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Abstract. This article investigates the monodromy conjecture for a space monomial
curve that appears as the special fiber of an equisingular family of curves with a plane
branch as generic fiber. Roughly speaking, the monodromy conjecture states that every
pole of the motivic, or related, Igusa zeta function induces an eigenvalue of monodromy.
As the poles of the motivic zeta function associated with such a space monomial curve
have been determined in earlier work, it remains to study the eigenvalues of monodromy.
After reducing the problem to the curve seen as a Cartier divisor on a generic embedding
surface, we construct an embedded Q-resolution of this pair and use an A’Campo formula
in terms of this resolution to compute the zeta function of monodromy. Combining all
results, we prove the monodromy conjecture for this class of monomial curves.
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Introduction

The classical monodromy conjecture predicts a relation between two invariants of a
polynomial, one originating from number theory and the other from differential topology.
More precisely, it states that the poles of the motivic, or related, Igusa zeta function of
a polynomial f ∈ C[x0, . . . , xn] induce eigenvalues of the local monodromy action of f ,
seen as a function f : Cn+1 → C, on the cohomology of its Milnor fiber at some point
x ∈ f−1(0) ⊂ Cn+1. Generalizing the motivic Igusa zeta function to an ideal and using the
notion of Verdier monodromy, one can similarly formulate the monodromy conjecture for
ideals. To date, both conjectures have only been proven in full generality for polynomials
and ideals in two variables, see [Loe] and [VV], respectively. In higher dimension, various
partial results were shown for one polynomial (see for instance the introduction of [BV]
for a list of references), but for multiple polynomials, the most general result so far
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is a proof for monomial ideals [HMY]. Very recently, Mustaţă [Mus] showed that the
monodromy conjecture for polynomials implies the one for general ideals. However, since
the monodromy conjecture for one polynomial is still open in more than two variables,
this does not provide an immediate solution of the monodromy conjecture for ideals. In
the present article, the monodromy conjecture is investigated for a class of binomial ideals
in arbitrary dimension that define space curves deforming to plane branches. As the poles
of the motivic Igusa zeta function associated with these binomial ideals have already been
studied in [MVV], we concentrate on the eigenvalues of monodromy. A short summary of
the main results of the present article and of [MVV] can be found in [MMVV].

To construct the ideals of our interest, we start with a germ C := {f = 0} ⊂ (C2, 0) of
a complex plane curve defined by an irreducible series f ∈ C[[x0, x1]] with f(0) = 0. The
semigroup Γ(C) of C is the image of the associated valuation

νC :
C[[x0, x1]]

(f)
\ {0} −→ N : h 7→ dimC

C[[x0, x1]]

(f, h)
.

This semigroup is finitely generated and has a unique minimal generating set (β̄0, . . . , β̄g).
Define Y as the image of the monomial map M : (C, 0) → (Cg+1, 0) given by t 7→
(tβ̄0 , . . . , tβ̄g). This is an irreducible curve which is smooth outside the origin and whose
semigroup is the ‘plane’ semigroup Γ(C). Furthermore, it is the special fiber of an equi-
singular family η : (χ, 0) ⊂ (Cg+1×C, 0)→ (C, 0) with generic fiber isomorphic to C. The
ideal I ⊂ C[x0, . . . , xg] defining Y in Cg+1 is generated by binomial equations of the form

f1 := xn1
1 − xn0

0 = 0
f2 := xn2

2 − xb20
0 xb21

1 = 0
...

fg := x
ng
g − x

bg0
0 x

bg1
1 · · ·x

bg(g−1)

g−1 = 0.

Here, ni > 1 and bij ≥ 0 are integers that can be expressed in terms of (β̄0, . . . , β̄g),
see (3). The curve Y is called the monomial curve associated with C, but, to simplify the
notation, we will refer to it as a (space) monomial curve Y ⊂ Cg+1. In this article, the
case of interest is g ≥ 2.

In [MVV], it was shown that a complete list of poles of the motivic zeta function
associated with a space monomial curve Y ⊂ Cg+1 is given by

Lg, L
νk
Nk , k = 1, . . . , g,

where

νk
Nk

=
1

nkβ̄k

( k∑
l=0

β̄l −
k−1∑
l=1

nlβ̄l

)
+ (k − 1) +

g∑
l=k+1

1

nl
.

Here, L denotes the class of the affine line in the Grothendieck ring of complex varieties.

It thus remains to investigate the monodromy eigenvalues of a space monomial curve
Y ⊂ Cg+1 and to show that every pole in the above list yields such an eigenvalue. To this
end, we will make use of the following A’Campo formula for the monodromy eigenvalues
in terms of a principalization ϕ : X̃ → Cg+1 of the ideal I defining Y . Let Ej for j ∈ J
be the irreducible components of ϕ−1(Y ), and denote by Nj and νj − 1 the multiplicity
of Ej in the divisor of ϕ∗I and ϕ∗(dx0 ∧ · · · ∧ dxg), respectively. Let σ : X ′ → Cg+1 be
the blow-up of Cg+1 along Y with exceptional divisor E ′ := σ−1(Y ). By the universal
property of the blow-up, there exists a unique morphism ψ : X̃ → X ′ such that σ ◦ψ = ϕ.
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Then, from [VV], a complex number is a monodromy eigenvalue associated with Y if and
only if it is a zero or pole of the zeta function of monodromy at a point e ∈ E ′ given by

(1) Zmon
Y,e (t) =

∏
j∈J

(1− tNj)χ(E◦j ∩ψ−1(e)),

where χ denotes the topological Euler characteristic and E◦j := Ej\∪i 6=j (Ei∩Ej) for every
j ∈ J . This is a generalization of the original formula of A’Campo [A’Ca] expressing the
monodromy eigenvalues of one polynomial f ∈ C[x0, . . . , xg] in terms of an embedded

resolution ϕ : X̃ → Cg+1 of {f = 0}, see (5). Both A’Campo formulas can be generalized
in a straightforward way to ideals and polynomials, respectively, defining a subscheme Y
of a general variety X with Sing(X) ⊂ Y .

We will apply formula (1) to a specific point in the exceptional divisor E ′ that we
define by means of a generic embedding surface of Y . For every set (λ2, . . . , λg) of g − 1
non-zero complex numbers, we introduce an affine scheme S(λ2, . . . , λg) in Cg+1 given by
the equations 

f1 + λ2f2 = 0
f2 + λ3f3 = 0

...
fg−1 + λgfg = 0.

Every such scheme contains Y as a Cartier divisor defined by one of the equations fi = 0.
For generic coefficients (λ2, . . . , λg), the scheme S(λ2, . . . , λg) is a normal surface which
is smooth outside the origin. If we denote by S ′ the strict transform of such a generic
embedding surface S := S(λ2, . . . , λg) under the blow-up σ, then our interest goes to
the monodromy zeta function Zmon

Y,p (t) at the point p := S ′ ∩ σ−1(0). Using the above
A’Campo formulas, it turns out that, for generic coefficients, Zmon

Y,p (t) is equal to the
monodromy zeta function Zmon

Y,0 (t) of Y considered on S at the origin; this will be shown
in Theorem 4.7. In fact, this result will be stated and proven in a more general context,
which makes it possibly useful for other instances of the monodromy conjecture.

To compute the monodromy zeta function Zmon
Y,0 (t) of Y ⊂ S at the origin, we will con-

sider another generalization of A’Campo’s formula in terms of an embedded Q-resolution
of Y ⊂ S that was proven in [Mar1]. Roughly speaking, a Q-resolution is a resolution in
which the final ambient space is allowed to have abelian quotient singularities, and the
zeta function of monodromy at the origin can be written as

Zmon
Y,0 (t) =

∏
1≤j≤r
1≤l≤s

(1− tmj,l)χ(E◦j,l) ,

where {Ej,l}j=1,...,r,l=1,...,s is a finite stratification of the exceptional varieties E1, . . . , Er
of the Q-resolution such that the multiplicity mj,l of Ej along each Ej,l is constant. To
construct an embedded Q-resolution of Y ⊂ S, we will compute g weighted blow-ups.
After each blow-up, we will be able to eliminate one variable so that we obtain a situation
very similar to the one we have started with, but with one equation in Y and S less.
Therefore, in the last step, the problem will have been reduced to the resolution of a cusp
in a Hirzebruch-Jung singularity of type 1

d
(1, q), which can be solved with a single weighted

blow-up. One can compare this process to the resolution of an irreducible plane curve
with g Puiseux pairs using toric modifications; after each weighted blow-up, the number
of Puiseux pairs is lowered by one, and the last step coincides with the resolution of an
irreducible plane curve with one Puiseux pair. Our case, however, will be more challenging
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as the strict transform of Y after the first blow-up will pass in general through the singular
locus of the ambient space. The resulting Q-resolution is described in Theorem 5.8, and
its resolution graph is a tree as in Figure 5. Stratifying the exceptional divisor of the
resolution such that the multiplicity is constant along each stratum and computing the
Euler characteristics of the strata yields

Zmon
Y,0 (t) =

g∏
k=0

(1− tMk)
β̄k
Mk

g∏
k=1

(1− tNk)
nkβ̄k
Nk

,

where

Mk := lcm
( β̄k

gcd(β̄0, . . . , β̄k)
, nk+1, . . . , ng

)
, k = 0, . . . , g,

and

Nk := lcm
( β̄k

gcd(β̄0, . . . , β̄k)
, nk, . . . , ng

)
, k = 1, . . . , g.

It follows that the monodromy zeta function Zmon
Y,p (t) of Y ⊂ Cg+1 at p = S ′ ∩ σ−1(0) is

given by the same expression, see Theorem 6.6.

With this expression for Zmon
Y,p (t), we will be able to prove (both the local and global

version of) the monodromy conjecture for a space monomial curve Y ⊂ Cg+1. More

precisely, in Theorem 7.2, we will show for every pole L
νk
Nk with νk

Nk
/∈ N that e

−2πi
νk
Nk

is a pole of Zmon
Y,p (t). It follows that every pole L−s0 of the motivic Igusa zeta function

associated with Y indeed yields a monodromy eigenvalue e2πis0 of Y .

We end the introduction with fixing some notation used throughout this article. We
let N be the set of non-negative integers. The greatest common divisor and lowest com-
mon multiple of a set of integers m1, . . . ,mr ∈ Z is denoted by gcd(m1, . . . ,mr) and
lcm(m1, . . . ,mr), respectively. To shorten the notation, we will sometimes use (m1, . . . ,mr)
for the greatest common divisor. A useful relation between these two numbers for
m1, . . . ,mr a set of non-zero integers and m a common multiple is

(2) gcd
( m
m1

, . . . ,
m

mr

)
=

m

lcm(m1, . . . ,mr)
.

Finally, by a complex variety, we mean a reduced separated scheme of finite type over C,
which is not necessarily irreducible. A curve is a variety of dimension one, and a surface
a variety of dimension two.
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1. Space monomial curves with a plane semigroup

We start this article by introducing the class of monomial curves we are interested in.
They arise in a natural way as the special fibers of equisingular families of curves whose
generic fibers are isomorphic to a plane branch. More precisely, let C := {f = 0} ⊂ (C2, 0)
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be the germ at the origin of an irreducible plane curve defined by a complex irreducible
series f ∈ C[[x0, x1]] with f(0) = 0. Carrying out a linear change of variables if necessary,
we can assume that the curve {x0 = 0} is transversal to C and that the curve {x1 = 0}
has maximal contact (among all smooth curves) with C. For h ∈ C[[x0, x1]], the local
intersection multiplicity of C and the curve {h = 0} is defined as

(f, h)0 := dimC
C[[x0, x1]]

(f, h)
.

This induces a valuation

νC :
C[[x0, x1]]

(f)
\ {0} −→ N : h 7→ (f, h)0.

The image of this valuation is called the semigroup of C and denoted by Γ(C). Be-
cause N \ Γ(C) is finite, there exists a unique minimal system of generators (β̄0, . . . , β̄g)
of Γ(C) satisfying β̄0 < · · · < β̄g and gcd(β̄0, . . . , β̄g) = 1, see for instance [Zar]. Addi-
tionally, we introduce the integers ei := gcd(β̄0, . . . , β̄i) for i = 0, . . . , g and ni := ei−1

ei

for i = 1, . . . , g. From the minimality of the generators (β̄0, . . . , β̄g), one can easily see
that β̄0 = e0 > e1 > · · · > eg = 1 and that ni ≥ 2 for all i = 1, . . . , g. One can also show
that every niβ̄i for i = 1, . . . , g is contained in the semigroup generated by β̄0, . . . , β̄i−1;
this follows for example from [Aze]. In other words, for each i = 1, . . . , g, we can find
non-negative integers bij for 0 ≤ j < i such that

(3) niβ̄i = bi0β̄0 + · · ·+ bi(i−1)β̄i−1.

If we require in addition that bij < nj for j 6= 0, then these integers are unique. For later
purposes, we denote n0 := b10 and list some other properties used in this article:

(i) for i = 0, . . . , g − 1, we have that ei = ni+1 · · ·ng;
(ii) for i = 0, . . . , g − 1, we have that nj | β̄i for all j > i;

(iii) for i = 1, . . . , g, we have that gcd( β̄i
ei
, ni) = gcd( β̄i

ei
, ei−1

ei
) = 1, and, in particular,

that gcd(n0, n1) = gcd( β̄1

e1
, n1) = 1; and

(iv) for i = 1, . . . , g, we have that niβ̄i < β̄i+1.

In terms of the generators (β̄0, . . . , β̄g), the curve we will consider is defined as the image

of the monomial map M : (C, 0) → (Cg+1, 0) given by t 7→ (tβ̄0 , . . . , tβ̄g). We denote this
curve by Y and call it the monomial curve associated with C. It is an irreducible (germ
of a) curve with Γ(C) as semigroup and which is smooth outside the origin, see [Tei1] for
these and other properties of Y .

We can construct Y as a deformation of C as follows. First of all, we can consider a
system of approximate roots or a minimal generating sequence (x0, . . . , xg) of the valuation
νC, which consists of elements xi ∈ C[[x0, x1]] for i = 0, . . . , g such that νC(xi) = β̄i, see
for instance [AM], [Spi] and [Tei1]. For i = 0, 1, this condition is equivalent to the above
assumptions on x0 and x1, respectively. These elements satisfy equations of the form

xi+1 = xnii − cixbi00 · · ·x
bi(i−1)

i−1 −
∑

γ=(γ0,...,γi)

ci,γx
γ0

0 · · ·xγii , i = 0, . . . , g,

where xg+1 = 0, ci ∈ C \ {0}, ci,γ ∈ C, 0 ≤ γj < nj for 1 ≤ j ≤ i, and
∑i

j=0 γjβ̄j > niβ̄i.

These equations realize C as a complete intersection in (Cg+1, 0). Even more, this complete
intersection is Newton non-degenerate in the sense of [AGS] and [Tev1]. It was proven
(resp. conjectured) that such an embedding always exists in characteristic 0 [Tev2] (resp.



6 J. MARTÍN-MORALES, W. VEYS, AND L. VOS

in positive characteristic [Tei2]). We now consider the following slight modification of the
above equations in the variables x0, . . . , xg including an extra variable v:

vxi+1 = xnii − cixbi00 · · ·x
bi(i−1)

i−1 −
∑

γ=(γ0,...,γi)

ci,γvx
γ0

0 · · ·xγii , i = 0, . . . , g.

For varying v in (C, 0), these equations define a family of germs of curves in (Cg+1×C, 0),
which is equisingular for instance in the sense that Γ(C) is the semigroup of all curves in
the family. We denote this family by (χ, 0) and let η : (χ, 0) → (C, 0) be the restriction
of the projection onto the second factor (Cg+1 × C, 0)→ (C, 0). The generic fiber η−1(v)
for v 6= 0 is isomorphic to C, and the special fiber Y = η−1(0) is defined in (Cg+1, 0) by

the equations xnii − cixbi00 · · ·x
bi(i−1)

i−1 = 0 for i = 1, . . . , g. The coefficients ci are needed to
see that any irreducible plane branch is a (equisingular) deformation of a such a curve.
However, for simplicity, we will assume that every ci = 1, which is always possible after a
suitable change of coordinates.

