedirect.com/science/article/pii/S0168169915001003
https://www.sciencedirect.com/science/article/abs/pii/S0925521408003220
https://www.sciencedirect.com/science/article/abs/pii/S0925521405002723
https://elibrary.asabe.org/abstract.asp?aid=16565
https://www.sciencedirect.com/science/article/pii/S030881461500998X
https://www.sciencedirect.com/science/article/pii/S0023643807001090
https://www.sciencedirect.com/science/article/abs/pii/S0925521416305634
https://www.sciencedirect.com/science/article/abs/pii/S0925521405000682
https://www.sciencedirect.com/science/article/abs/pii/S0925521405000682
https://elibrary.asabe.org/abstract.asp?aid=48463
https://www.sciencedirect.com/science/article/pii/S1537511020300301
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Cherry Qin and Lu (2005); Siedliska et al. (2017) 

Cucumber Ariana and Lu (2010) 

Nectarine Munera et al. (2019) 

White radish Pan et al. (2017); Song et al. (2016) 

Reflectance and 

Transmittance 

Physiological 

disorders 

Cucumber Cen et al. (2016) 

 Internal defects and 

color 

Cucumber Ariana and Lu (2008c; 2010); Cen et al. (2014) 

Reflectance and 

fluorescence  

Surface defects Apple Ariana et al. (2006) 

 572 

Defect detection in horticultural products is challenging, because there exist large variations in 573 

morphological and/or physiological characteristics of defects (Lu and Lu, 2017c). Hyperspectral imaging 574 

has been reported for detecting a range of defects, either surface, subsurface or internal by implementation 575 

of an appropriate imaging mode. For the convenience of discussion, defects of horticultural products are 576 

loosely categorized into four types: surface or visual defects (i.e., the defects occurring on the surface of 577 

products or defects that are externally visible), physiological disorders (i.e., those well-identified defects 578 

due to physiological stress, such as bitter pit and chilling injury), subsurface bruising, and internal defects. 579 

Except surface or visual defects, other types of defects may be barely visible or totally invisible to the 580 

human, depending on the severity of the defect.  581 

Mehl et al. (2002) were among the first to apply hyperspectral imaging for surface defect detection in 582 

fruits. In detecting surface defects on apples, they identified three effective wavebands 460, 575 and 705 nm 583 

based on PCA of hyperspectral images. These bands were implemented in a multispectral imaging system 584 

and resulted in overall detection accuracies of 76-95% for three apple varieties. Later on, they proposed an 585 

asymmetric second difference method for processing hyperspectral images to enhance defect detection in 586 

apples (Mehl et al., 2004). Lee et al. (2008) presented a correlation analysis (CA) method based on two-587 

https://elibrary.asabe.org/abstract.asp?aid=19988
https://www.sciencedirect.com/science/article/abs/pii/S0260877417303266
https://elibrary.asabe.org/abstract.asp?aid=24367
https://www.mdpi.com/2076-3417/6/9/249
https://link.springer.com/article/10.1007/s11694-008-9058-9
https://link.springer.com/article/10.1007/s11947-013-1177-6
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wavelength image ratios or differences for identifying the best pairs of wavebands for surface defect 588 

detection in apples. The two-wavelength image ratio R670 /R684 nm (R denotes reflectance) was the most 589 

effective for defect detection with a 92% detection rate. This method, however, requires an exhaustive 590 

search for all possible two-wavelength pairs. Qin et al. (2011a) applied the CA method for detecting citrus 591 

canker (surface defect caused by diseases) by hyperspectral imaging and identified the best wavelength 592 

ratio R834/R729 nm, which achieved an overall detection accuracy of 95%. Using high-dynamic range 593 

hyperspectral reflectance imaging in the SWIR (1000-2500 nm) region, Moscetti et al. (2015) classified 594 

hazelnuts (cv. Tonda Gentile Romana) in four quality classes commonly used in industry: i.e., the 595 

presence/absence of discolorations, infestations, infections and/or detrimental disorders. After the spectral 596 

pretreatment optimization, the multi-class PLS-DA classifier provided good (>80%) to very good (>90%) 597 

sensitivity and selectivity. 598 

Horticultural products are prone to numerous physiological disorders which develop mostly post-599 

harvest due to internal or external stresses such as extreme temperature, nutritional deficiency, senescence 600 

and suppressed respiration. Chilling injury (CI) is a serious physiological disorder during postharvest 601 

handling of horticultural commodities of tropic or subtopic origin like cucumbers, apples and peaches. 602 

Cheng et al. (2004) reported on using hyperspectral imaging for CI detection in cucumbers. Combination 603 

of PCA-LDA as a hybrid dimension reduction technique with k-NN for classification achieved detection 604 

rates of 91-93% for CI cucumbers (Cheng et al., 2004). Later, Liu et al. (2006) compared two methods, i.e., 605 

a simple dual-waveband ratio R811/R756 nm and PCA-SIMCA for CI detection of cucumbers and reported 606 

comparable detection rates over 90%. Early CI detection is difficult, because of the absence of visible 607 

symptoms. Cen et al. (2016) applied hyperspectral reflectance and transmittance imaging for detecting CI 608 

in pickling cucumbers. They compared different classifiers combined with feature extraction and selection 609 

techniques for classifying cucumbers, achieving the best overall accuracies of 92% and 100% for three-610 

class and two-class classification schemes, respectively. Hyperspectral imaging has also been used for 611 

detecting CI in other horticultural products such as apples (ElMasry et al., 2009) and peaches (Pan et al., 612 

