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Mapping species richness using
opportunistic samples: a case study
on ground-floor bryophyte species
richness in the Belgian province of
Limburg
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In species richness studies, citizen-science surveys where participants make individual decisions
regarding sampling strategies provide a cost-effective approach to collect a large amount of data.
However, it is unclear to what extent the bias inherent to opportunistically collected samples may
invalidate our inferences. Here, we compare spatial predictions of forest ground-floor bryophyte
species richness in Limburg (Belgium), based on crowd- and expert-sourced data, where the latter

are collected by adhering to a rigorous geographical randomisation and data collection protocol.

We develop a log-Gaussian Cox process model to analyse the opportunistic sampling process of the
crowd-sourced data and assess its sampling bias. We then fit two geostatistical Poisson models to both
data-sets and compare the parameter estimates and species richness predictions. We find that the
citizens had a higher propensity for locations that were close to their homes and environmentally more
valuable. The estimated effects of ecological predictors and spatial species richness predictions differ
strongly between the two geostatistical models. Unknown inconsistencies in the sampling process,
such as unreported observer's effort, and the lack of a hypothesis-driven study protocol can lead to the
occurrence of multiple sources of sampling bias, making it difficult, if not impossible, to provide reliable
inferences.

Citizen science is a body of research in which scientific investigations are carried out through the involvement of
volunteers from the general public in collaboration with experts. This has received increased attention in different
scientific fields over the last decade, including ecology'~* where public participation provides a low-cost method
for data collection in order to provide timely information on ecological processes. For example, in ornithology,
studies on the distribution of British birds have used citizen-science data (CSD) to record breeding locations® and
ringing data, partly collected by citizens, have been used to investigate autumn migration in the French-Swiss
Alps®. CSD have also been used to assess the effects of habitat degradation on avian population dynamics’, inver-
tebrate distributions®, and habitat use of rare species’.

Price & Lee!® define a set of citizen science categories, based on varying degrees of citizens’ involvement and
adherence to a pre-arranged study protocol. When we refer to CSD in this study, we focus on the active contrib-
utory model, in which participants actively engage in data collection and/or processing, while making individual
decisions regarding sampling strategies. Although this model is often used in wildlife monitoring, its economical
benefits are offset by the absence of a consistent study design methodology. As a result, it is inadvisable to use
CSD for modelling complex ecological processes without understanding the mechanisms that might yield biased
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inferences on the phenomenon under investigation'!. Isaac et al.'? identify four main sources of bias in this type of
CSD: (i) temporal and (ii) spatial unbalance in data collection, (iii) uneven species detectability, and (iv) uneven
sampling effort per visit. Although (i), (ii), and (iii) are not exclusive to CSD, they are likely to be exacerbated in
the absence of predefined sampling guidelines. Uneven sampling effort (iv) is more particular to CSD, and may be
the product of different sampling inconsistencies, such as differences in the durations spent on the field and the
number of data collectors per visit. Hadj-Hammou et al.'® argue that the development of methods to investigate
the drivers behind the behaviour of citizens is essential to address these issues.

Recent studies on the biodiversity of ecosystems have reported mixed results on the usefulness of CSD. For
example, variation in observational skills among citizens has been found to be an important source of bias in
detecting adelgids'* and anurans'. In contrast, Delaney et al.!® concluded that CSD provided useful insights into
the distribution of native and invasive crabs, but also highlighted that age and university training of the collector
were associated with identification skills. Boudreau & Yan'” found that citizens were able accurately to detect
invasions of non-native water fleas in Canadian lakes. van Strien et al.'® found a good match between predicted
trends from CSD and monitoring data on the distribution of dragonflies and butterflies.