Clearly, we can also consider the global curve in Cg+1 defined by the above binomial
equations; from now on, we define a (space) monomial curve Y ⊂ Cg+1 as the complete
intersection curve given by

(4)


f1 := xn1

1 − xn0
0 = 0

f2 := xn2
2 − xb20

0 xb21
1 = 0

...

fg := x
ng
g − x

bg0
0 x

bg1
1 · · ·x

bg(g−1)

g−1 = 0.

This is still an irreducible curve which is smooth outside the origin. As such a monomial
curve for g = 1 is just a cusp in the complex plane, of which the monodromy conjecture
is well known, we will assume that g ≥ 2.

2. The monodromy conjecture for ideals

This section provides a short introduction to the monodromy conjecture for ideals. Let
I = (f1, . . . , fr) be a non-trivial ideal in C[x0, . . . , xn] and let Y := V (I) be its associated
subscheme in the affine space Cn+1. Assume that Y contains the origin.

An important notion needed to introduce the monodromy conjecture for I is a princi-
palization (or log-principalization, log-resolution, monomialization) of an ideal, which is a
generalization of an embedded resolution of a hypersurface. By Hironaka’s Theorem [Hir],
a sequence of blow-ups can be used to transform a general ideal I = (f1, . . . , fr) into a
locally principal and monomial ideal. More formally, a principalization of I is a proper
birational morphism ϕ : X̃ → Cn+1 from a smooth variety X̃ to Cn+1 such that the
total transform ϕ∗I is a locally principal and monomial ideal with support a simple nor-
mal crossings divisor, and such that the exceptional locus (or exceptional divisor) of ϕ is
contained in the support of ϕ∗I.

The motivic Igusa zeta function associated with I can be expressed in terms of a prin-
cipalization ϕ : X̃ → Cn+1 of I as follows. Let Ej for j ∈ J be the irreducible components
(with their reduced scheme structure) of the total transform ϕ−1(Y ). Among these, the
components of the exceptional divisor are called the exceptional varieties ; the other com-
ponents are components of the strict transform of Y . Denote by Nj the multiplicity of Ej
in the divisor on X̃ of ϕ∗I, that is, the divisor of ϕ∗I is given by

∑
i∈J NjEj. Similarly,

let νj−1 be the multiplicity of Ej in the divisor on X̃ of ϕ∗(dx0∧· · ·∧dxn). The numbers



THE MONODROMY CONJECTURE FOR A SPACE MONOMIAL CURVE 7

(Nj, νj) for j ∈ J are called the numerical data of the principalization. For every subset
I ⊂ J , we also define E◦I := (∩i∈IEi)\(∪l 6∈IEl). In terms of this notation, the local motivic
Igusa zeta function associated with the ideal I (or with the scheme Y ) is given by

Zmot
I (T ) = L−(n+1)

∑
I⊂J

[E◦I ∩ ϕ−1(0)]
∏
i∈I

(L− 1)L−νiTNi
1− L−νiTNi

∈MC[[T ]].

Here, [E◦I ∩ ϕ−1(0)] and L := [C] are the class of E◦I ∩ ϕ−1(0) and of the affine line,
respectively, in the Grothendieck ring of complex varieties K0(VarC), and MC is the
localization of K0(VarC) with respect to L. The precise definition of the Grothendieck
ring of complex varieties can be found for instance in [MVV]. In the global version of
the motivic zeta function, we replace [E◦I ∩ ϕ−1(0)] by [E◦I ]. From this expression, it is
immediate that both the local and the global motivic zeta function are rational functions

in T , and that all candidate poles are of the form L
νj
Nj for some j ∈ J . In concrete

examples ‘most’ of these candidate poles cancel; a phenomenon that the monodromy
conjecture tries to explain.

Remark 2.1. In [DL2], Denef and Loeser introduced the motivic Igusa zeta function for
a polynomial f using the jet schemes of {f = 0}, instead of an embedded resolution.
However, in the same article, they showed the equivalence between both expressions.
Similarly, one can write the motivic zeta function associated with a general ideal I in
terms of the jet schemes of its corresponding scheme V (I). In fact, this is the definition
used to compute the motivic zeta function of a space monomial curve Y ⊂ Cg+1 in [MVV].

The monodromy eigenvalues associated with the ideal I can also be expressed in terms
of a principalization of I. Before elaborating on this, we first briefly discuss the original
definition by Verdier. For more details, we refer to [Dim] and [VV]. For one polynomial
f ∈ C[x0, . . . , xn], there are two equivalent definitions for its eigenvalues of monodromy:
the original definition in terms of the Milnor fibration [Mil], and a more abstract descrip-
tion by Deligne [Del] using the notion of the complex of nearby cycles on Y = {f = 0}.
While the original definition does not have a (straightforward) generalization to ideals,
Deligne’s description was the inspiration for Verdier [Ver] to define monodromy eigen-
values for an ideal by introducing the notion of the specialization complex as follows.
For a scheme Z, we denote by Db

c(Z) the full subcategory of the derived category D(Z)
consisting of complexes of sheaves of C-vector spaces with bounded and constructible
cohomology, and by C· ∈ Db

c(Z) the complex concentrated in degree zero induced by the
constant sheaf CZ on Z. For one polynomial f , we can associate with C· ∈ Db

c(Cn+1)
the complex of nearby cycles ψfC· ∈ Db

c(Y ) equipped with a monodromy transformation
Mk

y : Hk(ψfC·)y → Hk(ψfC·)y for each y ∈ Y and k ≥ 0, where Hk(ψfC·)y denotes the
stalk at y of the kth cohomology sheaf of ψfC·. An eigenvalue of monodromy or mon-
odromy eigenvalue of f (or of Y ) is an eigenvalue of such a transformation Mk

y for some

y ∈ Y and k ≥ 0. For a general ideal I, Verdier considered the normal cone CYCn+1 of
Y = V (I) in Cn+1 defined as

CYCn+1 := Spec(⊕k≥0Ik/Ik+1),

and related to C· ∈ Db
c(Cn+1) the specialization complex SpYC· ∈ Db

c(CYCn+1) with a
monodromy transformation Mk

y : Hk(SpYC·)y → Hk(SpYC·)y for each y ∈ CYCn+1 \ Y
and k ≥ 0. The (Verdier) monodromy eigenvalues of I (or of Y ) are the eigenvalues
of these automorphisms. Despite the fact that the specialization complex lives on the
normal cone of Y instead of on Y itself, where the complex of nearby cycles lives, it turns
out that these two definitions for the monodromy eigenvalues in the hypersurface case are
equivalent.
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In [A’Ca], A’Campo proved a formula for the monodromy eigenvalues of a polynomial
f in terms of an embedded resolution of {f = 0}. This formula was generalized to
ideals in [VV]. Later in this article, we will make use of an A’Campo formula in the
more general context of a Cartier divisor on a normal surface. In fact, the notion of
monodromy eigenvalues can be generalized in a straightforward way to any ideal sheaf I
on a general variety X. Therefore, we state the formula in the following general context.
Let I be a sheaf of ideals on a variety X, let Y := V (I) be the associated subscheme
in X, and suppose that Sing(X) ⊂ Y . Consider the blow-up σ : X ′ → X of X with
center Y , and let E ′ be its exceptional divisor, that is, the inverse image σ−1(Y ) (with
its non-reduced scheme structure). One can show that E ′ is the projectivization P (CYX)
of the normal cone CYX of Y in X. Denote the corresponding projectivization map by
p : CYX \ Y → E ′ = P (CYX). For a point e ∈ E ′, we define the monodromy eigenvalues
of I at e as the eigenvalues of the monodromy transformation Mk

y for some y ∈ CYX \ Y
mapped to e under p; this is independent of the choice of y. Hence, we can define the zeta
function of monodromy or monodromy zeta function of I at e ∈ E ′ as

Zmon
I,e (t) :=

∏
k≥0

det(Id− tMk
y )(−1)k ,

where y ∈ CYX \ Y is an arbitrary point in p−1(e). For one polynomial f , Denef [Den2,
Lemma 4.6] showed that every monodromy eigenvalue associated with f is a zero or pole
of the monodromy zeta function of f at some point e ∈ E ′. This result can easily be
generalized to ideals.

Theorem 2.2. [VV] Let I be a sheaf of ideals on a variety X. Let Y = V (I) be the
associated subscheme in X, and suppose that Sing(X) ⊂ Y . Consider a principalization
ϕ : X̃ → X of I. Denote by Ej for j ∈ J the irreducible components of ϕ−1(Y ) with nu-
merical data (Nj, νj), and define E◦j = Ej \∪i 6=j(Ei∩Ej) for every j ∈ J . Let σ : X ′ → X

be the blow-up of X with center Y and let E ′ = σ−1(Y ) be its exceptional divisor. By the
universal property of the blow-up, there exists a unique morphism ψ : X̃ → X ′ such that
σ ◦ ψ = ϕ. For a point e ∈ E ′, the zeta function of monodromy of I at e is given by

Zmon
I,e (t) =

∏
j∈J

(1− tNj)χ(E◦j ∩ψ−1(e)),

where χ denotes the topological Euler characteristic.

When I = (f) is a principal ideal, we can consider the blow-up σ as the identity so
that ϕ = ψ and

(5) Zmon
f,y (t) =

∏
j∈J

(1− tNj)χ(E◦j ∩ϕ−1(y)),

which is the classical A’Campo formula for y ∈ Y = {f = 0}. In the next section, we
will introduce another generalization of this formula in which the final ambient space X̃
of the embedded resolution ϕ : X̃ → X of {f = 0} is allowed to have abelian quotient
singularities. Such a resolution is called an embedded Q-resolution, and it is this formula
that we will use to compute the monodromy eigenvalues associated with a space monomial
curve Y ⊂ Cg+1 by considering it as a Cartier divisor on a generic embedding surface.

After having introduced the two invariants of an ideal that are investigated in the
monodromy conjecture, we can now state this conjecture in more detail.

Conjecture 2.3. Let I = (f1, . . . , fr) be an ideal in C[x0, . . . , xn] whose associated sub-
scheme Y = V (I) in Cn+1 contains the origin. Let σ : X ′ → Cn+1 be the blow-up of Cn+1
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with center Y . If L−s0 is a pole of the local motivic Igusa zeta function associated with I,
then e2πis0 is a zero or pole of the monodromy zeta function of I at a point in σ−1(B∩Y )
for B ⊂ Cn+1 a small ball around the origin.

So far, this conjecture has only been proven for ideals in two variables [VV]. In this
article, we will show the conjecture for the space monomial curves introduced in Section 1;
this solves it for an interesting class of binomial ideals in arbitrary dimension. Along the
same lines, we will also prove the global version of the monodromy conjecture.

3. Monodromy zeta function formula for embedded Q-resolutions

As mentioned earlier in this article, we will make use of an A’Campo formula for the
monodromy zeta function of a polynomial f ∈ C[x0, . . . , xn] in terms of an embedded
Q-resolution of {f = 0}. Roughly speaking, this is a resolution ϕ : X̃ → Cn+1 in which
we allow X̃ to have abelian quotient singularities and the divisor ϕ−1({f = 0}) to have
normal crossings on such a variety. In this section, we briefly introduce all concepts needed
to understand this formula. We refer to [AMO1] for more details.

We start with the notion of a V -manifold of dimension n which was introduced by
Satake [Sat] as a complex analytic space admitting an open covering {Ui} in which each
Ui is analytically isomorphic to some quotient Bi/Gi for Bi ⊂ Cn an open ball and Gi

a finite subgroup of GL(n,C). We are interested in V -manifolds in which every Gi is a
finite abelian subgroup of GL(n,C). In fact, every quotient Cn/G for G ⊂ GL(n,C) a
finite abelian group is isomorphic to a specific kind of quotient space, called a quotient
space of type (d;A) in which d is an r-tuple of positive integers and A is an (r×n)-matrix
over the integers. More precisely, we can write G = µd1 × · · · × µdr as a product of finite
cyclic groups, where µdi is the cyclic group of the dith roots of unity. We will denote G
by µd, where d is the r-tuple (d1, . . . , dr), and an element in µd by ξd := (ξd1 , . . . , ξdr).
For a matrix A = (aij)i,j ∈ Zr×n, we can define an action of µd on Cn by

(6) µd×Cn −→ Cn : (ξd,x) 7→ (ξa1
d x1, . . . , ξ

an
d xn) = (ξa11

d1
· · · ξar1dr

x1, . . . , ξ
a1n
d1
· · · ξarndr

xn),

where aj := (a1j, . . . , arj)
t is the jth column of A. Note that we can always consider the

ith row (ai1, . . . , ain) of A modulo di. The resulting quotient space Cn/µd is called the
quotient space of type (d;A) and denoted by

X(d;A) := X

 d1 a11 · · · a1n
...

...
. . .

...
dr ar1 · · · arn

 .

If r = 1, the quotient space X(d; a1, . . . , an) is said to be cyclic. The class of an el-
ement x = (x1, . . . , xn) ∈ Cn under an action (d;A) will be denoted by [x](d;A) =
[(x1, . . . , xn)](d;A), where the subindex is omitted if there is no possible confusion. The
image of each coordinate hyperplane {xi = 0} in Cn for i = 1, . . . , n under the natural
projection Cn → X(d;A) will still be denoted by {xi = 0} and called a coordinate hy-
perplane in X(d;A). One can show that the original quotient space Cn/G is isomorphic
to X(d;A) for some matrix A, and that every space X(d;A) is a normal irreducible al-
gebraic variety of dimension n with its singular locus, which is of codimension at least
two, situated on the coordinate hyperplanes. Hence, a V -manifold with abelian quotient
singularities is a normal variety which can locally be written like X(d;A).
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Example 3.1. If n = 1, then each quotient space X((d1, . . . , dr); (a11, . . . , ar1)t) is iso-
morphic to C: let

l = lcm

(
d1

gcd(d1, a11)
, . . . ,

dr
gcd(dr, ar1)

)
,

then X((d1, . . . , dr); (a11, . . . , ar1)t)→ C : [x]→ xl is an isomorphism.

Different types (d;A) can induce isomorphic quotient spaces: for example, if k di-
vides d, a2, . . . , an, then X(d; a1, . . . , an) is isomorphic to X( d

k
; a1,

a2

k
, . . . , an

k
) under the

isomorphism defined by

(7) [(x1, x2, . . . , xn)] 7−→ [(xk1, x2, . . . , xn)].

A particularly interesting kind of types are the normalized types. These are types (d;A)
in which the group µd is small as subgroup of GL(n,C) (i.e., it does not contain rotations
around hyperplanes other than the identity) and acts freely on (C∗)n. In this case, we will
also say that the quotient space X(d;A) is written in a normalized form. Equivalently, a
space X(d;A) is written in a normalized form if and only if for all x ∈ Cn with exactly
n − 1 coordinates different from 0, the stabilizer subgroup is trivial. Note that in the
cyclic case, the stabilizer subgroup of a point (x1, . . . , xn) ∈ Cn with only xi = 0 has
order gcd(d, a1, . . . , âi, . . . , an).

Example 3.2. The space X(d; a1, a2) is written in a normalized form if and only if
both gcd(d, a1) and gcd(d, a2) are equal to 1. We can normalize it with the isomorphism
(assuming that gcd(d, a1, a2) = 1)

X(d; a1, a2) −→ X

(
d

(d, a1)(d, a2)
;

a1

(d, a1)
,

a2

(d, a2)

)
: [(x1, x2)] 7→

[
(x

(d,a2)
1 , x

(d,a1)
2 )

]
,

which is the composition of two isomorphisms of the form (7).

In general, it is possible to convert any type into a normalized form. Especially in the
cyclic case, this is not hard, using isomorphisms such as (7). See [AMO1, Lemma 1.8] for
a list of some other useful isomorphisms.