2016). 613 
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Bitter pit is a calcium deficiency-induced physiological disorder in apples, which is usually initiated 614 

pre-harvest, but progresses rapidly during postharvest storage. The defect mainly occurs under the 615 

epidermis and is not externally visible. Nicolai et al. (2006) first reported on using hyperspectral reflectance 616 

imaging combined with PLS-DA based pixel-level classification for bitter pit detection (Nicolaï et al., 2006). 617 

The model enabled identifying bitter pit lesions before visual symptoms had developed, as shown in Figure 618 

8, but it could not discriminate these from the corky tissues (e.g., the defective but non-bitter pit lesion 619 

occurring in the image center in Figure 8).  620 

 621 
Figure 8. Development of bitter pit during storage: digital images (top row); predicted images based on modelling 622 

(middle row) and binary images showing bitter pit lesions (bottom) row. The numbers in the right most images 623 
indicate bitter pit lesions. Reproduced with permission from Nicolaï et al. (2006). 624 

Improper postharvest handling operations would subject horticultural products to excessive impact, 625 

compression or vibration forces, which could cause bruising to the products, thus lowering the quality grade 626 

and resulting in revenue loss. The bruised tissues are situated beneath the surface of the products with barely 627 

visible symptoms, which is referred to as subsurface bruising. Bruises can also appear deep inside the 628 

products, which is referred to as internal bruising. There has been continued interest in developing effective 629 

techniques such as hyperspectral imaging for subsurface bruising detection in fruits. Lu et al. (1999) first 630 

reported on bruise detection in apples by hyperspectral reflectance imaging. PCA transformation of the 631 
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hyperspectral images in the 700-900 nm wavelength range enabled identifying all the newly generated 632 

bruises as well as most pre-existing ones (Lu et al., 1999). Later, Lu (2003) found that the spectral region 633 

of 1000-1340 nm was also informative for bruise detection and achieved detection rates of 62-88% for 634 

‘Delicious’ and 59-94% for ‘Golden Delicious’ apples between 0 and 47 days after bruising (Lu, 2003). 635 

Studies were also reported on detection of bruises of at least 1-day old with hyperspectral imaging in the 636 

400-1000 nm range for ‘Jonagold’  and ‘Golden Delicious’ apples (Xing and De Baerdemaeker, 2005; Xing 637 

et al., 2005). An ideal detection system should be able to detect both new and old bruises. ElMasry et al. 638 

(2008) investigated bruise detection for ‘McIntosh’ apples over a period of 1 h to 3 days after bruising, 639 

using three wavelengths of 750, 820 and 960 nm selected based on VIP scores from PLS analysis, along 640 

with adaptive thresholding. Recent studies demonstrated the feasibility of real-time bruise detection in 641 

apples by hyperspectral imaging in the SWIR range (1000-2500 nm) at conveyor speeds up to 0.3 m/s and 642 

with a prediction accuracy of 98% (Keresztes et al., 2016a). Hyperspectral imaging has also been 643 

investigated for bruise detection in mushrooms (Gowen et al., 2008), potatoes (Lopez-Maestresalas et al., 644 

2016) and strawberries (Nagata et al., 2006). More studies on bruise detection by hyperspectral imaging are 645 

listed in Table 1. 646 

Internal defects are hidden inside biological tissues and are more difficult to detect than surface and 647 

subsurface defects. This would require performing transmittance measurements for interrogating deeper 648 

tissues. Cucumbers, after being subjected to excessive mechanical stress, can be internally bruised, leading 649 

to carpel separation and even hollow center. Ariana and Lu (2008a) first applied hyperspectral transmittance 650 

imaging for detecting internal mechanical injuries in pickling cucumbers (Ariana and Lu, 2008a). They 651 

reported that the NIR wavelength region of 700-1000 nm had much higher transmittance and was thus more 652 

effective for internal injury detection than the visible range of 450-700 nm. PLS-DA models achieved  653 

classification accuracies of 90% and 99% based on mean spectra and 89% and 95% for the pixel-based 654 

spectra for two varieties of cucumbers. In subsequent research, a laboratory online imaging system 655 

integrating transmittance for the NIR range and reflectance for the visible range was developed and used 656 

for simultaneous detection of both external quality and internal injury of cucumbers (Ariana and Lu, 2008b, 657 
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2008c and Figure 5). Hyperspectral transmittance and/or reflectance imaging has also been used for 658 

detecting other internal defects such as pits in cherries (Qin and Lu, 2005; Siedliska et al., 2017), blackheart 659 

in white radish (Song et al., 2016), and internal injuries in blueberries (Throop et al., 1993; Zhang et al., 660 

2017).    661 

4.2. Internal Quality and Maturity Assessment 662 

Internal quality discussed here is referred to as texture, flavor and nutritional value, which cannot be readily 663 

detected through visual inspection. These quality features would normally require destructive 664 

physicochemical analysis (e.g., the Magness-Taylor test for firmness and the Brix refractometer for SSC 665 

measurement). Firmness is the primary textural attribute of horticultural products, and the sensory 666 

properties such as sweetness, sourness and bitterness, in conjunction with various volatile compounds, form 667 

the characteristic flavor. Nutrients include vitamins, minerals, fibers, antioxidants, etc. in the products 668 

