Exposing the Variety of Equilibria in Oligopolistic Electricity Markets with Strategic Storage INFORMS 2020

Mihaly Dolanyi^{1,2}, Kenneth Bruninx^{1,2}, & Erik Delarue^{1,2}

1: Division of Applied Mechanics & Energy Conversion, KU Leuven 2: EnergyVille, Thor Park 8310, Genk, Belgium

> mech.kuleuven.be/en/tme/research/ energy-systems-integration-modeling e-mail: mihaly.dolanyi@kuleuven.be

Perfect competition, monopoly and oligopoly

Motivating example

Multi-leader-common-follower game as a Generalized-Stackelberg-Nash (GSN) game

Existing solution strategies

Input data, parameters

- 8-hour market, hourly clearing
- 500 (MW) Wind, 550 (MW) PV
- ESS: 1600 (MWh), 400 (MW)
- Load: modified, scaled load profile of Belgium*
- 8 GENCO
- Solver: KNITRO
- Language: Julia
- ε1, ε2 were altered from 1 to 100 by 0.5
- Validation by Gauss-Seidel

Fig. 1: Marginal cost curve of the conventional generators.

Fig. 2: Wind, PV generation and load profiles.

Range of equilibria for ESS

Systematic trends

	BASE	$1.5 \cdot CAP_{ESS}$	$1.5 \cdot CAP_{RG}$	BOTH
ESS	273.2 / 82.2 (177.6)	$366.3 \ / \ 41.2$ (266.3)	272.6 / 24.8 (177.6)	$366.1 \ / \ 77.3$ (266.3)
CG	$\begin{array}{c} 638.4 \ / \ 93.8 \\ (325.0) \end{array}$	$547.3 \ / \ 57.7 \ (325.0)$	$557.7 \ / \ 38.8$ (325.0)	$\begin{array}{c} 451.8 \ / \ 115.9 \\ (325.0) \end{array}$
RG	306.5 / 18.8 (213.8)	$\begin{array}{c} 290.7 \ / \ 34.5 \\ (213.8) \end{array}$	$\begin{array}{c} 448.8 \ / \ 30.5 \\ (320.8) \end{array}$	$\begin{array}{c} 449.2 \ / \ 29.6 \\ (320.8) \end{array}$

Social welfare, producer surplus and strategic profits in 4 different model settings. Attained value / std (perfect competition equivalent)

Case-by-case

Differences in the ESS's profits between settings, on average (shown by the straight lines), on case-by-case basis (shown by the scatter plot)

Conclusions

- Numerical solutions to an EPEC may exhibit significant variations, remaining present in altered model settings
- Attempts to trigger many of them should be of interest for the modeler
- When studying the average outcomes, the observed trends are more systematic
- Observation made on a case-by-case basis can be fairly misleading

KU LEU

Thank you for your attention! Questions?

Transformation steps

Central Planner' objective (*Ruiz et al 2012*)

- Competitive equilibria: Maximize social welfare
- Collusive equilibria: Maximize total profits of all competing firms
- Favor ESS: Maximize storage owner' profit

KU LEUVEN

Relaxation

Contribution

Sequentially co-regularized NLP formulation for simultaneously solving multi-leader games

- Efficiently solved for small to middle scale problems
- Using the off-the-shelf non-linear solvers
- Omits the need of using linearization techniques: e.g. big M-method* or parametrization techniques **

Exploration of the attainable range of equilibria

- Altering the regularization parameters and reporting a large set of outcomes
- Studying a range of equilibria triggered by various objectives of an imaginary social planner

* S. Pineda and J. M. Morales, "Solving Linear Bilevel Problems Using Big-Ms: Not All That Glitters Is Gold," ** C. Ruiz, A. J. Conejo, and Y. Smeers, "Equilibria in an Oligopolistic Electricity Pool With Stepwise Offer Curves," IEEE Transactions on Power Systems, may 2012.