An analytic function f : X(d;A) → C on a quotient space of some type (d;A) is a
holomorphic function f : Cn → C compatible with the action, that is, f(ξd · x) = f(x)
for all ξd ∈ µd and x ∈ Cn. To compute the local equation of the divisor defined by
f : (X(d;A), [p]) → (C, 0) as a germ of functions at p = (p1, . . . , pn) ∈ Cn \ {0}, one
would naturally use the change of coordinates xi 7→ xi + pi. However, this coordinate
change induces an isomorphism on X(d;A) if and only if the ith row of A is zero (modulo
di) for all i for which pi 6= 0. Hence, we first need to find an isomorphism (X(d;A), [p]) '
(X(d′;A′), [p]) with (d′;A′) having this property. One can show that this is satisfied
by (d′;A′) with X(d′;A′) = Cn/(µd)p, where (µd)p is the stabilizer subgroup of p. In
particular, if X(d; a1, . . . , an) is cyclic, then the order of the stabilizer subgroup of p is
m = gcd(d, {ai | pi 6= 0}) so that (d′;A′) = (m; a1, . . . , an) in which ai modulo m will be
zero if pi 6= 0. On X(d′;A′), we can apply the usual change of coordinates xi 7→ xi + pi to
find the local equation of f at p. This method will be very useful for the description of the
Q-resolution of a space monomial curve seen as a Cartier divisor on a generic embedding
surface in Section 5.

An important class of V -manifolds are the weighted projective spaces. Consider a weight
vector ω = (p0, . . . , pn) of positive integers. The weighted projective space of type ω,
denoted by Pnω, is the set of orbits (Cn+1 \ {0})/C∗ under the action

C∗ × (Cn+1 \ {0}) −→ Cn+1 \ {0} : (t, (x0, . . . , xn)) 7→ (tp0x0, . . . , t
pnxn).
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We denote the class of an element x = (x0, . . . , xn) ∈ Cn+1 \ {0} by [x]ω = [x0 : . . . : xn]ω,
where we again omit ω if possible. Note that for the trivial weight vector ω = (1, . . . , 1),
we obtain the classical projective space Pn. Furthermore, one can show that P1

ω is always
isomorphic to P1, cf. Example 3.1. As for the classical projective space, we can define an
open covering Pnω = V0 ∪ · · · ∪ Vn, where Vi := {xi 6= 0}. It is easy to see that for every i,
the map

X(pi; p0, . . . , p̂i, . . . , pn) −→ Vi : (x0, . . . , x̂i, . . . , xn) 7→ [x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn]ω

is an isomorphism. It follows that Pnω contains cyclic quotient singularities. Even more,
each weighted projective space Pnω is a normal irreducible projective variety of dimension n
whose singular locus, which is of codimension at least two, consists of quotient singularities
lying on the intersection of at least two coordinate hyperplanes. For more information on
weighted projective spaces, see for instance [Dol].

Another notion we need is a Q-normal crossings divisor, which was first introduced
by Steenbrink [Ste]. Let X be a V -manifold with abelian quotient singularities and D
a hypersurface on X. We say that D has Q-normal crossings if it is locally isomorphic
to the quotient of a normal crossings divisor under an action (d;A). More precisely, for
every point p ∈ X, there exists an isomorphism of germs (X, p) ' (X(d;A), [0]) such that
(D, p) ⊆ (X, p) is identified with a germ of the form

({[x] ∈ X(d;A) | xm1
1 · · ·xmkk = 0}, [0]).

The multiplicity of a Q-normal crossings divisor D at a point p ∈ D is defined as follows.
Suppose that p is contained in only one irreducible component of D; we will only consider
this situation, see [Mar2] for a more general definition in case p is possibly contained in
multiple irreducible components. In this case, the local equation of D at p is of the form
xmi : X(d;A) → C for xi a local coordinate of X at p. The multiplicity m(D, p) of D at
p is defined as

(8) m(D, p) :=
m

li
, li := lcm

(
d1

gcd(d1, a1i)
, . . . ,

dr
gcd(dr, ari)

)
.

One can show that this definition is independent of the type (d;A).

We can now define an embedded Q-resolution, see for instance [AMO2]. Let X be
an abelian quotient space and Y ⊆ X an analytic subvariety of codimension one. An
embedded Q-resolution of (Y, 0) ⊆ (X, 0) is a proper analytic map ϕ : X̃ → (X, 0) such
that the following properties hold:

(i) X̃ is a V -manifold with abelian quotient singularities;
(ii) ϕ is an isomorphism over X̃ \ ϕ−1(Sing(Y )); and

(iii) the total transform ϕ−1(Y ) is a hypersurface with Q-normal crossings on X̃.

As for usual embedded resolutions, we can use the operation of blowing up to construct
an embedded Q-resolution, but in this case, we use weighted blow-ups. Since we will only
use weighted blow-ups at a point in this article, we restrict to explaining this kind of
blow-ups.

We first briefly recall the classical blow-up of Cn+1 at the origin. We use the notation
x := (x0, . . . , xn) ∈ Cn+1 and [u] := [u0 : . . . : un] ∈ Pn. Define

Ĉn+1 :=
{

(x, [u]) ∈ Cn+1 × Pn | x ∈ [u]
}
,
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where x ∈ [u] means that uixj = ujxi for all i, j = 0, . . . , n. The blow-up of Cn+1 at

0 is given by the projection π : Ĉn+1 → Cn+1. This is a proper birational morphism
inducing an isomorphism Ĉn+1 \π−1(0) ' Cn+1 \ {0}. The exceptional divisor π−1(0) can

be identified with Pn, and Ĉn+1 can be covered by n+ 1 charts Ui := {ui 6= 0} which are
isomorphic to Cn+1 under maps of the form

Cn+1 −→ Ui : x 7→
(
(x0xi, . . . , xi, . . . , xnxi), [x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn]

)
.

The weighted blow-up of Cn+1 at the origin with respect to a weight vector ω =
(p0, . . . , pn) of positive integers is defined similarly. Let

Ĉn+1
ω :=

{
(x, [u]ω) ∈ Cn+1 × Pnω | x ∈ [u]ω

}
,

then the ω-weighted blow-up of Cn+1 at 0 is the projection π : Ĉn+1
ω → Cn+1. In this

case, the condition x ∈ [u]ω can be rewritten as xi = tpiui for all i = 0, . . . , n and some
fixed t ∈ C \ {0}. This blow-up is again a proper birational morphism and it is an

isomorphism on Ĉn+1
ω \ π−1(0). The exceptional divisor can now be identified with the

weighted projective space Pnω, and Ĉn+1
ω can be covered by n + 1 charts Ui := {ui 6= 0}

where each Ui is isomorphic to X(pi; p0, . . . , pi−1,−1, pi+1, . . . , pn) under the morphism
X(pi; p0, . . . ,−1, . . . , pn)→ Ui defined by

(9) x 7−→
(
(x0x

p0

i , . . . , x
pi
i , . . . , xnx

pn
i ), [x0 : . . . : 1 : . . . : xn]ω

)
.

These charts are compatible with the charts Vi of Pnω described above in the following
sense: in Ui, the exceptional divisor is described by xi = 0, and the ith chart of Pnω is
X(pi; p0, . . . , p̂i, . . . , pn).

For a general abelian quotient space X(d;A) = Cn+1/µd, the weighted blow-up at 0
with respect to ω = (p0, . . . , pn) can be obtained from the ω-weighted blow-up of Cn+1 at

0 as follows. The action of µd on Cn+1 extends in a natural way to an action on Ĉn+1
ω by

ξd · (x, [u]ω) =
(
(ξa0

d x0, . . . , ξ
an
d xn), [ξa0

d u0 : . . . : ξand un]ω
)
.

The ω-weighted blow-up of X(d;A) at 0 is defined as the projection

π : X̂(d;A)ω := Ĉn+1
ω /µd −→ X(d;A) : [(x, [u]ω)](d;A) 7→ [x](d;A),

which is once more a proper birational morphism. It induces an isomorphism on X̂(d;A)ω\
π−1(0), and the exceptional divisor is identified with Pnω/µd, which we will also write as

Pnw(d;A). Because the action of µd on Ĉn+1
ω respects the charts Ui = {ui 6= 0} of Ĉn+1

ω ,

we can cover X̂(d;A)ω with the n + 1 charts Ûi := Ui/µd. Using the isomorphisms

Ui ' X(pi; p0, . . . ,−1, . . . , pn), one can show that each Ûi is also isomorphic to an abelian
quotient space. For example, under the isomorphism U0 ' X(p0;−1, p1, . . . , pn), the
action of µd = µd1×· · ·×µdr on U0 can be identified with the action of µdp0/(µp0×· · ·×µp0)
on X(p0;−1, p1, . . . , pn) given by

[ξ] · [x](d;A) = [(ξa0 x0, ξ
p0a1−p1a0 x1, . . . , ξ

p0an−pna0 xn)](d;A).

Hence, the quotient space

(10) X

(
p0 −1 p1 · · · pn
dp0 a0 p0a1 − p1a0 · · · p0an − pna0

)
is isomorphic to Û0 under the map

[x] 7−→
[(

(xp0

0 , x
p1

0 x1, . . . , x
pn
0 xn), [1 : x1 : . . . : xn]ω

)]
(d;A)

.
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The other charts are similar. The charts of X̂(d;A)ω are again compatible with those

of the exceptional divisor: we can cover Pnω/µd = V̂0 ∪ · · · ∪ V̂k with V̂i := Vi/µd and

V̂i = Ûi|{xi=0}. It follows, for example, that the space

(11) X

(
p0 p1 · · · pn
dp0 p0a1 − p1a0 · · · p0an − pna0

)
is isomorphic to V̂0.

We are finally ready to introduce the generalization of A’Campo’s formula in terms of
an embedded Q-resolution. As in the previous section, we again work in a slightly more
general situation; let f : (X, 0) → (C, 0) be a non-constant regular function on a variety
X and let (Y, 0) be the hypersurface defined by f . Consider an embedded Q-resolution
ϕ : X̃ → X of (Y, 0), and denote by E0 and Ej for j = 1, . . . , r the strict transform of
Y and the exceptional varieties, respectively. Define E◦I := (∩i∈IEi) \ (∪l /∈IEl) for every

I ⊂ {0, . . . , r}. Let X̃ = tsl=1Ql be a finite stratification of X̃ given by its quotient
singularities so that for every I and l, there exist a fixed abelian group G and positive
integers m1, . . . ,mk such that the local equation of f ◦ ϕ at a point p ∈ E◦I ∩Ql is of the
form xm1

1 · · · xmkk : B/G → C for B an open ball around p on which G acts diagonally

such as in (6), and x1, . . . , xk local coordinates of X̃ at p. Lastly, for every j = 1, . . . , r
and l = 1, . . . , s, put E◦j,l := E◦j ∩Ql and mj,l := m(Ej, p) for a point p ∈ E◦j,l, where the
multiplicity defined as in (8) is independent of the chosen point p.

Theorem 3.3. [Mar1] Let f : (X, 0) → (C, 0) be a non-constant regular function on
a variety X. Let Y = {f = 0} be its associated hypersurface in X, and suppose that
Sing(X) ⊂ Y . Consider an embedded Q-resolution ϕ : X̃ → X of (Y, 0). Using the
notation above, the zeta function of monodromy of f at 0 is given by

Zmon
f,0 (t) =

∏
1≤j≤r
1≤l≤s

(1− tmj,l)χ(E◦j,l) ,

where χ denotes the topological Euler characteristic.

In [Mar1], this formula was proven for f : (M, 0) → (C, 0) a non-constant analytic
function germ on a quotient space M = Cn+1/µd; by exactly the same arguments, this
result can be obtained in our setting. Furthermore, for plane curve singularities in C2,
this theorem was proven earlier in [Vey], and if ϕ : X̃ → X is an embedded resolution of
(Y, 0), then we recover the classical formula (5) of A’Campo.

4. Monodromy via generic embedding surfaces

In this section, we will elaborate on how we can simplify the problem of computing
the Verdier monodromy eigenvalues associated with a space monomial curve Y ⊂ Cg+1

with g ≥ 2 by considering Y as a Cartier divisor on a generic embedding surface. As
the results in this section are true for curves defined by a larger class of ideals, we state
them in the following generalized setting; this makes them possibly useful to investigate
the monodromy eigenvalues associated with other ideals in this class.

Consider a complete intersection curve Y = V (I) in Cg+1 whose ideal I = (f1, . . . , fg)
is generated by a regular sequence f1, . . . , fg ∈ C[x0, . . . , xg], and whose singular set is
Sing(Y ) = {0}. We start with the construction of a generic embedding surface of Y . For
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every set (λ2, . . . , λg) of g − 1 non-zero complex numbers, we introduce an affine scheme
S(λ2, . . . , λg) in Cg+1 defined by

(12)


f1 + λ2f2 = 0
f2 + λ3f3 = 0

...
fg−1 + λgfg = 0.

The curve Y is contained in every such S(λ2, . . . , λg) and, because all λi are non-zero,
can be defined by just one equation fi = 0 for some i ∈ {1, . . . , g}. In other words, Y is a
Cartier divisor in S(λ2, . . . , λg). Since every S(λ2, . . . , λg) is given by g − 1 equations in
Cg+1, the dimension of each of its irreducible components, as well as its own dimension, is
at least two. The next proposition shows that for generic coefficients (λ2, . . . , λg) (i.e., the
point (λ2, . . . , λg) is contained in the non-empty complement of a specific closed subset
of (C \ {0})g−1), the dimension of the scheme S(λ2, . . . , λg) is exactly two. Even more, it
is a surface, and we can call it a generic (embedding) surface of Y . We also prove some
extra properties which are needed later on.

Proposition 4.1. For generic (λ2, . . . , λg) ∈ (C \ {0})g−1, the scheme S(λ2, . . . , λg) is a
normal equidimensional surface which is smooth outside the origin.

Proof. We use the following affine version of Bertini’s Theorem, which can be found
in [Jou, Cor. 6.7].

Let X be a smooth equidimensional variety of dimension m and let f : X → Cn be a
dominant morphism of C-schemes. Then, for a generic point ξ ∈ Cn, the inverse image
f−1(ξ) is a smooth equidimensional variety of dimension m− n.

Consider X := Cg+1 \⋃g
i=2{fi = 0} and the morphism

f : X −→ Cg−1 : x 7→
(
−f1(x)

f2(x)
,−f2(x)

f3(x)
, . . . ,−fg−1(x)

fg(x)

)
.

Clearly, X is a smooth irreducible variety of dimension g+1. To check that f is dominant,
it is enough to show that its image contains a dense subset of Cg−1. Note that for every λ =
(λ2, . . . , λg) ∈ (C \ {0})g−1, the inverse image f−1(λ) is exactly the scheme S(λ2, . . . , λg)
without the curve Y , which is never empty as S(λ2, . . . , λg) is at least two-dimensional.
Hence, the image f(X) contains (C \ {0})g−1, and we can apply the above version of
Bertini’s Theorem; for generic (λ2, . . . , λg) ∈ (C \ {0})g−1, the scheme S(λ2, . . . , λg) \Y is
a smooth equidimensional variety of dimension two. Because all irreducible components of
S(λ2, . . . , λg) have at least dimension two, it immediately follows that S(λ2, . . . , λg) itself
is also equidimensional of dimension two. Furthermore, using the Jacobian criterion, one
can check that S(λ2, . . . , λg) is smooth at every point in Y \{0}. These two facts together
imply that S is a complete intersection in Cg+1 which is regular in codimension one (i.e.,
its singular locus has codimension at least two). As being regular in codimension one is
equivalent to being normal for a complete intersection in Cg+1 (see, e.g., [Har, Ch. II,
Prop. 8.23]), we can conclude that S is indeed a normal equidimensional surface which is
smooth outside the origin. �

Remark 4.2. It is possible that a generic S(λ2, . . . , λg) is irreducible; we did not find an
easy argument or counterexample. This will, nevertheless, not have any influence on the
results in this article: as S(λ2, . . . , λg) is a normal equidimensional surface and smooth
outside the origin, its irreducible components are pairwise disjoint surfaces, all smooth
except for the single component containing the curve Y . Hence, because we are only
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interested in the behavior of S(λ2, . . . , λg) around the curve Y , we can, in some sense,
only consider the one component containing Y and forget about the other components.