(Golding and Wills, 2016). Evaluation of internal quality has been a key theme in non-destructive quality 669 

assessment of horticultural products. 670 

Based on light scattering principles, an innovative hyperspectral scattering imaging technique was 671 

developed for assessing internal quality of fruits (Lu, 2007; Lu and Peng, 2006; Vanoli et al., 2020; Wang 672 

et al., 2020). This technique, which is based on the relation between light scattering and structured and 673 

textural properties of biological tissues, uses a highly focused light beam to generate scattering images as 674 

described in Section 2.2.1, so as to enhance assessment of fruit firmness. In using hyperspectral scattering 675 

for measuring firmness of peaches, Lu and Peng (2006) built firmness prediction models by applying step-676 

wise MLR to the parameters of scattering profiles, achieving R2=0.77 and 0.58 for ‘Red Haven’ and ‘Coral 677 

Star’s peaches, respectively. A detailed description of the analysis of hyperspectral scatter images and 678 

characterization of scattering profiles for fruit quality assessment is given in Lu et al. (2017). In a later 679 

study, Lu (2007) applied hyperspectral scattering imaging coupled with ANN models to assess firmness 680 

and SSC for apples, which resulted in firmness predictions of R2 = 0.76 and 0.55 and better SSC predictions 681 

of R2 = 0.79 and 0.64 for ‘Golden Delicious’ and ‘Delicious’ apples, respectively. It was hypothesized that 682 
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the relatively poor predictions for ‘Delicious’ might be attributed to the more irregular fruit shape, which 683 

could have negatively affected the scattering measurements. Relatively poor predictions of SSC, compared 684 

to point Vis/NIR spectroscopy, could be attributed to the lower signal to noise ratio and the fact that light 685 

scattering technique tends to enhance structural features which would be more conducive to firmness 686 

prediction than SSC prediction. 687 

Apart from light scattering and spectral characteristics, image textural features, which carry information 688 

on the structural or morphological properties of samples, can also be useful for quality evaluation. Mendoza 689 

et al (2011) integrated hyperspectral scattering profile and image textural features for measuring firmness 690 

and SSC of apples. This led to significantly improved predictions. An attempt to integrate hyperspectral 691 

image data with those obtained by other sensing techniques such as NIRS also resulted in improved 692 

prediction accuracies (Mendoza et al., 2012). However, the use of multiple sensing techniques for 693 

postharvest quality evaluation may not be practically viable at present, because of the increased complexity 694 

and instrumental costs. Mendoza et al. (2014) further applied hyperspectral scattering imaging to grade 695 

apples for firmness and SSC. Two-grade grading accuracies of 78-98% for firmness and 62-92% for SSC 696 

were attained at an image acquisition speed of 0.5 fruit/second. It should be noted that the grading was 697 

performed through offline analysis.   698 

In addition to hyperspectral scattering techniques, LCTF-based hyperspectral reflectance imaging in 699 

the 450-650 nm range under wide-field illumination rather than focused point light, was used for measuring 700 

firmness and SSC in strawberries (Nagata et al., 2004). Tallada et al. (2006) further tested an NIR 701 

hyperspectral imaging system for firmness prediction of strawberries and identified three effective 702 

wavelengths (685, 865 and 985 nm). ElMasry et al. (2007) also reported on the assessment of strawberry 703 

internal quality. Using MLR for selected wavelengths, the authors achieved prediction accuracies of R2= 704 

0.76, 0.64, and 0.85, and SEP = 5.8%, 0.21% and 0.09 for moisture content (MC), SSC and pH, respectively. 705 

More applications of hyperspectral reflectance imaging for internal quality assessment for a diversity of 706 

horticultural products are listed in Table 2. In addition, hyperspectral imaging in fluorescence (Noh and Lu, 707 

2007) and integrated reflectance and transmittance imaging mode (Leiva-Valenzuela et al., 2014; Noh et 708 
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al., 2007) have also been utilized for assessing apple and blueberry quality. However, they often did not 709 

lead to improved accuracies compared to reflectance imaging (Leiva-Valenzuela et al., 2014). Despite the 710 

progress made so far, hyperspectral imaging has not yet been implemented for real-time fruit grading based 711 

on internal quality traits such as firmness and SSC, while point spectroscopy has been implemented for the 712 

latter.  713 

 714 

Table 2. Applications of hyperspectral imaging for internal quality and maturity evaluation of horticultural products 715 

Imaging mode Application Reference 

Quality attribute Product 

Reflectance Maturity or shelf 

life 

Apple Menesatti et al. (2008); Peirs et al. (2003)  

Banana Rajkumar et al.(2012) 

Blueberry Yang et al. (2014) 

Mango Wendel et al. (2018) 

Mushroom Taghizadeh et al. (2010) 

Peach Lleó et al. (2011) 

Pear Khodabakhshian and Emadi. (2018) 

Tomato Polder et al. (2004)  

Texture and 

flavor  

Apple Lu (2007); Mendoza at al. (2011, 2012, 2014); 

Ma et al. (2018); Peng and Lu (2008); Qin et al. 