Species richness is defined as the number of species present in an ecosystem and is used as a measure of
biodiversity. Studies on species richness frequently rely on CSD but their opportunistic nature is often ignored
or is addressed through the use of overly simplistic approaches that cannot account for specific sources of sam-
pling bias. An exception is given by Carota et al.'’, who model species richness from historical data using a
semi-parametric Poisson model with random effects drawn from a mixture of Dirichlet processes. They show
that this data-driven approach better captures the large heterogeneity induced by the opportunistic nature of the
underlying sampling mechanism than standard Poisson mixed models. Over the last decade, research based on
the use of CSD has been mainly focused on the modelling of geographical distributions of a single animal species.
A commonly used approach consists of subsampling the data based on the number of location visits and the
amount of species collected per location. For example, in their analysis of European ladybird declines, Roy et al.?°
only consider data collected over a 1 x 1 km? regular grid, where at least two common species were observed.
Similarly, Kuussaari et al.?! discard all data on a 10 x 10 km? regular grid with less than 40 records of focal farm-
land butterfly species reported before 1960 to assess changes in their spatial distribution, resulting in the loss of
85% of data points from cells visited before 1960. A generally more robust approach, which we also follow in this
paper, is to account for potential sources of bias through the inclusion of key explanatory variables to the model.
For example, Szabo et al.?? include the total number of species to model the abundance of several avian species
as a proxy for the observer’s effort. Kelling et al.*® and Johnston et al.** use model-based predictions of the num-
ber of recorded species to correct for observer-specific species’ detectability skills. Occupancy-detection models,
originally proposed to model imperfect detection of species**®, have also been used to account for observation
and reporting bias's. However, these models require presence/absence information from repeated site visits and
often result in an excessive aggregation of the data over time and space, which is questionable when locations are
revisited at highly irregular time intervals.

In this paper, we focus on the spatial prediction of species richness of ground-floor bryophytes in Limburg,
Belgium, using data from an expert source and CSD. More specifically, the first source consists of randomised
survey data (RSD) collected by a biologist who adheres to a predefined and randomised sampling design proto-
col. The CSD, in contrast, include non-randomised opportunistic samples obtained by a team of two individuals
who are occasionally joined by other collectors. An important aspect of our approach is the explicit modeling of
the spatial correlation between observations. This issue has been extensively addressed in modelling species dis-
tributions?’-* with some attempts to account for sampling and detection bias (see, for example, Pacifici et al.*®).
Conn et al.’! use geostatistical methods to model ecological data in the presence of preferential sampling. This
term refers to a special case of opportunistic sampling in which there is stochastic dependence between the sam-
pling design and the reported species counts®. In the context of species richness modelling, Chakraborty et al.’®
use spatial point processes to estimate the distribution of six different species separately. From each individual
point process model, they then draw posterior samples for the estimated intensity functions to predict the overall
species richness.

The objective of our study is to assess the reliability of the CSD in predicting bryophyte richness. Hence, we
first use a log-Gaussian Cox process model to understand what variables might have affected the opportunistic
nature of the sampling mechanism in the CSD. We then fit geostatistical Poisson models to the two data-sets and
compare the resulting spatial estimates for bryophyte richness. Model-based geostatistics** provides a principled,
likelihood-based approach to inference. It also exploits the correlation between recordings of species richness by
accounting for unmeasured environmental factors through the inclusion of a latent spatial Gaussian process in
the linear predictor of the response variable. To the best of our knowledge, this is the first study that, unlike others
where groups of citizens are large and heterogeneous, (i) uses a model-based approach to describe the sampling
pattern of individual collectors in a CSD context and (ii) validates the use of the CSD for mapping species richness
using geostatistical methods.

Methods

Data. Our study area is the province of Limburg, covering 2,414 km? in the Eastern part of Belgium; we do not
include Voeren, a smaller exclave of the Limburg province. The data, which are publicly available®, are obtained
from two sources: the RSD correspond to observations recorded by a biologist working for the Belgian Nature
and Forest Agency (ANB); the CSD consist of opportunistic samples collected by two citizens for the Umbrella for
Nature Research in Limburg (LIKONA). The citizens lived in the western part of Limburg and were occasionally
joined by other citizens. The outcome of interest, available from both sources, is the number of distinct forest
ground-floor bryophyte species determined in a lab through microscopy detection or visual inspection of a moss
sample. Species richness is often used as an index of biodiversity when the total counts per species are difficult or
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Figure 1. Maps of the number of sampling events and the average observed forest ground-floor species richness
over a 1 by 1 km regular grid, from the two data sources.

impossible to assess*. Both data-sets include information on the date of collection, the name of the data collectors
and the GPS locations of the sampled cell from a 1 by 1 km regular grid created by the Institute for Floristics in
Belgium and Luxembourg (IFBL). Each data collector reported all bryophyte species observed during the surveys.