We will now explain the relation between the monodromy eigenvalues of Y considered in
Cg+1 and the monodromy eigenvalues of Y considered on a generic surface S(λ2, . . . , λg).
At several places in this section, we will impose extra conditions on (λ2, . . . , λg), but it
will still represent a generic point of (C \ {0})g−1 in the end. To shorten the notation,
from now on, we will denote a generic surface by S.

Let ϕ : X̃ → Cg+1 be a principalization of I. We can assume that ϕ consists of two
parts:

(i) a composition of blow-ups ϕ1 : X̃1 → Cg+1 above 0 to desingularize the strict
transform of Y , and to make it have normal crossings with one exceptional variety
and no intersection with all other components of ϕ−1

1 (0); and
(ii) one last blow-up ϕ2 : X̃ → X̃1 along the strict transform of Y to change it into a

locally principal divisor.

The exceptional variety coming from the last blow-up is denoted by Ẽ and has numerical
data (1, g). The other irreducible components of the total transform ϕ−1(Y ) are denoted
by Ej for j ∈ J , and their corresponding data by (Nj, νj). Note that Ẽ is mapped
surjectively onto Y under ϕ and that ϕ−1(0) = ∪j∈JEj. Let σ : X ′ → Cg+1 be the
blow-up of Cg+1 with center Y , let E ′ be the corresponding exceptional variety, and let
ψ : X̃ → X ′ be the unique morphism such that σ ◦ ψ = ϕ. It immediately follows that ψ
is a surjective proper birational morphism inducing an isomorphism X̃ \ϕ−1(Y ) ' X ′\E ′.
Because of the specific construction of the principalization, the morphism ψ even induces
an isomorphism X̃ \ ∪j∈JEj ' X ′ \ σ−1(0); indeed, because Y \ {0} remains unchanged
during the first series of blow-ups, both σ and ϕ restricted to Cg+1 \ {0} are just the
blow-up along Y \ {0}, and they are thus equal up to an isomorphism. Furthermore, Ẽ
is sent surjectively onto E ′ under ψ, while every other exceptional variety Ej is mapped
onto a closed subset of σ−1(0).

With this notation, the zeta function of monodromy associated with Y ⊂ Cg+1 at a
point e ∈ σ−1(0) ⊂ E ′ is given by

(13) Zmon
Y,e (t) =

∏
j∈J

(1− tNj)χ(E◦j ∩ψ−1(e)),

where E◦j = Ej\∪i 6=j (Ei∩Ej) for all j ∈ J , see Theorem 2.2. We will show that this zeta

function for a generic point e ∈ σ−1(0) is equal to the zeta function of monodromy at the
origin associated with the Cartier divisor Y on a generic surface S.

We begin by considering the strict transform S ′ := σ−1(S \ Y ) of S under σ. By the
behavior of a subvariety under a blow-up, the restriction of σ to this strict transform is the
blow-up of S along the Cartier divisor Y ⊂ S. Consequently, S ′ is a surface isomorphic
to S, and Y ′ := E ′ ∩ S ′ is a curve on S ′ isomorphic to Y . This can also be deduced from
the equations of the blow-up as follows. Because I is generated by a regular sequence,
the blow-up of Cg+1 with center Y = V (I) is given by the projection

(14) σ : X ′ = Proj
C[x0, . . . , xg][X1, . . . , Xg]

(fiXj − fjXi : i, j = 1, . . . , g)
−→ Cg+1,

see for instance [EH, Section IV.2]. In other words, X ′ is the closed subscheme of
Proj C[x0, . . . , xg][X1, . . . , Xg] ' Cg+1 × Pg−1 defined by the equations fiXj − fjXi for
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i, j = 1, . . . , g. The exceptional variety E ′ is locally on Xk 6= 0 given by the principal
ideal (fk) and glues globally to Y × Pg−1. Finally, the strict transform S ′ is

Proj
C[x0, . . . , xg][X1, . . . , Xg]

(fiXj − fjXi, Xk + λk+1Xk+1; i, j = 1, . . . , g, k = 1, . . . , g − 1)
.

Since all λi are non-zero, the system of equations Xk + λk+1Xk+1 = 0 for k = 1, . . . , g− 1
has a unique homogeneous solution, say P = [p1 : . . . : pg] ∈ Pg−1. Note that all pi 6= 0
and that pi

pi+1
= −λi+1 for i = 1, . . . , g − 1. Hence, S ′ can be rewritten as

Spec
C[x0, . . . , xg]

(fipj − fjpi; i, j = 1, . . . , g)
× {P} ⊆ Cg+1 × Pg−1.

Using the relations between the numbers pi, it is easy to see that this is the same as
S × {P}, so that S ′ is indeed isomorphic to S under σ. From this argument, it also
follows that Y ′ = Y × {P} is isomorphic to Y .

The point P ∈ Pg−1 is completely determined by the generic coefficients (λ2, . . . , λg)
and corresponds to a unique point p := (0, P ) = S ′ ∩ σ−1(0) on S ′. We will call p the
generic point associated with the generic surface S. As Sing(S) = Sing(Y ) = {0}, we
have Sing(S ′) = Sing(Y ′) = {p}, and we can use the classical formula (5) of A’Campo
for the monodromy zeta function Zmon

Y ′,p (t) at p of the Cartier divisor Y ′ on the surface S ′.
We claim that this zeta function is equal to the monodromy zeta function Zmon

Y,p (t) given

in (13) at the generic point p ∈ σ−1(0) ⊂ E ′. As a direct consequence, the latter zeta
function of monodromy is equal to the zeta function of monodromy Zmon

Y,0 (t) at the origin
associated with Y ⊂ S.

To compute the monodromy zeta function Zmon
Y ′,p (t) with A’Campo’s formula, we need

an embedded resolution of Y ′ on S ′. To construct such a resolution, we consider the strict
transform S̃ := ϕ−1(S \ Y ) of S under the principalization ϕ, and we put Ỹ := Ẽ ∩ S̃.

Lemma 4.3. For generic (λ2, . . . , λg) ∈ (C \ {0})g−1, the strict transform S̃ of S under
ϕ is a smooth equidimensional surface.

Proof. We first determine the local defining equations of S̃. After the principalization
ϕ, the ideal I = (f1, . . . , fg) is transformed into the locally principal ideal ϕ∗I =

(f ∗1 , . . . , f
∗
g ) with f ∗i = fi ◦ ϕ for i = 1, . . . , g. This means that in every point x ∈ X̃,

we have local coordinates y = (y0, . . . , yg) such that (f ∗1 (y), . . . , f ∗g (y)) = (h(y)) for some

generator h(y). Then, on the one hand, there exist regular functions f̃1(y), . . . , f̃g(y)

such that f ∗i (y) = f̃i(y)h(y) for all i = 1, . . . , g, and, on the other hand, there exist
regular functions h1(y), . . . , hg(y) such that h(y) =

∑g
i=1 hi(y)f ∗i (y). We can deduce

that 1 =
∑g

i=1 hi(y)f̃i(y), and, in particular, that f̃1(y), . . . , f̃g(y) do not have com-

mon zeros. In addition, it follows that S̃ is locally given by equations of the form
f̃1(y) + λ2f̃2(y) = · · · = f̃g−1(y) + λgf̃g(y) = 0, where the f̃i(y) have no common ze-

ros. Now, locally around each point x ∈ S̃ in the smooth irreducible (g + 1)-dimensional

variety X̃, we can repeat the proof of Proposition 4.1 to conclude that S̃ \⋃g
i=2{f̃i(y) = 0}

for generic (λ2, . . . , λg) ∈ (C \ {0})g−1 is a smooth equidimensional variety of dimension

two. Because the set
⋃g
i=2{f̃i(y) = 0} on S̃ is equal to the empty set of common zeros

{f̃1(y) = f̃2(y) = · · · = f̃g(y) = 0}, we indeed found that S̃ is a smooth equidimensional
surface for generic coefficients (λ2, . . . , λg). �
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Remark 4.4. It is again not important whether S̃ for generic (λ2, . . . , λg) is irreducible,

cf. Remark 4.2. Even more, the surface S̃ is irreducible if and only if S is. It is, however,
important that there is only one component of S̃ which intersects ψ−1(Y ′).

Throughout the rest of this section, we assume that the coefficients (λ2, . . . , λg) are

generic in (C \ {0})g−1 such that S and S̃ satisfy the properties of Proposition 4.1 and
Lemma 4.3, respectively. To recapitulate, we visualize all morphisms and varieties in the
following diagram:

Ẽ, Ej,j∈J E′ S Y

Ỹ ↪−! S̃ ↪−! X̃ X ′  −↩ S′  −↩ Y ′

Ẽ ∩ S̃ ϕ−1(S \ Y ) σ−1(S \ Y ) E′ ∩ S′

Cg+1  −↩ S  −↩ Y

' '

= =

ψ

ϕ σ

= =

We will show that, under some extra conditions on (λ2, . . . , λg), the restriction ρ : S̃ → S ′

of ψ to S̃ is an embedded resolution of Y ′ on S ′. Recall that every Ej for j ∈ J is mapped
onto a closed subset of σ−1(0) under ψ. Let J1 ⊂ J be the set of indices j ∈ J such that Ej
is mapped surjectively onto σ−1(0). Note that J1 6= ∅: the second last exceptional variety
Ek of ϕ, which is the only one intersecting Ẽ, will always be mapped surjectively onto
σ−1(0) since Ẽ is mapped surjectively onto E ′ and Ẽ\(Ẽ∩Ek) ' E ′\σ−1(0). Then, every
Ej for j ∈ J2 := J \ J1 is mapped onto a proper closed subset ψ(Ej) of σ−1(0) ' Pg−1,
and the set σ−1(0)\∪j∈J2ψ(Ej) is non-empty. The next result tells us, among others, that
for a generic surface S corresponding to a generic point p in the latter set, the surface
S̃ is equal to ψ−1(S ′). This implies that the map ρ : S̃ → S ′ is a well-defined proper
surjective morphism from a smooth surface S̃ to S ′, or thus, that ρ is a good candidate
for an embedded resolution of Y ′ on S ′.

Lemma 4.5. For a generic point p ∈ σ−1(0) \ ∪j∈J2ψ(Ej), we have that

(i) for all j ∈ J1, the inverse image ψ−1
j (p) of p under ψj : Ej → σ−1(0) is smooth and

equidimensional of dimension one; and
(ii) the total inverse image ψ−1(p) of p under ψ : X̃ → X ′ is connected and equidimen-
sional of dimension one.

Furthermore, for each surface S corresponding to such a generic point p, the strict trans-
form S̃ of S under ϕ is equal to ψ−1(S ′).

Proof. To prove items (i) and (ii), we will again apply a kind of Bertini’s Theorem; this
time, we use the following projective version obtained from [Jou, Cor. 6.11].

Let X be a complex scheme of finite type which is equidimensional of dimension m, and
let f : X → Pn be a dominant morphism of C-schemes. Then, for a generic point ξ ∈ Pn,
the inverse image f−1(ξ) is equidimensional of dimension m − n. If X is in addition
smooth, then the inverse image f−1(ξ) for a generic point ξ is also smooth.

The statement in (i) for each j ∈ J1 follows immediately from this version of Bertini’s
Theorem applied to the surjective morphism ψj : Ej → σ−1(0) ' Pg−1, where Ej is a

smooth irreducible hypersurface in X̃ of dimension g. For (ii), we consider the surjec-
tive morphism ψ : ϕ−1(0) → σ−1(0). As the irreducible components of ϕ−1(0) are the
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g-dimensional exceptional varieties Ej for j ∈ J , this version of Bertini tells us that
ψ−1(p) for a generic point p is equidimensional of dimension one. To show the connected-
ness, we make use of Zariski’s Main Theorem stating that a proper birational morphism
f : X → X ′ between irreducible varieties with X ′ normal has connected fibers. From
the equations (14) of X ′, it is easy to see that X ′ is locally a complete intersection in
Cg+1×Pg−1. In fact, the blow-up of an affine space Cn along any subscheme defined by a
regular sequence is a local complete intersection. Because Y \{0} is smooth, we know that
X ′ \σ−1(0) is smooth. Therefore, X ′ is a local complete intersection in Cg+1×Pg−1 which
is regular in codimension one, and we can conclude that X ′ is normal (see, e.g., [Har,
Ch. II, Prop. 8.23]). Hence, Zariski’s Main Theorem for the proper birational morphism
ψ : X̃ → X ′ assures that every fiber is connected. In particular, the fiber of a generic
point p ∈ σ−1(0) \ ∪j∈J2ψ(Ej) is connected, which ends the proof of (ii).

Let S be a generic surface corresponding to such a generic point p. To show that
S̃ = ψ−1(S ′), we first rewrite S̃ = ϕ−1(S \ Y ) as follows:

S̃ = ψ−1(S ′ \ Y ′) = ψ−1(S ′ \ {p}).
The first equality immediately comes from the fact that S ′ \ Y ′ = σ−1(S \ Y ) by the
properties of the blow-up, together with the commutativity of the above diagram. The
second equality can be seen from the next small argument. It is trivial that ψ−1(S ′ \ Y ′) ⊂
ψ−1(S ′ \ {p}). For the other inclusion, we remark that the closure of S ′ \Y ′ in X ′ \σ−1(0)
is equal to S ′ \ {p}. Since ψ induces an isomorphism X̃ \ ∪j∈JEj ' X ′ \ σ−1(0), this

implies that the closure of ψ−1(S ′ \ Y ′) in X̃ \ ∪j∈JEj must be equal to ψ−1(S ′ \ {p}),
which in turn implies the reverse inclusion ψ−1(S ′ \ {p}) ⊂ ψ−1(S ′ \ Y ′). The inclusion
S̃ ⊂ ψ−1(S ′) follows now easily from the continuity of ψ:

S̃ = ψ−1(S ′ \ Y ′) ⊆ ψ−1(S ′ \ Y ′) = ψ−1(S ′).

Using the third description of S̃ and the fact that ψ is an isomorphism above X ′ \σ−1(0),
one can see that S̃ \ ψ−1(p) = ψ−1(S ′ \ {p}). Hence, it remains to show that ψ−1(p) ⊂ S̃.
We do this in three steps.

First, we show that ψ−1(p)∩S̃ 6= ∅. To this end, it is enough to show that ψ−1(Y ′ \ {p})
is not equal to ψ−1(Y ′ \ {p}); indeed, both sets are contained in S̃, and the complement

ψ−1(Y ′ \ {p}) \ ψ−1(Y ′ \ {p}) is contained in ψ−1(p) since ψ is an isomorphism outside

ϕ−1(0) and σ−1(0). Suppose that ψ−1(Y ′ \ {p}) = ψ−1(Y ′ \ {p}), or in other words, that
ψ−1(Y ′ \ {p}) is closed in X̃. Then, the restriction ψ|ψ−1(Y ′\{p}) : ψ−1(Y ′ \ {p}) → Y ′ of
ψ is proper so that Y ′ \ {p} = ψ(ψ−1(Y ′ \ {p})) is closed in Y ′. This is a contradiction.
Second, let A be an irreducible component of ψ−1(p) such that A ∩ S̃ 6= ∅. We prove
that A is contained in S̃. Because A ⊂ ψ−1(p) ⊂ ∪j∈J1Ej is irreducible, there exists a

component Ej with j ∈ J1 such that A ⊂ Ej. Then, the intersection Ej ∩ S̃ is non-empty,

and there exists an irreducible component B of Ej ∩ S̃ such that A ∩ B 6= ∅. Note that
both A and B are contained in Ej ∩ ψ−1(p) = ψ−1

j (p). We claim that they are also both

irreducible components of ψ−1
j (p). Because ψ−1

j (p) is equidimensional of dimension one by
(i), it is enough to show that A and B are one-dimensional. For A, this is trivial as it is an
irreducible component of ψ−1(p). For B, this follows from the general intersection theory
in the smooth (g + 1)-dimensional variety X̃: the single component of S̃ that intersects
Ej (see Remark 4.4) is two-dimensional and not contained in Ej. Hence, every irreducible

component of the intersection of the surface S̃ and the hypersurface Ej is one-dimensional.
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We thus found that A and B are irreducible components of ψ−1
j (p) that are intersecting.