(2009b)  

Blueberry Leiva-Valenzuela et al. (2013) 

Grape Fernandes et al. (2011) 

Kiwifruit Guo et al. (2015) 

Pear Fan et al. (2015); Yu et al. (2018) 

Persimmon Munera et al. (2017) 

Plum Li et al. (2018) 

https://link.springer.com/article/10.1007/s11947-008-0120-8
https://www.sciencedirect.com/science/article/abs/pii/S0260877411000409#!
https://elibrary.asabe.org/abstract.asp?aid=9924
https://link.springer.com/article/10.1007/s11694-006-9002-9
https://www.sciencedirect.com/science/article/abs/pii/S0925521411001268
https://www.sciencedirect.com/science/article/abs/pii/S0925521407002955
https://elibrary.asabe.org/abstract.asp?aid=26807
https://elibrary.asabe.org/abstract.asp?aid=26807
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Strawberry ElMasry et al. (2007); Nagata et al. (2006)  

Fluorescence  Texture and 

flavor 

Apple Noh and Lu (2007) 

 

Raman Maturity Tomato Qin et al. (2011b) 

Reflectance and 

transmittance 

Texture and 

flavor  

Blueberry Leiva-Valenzuela et al. (2014) 

 716 

In determining internal quality attributes, it is not uncommon to average the spectra of pixels within an 717 

ROI to reduce the hyperspectral datacube for a sample into a single spectrum, followed by multivariate 718 

modeling and quality prediction. However, this approach does not take advantage of the capability of 719 

hyperspectral imaging for mapping or visualizing the spatial heterogeneities within the produce. 720 

Hyperspectral imaging can be used for generating a map of the quality attribute distribution of the sample 721 

at the pixel level. Martinsen and Schaare (1998) were the first to utilize hyperspectral imaging for mapping 722 

postharvest quality attributes. To measure the SSC distribution over the cut section of kiwifruit, they built 723 

separate predictive models for the core and pericarp fruit tissues. Polder et al. (2004) reported on using 724 

hyperspectral imaging for measuring the distribution of carotenes (including lycopene, lutein and β-725 

carotene) and chlorophylls in ripening tomatoes. Pixel-level predictive models were built by randomly 726 

selecting 200 pixels per sample. It was noted that pixel-level modeling requires dense sampling points to 727 

obtain ground-truth reference values and also lengthy model calibration processes. The lycopene 728 

distribution in tomatoes was also mapped using hyperspectral Raman imaging (Qin et al., 2011b). 729 

Rungpichayapichet et al. (2017) recently used a snapshot hyperspectral camera for mapping the quality 730 

attributes of mangoes. The prediction maps for firmness, total soluble solids (TSS) and titratable acidity 731 

(TA) obtained for mangoes at different ripening stages are illustrated in Figure 9. These clearly reveal 732 

quality attribute changes during fruit ripening and their heterogeneity within individual fruits. However, it 733 

should be noted that the values close to the edge of the fruit are very different from those in the center. This 734 

might be attributed to effects of the fruit curvature on the acquired spectra. To verify this hypothesis, the 735 

https://www.sciencedirect.com/science/article/abs/pii/S0260877406006455
https://www.jstage.jst.go.jp/article/ecb2005/44/4/44_4_245/_article/-char/ja/
https://www.sciencedirect.com/science/article/pii/S1466856414000319
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locally predicted values should be verified against ground truth values for densely sampled points, as 736 

proposed by Polder et al. (2004). 737 

Maturity assessment is important for determining harvest timing and to optimize postharvest options 738 

and storage regimes. Multiple parameters are often used for maturity assessment, which include color, 739 

firmness, starch pattern index, SSC, acid and ethylene (Reid, 2002). Polder et al. (2002) first reported on 740 

using hyperspectral imaging for assessing maturity of tomatoes. Hyperspectral imaging in the visible range 741 

of 396-736 nm was found to be superior to traditional color imaging in classifying tomatoes into five 742 

ripeness stages based on LDA models. The maturation of apples is commonly characterized by the degree 743 

of degradation of starch into sugars, which is routinely determined through starch-iodine tests. Peirs et al. 744 

(2003) first applied hyperspectral imaging as an alternative to the standard starch-iodine test to determine 745 

the starch index of apples. The PC-1 score images extracted from the hyperspectral images revealed a 746 

pattern of starch breakdown during fruit maturation, which correlated well to that obtained with the 747 

conventional iodine test. Menesatti et al. (2009) extended the starch index evaluation by applying 748 

supervised pixel-based classification on hyperspectral images. The color images of iodine test results for 749 

apples of various maturity stages were segmented into two regions (i.e. starch and starch-free) by a k-NN 750 

model, serving as ground-truth starch index levels. Afterwards, PLS-DA models were built to classify each 751 

pixel into starch-free and starch classes. Classification accuracies of 81% and 66% were obtained by two 752 

types of PLS-DA models that were built for each fruit sample and all samples together, respectively. It 753 

should be noted that both studies on starch index evaluation required destructive sampling. Lleó et al. (2011) 754 

proposed optical indices for rapid assessment of peach maturity, which were derived from the reflectance 755 

ratios at three selected wavelengths (640, 680 and 730 nm) around the chlorophyll absorption peak (Lleó 756 

et al., 2011). The index [R680/(R640+R730)], which was focused on the shape of the chlorophyll absorption, 757 

was found to be the most discriminative between ripening and non-ripening stages.  758 