KU LEL

Conventional generation vs. storage

Mathematical Formulation: 1st-phase regularization

Mathematical Formulation: 2nd-phase regularization

$$\begin{split} \nabla_{x^j} \mathcal{L}^j_{UL} \Big(x^j, \kappa^j, \omega^j, \zeta^j, \sigma^j, \pi^j, \delta^j, y, \lambda \Big) &= 0 \\ \nabla_{s^j} \mathcal{L}^j_{UL} \Big(x^j, \kappa^j, \omega^j, \zeta^j, \sigma^j, \pi^j, \delta^j, y, \lambda \Big) &= 0 \\ \nabla_y \mathcal{L}^j_{UL} \Big(x^j, \kappa^j, \omega^j, \zeta^j, \sigma^j, \pi^j, \delta^j, y, \lambda \Big) &= 0 \\ \nabla_\lambda \mathcal{L}^j_{UL} \Big(x^j, \kappa^j, \omega^j, \zeta^j, \sigma^j, \pi^j, \delta^j, y, \lambda \Big) &= 0 \\ \kappa^j \cdot \Big(b^j - A^j x^j - By \Big) &= 0 \\ \omega^j \cdot x^j &= 0 \\ \zeta^j \cdot y &= 0 \\ \delta^j \cdot \lambda &= 0 \\ \varepsilon^j \cdot \Big(C^j x^j + C^{-j} x^{-j} + Dy - a \Big) &= 0 \\ \Big[\epsilon_1 - \Big(C^j x^j \Big)^T \lambda + s^j \Big] \cdot \underline{\gamma}^j &= 0 \\ \Big[\epsilon_1 + \Big(C^j x^j \Big)^T \lambda - s^j \Big] \cdot \overline{\gamma}^j &= 0 \\ \Big[\epsilon_1 + \Big(C^j x^j \Big)^T \lambda - s^j \Big] \geq 0 \\ \Big[\epsilon_1 + \Big(C^j x^j - \lambda - s^j \Big] \Big] \geq 0 \\ \Big[b^j - Ax^j - By \Big) &\geq 0 \\ \Big(C^j x^j + C^{-j} x^{-j} + Dy - a \Big) &\geq 0 \\ D^T \lambda &\leq e \\ e^T y - a^T \lambda + \Big(C^j x^j \Big)^T \lambda + \Big(C^{-j} x^{-j} \Big)^T \lambda = 0 \\ \lambda, x^j, y, \kappa^j, \omega^j, \zeta^j, \xi^j, \sigma^j, \delta^j, \overline{\gamma}^j, \underline{\gamma}^j &\geq 0 \end{split}$$

$$\kappa^{j} \cdot \left(b^{j} - A^{j}x^{j} - By\right) \leq \epsilon_{2}$$

$$\xi^{j} \cdot \left(C^{j}x^{j} + C^{-j}x^{-j} + Dy - a\right) \leq \epsilon_{2}$$

$$\omega^{j} \cdot x^{j} \leq \epsilon_{2}$$

$$\delta^{j} \cdot \lambda \leq \epsilon_{2}$$

$$\left[\zeta^{j} \cdot y \leq \epsilon_{2}\right]$$

$$\left[\epsilon_{1} - \left(C^{j}x^{j}\right)^{T}\lambda + s^{j}\right] \cdot \underline{\gamma}^{j} \leq \epsilon_{2}$$

$$\left[\epsilon_{1} + \left(C^{j}x^{j}\right)^{T}\lambda - s^{j}\right] \cdot \overline{\gamma}^{j} \leq \epsilon_{2}$$

Future work

- Developing techniques to validate the Nash-equilibrium.
- Exploring the solution space more exhaustively through the adjustment of the social planners objective.
- Studying different volumes of strategic generation and various settings w.r.t the ownership structures.
- Using a more detailed representation for conventional generation (e.g. including ramping constraints).