Because ψ−1
j (p) is smooth, this is only possible if A = B is contained in S̃. Finally, as

ψ−1(p) is connected, the whole of ψ−1(p) must be contained in S̃. �

As a generic condition on the point p ∈ σ−1(0) translates into a generic condition on
(λ2, . . . , λg) ∈ (C \ {0})g−1, we can rephrase Lemma 4.5 in terms of generic (λ2, . . . , λg),

and consider S and its strict transforms S ′ and S̃ corresponding to such coefficients. In
the next proposition, we show that ρ : S̃ → S ′ is indeed an embedded resolution of Y ′

on S ′. We also determine the exceptional varieties and the part of their numerical data
appearing in the formula of A’Campo.

Proposition 4.6. For generic (λ2, . . . , λg) ∈ (C \ {0})g−1, the restriction ρ : S̃ → S ′ of

ψ to S̃ is an embedded resolution of Y ′ on S ′. The strict transform of Y ′ is Ỹ , and the
exceptional varieties are the irreducible components of Ej ∩ S̃ for j ∈ J1. Furthermore,
the pull-back of Y ′ seen as a Cartier divisor on S ′ is given by

ρ∗Y ′ = Ỹ +
∑
j∈J1

Nj(Ej ∩ S̃),

which yields (the needed) part of the numerical data associated with this resolution.

Proof. The previous lemma already implies that ρ : S̃ → S ′ is a well-defined surjective
proper birational morphism from the smooth surface S̃ to S ′. Additionally, ρ induces
an isomorphism S̃ \ ρ−1(Y ) ' S ′ \ Y ′: even more, because ψ is an isomorphism above
X ′ \ σ−1(0), its restriction ρ gives an isomorphism S̃ \ ψ−1(p) = ψ−1(S ′ \ {p}) ' S ′ \ {p}.
The first equality follows from the third description of S̃ in the proof of Lemma 4.5.
From the same lemma, we know that Ej ∩ ρ−1(p) = Ej ∩ S̃ for every j ∈ J1, and that

Ej ∩ ρ−1(p) = ∅ for j ∈ J2. In other words, we have that ρ−1(p) = ∪j∈J1(Ej ∩ S̃) or,

thus, the irreducible components of Ej ∩ S̃ for j ∈ J1 are indeed the exceptional varieties

of ρ. To show that Ỹ = Ẽ ∩ S̃ is the strict transform ρ−1(Y ′ \ {p}) of Y ′ under ρ, we
first remark that Y ′ \ {p} ' Ỹ \ ρ−1(p) = (Ẽ ∩ S̃) \ (Ẽ ∩ Ek ∩ S̃), where Ek denotes the
second last exceptional variety of ϕ, which is the only one intersecting Ẽ. Similarly as in
Lemma 4.5, one can see that every irreducible component of Ẽ ∩ S̃ is one-dimensional.
Therefore, it suffices to show that Ẽ ∩ Ek ∩ S̃ only consists of a finite number of points.
To this end, we recall the specific construction of the principalization ϕ and let Ěk be
the last exceptional variety of the first part ϕ1, of which Ek is the strict transform un-
der the last blow-up ϕ2. By the properties of the blow-up, we know that the restriction
ϕ2|Ek : Ek → Ěk is the blow-up of Ěk along its intersection with the strict transform of
Y under ϕ1. As the latter intersection consists of a single point, the exceptional divisor
of this blow-up is given by Ẽ ∩ Ek ' Pg−1. It follows that each fiber of the surjective
morphism ψ|Ẽ∩Ek : Ẽ ∩ Ek ' Pg−1 → σ−1(0) ' Pg−1 is finite. In particular, we find that

Ẽ ∩ Ek ∩ ψ−1(p) = Ẽ ∩ Ek ∩ S̃ consists of a finite number of points. Finally, for the last
claim, we consider the commutative diagram

X̃ X ′

S̃ S ′.

ψ

ρ
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From the properties of the pull-back, we know that ρ∗Y ′ = ρ∗(E ′|S′) = (ψ∗E ′)|S̃.
Because the inverse images ψ−1(E ′) and ϕ−1(Y ) are equal, the pull-back of the Cartier
divisor E ′ is

ψ∗E ′ = Ẽ +
∑
j∈J

NjEj.

Then, indeed,

ρ∗Y ′ = Ẽ|S̃ +
∑
j∈J

NjEj|S̃ = Ỹ +
∑
j∈J1

Nj(Ej ∩ S̃),

where we used that Ej ∩ S̃ = Ej ∩ ρ−1(p) = ∅ for j /∈ J1. �

We are now ready to apply A’Campo’s formula for the monodromy zeta function
Zmon
Y ′,p (t) of Y ′ ⊂ S ′, and to show the main result of this section.

Theorem 4.7. Consider a complete intersection curve Y = V (I) ⊂ Cg+1 whose ideal
I = (f1, . . . , fg) is generated by a regular sequence f1, . . . , fg ∈ C[x0, . . . , xg], and whose
singular set is Sing(Y ) = {0}. Let S = S(λ2, . . . , λg) be a generic embedding surface of
Y defined by the equations (12), where the coefficients (λ2, . . . , λg) ∈ (C \ {0})g−1 are
generic such that all previous results hold. Denote by σ : X ′ → Cg+1 the blow-up of Cg+1

with center Y and by S ′ the strict transform of S under σ. Then, the monodromy zeta
function Zmon

Y,p (t) of Y considered in Cg+1 at the generic point p = S ′ ∩ σ−1(0) is equal to
the monodromy zeta function Zmon

Y,0 (t) of Y considered as a Cartier divisor on S at the
origin. Therefore, we refer to both zeta functions as the monodromy zeta function of Y .

Proof. Let Ek be the second last exceptional variety of the principalization ϕ or, thus, the
only one intersecting Ẽ. Then, the formula (5) of A’Campo with the embedded resolution
ρ : S̃ → S ′ of Y ′ ⊂ S ′ from Proposition 4.6 gives

Zmon
Y ′,p (t) =

∏
j∈J1

(1− tNj)χ((Ej∩S̃)◦∩ρ−1(p)) =
∏
j∈J1

(1− tNj)χ((Ej∩S̃)◦),

where

(Ej ∩ S̃)◦ =

{
(Ej ∩ S̃) \ ∪i 6=j(Ei ∩ Ej ∩ S̃) for j 6= k

(Ek ∩ S̃) \ (∪i 6=k(Ei ∩ Ek ∩ S̃) ∪ (Ẽ ∩ Ek ∩ S̃)) for j = k.

By the choice of the generic point p ∈ σ−1(0)\∪j∈J2ψ(Ej) satisfying Ej ∩ψ−1(p) = Ej ∩ S̃
for j ∈ J1, this is the same as the monodromy zeta function Zmon

Y,p (t) given in (13). Because
0 ∈ Y ⊂ S is isomorphic to p ∈ Y ′ ⊂ S ′ under σ, the theorem follows. �

5. Embedded Q-resolution of a space monomial curve

The purpose of this section is to construct an embedded Q-resolution of a space mono-
mial curve Y considered as a Cartier divisor on a generic surface S ⊂ Cg+1 with g ≥ 2
satisfying all results in Section 4. We will also describe the combinatorics of the excep-
tional divisor that are needed to compute the monodromy zeta function of Y in Section 6.

Our method requires g steps, denoted by Step k for k = 1, . . . , g, consisting of a
weighted blow-up in higher dimension. Roughly speaking, in every step, we are able to
eliminate one equation in Y and S, and to lower the dimension of the ambient space by
one. Therefore, the last step coincides with the resolution of a cusp in a Hirzebruch-Jung
singularity of type 1

d
(1, q). We will see that the resolution graph obtained in this process is

a tree as in Figure 5, but that the exceptional varieties do not have zero genus in general.
The latter implies that the link of the surface singularity (S, 0) is not always a rational
nor an integral homology sphere. However, using this embedded Q-resolution, one can
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obtain necessary and sufficient conditions for the link of (S, 0) to be a rational or integral
homology sphere, see [MV].

5.1. Technical results. We extract some results from the main construction that are
interesting in their own right and discuss them in this section separately.

A first challenge in the resolution will be to investigate the irreducible components
of the exceptional divisor in each weighted blow-up. We will see that in Step k for
k = 1, . . . , g, the exceptional divisor Ek can be described by a similar system of equations
in the quotient of a weighted projective space Prω/µd that arises as the exceptional divisor
of the ambient space. Except from the number of irreducible components, we are also
interested in the singular points of Ek, which lie on the coordinate hyperplanes {xi = 0} of
Prω/µd. Since our exceptional divisors will always have one common intersection point Ak
with the coordinate hyperplanes for i = 2, . . . , r, we restrict in the following proposition
to that case. In fact, the single intersection point Ak = Ek ∩ {xi = 0} for i = 2, . . . , r will
be the center of the blow-up in the next step.

Proposition 5.1. Consider the quotient Pr(p0,...,pr)
(d; a0, . . . , ar) = Pr(p0,...,pr)

/µd of some

weighted projective space Pr(p0,...,pr)
under an action of type (d; a0, . . . , ar) with r ≥ 2. Let

E be defined in this space by a system of equations
xm0

0 + xm1
1 + xm2

2 = 0
xm2

2 + xm3
3 = 0

...
x
mr−1

r−1 + xmrr = 0

for positive integers mi such that d | aimi for i = 0, . . . , r, and such that each equation
is weighted homogeneous with respect to the weights (p0, . . . , pr). Assume that the inter-
section of E with {xi = 0} for i = 2, . . . , r only consists of one fixed point A, and that
aipj − ajpi = 0 for all i, j ∈ {2, . . . , r}. Put P :=

∏r
i=2 pi, and Q := ai

∏r
j=2,j 6=i pj for

i = 2, . . . , r. Then,

(i) the number of irreducible components of E is equal to

m2 · · ·mr

lcm(m2, . . . ,mr)
;

(ii) all irreducible components of E have the point A in common and are pairwise disjoint
outside A; and
(iii) each irreducible component has

m1 · gcd
(
dP · (p1, p2, . . . , pr), (a1P − p1Q) · (p2, . . . , pr)

)
dP · gcd(p2, . . . , pr)

intersections with {x0 = 0}, and

m0 · gcd
(
dP · (p0, p2, . . . , pr), (a0P − p0Q) · (p2, . . . , pr)

)
dP · gcd(p2, . . . , pr)

intersections with {x1 = 0}.
Computing the numbers in (i) and (iii) relies on counting the number of solutions of a

system of polynomial equations in a cyclic quotient space such as in the next result.

Lemma 5.2. Let X be a cyclic quotient space X(d; a0, . . . , ar) with r ≥ 0 and let ki for
i = 0, . . . , r be positive integers such that d | aiki for every i = 0, . . . , r. Consider the
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system of equations 
xk0

0 = c0

xk1
1 = c1

...
xkrr = cr,

where ci ∈ C\{0}. If r ≥ 1, then the number of solutions in X of the form [(x0, b1, . . . , br)]
with [(b1, . . . , br)] ∈ X(d; a1, . . . , ar) fixed is equal to

k0 · gcd(d, a0, . . . , ar)

gcd(d, a1, . . . , ar)
.

The total number of solutions for r ≥ 0 is equal to

k0 · · · kr · gcd(d, a0, . . . , ar)

d
.

Proof. For r ≥ 1, the solutions with [(b1, . . . , br)] ∈ X(d; a1, . . . , ar) fixed can be written
as [(ξb0, b1, . . . , br)] for some fixed k0th root b0 of c0 and varying ξ ∈ µk0 . Two elements
ξ and ξ′ in µk0 yield the same solution if and only if there exists a dth root η ∈ µd such
that ξb0 = ηa0ξ′b0 and bi = ηaibi for i = 1, . . . , r or, thus, if and only if there exists an
element η ∈ µd ∩ µa1 ∩ · · · ∩ µar = µgcd(d,a1,...,ar) such that ξξ′−1 = ηa0 . It follows that
the solutions of the above form are in bijection with µk0/Imh where h is the well-defined
group homomorphism h : µgcd(d,a1,...,ar) → µk0 given by η 7→ ηa0 . As Imh is isomorphic
to µgcd(d,a1,...,ar)/Kerh and Kerh = µgcd(d,a0,...,ar), we obtain the right number of solutions.
The total number of solutions for r ≥ 0 can be shown by an induction argument, using
the first part of the lemma in the induction step. �

Proof of Proposition 5.1. We start with the case where r ≥ 3 and we determine the irre-
ducible components of E by first identifying the irreducible components of E \ {A}. To
find the components of E \ {A}, we consider the chart of Pr(p0,...,pr)

(d; a0, . . . , ar) where
x2 6= 0 which is given by

X

(
p2 p0 p1 p3 . . . pr
dp2 A0 A1 0 . . . 0

)
,

with A0 = a0p2 − a2p0 and A1 = a1p2 − a2p1, see (11). On this chart, the equations of E
become 

xm0
0 + xm1

1 + 1 = 0
1 + xm3

3 = 0
...

x
mr−1

r−1 + xmrr = 0.

For a fixed solution b = [(b3, . . . , br)] in X(p2; p3, . . . , pr) of the last r − 2 equations, we
denote by Eb the set {[(x0, x1, b3, . . . , br)] | xm0

0 + xm1
1 + 1 = 0}. By the second part of

Lemma 5.2, the number of such solutions b ∈ X(p2; p3, . . . , pr) is given by

(15)
m3 · · ·mr · gcd(p2, . . . , pr)

p2

.

It is not hard to see that every Eb is irreducible and that all these sets are pairwise disjoint.
In other words, the irreducible components of E \ {A} are the sets Eb for each solution
b ∈ X(p2; p3, . . . , pr) of 1 + xm3

3 = · · · = x
mr−1

r−1 + xmrr = 0. One can also show that A is

contained in each closure Eb in Pr(p0,...,pr)
(d; a0, . . . , ar) or, thus, that all Eb = Eb ∪ {A} are

the irreducible components of E . Hence, the number of components of E is given by (15),
which can be rewritten as the expression in the proposition by using the relation (2).
Furthermore, all Eb contain the point A and are pairwise disjoint outside A, proving (ii).
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To show the last part of the proposition, we still work on the chart where x2 6= 0: the point
A is not contained in the intersection E∩{xi = 0} for i = 0, 1. We thus need to compute the
number of intersections of each component Eb = {[(x0, x1, b3, . . . , br)] | xm0

0 +xm1
1 + 1 = 0}

with {x0 = 0} and {x1 = 0}. For the first intersection, this reduces to counting the
number of points in X

( p2

dp2

∣∣ p1 p3 ··· pr
A1 0 ··· 0

)
of the form [(x1, b3, . . . , br)] with xm1

1 + 1 = 0 and
[(b3, . . . , br)] a fixed solution of 1 +xm3

3 = · · · = x
mr−1

r−1 +xmrr = 0 in X(p2; p3, . . . , pr). This
can be further simplified with the isomorphism, see Example 3.1,

(16) X

(
p2 p1 p3 . . . pr
dp2 A1 0 . . . 0

)
' X

(
p2;

dp1p2

gcd(dp2, A1)
, p3, . . . , pr

)
defined by [(x1, x3, . . . , xr)] 7→ [(x

dp2
gcd(dp2,A1)

1 , x3, . . . , xr)] to counting the number of points

in X
(
p2; dp1p2

gcd(dp2,A1)
, p3, . . . , pr

)
of the form [(x1, b3, . . . , br)] with x

m1 gcd(dp2,A1)
dp2

1 + 1 = 0 and

[(b3, . . . , br)] a fixed solution of 1 + xm3
3 = · · · = x

mr−1

r−1 + xmrr = 0 in X(p2; p3, . . . , pr). By
the first part of Lemma 5.2, this number is given by

(17)
m1 · gcd

(
dp2 · (p1, p2, . . . , pr), (a1p2 − a2p1) · (p2, . . . , pr)

)
dp2 · gcd(p2, . . . , pr)

,

which is equal to the expression in the proposition. Analogously, one can show that the
number of intersections of each component with {x1 = 0} is given by

(18)
m0 · gcd

(
dp2 · (p0, p2, . . . , pr), (a0p2 − a2p0) · (p2, . . . , pr)

)
dp2 · gcd(p2, . . . , pr)

.