All the above studies on maturity assessment were aimed towards postharvest quality inspection. In-759 

field or pre-harvest maturity assessment would be beneficial for yield estimation and deciding on the harvest 760 

date. Yang et al. (2014) reported on in-field maturity assessment of blueberries by hyperspectral imaging 761 
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under natural lighting conditions. In classifying three maturity stages of fruit plus background, classification 762 

accuracies of 88% and higher were achieved using different pattern classifiers coupled with wavelength 763 

selection. More recently, Wendel et al. (2018) were the first to report on orchard-scale maturity mapping 764 

of mangoes based on predicting dry matter (DM) content using a mobile hyperspectral imaging platform. 765 

Ground-truth DM values were measured with a hand-held NIR spectrometer. For hyperspectral imaging, 766 

fruit pixels were first segmented based on pixel-level classifications, after which multivariate models were 767 

built for DM prediction for each pixel, which resulted in the best cross-validation accuracies of R2 =0.64 768 

and RMSE = 1.08% w/w for fruit on trees. Further, the predicted DM values were projected to a world 769 

coordinate system, leading to maturity mapping on an orchard scale.  770 

 771 

 772 

Figure 9. Prediction maps showing the distribution of firmness, titratable acidity (TA) and total soluble solids (TSS) 773 
for 12 mango samples during ripening with measured and predicted (in brackets) quality attribute values. 774 

Reproduced with permission from Rungpichayapichet et al. (2017). 775 

 776 
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4.3. Food Safety Inspection 777 

The food safety factors discussed here include fecal contamination, defects caused by microbial (bacterial 778 

and fungal) infection, insect or pest infestation, and pesticide residues. These defects can be collectively 779 

seen as biological contamination. These concerns, which are closely related to food-borne diseases, 780 

represent more severe quality issues than those described above and are normally inspected against more 781 

stringent standards. Fresh produce should be free from these safety issues, and any bulk lot containing those 782 

unsafe products is likely to be inspected against a stricter tolerance (e.g., 1% ppm level or even zero 783 

tolerance) to meet the grading requirements. Hence, there is a strong incentive to develop potent 784 

nondestructive technologies such as hyperspectral imaging for food safety inspection.  785 

Researchers with the USDA/ARS at Beltsville, Maryland did extensive research on using hyperspectral 786 

fluorescence imaging for detection of fecal contamination on fresh produce (Kim, 2015; Kim et al., 2001a; 787 

Kim et al., 2001b; Kim et al., 2004; Kim et al., 2002). Fecal matters from cattle, swine, deer and other 788 

animals are the common sources of fecal contamination. They emit fluorescence upon excitation with UV 789 

radiation, making fluorescence imaging a suitable modality for fecal contamination detection. In detecting 790 

fecal contamination on apple surfaces, Kim et al. (2002) used PCA to identify four effective wavebands 791 

around 450, 530, 685 and 735 nm, which corresponded to four fluorescence emission peaks in the blue, 792 

green, red and far-red regions, respectively. These wavebands can be used for rapid multispectral imaging 793 

(Kim et al., 2005; Lefcourt et al., 2003) and also enable image fusion or ratio analysis for enhanced detection. 794 

The waveband ratio images, in particular, greatly reduce the variation due to the fruit surface colorations, 795 

while accentuating image contrast, facilitating segregation of the contaminated spots based on simple 796 

thresholding (Kim et al., 2004; Kim et al., 2005). Using single-band images and two-band ratio images, 797 

Lefcourt et al. (2003) reported that the 1:2 and 1:20 dilutions of animal feces, which were artificially applied 798 

on the surfaces of apples, were detected with accuracies of nearly 100%, and that the detection accuracy 799 

for 1:200 dilutions diminished, but still exceeded 80%. Other methods that enhanced the detection of fecal 800 

contamination on apples include two-band differences and universal power transformation (Lefcourt and 801 

Kim, 2006). Reflectance imaging has also been used for fecal contamination detection, but it was much less 802 
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sensitive than fluorescence imaging for detecting highly diluted (e.g., 1:200) or thin fecal smear spots 803 

(Lefcourt et al., 2006; Liu et al., 2007). Table 3 summarizes some important works on fecal contamination 804 

detection on horticultural products.   805 

Table 3. Applications of hyperspectral imaging for food safety detection of horticultural products 806 

Imaging mode Application Reference 

Safety attribute Product 

Reflectance Fecal contamination Apple Kim et al. (2001a) 

Microbial infection  Apple Pieczywek et al. (2018) 

Citrus Gómez-Sanchis et al. (2008a, 2008b, 2013, 

2014); Li et al. (2016) 

Spinach Siripatrawan et al. (2011) 

Insect infestation Apple Rady et al. (2017) 

Jujube Wang et al (2011) 

Mango 

Hazelnut 

Haff et al. (2013); Saranwong et al. (2011) 

Moscetti et al. (2015) 

Fluorescence  Fecal contamination Apple Kim et al. (2002, 2005, 2007, 2008); Lefcourt et 

al. (2003, 2006a); Yang et al. (2011) 

Cantaloupe Vargas et al. (2005) 

Lettuce Cho et al. (2018); Mo et al. (2017a) 

Spinach Everard et al. (2014, 2016); Lefcourt and 

Siemens (2017); Lefcourt et al. (2019) 

Insect infestation  Lettuce Mo et al. (2017b) 

Transmittance Insect infestation Cherry Xing et al. (2008) 

Reflectance and 

fluorescence 

Fecal contamination 

(or and surface 

defects) 

Apple Kim et al. (2001b, 2007, 2008); Lefcout et al. 