Geographical summaries of sampling events and the observed species richness for both the RSD and CSD are
given in Fig. 1. The RSD were collected between 1997 and 1999 and include a total of 420 locations in Limburg
that were selected using a randomised systematic lattice-based sampling design, which was restricted to the for-
ested areas of Limburg; a 1km x 1km raster was randomly superimposed on the map of Limburg. All intersec-
tions between horizontal and vertical raster lines that landed on an area that was officially defined as a forest,
were designated as sampling locations. During the sampling, the data collector walked no more than 50 m in one
direction, starting from the sampling location, and repeated this in directions at 90°, 180°, and 270° angles from
the initial direction. Sampling was restricted to the prescribed trajectory. The collector assembled samples of all
ground-floor bryophytes that, by visual inspection, were species not yet encountered during the sampling event.
Those samples were later investigated under laboratory circumstances. There was no fixed or maximal duration of
a sampling event, which is a sensible choice, since data gathering is likely to take a longer time on more biodiverse
trajectories. More details can be found in Afdeling Bos & Groen*. Figure 1 (top right panel) shows the resulting
set of sampled locations. The CSD contain 2,088 recordings of bryophyte richness from opportunistically selected
locations between 1985 and 2009 (Fig. 1, top left panel). From interviews, we learnt that the selection of locations
was often based on their proximity to the home of the two main collectors, with preference for those locations
that were more biodiverse according to the collectors’ knowledge. Except for a number of sites relatively close to
their homes, locations were rarely revisited. The goal of the data collection carried out by the two citizens was to
cover the largest possible area in the Limburg province. As a result, unlike the RSD, sampling was not restricted
to forested areas and the citizens reported observations of all possible bryophyte species, regardless of habitat and
substrate. The two main CSD collectors were volunteer bryophyte experts, with species identification skills that
can be assumed to be similar to the RSD’s expert knowledge. The observers’ efforts, such as the time spent in the
field, varied greatly between events and were not documented. However, the interviews also revealed that both
collectors were mostly in close proximity and followed the same trajectory when collecting data. There is no avail-
able documentation of all Belgian forest ground-floor bryophytes. The species labelled here as forest ground-floor
bryophytes, occur in forests, but are not necessarily restricted to forested areas and ground floors, which means
that the citizens could have found these species at locations other than forests and/or ground floors. Furthermore,
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Figure 2. Relative coverages of wet areas, valuable nature, and forests, per IFBL cell.

since spatial information is only available on the grid-level, which mostly consists of multiple habitat types, we
do not know which of the CSD’s samples were taken from ground floors of forests. As a pragmatic solution, we
extract from the CSD database only the observations of species that occur in the RSD data.

Environmental variables. We use information on wetness, environmental evaluation and forest cover to
generate ecological variables that might help to explain the spatial variation in bryophyte species richness. The
Flemish geological map?®, last updated in 2017, provides wetness categories for each landscape zone within the
study area. Since multiple landscape zones may fall within each IFBL cell, we compute the proportion of wet
landscape zones (henceforth, W) as shown in Fig. 2. Similarly, we compute the relative coverage of valuable
nature (henceforth V; Fig. 2), defined as the proportion of landscapes within an IFBL cell that are wholly or
partly labelled as “very valuable” or “valuable” according to the Belgian Biological Evaluation Map anno 2016%.
Nature evaluation is based on several correlated environmental characteristics, including habitat type, presence
of ecologically important fauna and flora and the level of human disturbance. Hence, using the variable V allows
us to avoid multicollinearity issues while capturing the main environmental features of each IFBL cell. We do not
use temporally varying values for W and V, but it is reasonable to assume that these have only slightly changed
between 1985 and 2009, since environmental planning in Limburg has undergone only minor changes through-
out the last 40 years. Finally, the relative forest coverage within each IFBL cell (henceforth, F) was calculated,
based on the Flemish Forest Map®.