If r = 2, then E ⊂ Pr(p0,p1,p2)(d; a0, a1, a2) given by the single equation xm0
0 +xm1

1 +xm2
2 = 0

is irreducible, showing items (i) and (ii). The number of intersections with {x0 = 0} and
{x1 = 0} can be shown similarly as in the case where r ≥ 3. �

Remark 5.3. The expressions in Proposition 5.1 are computed by looking locally on
the chart where x2 6= 0, but they could also be obtained by looking on one of the other
charts xi 6= 0 for i = 3, . . . , g. This is the reason why we rewrote the formulas (15), (17)
and (18) of the proof into the formulas of the statement; this way, it is clear that they
are independent of the choice of chart. In practice, however, we will often use the local
expressions of the proof as they are slightly easier to work with.

Another challenge will be to understand how the exceptional divisors intersect each
other. When blowing up at the point Ak−1 in Step k, the components of Ek−1 will be sep-
arated, and the intersections with the new exceptional divisor Ek will be equally distributed
as explained in the next proposition, in which D plays the role of the strict transform of
Ek−1. Furthermore, the new center of the blow-up will not be contained in any of the com-
ponents of Ek−1, which implies that every exceptional divisor only intersects the divisor
of the previous and of the next blow-up, and that the combinatorics of these intersections
stay unchanged throughout the rest of the resolution. This will be the key ingredient to
show that the dual graph of the resolution is a tree as in Figure 5, see Theorem 5.8 for the
details. It is also worth mentioning that the first part of the next result is a generalization
of the resolution of a cusp xp + yq in C2 with gcd(p, q) not necessarily equal to 1; such
a cusp consists of gcd(p, q) irreducible components going through the origin and pairwise
disjoint elsewhere, and after the (q, p)-weighted blow-up at the origin, all the components
are separated, see for instance [Mar1, Example 3.3].

Proposition 5.4. We work in the same situation as Proposition 5.1 with the stronger
condition that aipj − ajpi = 0 for all i, j ∈ {1, . . . , r}. Consider Pr(p0,...,pr)

(d; a0, . . . , ar)

as the exceptional divisor of the weighted blow-up π : X̂(d; a0, . . . , ar)ω → X(d; a0, . . . , ar)
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of X(d; a0, . . . , ar) at the origin with weights ω = (p0, . . . , pr), and let D be the strict
transform under this blow-up of D in X(d; a0, . . . , ar) defined by

(19)


xm0

0 = 0
xm1

1 + xm2
2 = 0

...
x
mr−1

r−1 + xmrr = 0.

Then,

(i) the total number of irreducible components of D is

m1 · · ·mr

lcm(m1, . . . ,mr)
,

and they are all pairwise disjoint;
(ii) each component of D is intersected by precisely one component of E, and this inter-
section consists of a single point; and
(iii) each component of E intersects the same number,

m1 lcm(m2, . . . ,mr)

lcm(m1, . . . ,mr)
,

of components of D, which is precisely the number of components of D divided by the
number of components of E.

If the above conditions (i) - (iii) are satisfied, we will say that the intersections of D and
E are equally distributed.

Remark 5.5. In item (iii), one can rewrite

m1 lcm(m2, . . . ,mr)

lcm(m1, . . . ,mr)
=
m1 gcd(p1, . . . , pr)

gcd(p2, . . . , pr)
.

This is consistent with Proposition 5.1, item (iii), with a1P − p1Q = 0 as a1pi − aip1 = 0
for all i ∈ {1, . . . , r}: the intersection of E with D corresponds to the intersection of E
with {x0 = 0}.
Proof. We start by considering for a moment the subspace of Cr+1 defined by the equa-
tions (19) and prove that the number of irreducible components of this subspace is

m1 · · ·mr

lcm(m1, . . . ,mr)
.

This provides an upper bound on the number of irreducible components of D and, hence,
of D. First of all, we can reduce to the subspace of Cr given by the last r − 1 equations
and we work by induction on r ≥ 2. For r = 2, we have to consider {xm1

1 + xm2
2 = 0} in

C2. Let q = gcd(m1,m2) and denote by ξi for i = 1, . . . , q the qth roots of −1. We can
rewrite

xm1
1 + xm2

2 =

q∏
i=1

(
x
m2
q

2 − ξix
m1
q

1

)
,

where each factor x
m2
q

2 −ξix
m1
q

1 is an irreducible polynomial in C[x1, x2]. In other words, the

irreducible components are given by {x
m2
q

2 −ξix
m1
q

1 = 0}, and there are q = gcd(m1,m2) =
m1m2

lcm(m1,m2)
components in total. In the induction step, assuming that the statement holds

for r − 1, one can again decompose the first equation as above and reduce the problem
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to showing that each of the subspaces given by one factor of the first equation together
with the last r − 2 equations from (19) has

m1 · · ·mr

q lcm(m1, . . . ,mr)

irreducible components. In each of these problems, the first equation can be parametrized
with a parameter t ∈ C to further reduce the problem to investigating the components of

t
m1m2
q + xm3

3 = 0
xm3

3 + xm4
4 = 0

...
x
mr−1

r−1 + xmrr = 0

in Cr−1. By the induction hypothesis, we can conclude. To show that the upper bound is
attained for D, we take a look at the third chart of X̂(d; a0, . . . , ar)ω where the exceptional
divisor is given by {x2 = 0}; one could also obtain this by looking at one of the other
charts, except for the first one, where the strict transform of D is not visible. The third
chart is given by

X

(
p2 p0 p1 −1 p3 · · · pr
dp2 A0 0 a2 0 · · · 0

)
,

with A0 = a0p2 − a2p0, via

[(x0, . . . , xr)] 7−→ [((x0x
p0

2 , x1x
p1

2 , x
p2

2 , x
p3

2 x3, . . . , x
pr
2 xr), [x0 : x1 : 1 : x3 : . . . : xr]ω)],

see (10). By pulling back the equations of D along this map, we find the following
equations of D in this chart: 

xm0
0 = 0

xm1
1 + 1 = 0

...
x
mr−1

r−1 + xmrr = 0.

From these equations, it is not hard to see that the irreducible components of D in this
chart are all pairwise disjoint and given by Db′ = {[(0, b′1, x2, b

′
3, . . . , b

′
r)] | x2 ∈ C} for b′ =

[(b′1, b
′
3, . . . , b

′
r)] ∈ X(p2; p1, p3, . . . , pr) a fixed solution of xm1

1 + 1 = · · · = x
mr−1

r−1 +xmrr = 0.
By the second part of Lemma 5.2, their total number is

m1m3 · · ·mr gcd(p1, . . . , pr)

p2

=
m1 · · ·mr

lcm(m1, . . . ,mr)
.

It follows that the total number of irreducible components of D is given by the same
number and that all irreducible components of D are visible in this chart. Furthermore, by
symmetry between the charts, we can conclude that all components are pairwise disjoint.
This shows (i). To prove the other two statements, we first suppose that r ≥ 3 and we keep
on working in the third chart; the irreducible components of E are obtained from those of
E \ {A} by adding the point A. As we saw in the proof of Proposition 5.1, all irreducible
components of E \ {A} are given by Eb = {[(x0, x1, 0, b3, . . . , br))] | xm0

0 + xm1
1 + 1 = 0} for

b = [(b3, . . . , br)] a fixed solution in X(p2; p3, . . . , pr) of 1 + xm3
3 = · · · = x

mr−1

r−1 + xmrr = 0,
they are pairwise disjoint, and their total number is

m2 · · ·mr

lcm(m2, . . . ,mr)
.

Assume now that a component Db′ of D in this chart intersects a component Eb of E \{A}.
Then, there exist b0, b1, b

′
2 ∈ C with bm0

0 + bm1
1 + 1 = 0 such that [(0, b′1, . . . , b

′
r)] =

[(b0, b1, 0, b3, . . . , br)] is a point in the intersection. This implies that b0 = b′2 = 0 and that
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[(b′1, b
′
3, . . . , b

′
r)] = [(b1, b3, . . . , br)] in X(p2; p1, p3, . . . , pr). Hence, the component Db′ only

intersects the component of E \ {A} corresponding to [(b′3, . . . , b
′
r)], and the intersection

consists of the single point [(0, b′1, 0, b
′
3, . . . , b

′
r)]. It remains to show that each component

of E has non-empty intersection with precisely

m1 lcm(m2, . . . ,mr)

lcm(m1, . . . ,mr)

components of D. Along the same lines, we see that a component Eb of E \ {A} inter-
sects every component Db′ of D in the third chart with [(b′3, . . . , b

′
r)] = [(b3, . . . , br)] in

X(p2; p3, . . . , pr). Hence, we need to count the solutions in X(p2; p1, p3, . . . , pr) of
xm1

1 + 1 = 0
...

x
mr−1

r−1 + xmrr = 0

with [(b′3, . . . , b
′
r)] fixed. The first part of Lemma 5.2 gives the right number, see also

Remark 5.5. If r = 2, then E is irreducible and intersects every component of D in a
single point; this can again be shown by considering the third chart. �

One last result that we discuss before going into the construction of the resolution is
needed to control the power of some variables when pulling back the equations (4) of the
curve Y . Recall that the numbers bij and ni were introduced in (3), see Section 1.

Notation 5.6. Let n := n0 · · ·ng and define the numbers b
(k)
i for i, k ∈ {0, . . . , g} with

i > k recursively as follows:

(20)


b

(0)
i := bi0

n

n0

for i > 0,

b
(k)
i := b

(k−1)
i +

(bik
nk

+ · · ·+ bi(i−1)

ni−1

− 1
)
b

(k−1)
k for i > k ≥ 1.

Note that b
(0)
1 = n. For each k ∈ {1, . . . , g}, the number b

(k)
i for i > k will be related

to the ith variable xi in Step k of the resolution. The following result expresses these
numbers in terms of the generators (β̄0, . . . , β̄g) of the semigroup introduced in Section 1.
As a consequence, we show that they are all greater than 1.

Lemma 5.7. Let i, k ∈ {1, . . . , g} with i > k. Then,

b
(k)
i = (niβ̄i − nkβ̄k)−

bi(i−1)

ni−1

(ni−1β̄i−1 − nkβ̄k)− · · · −
bi(k+1)

nk+1

(nk+1β̄k+1 − nkβ̄k),

and, in particular, b
(k)
k+1 = nk+1β̄k+1 − nkβ̄k. Furthermore, b

(k)
i > 1 or, equivalently,

(21) b
(k−1)
k + 1 < b

(k−1)
i + bik

b
(k−1)
k

nk
+ · · ·+ bi(i−1)

b
(k−1)
k

ni−1

.

Proof. We use induction on k. Let us first consider k = 1. Note that β̄0 = n
n0

and β̄1 = n
n1

.

Using equation (3), the term b
(1)
i for i > 1 can indeed be rewritten as

b
(1)
i = bi0β̄0 + bi1β̄1 +

(bi2
n2

+ · · ·+ bi(i−1)

ni−1

− 1
)
n

= niβ̄i − bi2β̄2 − · · · − bi(i−1)β̄i−1 +
(bi2
n2

+ · · ·+ bi(i−1)

ni−1

− 1
)
n1β̄1

= (niβ̄i − n1β̄1)− bi(i−1)

ni−1

(ni−1β̄i−1 − n1β̄1)− · · · − bi2
n2

(n2β̄2 − n1β̄1).
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Let us now consider the general case. By induction, we know that b
(k−1)
k = nkβ̄k−nk−1β̄k−1

and that b
(k−1)
i for i > k − 1 can be written as

b
(k−1)
i = niβ̄i − bikβ̄k − · · · − bi(i−1)β̄i−1 +

(bik
nk

+ · · ·+ bi(i−1)

ni−1

− 1
)
nk−1β̄k−1.

Hence, by definition, we have for i > k that

b
(k)
i = b

(k−1)
i +

(bik
nk

+ · · ·+ bi(i−1)

ni−1

− 1
)
b

(k−1)
k

= niβ̄i − bikβ̄k − · · · − bi(i−1)β̄i−1 +
(bik
nk

+ · · ·+ bi(i−1)

ni−1

− 1
)
nkβ̄k.

After regrouping, we obtain the required formula. For the second part of the lemma, as
bij < nj whenever i > j 6= 0, see the extra assumption on (3), it is enough to show that

(niβ̄i − nkβ̄k)− (ni−1β̄i−1 − nkβ̄k)− · · · − (nk+1β̄k+1 − nkβ̄k) > 1.

We proceed by induction on i > k. For i = k + 1, one indeed has nk+1β̄k+1 − nkβ̄k > 1,
since β̄k+1 > nkβ̄k and nk+1 ≥ 2. Suppose now that it is true for i − 1 with i > k + 1.
The conditions β̄i > ni−1β̄i−1 and ni ≥ 2 imply that niβ̄i − nkβ̄k > ni(ni−1β̄i−1 − nkβ̄k).
Hence,

(niβ̄i − nkβ̄k)− (ni−1β̄i−1 − nkβ̄k)− · · · − (nk+1β̄k+1 − nkβ̄k)
> (ni − 1)(ni−1β̄i−1 − nkβ̄k)− (ni−2β̄i−2 − nkβ̄k)− · · · − (nk+1β̄k+1 − nkβ̄k)
≥ (ni−1β̄i−1 − nkβ̄k)− (ni−2β̄i−2 − nkβ̄k)− · · · − (nk+1β̄k+1 − nkβ̄k)
> 1,

where the second inequality again follows from ni ≥ 2, and the last one from the induction
hypothesis. �

5.2. Construction of the embedded Q-resolution of Y ⊂ S. We are now ready
to start with Step 1 in the resolution of Y ⊂ S, focusing on the information needed to
compute the zeta function of monodromy. The idea is to consider the blow-up π1 at
the origin of Cg+1 with some weights and study its restriction to S that we call ϕ1 :=
π1|Ŝ : Ŝ → S, with Ŝ the strict transform of S. After this blow-up, we will be able to
eliminate one variable so that we attain the same situation as in the beginning, but in one
dimension less and where the ambient space contains quotient singularities. In Step 2,
we will again consider a weighted blow-up of the ambient space and its restriction ϕ2 to
Ŝ. As mentioned in the beginning of this section, we will need g such steps. Denote by
Ek for k = 1, . . . , g the exceptional divisor of ϕk appearing at Step k; we will also denote
their strict transforms throughout the process by Ek. To keep track of the necessary
combinatorics of these divisors, we introduce Hi for i = 0, . . . , g as the divisor in S
defined by {xi = 0} ∩ S ⊂ Cg+1. We will see in the process of resolving the singularity

that (the strict transform of) Hk is separated from the strict transform Ŷ of Y precisely
at Step k and that it intersects the kth exceptional divisor Ek transversely. Therefore, it
is interesting to study how the Hi’s behave in the process of resolving Y ⊂ S, although
they are not part of our curve. We again keep on denoting them by Hi.

5.2.1. Step 1: weighted blow-up π1 at 0 ∈ Cg+1 with weights ω1. Let π1 : Ĉg+1
ω1
→ Cg+1

be the weighted blow-up at the origin with respect to ω1 :=
(
n
n0
, . . . , n

ng

)
, where n =

n0n1 · · ·ng. For a better exposition, we split the section into several parts.
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Global situation. Let us first discuss the global picture. Recall that the equations of Y
and S are given by (4) and (12), respectively, and that the exceptional divisor E1 of π1

is identified with Pgω1
. The exceptional divisor E1 := E1 ∩ Ŝ of ϕ1 = π1|Ŝ : Ŝ → S is in

the coordinates of Pgω1
given by the ω1-homogeneous part of S. By the inequality (21) in

Lemma 5.7 for k = 1 and i = 2, . . . , g, we have

n < n+ 1 < bi0
n

n0

+ bi1
n

n1

+ · · ·+ bi(i−1)
n

ni−1

,

so that E1 ⊂ Pgω1
is defined by

(22)


xn1

1 − xn0
0 + λ2x

n2
2 = 0

xn2
2 + λ3x

n3
3 = 0

...
x
ng−1

g−1 + λgx
ng
g = 0.