(2006b) 

https://elibrary.asabe.org/abstract.asp?aid=11414
https://www.sciencedirect.com/science/article/pii/S0168169916305129
https://elibrary.asabe.org/abstract.asp?aid=11416
file:///F:/Manuscripts/Review%20Paper/PBT/Uses%20of%20Hyperspectral%20and%20Multispectral%20Laser%20Induced%20Fluorescence
https://link.springer.com/article/10.1007/s11947-017-2032-y
https://www.sciencedirect.com/science/article/pii/S1537511016305475
https://link.springer.com/article/10.1007/s11694-015-9276-x
https://onlinelibrary.wiley.com/doi/full/10.1002/jsfa.8262
https://link.springer.com/article/10.1007/s11694-008-9047-z
https://link.springer.com/article/10.1007%2Fs11694-007-9017-x
https://www.sciencedirect.com/science/article/pii/S0168169906000718
https://www.sciencedirect.com/science/article/pii/S0168169906000718


38 
 

Reflectance and 

transmittance 

Insect infestation  Cucumber Lu and Ariana (2013) 

 807 

Recent efforts have been devoted to detecting fecal contamination on leafy greens using hyperspectral 808 

fluorescence imaging (Cho et al., 2018; Everard et al., 2016; Everard et al., 2014; Kang et al., 2011). 809 

Compared to fruits like apple, leafy vegetables generally have more strong fluorescence emissions due to 810 

high chlorophyll concentrations, and the emissions are in proximity to those due to fecal matters in the red 811 

and far-red regions, which may require higher spectral-resolution imaging for effective detection of fecal 812 

contamination. Fecal matters exhibit slight blue shifts for the emission peak in the red region, compared to 813 

the leafy greens (Everard et al., 2014; Kang et al., 2011). In detecting cow feces on spinach, Everard et al. 814 

(2014) compared two different excitation light sources, i.e., UV-A and violet light at 405 nm. They reported 815 

that the latter performed better in detecting a range of varied dilutions of fecal contamination and that they 816 

both were superior to reflectance imaging. The authors also noted that the yellow hue or discolorations of 817 

leaves could cause false positives. It was hence suggested to image leaves before the onset of leaf 818 

deterioration (Everard et al., 2016). Cho et al. (2018) reported on the detection of four species of varied 819 

dilutions of animal feces on romaine lettuce (Cho et al., 2018), as illustrated in Figure 10. It was shown that 820 

species-specific detection after illumination with violet LED excitation light required different filters 821 

corresponding to the fluorescence emission wavelengths. The most effective two-band ratio for all species 822 

of feces was found to be 664±4 nm/694±2 nm. 823 

https://www.sciencedirect.com/science/article/abs/pii/S0925521413000380
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 824 

Figure 10. Detection of fecal spots from four animals (i.e., cattle, pig, chicken, and sheep) on green romaine lettuce 825 
leaves. (a) Color photos showing application locations of undiluted feces, 1:20, 1:50, and 1:100 fecal dilutions, and 826 
1:20 dilution of soil; (b) Single waveband images for species-specific fecal detection; (c) Two-band ratio images for 827 

species-specific fecal detection; (d) Binary detection images from thresholding of the images in (c). Reproduced 828 
with permission from Cho et al. (2018). 829 

 830 

Safety inspection for pathogenic microorganisms (or diseases) and insects is another important area of 831 

application for hyperspectral imaging. Fresh produce attacked by microorganisms will rot or decay, which 832 

may further contaminate the sound produce, resulting in substantial economic loss. Hyperspectral imaging 833 

has been used for the detection of microorganism-induced rottenness or pathogenic contaminations, 834 

discriminating infected from normal areas of food products or sorting the infected or rotten items (Gómez-835 

Sanchis et al., 2008a; Gómez-Sanchis et al., 2014; Li et al., 2016; Siripatrawan et al., 2011; Zhang et al., 836 

2015b). Gómez-Sanchis et al. (2008a) first reported on the detection of early rottenness in citrus fruits. Fruit 837 

decay caused by Penicillium sp. infection traditionally requires manual sorting under UV illumination that 838 

is harmful to operators. To avoid the use of UV lighting, they developed an LCTF-based hyperspectral 839 

imaging system with a classification accuracy of 91% by regression tree based classification. Siripatrawan 840 
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et al. (2011) reported on the detection of Escherichia coli infection in fresh spinach and obtained prediction 841 

maps for the pathogen concentration, which allowed rapid and convenient data interpretations.   842 

Detection of pest infestation in food products often requires performing quarantine treatments such as 843 

vapor heating or irradiation, which negatively affects food quality and consumer acceptance. Saranwong et 844 

al. (2011) reported on using hyperspectral imaging to detect fruit flies in mangoes, at the surface of which 845 