Statistical analysis. Modelling of opportunistic sampling as a preferential sampling scheme. ~Preferential
sampling is a term coined by Diggle et al.*? to denote processes that generate sampling locations X that are sto-
chastically dependent on the underlying spatial process of interest, which in our case corresponds to the species
richness at any given location in Limburg. The opportunistic samples from the CSD study might in fact have
been generated from a similar mechanism whereby the stochastic dependence between species richness and the
selection of a location for data collection is induced by several unmeasured factors, which might increase the
likelihood of finding more species. The RSD’s sampling locations were chosen non-preferentially, as they were
an independent sample from a (non-uniform) distribution on the region of Limburg, in which locations outside
forests had a sampling probability of zero, while locations inside forests had an equal sampling probability.

Ignoring stochastic dependence caused by preferential sampling can invalidate our predictive inferences
on the outcome of interest, as shown in Diggle et al.’2>. Our modelling strategy is inspired by Pati et al.*! who
extended the geostatistical method of Diggle et al.** using a bivariate spatial process. They proposed a joint mod-
elling approach where a geostatistical model of the outcome of interest shares a spatial random effect with a
log-Gaussian Cox process (LGCP) that models the choice of sampling locations. Note that by definition, pref-
erential sampling refers to stochastic dependence between species richness and location choice; in other words,
it reflects unexplained variability that is shared between both models. Preferential sampling does not occur as a
result of variability that is explained by shared predictors.

We proceed as follows. To understand how distance from home and evaluation of nature affected the choice of
a sampling location, x, in the CSD data, we model the latter as the realisation of a LGCP with intensity

A(x) = explay + a;D(x) + o, V(x) + S(x)}, (1)

where: D(x) is the distance between x and the collectors’ residential municipality; V(x) is the evaluation of nature
at location x; and S(x) is a stationary and isotropic Gaussian process with zero mean, variance o? and Matérn*
correlation function given by
K
o <[}
¥ ¥

where: u > 0 is the Euclidean distance between any two locations; ¢ is a scale parameter regulating how quickly
the spatial correlation decays to zero for increasing distance; and K;(.) denotes the modified Bessel function of
the second kind, of order x > 0. Zhang® warns that under fixed-domain asymptotics o, ¢, and &, cannot be esti-
mated consistently; as a pragmatic approach, we therefore set x = 1. Fitting the LGCP model is computationally
intensive; we therefore approximate S(x) using a stochastic partial differential equations (SPDE) approach. SPDE

p(us o, k) = {27 ' TR}
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Parameter estimate 95% C.I.
intercept o 2.970 [2.822;3.117]
distance to house | oy —0.031 [—0.035;—0.027]
value of nature , 2.778 [2.601;2.955]
spatial variance log(a?) 2.487 [2.302;2.673]
scale log(¢) 2.678 [2.176;3.180]

Table 1. Results for the LGCP model for the opportunistic sampling process of the CSD.

uses a triangulation method based on Gaussian weights with Markov dependencies that approximate the Matérn
covariance structure. More details can be found in Lindgren et al.*. The triangulation mesh was constructed
using recommendations outlined in Krainski et al.*>.

The objectives of the geostatistical analysis are to model species richness from the two data sources and to
quantify the differences between the resulting predictive inferences. In the case of the CSD, we also account for
bias that might be induced by preferential sampling.

Let Yj(x;, t;) denote the total number of forest ground-floor bryophyte species collected at location x; and time
t; €{1985, ..., 2009} from source j € {CSD, RSD}. Conditionally on a spatial Gaussian process U(x) and Gaussian
noise Z;(x;), we assume that Y;(x; ;) are mutually independent Poisson random variables with means Hi(x, ).
More specifically, for j= CSD, we write

HespXi 1) = exp{By cop + By,cspW(x;)
+B5,cspV (%)) + B3 cspF(x;) + B4log(C)
HF(t) + A8Cx) + Upsp(x) + Zesp(x)} @)

where: §(x;) is the predictive mean of the spatial process in Eq. (1) at location x; used to account for preferential
sampling. Based on the results from our exploratory analysis (Appendix; Fig. A.1), we assume a log-linear rela-
tionship between Yj(x; ¢;) and S(x;); W(x;), V(x;) and F(x;) are the three spatial variables, shown in Fig. 2, at loca-
tion (x;); C; is the number of collectors; and f{t;) is a cubic spline with knots at 1990, 1995, 2000, 2002, 2004, and
2006. Note that, if all factors that explain the spatial variation in the choice of the sampled locations in the CSD
study were available, this would lead to S(x;) =0 for all i, and hence S(x;) = 0 meaning that bias arising from pref-
erential sampling would be completely removed from the model for species richness.
Finally, for j=RSD, we write