After a change of variables, we can assume that all coefficients in these equations are
equal to 1 so that they satisfy the conditions of Proposition 5.1 with d = 1 and ai = 0 for
i = 0, . . . , g; for instance, the intersection E1 ∩ {xi = 0} = E1 ∩Hi for i = 2, . . . , g is the
point P1 := [1 : 1 : 0 : . . . : 0]. According to this proposition, the number of irreducible
components of E1 is

(23)
n2 · · ·ng

lcm(n2, . . . , ng)
=

e1

lcm(n2, . . . , ng)
.

If g = 2, then this number is equal to 1 or, thus, E1 is irreducible. All the irreducible
components of E1 have the point P1 in common and are pairwise disjoint outside P1.
Combining (15) and (17) from Proposition 5.1, the intersection E1∩H0, which is E1∩{x0 =
0} in these coordinates, contains

(24)
n1n3 · · ·ng gcd( n

n1
, n
n2
, . . . , n

ng
)

n
n2

= gcd
( β̄0

n1

,
β̄0

n2

, . . . ,
β̄0

ng

)
=

β̄0

lcm(n1, n2, . . . , ng)

points, where n = n0β̄0 and the relation (2) was used in the first and second equality,
respectively. Analogously, from (15) and (18), the intersection E1 ∩H1 is formed by

(25)
n0n3 · · ·ng gcd( n

n0
, n
n2
, . . . , n

ng
)

n
n2

= gcd
( β̄1

n0

,
β̄1

n2

, . . . ,
β̄1

ng

)
=

β̄1

lcm(n0, n2, . . . , ng)

points. The fact that each irreducible component of E1 has the same number of intersec-
tions with H0 (resp. H1) is compatible with the fact that the integer in (23) divides the

one in (24) (resp. (25)). The intersection E1 ∩ Ŷ of E1 with the strict transform of Y is
defined by the ω1-homogeneous part of Y : xn1

1 − xn0
0 = x2 = · · · = xg = 0. This is simply

the point P1. The global situation in the strict transform Ŝ for g ≥ 3 is illustrated in
Figure 1. For simplicity, the components of E1 are represented by lines, but they are in
general neither smooth nor rational curves. If g = 2, we can make the same picture with
E1 irreducible.

In order to study the singular locus of Ŝ, we use local coordinates. Note that the surface
Ŝ is smooth outside E1: the complement Ŝ \ E1 is isomorphic to S \ {0}, which is smooth
as (S, 0) is an isolated singularity. To study the situation on E1, we just need to have a

look at the first two charts U0 and U1 of Ĉg+1
ω1

because E1 ∩ H0 ∩ H1 = ∅. In fact, the

local study of Ŝ around points of E1 can be understood using the first chart, except for
the finite number of points in the intersection E1 ∩H0. For the latter points, the second
chart is employed.
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E1 ∩H0

E1

Ŷ

Q

Q0
Q1

U0

U1

E1 ∩H1

P1

=

E1 ∩Hi

i = 2, . . . , g

Figure 1. Step 1 in the resolution of Y ⊂ S for g ≥ 3.

Points in E1 \
⋃g
i=0Hi. Let us compute the equations of Ŝ and Ŷ in the first chart U0

of Ĉg+1
ω1

. They are obtained via

(x0, . . . , xg) 7−→ (x
n
n0
0 , x

n
n1
0 x1, . . . , x

n
ng

0 xg),

and the new ambient space is U0 = X( n
n0

;−1, n
n1
, . . . , n

ng
), see (9). The total transform

ϕ−1
1 (Y ) is defined by xn0 f̂1 = · · · = xn0 f̂g = 0, where

f̂1 := xn1
1 − 1

f̂2 := xn2
2 − x

b
(1)
2

0 xb21
1

...

f̂g := x
ng
g − xb

(1)
g

0 x
bg1
1 · · ·x

bg(g−1)

g−1

define the strict transform Ŷ , and xn0 : Ŝ → C is the exceptional part. Here, b
(1)
i =

bi0
n
n0

+ ( bi1
n1

+ · · ·+ bi(i−1)

ni−1
− 1)n > 1 for i = 2, . . . , g, see Lemma 5.7. The strict transform

Ŝ is given by f̂1 + λ2f̂2 = · · · = f̂g−1 + λgf̂g = 0, and Hi for i = 1, . . . , g by {xi = 0} ∩ Ŝ.
Note that H0 is not visible in this chart. On E1 \

⋃g
i=1Hi, the ambient space U0 is

smooth, and one can use the standard Jacobian criterion to show that Ŝ is also smooth
on this set: the Jacobian matrix of Ŝ is a (g − 1) × (g + 1)-matrix containing a lower

triangular (g−1)× (g−1)-matrix with diagonal (λ2n2x
n2−1
2 , . . . , λgngx

ng−1
g ). To compute

the multiplicity of the exceptional divisor, we take a look at the equations around a
generic point Q = [(0, a1, . . . , ag)] ∈ E1 \

⋃g
i=1 Hi, where ai ∈ C∗. The order of the

stabilizer subgroup of Q is gcd( n
n0
, . . . , n

ng
), and, hence, as germs,(

X
( n
n0

;−1,
n

n1

, . . . ,
n

ng

)
, Q

)
'
(
X
(

gcd
( n
n0

, . . . ,
n

ng

)
;−1, 0, . . . , 0

)
, Q

)
' (Cg+1, 0),

see Section 3. The function xn0 : U0 → C is transformed under the previous isomorphism
into xN1

0 : Cg+1 → C, where

N1 :=
n

gcd( n
n0
, . . . , n

ng
)

= lcm(n0, . . . , ng)

is the multiplicity of E1 defined in (8). Here, we used once again the relation (2).

Points in the intersection E1 ∩H1. Let Q1 = [(0, 0, a2, . . . , ag)] be a point in E1∩H1 con-
sidered on the first chart, where ai ∈ C∗ are chosen such that −1 +λ2a

n2
2 = an2

2 +λ3a
n3
3 =

· · · = a
ng−1

g−1 + λga
ng
g = 0. The order of the stabilizer subgroup of Q1 is gcd( n

n0
, n
n2
, . . . , n

ng
),
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and U0 around Q1 becomes X(gcd( n
n0
, n
n2
, . . . , n

ng
);−1, n

n1
, 0, . . . , 0). To have a chart cen-

tered at the origin, we can change the coordinates xi 7→ xi + ai for i = 2, . . . , g. In these
new coordinates, Ŝ is described in X(gcd( n

n0
, n
n2
, . . . , n

ng
);−1, n

n1
, 0, . . . , 0) by equations of

the form 
y2 := u2(x2)x2 − h2(x0, x1) = 0
y3 := u3(x3)x3 − h3(x0, x1, x2) = 0

...
yg := ug(xg)xg − hg(x0, . . . , xg−1) = 0,

where ui(xi) ∈ C{xi} are units, and hi ∈ C[x0, x1, . . . , xi−1]. By making the change of
coordinates y0 = x0, y1 = x1, yi = uixi−hi for i = 2, . . . , g, we finally obtain the following
situation at [(x0, x1)] :

(26)

Ŝ = X

(
gcd

( n
n0

,
n

n2

, . . . ,
n

ng

)
;−1,

n

n1

)
E1 : xn0 = 0, H1 : x1 = 0.

In particular, the total transform ϕ−1
1 (Y ) has Q-normal crossings on Ŝ at these points.

Points in the intersection E1 ∩H0. As mentioned before, to study these points, we need
to consider the second chart U1 = X( n

n1
; n
n0
,−1, n

n2
, . . . , n

ng
) via

(x0, . . . , xg) 7−→ (x0x
n
n0
1 , x

n
n1
1 , x

n
n2
1 x2, . . . , x

n
ng

1 xg).

Choose a point Q0 ∈ E1 ∩H0, which is of the form [(0, 0, a2, . . . , ag)] for ai ∈ C∗ satisfying
a set of equations similar as Q1 ∈ E1 ∩ H1. Since its stabilizer subgroup has order
gcd( n

n1
, . . . , n

ng
), one obtains by repeating the same arguments as in (26) the following

local situation around Q0 at [(x0, x1)]:

(27)

Ŝ = X

(
gcd

( n
n1

,
n

n2

, . . . ,
n

ng

)
;
n

n0

,−1

)
E1 : xn1 = 0, H0 : x0 = 0.

The total transform of Y is again a Q-normal crossings divisor around such points.

The point P1 = E1 ∩Hi for i = 2, . . . , g. In the first chart, P1 = [(0, 1, 0, . . . , 0)], and
the order of its stabilizer subgroup is gcd( n

n0
, n
n1

) = e1. Hence, as germs,(
X
( n
n0

;−1,
n

n1

, . . . ,
n

ng

)
, P1

)
'
(
X
(
e1;−1, 0,

n

n2

, . . . ,
n

ng

)
, P1

)
.

We use the change of variables x1 7→ x1 + 1 and xi 7→ xi for i = 0, 2, . . . , g to get a chart
centered at the origin in which Ŝ is given by

(28) f̂i(x0, x1 + 1, x2, . . . , xi) + λi+1f̂i+1(x0, x1 + 1, x2, . . . , xi+1) = 0, i = 1, . . . , g − 1.

Consider the first equation as a function F : C2 × C → C. Since ∂F
∂x1

(0) = n1 6= 0,

there exists some h ∈ C{x0, x2} such that the set of zeros of F in C3 can be described as
{(x0, x1, x2) ∈ C3 | x1 = h(x0, x2)}. In particular,

(h(x0, x2) + 1)n1 − 1 + λ2(xn2
2 − x

b
(1)
2

0 (h(x0, x2) + 1)b21) = 0.

Because the action on x1 is trivial, and x1 = h(x0, x2) provides a set of zeros in the quotient
space, we know that h(x0, x2) is invariant under the group action of type (e1;−1, n

n2
). The
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above equation can be rewritten as

(29) h(x0, x2) = u(x0, x2)(xn2
2 − x

b
(1)
2

0 )

with u(x0, x2) ∈ C{x0, x2} a unit. For a better understanding of the whole process, we
distinguish two cases: g = 2 and g ≥ 3.

If g = 2, then Ŝ is locally around P1 = [(0, . . . , 0)] defined by x1 = h(x0, x2). The pro-
jection pr :

(
X(n2;−1, 0, n

n2
), 0
)
→
(
X(n2;−1, n

n2
), 0
)

given by [(x0, x1, x2))] 7→ [(x0, x2)]

induces locally an isomorphism of Ŝ onto X(n2;−1, n
n2

). The total transform ϕ−1
1 (Y ) is

given by

(30) xn0 (xn2
2 − x

b
(1)
2

0 ) = 0,

where xn2
2 − x

b
(1)
2

0 = 0 defines the strict transform Ŷ , and xn0 = 0 the exceptional divisor
E1. This shows in particular that E1 is irreducible as was already stated in (23). The

divisor H2 is still {x2 = 0} in Ŝ.

If g ≥ 3, then one can rewrite the equations (28) using (29) so that Ŝ is defined by the
equation x1 = h(x0, x2) locally around P1 = [(0, . . . , 0)], and

f̂i(x0, 1, x2, . . . , xi) + λi+1f̂i+1(x0, 1, x2, . . . , xi+1) + (xn2
2 − x

b
(1)
2

0 )R
(1)
i (x0, x2, . . . , xi) = 0,

for i = 2, . . . , g−1, where every R
(1)
i (x0, x2, . . . , xi) ∈ C{x0, x2, . . . , xi} is compatible with

the action (i.e., it defines a zero set in the quotient) and satisfies R
(1)
i (0, x2, . . . , xi) = 0.

The projection

pr :

(
X
(
e1;−1, 0,

n

n2

, . . . ,
n

ng

)
, 0

)
−→

(
X
(
e1;−1,

n

n2

, . . . ,
n

ng

)
, 0

)
given by [(x0, x1, x2, . . . , xg)] 7→ [(x0, x2, . . . , xg)] induces an isomorphism of Ŝ onto the
subvariety of X(e1;−1, n

n2
, . . . , n

ng
) defined by

(31)



xn2
2 − x

b
(1)
2

0 + λ3(xn3
3 − x

b
(1)
3

0 xb32
2 ) + (xn2

2 − x
b
(1)
2

0 )R
(1)
2 (x0, x2) = 0

xn3
3 − x

b
(1)
3

0 xb32
2 + λ4(xn4

4 − x
b
(1)
4

0 xb42
2 xb43

3 ) + (xn2
2 − x

b
(1)
2

0 )R
(1)
3 (x0, x2, x3) = 0

...

x
ng−1

g−1 − x
b
(1)
g−1

0 x
b(g−1)2

2 · · ·xb(g−1)(g−2)

g−2 + λg(x
ng
g − xb

(1)
g

0 x
bg2
2 · · ·x

bg(g−1)

g−1 )

+(xn2
2 − x

b
(1)
2

0 )R
(1)
g−1(x0, x2, . . . , xg−1) = 0.

The total transform of Y is given by

(32)


xn0 (xn2

2 − x
b
(1)
2

0 ) = 0

xn0 (xn3
3 − x

b
(1)
3

0 xb32
2 ) = 0

...

xn0 (x
ng
g − xb

(1)
g

0 x
bg2
2 · · ·x

bg(g−1)

g−1 ) = 0,

where xn0 = 0 corresponds to E1, and Hi = {xi = 0} ∩ Ŝ for i = 2, . . . , g.

In both cases, we can conclude that ϕ1 is an embedded Q-resolution of Y ⊂ S except
at the point P1. In Step 2, we will blow up at this point. If g = 2, the curve Ŷ is a
cusp inside a cyclic quotient singularity, and we will finish right after this blow-up. If
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g ≥ 3, we see in (31) and (32) that we were able to eliminate x1, and that we obtained a

situation very similar to the one we have started with, but with one equation in Ŝ and Ŷ
less, see (12) and (4). However, Step 2 is essentially different and more challenging than

Step 1 because the ambient space of Ŝ contains singularities.

5.2.2. Step 2: weighted blow-up π2 at P1 with weights ω2. We keep the distinction between
g = 2 and g ≥ 3.

If g = 2, then we consider the weighted blow-up π2 = ϕ2 of Ŝ = X(n2;−1, n
n2

), on which

ϕ−1
1 (Y ) is given by (30), at P1 = [(0, 0)] with respect to the weights ω2 := (1,

b
(1)
2

n2
). Note

that b
(1)
2 = n2β̄2 − n1β̄1 is divisible by n2 = e1. This produces an irreducible exceptional

divisor E2 = P1
ω2

(n2;−1, n
n2

) ' P1 with multiplicity N2 = n + b
(1)
2 = n2β̄2. The new

strict transform Ŷ is smooth and intersects E2 transversely at a smooth point of Ŝ. The
intersection E2∩H2 is just one point, and the equation of the total transform of Y around

this point is xn2β̄2

0 : X(n2;−1, β̄2) → C. Finally, E2 intersects E1 at a single point, and
around this point we have the function

xn0x
n2β̄2

2 : X

(
n2β̄2−n1β̄1

n2
1 −1

n2β̄2 − n1β̄1 −β̄2
n
n2

)
−→ C.

The composition ϕ := ϕ1 ◦ ϕ2 : Ŝ → S is an embedded Q-resolution of Y . The final
situation is illustrated in Figure 2; the numbers in brackets are the orders of the underlying
small groups at the intersection points E1 ∩Hi for i = 0, 1 and E2 ∩H2, see Remark 6.1.

E1

E2

Ŷ
( n0

n02
) ( n0

n02
) ( n1

n12
) ( n1

n12
)

· · · · · ·
n12 n02

H0 H1

H2

nij := gcd(ni, nj)

(n2)

Figure 2. Embedded Q-resolution of Y ⊂ S for g = 2.