16 small pores in a 4×4 grid pattern were created to facilitate infestation. Pixel-based Bayesian classification 846 

for three selected wavelengths yielded the best detection result 48 h after infestation. Further efforts were 847 

made to automatically identify infested regions and extend the classifications to the fruits without surface 848 

pores. i.e., no a priori knowledge of infestation locations (Haff et al., 2013). Lu and Ariana (2013) reported 849 

on detecting fruit fly infestation in pickling cucumbers using hyperspectral reflectance and transmittance 850 

imaging. Three imaging modes, i.e., reflectance (450-740 nm), transmittance (740-1000 nm) and their 851 

combination were compared for differentiating infested from normal cucumbers by PLS-DA. It was found 852 

that the transmittance imaging mode achieved the best overall accuracies of 88%-93% and that the 853 

combination mode did not produce better accuracy than transmittance. Moscetti et al. (2015) also 854 

considered insect infestation when defining the quality classes of hazelnuts to be predicted from 855 

hyperspectral images acquired in reflectance mode in the SWIR (1000-2500 nm) range. It should be noted 856 

that these infestations might be detect the changes in the optical properties of the fruit flesh rather than 857 

detecting the pest itself. 858 

Recently, Mo et al. (2017b) developed a line-scanning hyperspectral imaging system for online 859 

detection of slugs and worms on fresh-cut lettuce. This system allowed to detect the two kinds of pests on 860 

both adaxial (upper) and abaxial (lower) surfaces of lettuce. Using image differences and ratios at selected 861 

effective wavelengths resulted in high detection rates of 98% and 99% for slugs and worms, respectively. 862 

However, the actual real-time detection speed was not mentioned in the study. More applications of 863 

hyperspectral imaging for food safety detection are listed in Table 3. 864 

 865 
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5. Challenges and Future Research Needs 866 

Over the past 20 years, much progress has been made in the hardware and software for hyperspectral 867 

imaging, and the technology has demonstrated great capabilities in postharvest quality and safety 868 

assessment. However, critical challenges still exist and have to be addressed in future work. These 869 

challenges primarily stem from the need to develop an efficient, reliable, fast and cost-effective modality 870 

for both research purposes and practical or industrial applications. 871 

5.1. Data Interpretation and Modeling 872 

Large volumes of spectral-spatial data that may contain irrelevant and noisy signals, pose a great challenge 873 

in data handling and the extraction of meaningful information. Compared to spectroscopic and image data, 874 

hyperspectral image data require far more dedicated efforts on data analysis, as described in Section 3, for 875 

developing effective and reliable models. These models are typically built based on limited data acquired 876 

under well-controlled laboratory conditions, and they may not be applicable to new samples acquired in 877 

real-world situations. Hence, extensive calibration and validation based on a diversity of samples and under 878 

industry relevant conditions is needed to ensure the models are robust for practical use. An effective and 879 

reliable model requires a deep understanding of light-tissue interactions and the relations of spectral-spatial 880 

features with quality attributes to be inspected. Few reports provided in-depth analysis and discussion of 881 

the acquired data in the development of calibration models. This may result in poor generalization of the 882 

models to different application conditions. Moreover, while calibration transfer is well described for point 883 

spectroscopy systems, little research has been reported on the transferability of calibration models 884 

developed on a specific hyperspectral imaging system to other hyperspectral imaging systems which may 885 

have different imaging and/or lighting configurations. Therefore, future research is needed on the light-886 

tissue interaction involved in hyperspectral imaging, and on the development of more effective data-mining 887 

and calibration transfer methods to fully exploit the abundant spectral-spatial information provided by the 888 

technology. In this context, it would be interesting to investigate the possibility to build self-learning 889 
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correction models to overcome sample differences (varieties, harvest years, etc.) and instrumentation 890 

differences (i.e., different optical systems, light sources, imaging modes, etc.). 891 

Hyperspectral imaging provides a unique capability and great opportunities for mapping the quality 892 

attributes or chemical composition of horticultural products in the 2-D or 3-D spatial domain. However, 893 

constructing an accurate quality or chemical composition map is not a simple task, because the models for 894 

quality prediction are typically developed using a single spectrum aggregated (e.g., by averaging) from all 895 

pixel spectra within an ROI, which may not have adequately accounted for the physical and/or physiological 896 

factors that influence the model performance. Hence, these models should be rigorously tested and validated 897 

before being used for characterizing the spatial heterogeneity within a sample. Although one may alleviate 898 

the issue by building different models, each of which is used to predict a small local area of the sample 899 

(Martinsen and Schaare, 1998; Polder et al., 2004), this approach is time consuming and also limited by 900 

actual sampling density in measuring ground-truth values. It should be noted that most published studies 901 

did not perform pixel-level accuracy validation for the mapping results, mainly due to the difficulty of 902 

obtaining pixel-level ground-truth values. Hence, future research is needed on new modeling methods and 903 

validation strategies for more accurate mapping of quality attributes or chemical composition.  904 