Prspo 1) = exp{By psp + BirspW (X)) + BarspV (%)) + B3 repf(x;) + Bst" + Upsp(x;) + Zgsp(x)}s (3)

where: ' = t; — 1997. We use 1/].2 and 9); to denote the variance and scale of the exponential spatial covariance
functions used for Uj(x).

Parameter estimation and predictive comparison. We estimate the parameters of the LGCP model and the
Poisson geostatistical models in Section 2.3.1 using the Monte Carlo maximum likelihood (MCML) method*,
implemented in the PrevMap package®’. More technical details on how the SPDE approach, used for approxi-
mation of the Gaussian process S(x), and the MCML method are implemented in order to obtain the parameter
estimates can be found in Chapter 7 of*!. We wish to compare the resulting predictions for pipgp(x,t) and picsp(xt)
at locations and times for which both sources provide enough information, noting that fcgp(x,t) corresponds to
the average species richness adjusted for preferential sampling bias in CSD. We then set = 1998 and consider
locations x such that the estimated spatial correlation between Uj(x) and Uj(x,) is no less than 0.75, with x, denot-
ing the sampled location from either of two sources that is closest to x, for j= RSD, CSD. We then summarise the
discrepancy between fipgp(X,t) and picsp(x,t) through their relative difference

RD(X) = {ﬁCSD(x’ t) - ﬁRSD(x’ t)}/max{ﬁcsp(x) t)) ﬂRSD(x’ t)}

In computing fi ., (x, t), the number of collectors is set to C;=2. As noted in Section 2.1, we assessed that the
two collectors from the CSD acted as one in view of their strong interaction during the data collection.

Results
The triangulation mesh used for the SPDE approximation in the LGCP model is provided in the Appendix
(Fig. A.2). The parameter estimates in Table 1 indicate that the data collectors, on average, visited locations closer
to home and of higher natural value more intensely. In particular, we find that evaluation of nature has the strong-
est effect, estimating that a location within an environmentally 100% valuable environment has a sampling inten-
sity about (exp{2.778}~2) 16 times larger, with the other variables kept equal. However, the predicted surface
from the LGCP model (Fig. 3) suggests the presence of additional factors affecting the two collectors’ choice of
locations. The map shows that a large swathe in the south of Limburg, both far from the collectors’ homes and of
low natural value, was also sampled with moderate intensity.

For the CSD, we did not find evidence of an association between the predictive mean of the residual spatial
process S(x) and species richness, as indicated by the non-significant estimate for the parameter - at the conven-
tional 5% level (§ = —0.031, 95% confidence interval [—0.106; 0.044]). As expected, the mean level of species
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Figure 3. Opportunistic sample. Left: observed sampling locations, with random jitter and a red dot indicating
the central point of the collectors’ residential municipality. Right: log-transformed intensities, predicted by the
log-Gaussian Cox model.
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Figure 4. Fitted spline effect (solid line) in the CSD geostatistical model, along with 95% confidence intervals
(dashed lines).

parameter estimate 95% C.I. estimate 95% C.I.
CSD RSD

intercept B, —3.990 [—5.003;—2.978] 1.541 [1.189;1.894]
wetness By 0.627 [0.16651.089] —0.295 [—0.566;—0.025]
value of nature 5, —0.365 [—0.948;0.217] 0.366 [0.078;0.653]
forest cover 035 0.984 [0.161;1.627] 0.193 [—0.074;0.461]
spatial variance log(o?) —1.060 [—1.602;—0.518] —2.379 [—3.354;—1.404]
scale log(¢) 1.686 [0.747;2.625] 2.596 [1.245;3.948]
nugget log(7?) 0.845 [—0.256;1.946] —3.146 [—5.318;—0.975]