KUL

Mathematical Formulation: Agents

$\max_{\substack{c_{l,t}^{DCH}, c_{l,t}^{CH}, \overline{P}_{l,t}^{DCH}, \overline{P}_{l,t}^{CH}}} \sum_{t \in T} \lambda_t \cdot (P_{l,t}^{DCH} - P_{l,t}^{CH})$		(1)
$p^{floor} \le c_{l,t}^{CH} \le p^{cap}$	$\forall t$	(2)
$p^{floor} \le c_{l,t}^{DCH} \le p^{cap}$	$\forall t$	(3)
$0 \leq \overline{P}_{l,t}^{CH} \leq P_l^{ESS,max}$	$\forall t$	(4)
$0 \leq \overline{P}_{l,t}^{DCH} \leq P_l^{ESS,max}$	$\forall t$	(5)
$0 \le SoC_{l,t} \le E_l^{ESS,max}$	$\forall t$	(6)
$SoC_{l,t} = SoC_{l,t-1} + \eta_{l}^{CH} E_{l,t}^{CH} - E_{l,t}^{DCH} / \eta_{l}^{DCH}$	$\forall t$	(7)

KU

ESS owner' problem

- Profit of the ESS based on price arbitrage (1)
- Respecting price floor/cap of the market (2-3)
- Technical limits of charging/discharging power (4-6)
- Temporal variation of the stored energy (7)

Mathematical Formulation: Agents

$$\begin{array}{c}
\max_{c_{i,t}^{G}, \overline{P}_{i,t}^{G}} \sum_{t \in T} \lambda_{t} \cdot P_{i,t}^{G} - OPEX_{i}^{G} \sum_{t} P_{i,t}^{G} \\
p^{floor} \leq c_{i,t}^{G} \leq p^{cap} & \forall t \quad (9) \\
\overline{P}_{i,t}^{G} = P_{i}^{G,max} & \forall t \quad (10)
\end{array}$$

Conventional generator' (GENCO) problem

- Revenue from selling electricity, corrected by operational costs (8)
- Respecting price floor/cap of the market (9)
- Enforces only price-bidding (10)

Mathematical Formulation: Agents

Renewable generator' problem

- Revenue from selling electricity, assuming zero marginal cost (11)
- Respecting price floor/cap of the market (12)
- Enforces only quantity-bidding (13)

Mathematical Formulation:

 $\max_{P_{i,t}^{G}, P_{k,t}^{R}, P_{l,t}^{CH}, P_{l,t}^{DCH}, P_{t}^{D}} \sum_{t \in T} (P_{t}^{D} c_{t}^{D}) - \sum_{i \in I, t \in T} (P_{i,t}^{G} c_{i,t}^{G}) - \sum_{l \in L, t \in T} (P_{l,t}^{DCH} c_{l,t}^{DCH} - P_{l,t}^{CH} c_{l,t}^{CH}) \quad (14)$

subject to:

 $0 \leq P_t^D \leq \overline{D}_t$

$P_{t}^{D} + \!$		
$-\sum_{i\in I} P_{i,t}^G = 0$	$\forall t (\lambda_t)$	(15)
$0 \le P_{i,t}^G \le \overline{P}_{i,t}^G$	$\forall i, \forall t$	(16)
$0 \le P_{k,t}^R \le \overline{P}_{k,t}^R$	$\forall k, \forall t$	(17)
$0 \leq P_{l,t}^{CH} \leq \overline{P}_{l,t}^{CH}$	$\forall l, \forall t$	(18)
$0 \le P_{l,t}^{DCH} \le \overline{P}_{l,t}^{DCH}$	$\forall l, \forall t$	(19)

 $\forall t$

KU LEUV

Market Clearing (MC)

- Social welfare to be maximized (14)
- Energy balance constraint (15)
- The dispatched quantities are non-negative and limited to the quantity bids of the corresponding agents (16-20)

Context

MPEC vs EPEC

Primal-Dual reformulation

Is the solution a NE?

A profile of strategies $a \in A$ is a *pure strategy Nash equilibrium* if a_i is a best reply to a_{-i} for each *i*. That is, *a* is a Nash equilibrium if

 $u_i(a_i, a_{-i}) \ge u_i(a'_i, a_{-i})$

Source: A Brief Introduction to the Basics of Game Theory Matthew O. Jackson, Stanford University

Duals of the shared constraints

Can be interpreted as implicit auction of the scarce resource, constraining factor (*Hauppmann and Egerer 2015*)

- If the duals of the common market differ across the UL agents -> GNE -> non-square system ->more difficult to solve/much more interesting
- If they are the same -> NE (facilitates the solution but may not exist)
- Assume an endogenous ratio between the multipliers (*Oggioni et al 2012*)