5.2. Real-time, Online Applications 905 

Besides equipment cost, speed is presumably the most critical factor in commercial adoption of 906 

hyperspectral imaging technology for real-time inspection of horticultural commodities. The inspection 907 

speed by hyperspectral imaging is constrained by the time needed to acquire, transfer and analyze large 908 

volumes of image data (at tens to hundreds of wavelengths), each of which could be the limiting factor for 909 

achieving a practical inspection rate (e.g., 5-10 or more food items per second). While the recent 910 

advancements in hardware and software have greatly improved the implementation speed of hyperspectral 911 

imaging, compared to 20 years ago, there are still relatively few real-time implementations of hyperspectral 912 

imaging for postharvest quality inspection. One technically feasible solution is to configure a line-scanning 913 

hyperspectral imaging system in a multispectral mode (or hyperspectral-multispectral mode). This approach 914 

is advantageous for online applications, in terms of speed and flexibility, compared to the conventional 915 
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multispectral imaging approach, and hence it should be further considered for online inspection of 916 

horticultural products. Real-time inspection rates of about 3 items per second have been reported by 917 

implementing line-scan hyper-multispectral imaging for poultry carcass inspection (Park and Yoon, 2015; 918 

Yoon et al., 2011), but the speed still falls short of the requirement for inspecting horticultural commodities. 919 

Moreover, defect detection for round-shaped horticultural commodities such as apples requires inspecting 920 

the whole product surface. This requires fast rotating of products during image acquisition, as is already 921 

done in conventional machine vision systems. The implementation of fruit rotation for hyperspectral line-922 

scanning is challenging, but technically possible. High-speed, high performance imaging cameras currently 923 

are available to meet the need of scanning rotating horticultural products, although costs are still high.   924 

Integrated imaging modes (i.e., reflectance and transmittance, and reflectance and fluorescence) expand 925 

the capabilities of hyperspectral imaging for multi-parameter inspection (Kim et al., 2008). Coupled with 926 

the hyperspectral-multispectral mode, these integrated imaging modes could provide new opportunities for 927 

online inspection of postharvest quality and safety of horticultural products. As discussed in Section 2.4.2, 928 

snapshot hyperspectral imaging holds great promise for real-time postharvest quality and safety inspection, 929 

owing to its ability of acquiring hyperspectral image cubes simultaneously. The technology is evolving 930 

rapidly, and some devices are already commercially available and have started to find applications in the 931 

fields of remote sensing and biomedical imaging. At present, most snapshot cameras on the market are 932 

based on CMOS sensors. It remains to be evaluated whether these cameras are able to deliver sufficiently 933 

high-quality images at the wavelengths of interest for real-time applications.  934 

In addition, miniaturized, handheld hyperspectral imaging devices, either snapshot or internal line-935 

scanning based, have emerged recently (Behmann et al., 2018; Wu et al., 2014). These devices provide 936 

convenience and new opportunities for fast, on-site inspection, but their performance remains to be 937 

evaluated.  938 

In recent years, fast computing technologies based on parallel computing have evolved rapidly, which 939 

provides a means for accelerating hyperspectral-related computations (Burger and Gowen, 2011; Plaza and 940 

Plaza, 2011). Parallel computing, which allows simultaneous use of computer resources [e.g., multiple 941 
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central processing units (CPUs) in a computer], can execute multiple tasks simultaneously and is thus well 942 

suited for multi-tasking food quality and safety inspection by hyperspectral imaging. In particular, parallel 943 

computing, using field programmable gate arrays (FPGAs) and graphical processing units (GPUs), has 944 

demonstrated excellent performance in hyperspectral remote sensing applications (Bernabe et al., 2013; 945 

Ghamisi et al., 2017) and is currently used in commercial postharvest sorting systems based on 946 

hyperspectral imaging. Owing to the advancements in computing technologies, especially the utilization of 947 

GPUs along with deep learning frameworks (e.g., TensorFlow, PyTorch, Caffe and Theano), deep neural 948 

networks (DNNs) that are inherently computationally intensive, are becoming increasingly popular in 949 

solving computer vision tasks with superior accuracies. Efficient deployment of DNNs based on GPU 950 

accelerations (Sze et al., 2017) is likely to greatly enhance the capacity of hyperspectral imaging for 951 

detecting different types of defects in horticultural products, which, however, require a sufficiently large 952 

image dataset to train the networks. Hence, future research efforts should also be directed at efficient 953 

utilization of DNNs for rapid and effective defect detection in horticultural products.   954 

 955 

6. Conclusions 956 

Since its introduction for postharvest quality and safety assessment in the late 1990s, hyperspectral imaging 957 

technology has been extensively researched for external quality and defect detection, internal quality and 958 

maturity assessment, and food safety inspection. Great progress in the hardware design and implementation 959 

and image processing algorithms and methodologies has been made over the past 20 years, and several 960 

online hyperspectral imaging prototypes have been developed for horticultural products. However, 961 

commercial application of the technology has been slow in progress, due to the constraints in image 962 

acquisition and processing speed and equipment cost. With the further advancement in imaging 963 

implementation modes and the emergence of new imaging modalities (i.e., snapshot and miniaturized, 964 

portable devices), along with new, faster and more powerful image processing and computing techniques 965 

including artificial intelligence, hyperspectral imaging technology will find more wide applications in the 966 
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near future for enhanced quality and safety evaluation of horticultural products, especially at the industry 967 

scale.  968 
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