Table 2. Estimates and 95% confidence intervals of parameters common to the CSD and RSD geostatistical
models for species richness. Comments on the temporal trends, and the effects of group size in the CSD
analysis, not reported in this table, are provided in the main text.

richness significantly increases as the number of collectors also increases (3, = 1.905, 95% confidence interval
[1.513;2.396]). The spline function fitted in the CSD model is shown in Fig. 4. The time effect is almost flat during
the years in which the RSD were collected (1997 to 1999). For the RSD, the linear time effect was negative
(B; = —0.083, 95% confidence interval [—0.138; —0.028]). Table 2 and Fig. 5 provide comparisons for the esti-
mates of parameters used in the geostatistical models for both CSD and RSD. We found contrasting results. In the
CSD, the estimated regression coefficients for wetness and forest cover were both positive, while the effect of
evaluation of nature was not significant. For RSD, these three effects were significantly negative, non-significant
and significantly positive, respectively.

Figures 6 and 7 show the predicted spatial surfaces for /i ., (x, t)and i, (x, t) for t=1998. Predictions from
the CSD show higher values in species richness in the northern part of Limburg, while the RSD predictions point
to increased values in the north-western and central-eastern parts of Limburg. In addition, Figures 6 and 7 show
increased estimation error in the CSD-based predictions. Fig. 8 shows the relative difference at locations where
both CSD and RSD could be assumed to be informative (see Section 2.3.2 for more details). We observe that
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Figure 5. Visual comparison of the point estimates (open circles for the citizen science data (CSD); solid circles
for the random study data (RSD)) and 95% confidence intervals (dotted lines) for the parameters common to
two geostatistical models that were fitted to the CSD and RSD.
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Figure 6. Mean forest ground-floor bryophyte species richness prediction and coefficient of variation (standard
error/mean prediction) for 1998 and 2 data collectors, based on the CSD.

RSD: mean prediction RSD: coefficient of variation
= ©
= o
N
- 0

o
°

<
© o
© o

o
<

N

o
N
°© S

Figure 7. Mean forest ground-floor bryophyte species richness prediction and coeflicient of variation (standard
error/mean prediction) for 1998, based on the RSD.
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Figure 8. A map and histogram of relative differences (RD(x)) between mean predictions for 1998, based on
CSD ad RSD, for locations that were visited in both data collections.

overall the CSD provide lower predictions of species richness than the RSD, with relative differences ranging
between —0.15 and 0.75.

Discussion

We have assessed the reliability of opportunistic samples on forest ground-floor bryophyte species richness col-
lected by two citizens in Limburg, Belgium, using data from an expert source who adheres to a randomised
sampling regime as the gold-standard. In the first part of our analysis, we have fitted a log-Gaussian Cox process
(LGCP) model to investigate spatial factors that might have affected the citizens’ choice of sampling locations.
Our results indicate that locations with a higher value of nature and those located closer to the residential location
of the collectors were sampled more intensely than others. However, the fitted LGCP model also suggests that
there may be additional factors driving the sampling behaviour of the two citizens. These might be related to
personal interests in a specific species or taxonomic group, as documented by Boakes et al.*’. Other authors have
highlighted that environmental features that facilitate monitoring often play an important role in citizens’ sam-
pling choices. Hadj-Hammou et al.'® observed that citizens visited sampling locations with habitat types that are
easily accessible and abundant throughout the study region more frequently than other locations. Ease-of-access
has also been shown to be important in the opportunistic placement of camera traps®.

In the second part of the analysis, we have carried out spatial prediction of bryophyte species richness by
fitting geostatistical Poisson models. For the citizen-science data, or CSD, we have accounted for potential bias
induced by preferential sampling® through the inclusion of the predictive mean of the spatial Gaussian process
from the LGCP model into the linear predictor for species richness. This allows us to account for spatial factors
that affect both the likelihood of a location being sampled and the variation in species richness. However, since
this did not show any significant effect, we conclude that, in this case, preferential sampling may not capture all
the main features of the opportunistic sampling process in the CSD. Other sources of bias might not be spatially
structured and can only be accounted for when they are accurately reported by the data collector, which is not the
case in our study. Here, group size was the only available variable that could be used as proxy for the heterogeneity
in the collectors’ effort and it was found to have a significant effect on species richness in the CSD. In the CSD
analysis, we found positive effects of wetness and forest cover. In contrast, the results from the randomised study
(RSD) indicated a negative effect of the wetness index and a positive effect of environmental value. Finally, the
spatial estimates for species richness differed greatly at many locations between the CSD and RSD, especially in
the eastern parts of Limburg. Note that the estimates were generally smaller in the CSD than in the RSD.

Following the classification by Isaac et al.'? of the sources of bias in CSD, we draw the following conclu-
sions. The spatial unbalance of the data was not an issue in our analysis, since our approach, unlike, for example,
occupancy-detection models, does not require data to be aggregated over space. We account for uneven sampling
effort by including group size as a covariate in the geostatistical model. However, we were not able to account
for additional likely sources of uneven sampling effort as these were not reported. Examples of these are the
time spent in the field and the trajectory covered by the citizens, two sampling parameters that are instead con-
trolled for in the RSD’s study design. Another limitation of our approach is that it does not account for species-
and observer-specific detectability. To account for species-specific detectability, we would require accurate prior
information on the probability of detection and how this varies in space for each species so as to incorporate it
into a model for the presence/absence of each species. Dorazio and Royle® and Dorazio et al.>* predict species
richness based on joint species-specific site-occupancy models, in which a species’ site-occupancy is modelled
as a mixture of a Bernoulli process that determines the likelihood of the species’ presence or absence at a given
location and a second Bernoulli process regulating how likely that species is to be observed at that location given
its presence. The method requires a well-structured study protocol with site re-visits, both of which were una-
vailable for the CSD. Since only two collectors, occasionally joined by other citizens, carried out the collection
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of the CSD, variation in the observer-specific detectability skills is less problematic in our case. This is known to
cause inferential issues when data are collected by a highly heterogeneous group of citizens?*. Furthermore, in our
study, collectors in both the CSD and RSD had extensive knowledge of bryophyte systematics and we therefore
assume that they all have similar detectability skills. This is arguably a strong assumption, since observer-specific
detectability has been shown to vary considerably, even among the most skilled data collectors®.

Most of the challenges in the analysis of CSD, especially in the active contributory model'® arise from the lack
of a well-defined scientific hypothesis that might provide guidance for the sampling design. The underestimation
in bryophyte species richness reported in our analysis of the CSD may be due to the fact that the two investigators
were less likely to engage in the close inspection of species on the forest floors, which was the main focus of the
RSD study. However, this can as well be an artefact of using the set of species that were collected in the RSD study
to extract forest ground-floor bryophytes from the CSD data, which implied that forest ground-floor bryophyte
species that were identified by the citizens, but not in the expert study, were not considered for the analysis.

A secondary issue in our study is that the resolution in which the spatial and/or temporal variation is recorded
does not align with the resolution at which the true ecological process is at play; e.g., spatial trends in moss species
richness will probably vary considerably within each 1km? grid cell, but we are unable to investigate this. We face
this problem in both CSD and RSD analyses, but it generally poses a difficulty in historical CSD surveys, which
have become popular sources to investigate long-term ecological trends. This spatial misalignment can be one of
the reasons why an ecological covariate such as value of nature was found to contribute less to the variability in
the CSD outcome than expected.

We conclude that in general, we cannot trust inferences that are drawn purely from CSD that were collected
without adherence to a strict sampling protocol, due to multiple unreported sources of sampling bias. These
may be difficult, if not impossible, to account for in absence of detailed information on the sampling procedures
adopted by the citizens. This does not imply that CSD within the active contributory model cannot provide useful
information for estimating biodiversity, but rather that standard modelling approaches will be prone to failure.
A more promising approach would be to combine the imperfect information from CSD with gold-standard data
that can deliver unbiased spatial estimates. This has been achieved in the context of disease mapping®*>> where
joint geostatistical models have been developed in order to remove bias from opportunistically collected samples
by analyzing these jointly with data from randomised prevalence surveys. However, we could not apply this mod-
elling framework in our study due to the relatively small temporal overlap between CSD and RSD, which does not
allow to reliably estimate the spatially varying bias of the CSD.

Data availability
The data are available at https://doi.org/10.5061/dryad.brv15dv5r.
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