Assume g ≥ 3 from now on. Consider the equations (31) and (32) of Ŝ and Ŷ , re-
spectively, around P1 = [(0, . . . , 0)] in X(e1;−1, n

n2
, . . . , n

ng
). Let π2 be the blow-up of

X(e1;−1, n
n2
, . . . , n

ng
) at P1 with respect to the weight vector ω2 := (1,

b
(1)
2

n2
, . . . ,

b
(1)
2

ng
). Note

that b
(1)
2 = n2β̄2 − n1β̄1 is divisible by e1 = n2e2 = n2 · · ·ng, see Section 1. Denote by

E2 ' Pg−1
ω2

(
e1;−1, n

n2
, . . . , n

ng

)
the exceptional divisor of π2, and let ϕ2 := π2|Ŝ : Ŝ → Ŝ

be the restriction map with exceptional divisor E2 := E2 ∩ Ŝ. Here, we denote the strict
transform of Ŝ again by Ŝ. As in Step 1, we start with the global situation.

Global situation. Because R
(1)
i (x0, x2, . . . , xi) for i = 2, . . . , g − 1 is not a unit, and

b
(1)
2 < b

(1)
2 + 1 < b

(1)
i + bi2

b
(1)
2

n2

+ · · ·+ bi(i−1)
b

(1)
2

ni−1

, i = 3, . . . , g,
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by (21) from Lemma 5.7, the exceptional divisor E2 is in Pg−1
ω2

(
e1;−1, n

n2
, . . . , n

ng

)
given by

xn2
2 − x

b
(1)
2

0 + λ3x
n3
3 = 0

xn3
3 + λ4x

n4
4 = 0

...
x
ng−1

g−1 + λgx
ng
g = 0.

As these equations satisfy, modulo the coefficients, the conditions of Proposition 5.1, we
know that E2 has

n3 · · ·ng
lcm(n3, . . . , ng)

=
e2

lcm(n3, . . . , ng)

irreducible components. Note that if g = 3, then E2 is irreducible. The intersection E2∩Hi

for i = 3, . . . , g consists of the single point P2 := [1 : 1 : 0 : . . . : 0], which is contained
in all components of E2, while they are pairwise disjoint outside P2. By equations (15)
and (17) with a1p2−a2p1 = 0, the intersection E2∩E1, which corresponds to E2∩{x0 = 0},
consists of

n2n4 · · ·ng gcd
( b(1)

2

n2
, . . . ,

b
(1)
2

ng

)
b
(1)
2

n3

= gcd
( e1

n2

, . . . ,
e1

ng

)
=

e1

lcm(n2, . . . , ng)
.

points. Note that this is precisely the number of irreducible components of E1, see (23).
Using (15) and (18), one can compute that there are

b
(1)
2 n4 · · ·ng gcd

(
e1

b
(1)
2

n3
, n2β̄2

n3
gcd

( b(1)
2

n3
, . . . ,

b
(1)
2

ng

))
e1

b
(1)
2

n3

b
(1)
2

n3

= gcd
(
e2,

β̄2

n3

, . . . ,
β̄2

ng

)
=

β̄2

lcm( β̄2

e2
, n3, . . . , ng)

points in the intersection E2 ∩ H2. The first equality is a consequence of the fact that
n2β̄2

n3
gcd

( b(1)
2

n3
, . . . ,

b
(1)
2

ng

)
=

n2b
(1)
2

n3
gcd

(
β̄2

n3
, . . . , β̄2

ng

)
as n3, . . . , ng divide β̄2. To understand the

combinatorics of E2 with E1, we can make use of Proposition 5.4; the components of E1 are
separated, each of them is intersected by precisely one component of E2, each intersection
consists of only one point, and each component of E2 intersects

n2 lcm(n3, . . . , ng)

lcm(n2, . . . , ng)

components of E1, which is precisely the quotient of the number of components of E1 and
E2. Finally, the strict transform Ŷ of Y intersects E2 only in the point P2. Figure 3
shows the global situation in Ŝ so far (for g ≥ 4). The divisors are again visualized in a
simplified way, and the intersection E1 ∩ E2 is represented by white circles to emphasize
the difference with the other points.

As in Step 1, we make use of local coordinates to investigate the behavior around the
singular points of Ŝ. Note that Ŝ is smooth outside E1 ∪ E2, and that it is again enough
to consider the first two charts of the blow-up to understand the whole situation in E2.



34 J. MARTÍN-MORALES, W. VEYS, AND L. VOS

E2

Ŷ

P2

=

E2 ∩Hi

i = 3, . . . , g

E1H0

H1

E1

H0

E1
H0

H1

H1

H2

H2

H2

Q2Q12

Figure 3. Step 2 in the resolution of Y ⊂ S for g ≥ 4.

Points in E2 \ (E1 ∪
⋃g
i=2Hi). The first chart is

U0 = X

 1 −1
b
(1)
2

n2
. . .

b
(1)
2

ng

e1 −1
n+b

(1)
2

n2
. . .

n+b
(1)
2

ng

 = X
(
e1;−1,

n2β̄2

n2

, . . . ,
n2β̄2

ng

)
,

and we can compute the local equations of Ŝ and Ŷ by pulling back (31) and (32) via

(x0, x2, . . . , xg) 7−→ (x0, x
b
(1)
2
n2

0 x2, . . . , x
b
(1)
2
ng

0 xg).

The total transform ϕ−1
2 (ϕ−1

1 (Y )) is given by xn2β̄2

0 f̂2 = · · · = xn2β̄2

0 f̂g = 0, where
f̂2 := xn2

2 − 1

f̂3 := xn3
3 − x

b
(2)
3

0 xb32
2

...

f̂g := x
ng
g − xb

(2)
g

0 x
bg2
2 · · ·x

bg(g−1)

g−1

correspond to the strict transform Ŷ , and xn2β̄2

0 : Ŝ → C to the exceptional divisor E2,

see (20) and Lemma 5.7 for the definition and behavior of b
(2)
i > 1 for i = 3, . . . , g. Here,

we use again f̂i to avoid complicating the notation. The strict transform Ŝ is defined by

f̂i + λi+1f̂i+1 + f̂2R
(1)
i (x0, x

b
(1)
2
n2

0 x2, . . . , x
b
(1)
i
ni

0 xi) = 0, i = 2, . . . , g − 1,

and Hi for i = 2, . . . , g is still given by {xi = 0} ∩ Ŝ. Observe that the divisor E1 is not
visible in this chart. Similarly as in Step 1, the ambient space at points of E2 \

⋃g
i=2Hi

is smooth, and the standard Jacobian criterion can be applied to see that Ŝ is also
smooth at these points. To compute the multiplicity of E2, we consider a generic point
Q = [(0, a2, . . . , ag)] in E2 \

⋃g
i=2Hi with ai ∈ C∗. The order of its stabilizer subgroup is

gcd(e1,
n2β̄2

n2
, . . . , n2β̄2

ng
), and, as germs, (U0, Q) =

(
X(e1;−1, n2β̄2

n2
, . . . , n2β̄2

ng
), Q

)
equals

(33)

(
X
(

gcd
(
e1,

n2β̄2

n2

, . . . ,
n2β̄2

ng

)
;−1, 0, . . . , 0

)
, Q

)
' (Cg, 0).

Under this isomorphism, the function xn2β̄2

0 : U0 → C becomes xN2
0 : Cg → C with

N2 :=
n2β̄2

gcd
(
e1,

n2β̄2

n2
, . . . , n2β̄2

ng

) = lcm
( β̄2

e2

, n2, . . . , ng

)
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the required multiplicity.

Points in the intersection E2 ∩H2. The order of the stabilizer subgroup of a point Q2 =

[(0, 0, a3, . . . , ag)] ∈ E2 ∩ H2 is gcd(e1,
n2β̄2

n3
, . . . , n2β̄2

ng
). Changing the variables as in (26),

one gets the following situation at [(x0, x2)]:

(34)

Ŝ = X

(
gcd

(
e1,

n2β̄2

n3

, . . . ,
n2β̄2

ng

)
;−1, β̄2

)
E2 : xn2β̄2

0 = 0, H2 : x2 = 0,

and the total transform of Y defines a Q-normal crossings divisor around these points.

Points in the intersection E2 ∩ E1. These points cannot be seen in the first chart. There-
fore, we consider the second chart U1 where the exceptional divisor E2 corresponds to
x2 = 0; it is given by  b

(1)
2

n2
1 −1

b
(1)
2

n3
· · · b

(1)
2

ng
b
(1)
2

n2
e1 −β̄2

n
n2

0 · · · 0


via

(x0, x2, . . . , xg) 7−→ (x0x2, x
b
(1)
2
n2

2 , x
b
(1)
2
n3

2 x3, . . . , x
b
(1)
2
ng

2 xg).

A point Q12 ∈ E2 ∩E1 is in this chart of the form [(0, 0, a3, . . . , ag)] for some ai ∈ C∗. The

stabilizer subgroup of Q12 is the product of two cyclic groups of orders gcd(
b
(1)
2

n2
, . . . ,

b
(1)
2

ng
) =

n2β̄2−n1β̄1

lcm(n2,...,ng)
and

b
(1)
2

n2
e1 = (n2β̄2 − n1β̄1)e2, and one obtains the following local situation

around Q12 in the variables x0 and x2:

(35)


Ŝ = X

(
n2β̄2−n1β̄1

lcm(n2,...,ng)
1 −1

(n2β̄2 − n1β̄1)e2 −β̄2
n
n2

)
E1 : xn0 = 0, E2 : xn2β̄2

2 = 0.

Hence, the total transform ϕ−1
2 (ϕ−1

1 (Y )) has Q-normal crossings at each of the points in
the intersection E2 ∩ E1. Note that these data are compatible with the case g = 2.

The point P2 = E2 ∩Hi for i = 3, . . . , g. This point considered in the first chart U0 =

X(e1;−1, n2β̄2

n2
, . . . , n2β̄2

ng
) is given by P2 = [(0, 1, 0, . . . , 0)], and its stabilizer subgroup has

order gcd(e1,
n2β̄2

n2
) = e2. Hence, as germs,(

X
(
e1;−1,

n2β̄2

n2

, . . . ,
n2β̄2

ng

)
, P2

)
=

(
X
(
e2;−1, 0,

n2β̄2

n3

, . . . ,
n2β̄2

ng

)
, P2

)
.

The idea is to follow the same procedure as the one we used for the point P1 in Step 1.
We use the change of variables x2 7→ x2 + 1 and xi 7→ xi for i = 0, 3, . . . , g to get a chart
centered around the origin and we discuss two cases separately.

If g = 3, then E2 is irreducible, and using the Implicit Function Theorem, one easily

sees that Ŝ ' X
(
n3;−1, n2β̄2

n3

)
with variables [(x0, x3)] on which H3 = {x3 = 0} and the

total transform of Y is given by xn2β̄2

0 (xn3
3 − x

b
(2)
3

0 ) = 0. The first factor represents the
exceptional divisor E2, and the other the strict transform of Y .
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If g ≥ 4, then the germ (Ŝ, P2 = [(0, . . . , 0)]) can be described inside the ambient space

X
(
e2;−1, n2β̄2

n3
, . . . , n2β̄2

ng

)
in the variables x0, x3, . . . , xg by equations of the form

(36)



xn3
3 − x

b
(2)
3

0 + λ4(xn4
4 − x

b
(2)
4

0 xb43
3 ) + (xn3

3 − x
b
(2)
3

0 )R
(2)
3 (x0, x3) = 0

xn4
4 − x

b
(2)
4

0 xb43
3 + λ5(xn5

5 − x
b
(2)
5

0 xb53
3 xb54

4 ) + (xn3
3 − x

b
(2)
3

0 )R
(2)
4 (x0, x3, x4) = 0

...

x
ng−1

g−1 − x
b
(2)
g−1

0 x
b(g−1)3

3 · · ·xb(g−1)(g−2)

g−2 + λg(x
ng
g − xb

(2)
g

0 x
bg3
3 · · ·x

bg(g−1)

g−1 )

+(xn3
3 − x

b
(2)
3

0 )R
(2)
g−1(x0, x3, . . . , xg−1) = 0,

where every R
(2)
i (x0, x3, . . . , xi) ∈ C{x0, x3, . . . , xi} with R

(2)
i (0, x3, . . . , xi) = 0, and the

total transform of Y is given by

(37)


xn2β̄2

0 (xn3
3 − x

b
(2)
3

0 ) = 0

xn2β̄2

0 (xn4
4 − x

b
(2)
4

0 xb43
3 ) = 0

...

xn2β̄2

0 (x
ng
g − xb

(2)
g

0 x
bg3
3 · · · x

bg(g−1)

g−1 ) = 0.

Here, xn2β̄2

0 = 0 corresponds to the exceptional divisor E2, and xi = 0 to Hi for i = 3, . . . , g.

The composition ϕ1 ◦ϕ2 is an embedded Q-resolution of Y ⊂ S except at the point P2.
Hence, in Step 3, we will blow up at this point. If g = 3, this third step will finish the
resolution. If g ≥ 3, one sees in (36) and (37) that x2 is eliminated and that the situation
is the same as in the beginning of Step 2 but in one variable less, see (31) and (32). The
idea is to repeat this procedure until we obtain a cusp in the (g − 1)th step in a cyclic
quotient singularity with variables x0 and xg. Then, one additional blow-up resolves the
singularity. Because the next steps will be essentially the same as Step 2, we consider all
of them simultaneously in Step k for k ≥ 2.

5.2.3. Step k: weighted blow-up πk at Pk−1 with weights ωk. Let k ∈ {2, . . . , g} and assume
that the first k − 1 blow-ups have already been performed. Recall that we denote by
E1, . . . , Ek−1 the exceptional divisors of the corresponding weighted blow-ups ϕ1, . . . , ϕk−1

with respect to the weights ω1, . . . , ωk−1, respectively. We again consider two cases.

If k = g, then at the end of the (g−1)th step, the total transform (ϕ1◦· · ·◦ϕg−1)−1(Y ) is

given by x
ng−1β̄g−1

0 (x
ng
g −xb

(g−1)
g

0 ) = 0 in Ŝ = X(ng;−1, ng−1β̄g−1

ng
) around Pg−1 = [(0, 0)]. The

blow-up πg = ϕg at Pg−1 with respect to ωg = (1,
b
(g−1)
g

ng
) yields an irreducible exceptional

divisor Eg = P1
ωg(ng;−1, ng−1β̄g−1

ng
) ' P1 with multiplicity Ng = ng−1β̄g−1 + b

(g−1)
g = ngβ̄g.

The intersection Eg∩Hg consists of a single point, and the equation of the total transform

of Y at this point is x
ng β̄g
0 : X(ng;−1, β̄g) → C. The intersection Eg ∩ Eg−1 consists also

of one point around which we have the function

x
ng−1β̄g−1

0 xngβ̄gg : X

(
ngβ̄g−ng−1β̄g−1

ng
1 −1

ngβ̄g − ng−1β̄g−1 −β̄g ng−1β̄g−1

ng

)
−→ C.
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Finally, the strict transform Ŷ is smooth and intersects Eg in a transversal way at a

smooth point of Ŝ. Hence, the morphism ϕ := ϕ1 ◦ · · · ◦ϕg : Ŝ → S defines an embedded
Q-resolution of Y ⊂ S, cf. Figure 2.

Assume now that 2 ≤ k ≤ g − 1. In the first chart of ϕk−1 centered at Pk−1, one has

Pk−1 = [(0, . . . , 0)] ∈ X
(
ek−1;−1,

nk−1β̄k−1

nk
, . . . ,

nk−1β̄k−1

ng

)
in the variables (x0, xk, . . . , xg), and the strict transforms Ŝ and Ŷ are given by equations

as in (31) and (32), respectively. The strict transform Ek−1 is given by xnkβ̄k0 = 0, and

Hi = {xi = 0} ∩ Ŝ for i = k, . . . , g. Let πk be the weighted blow-up at Pk−1 with respect

to ωk = (1,
b
(k−1)
k

nk
, . . . ,

b
(k−1)
k

ng
), where b

(k−1)
k = nkβ̄k−nk−1β̄k−1 is divisible by ek−1 = nkek =

nk · · ·ng. Let Ek ' Pg−k+1
ωk

(
ek−1;−1, nk−1β̄k−1

nk
, . . . , nk−1β̄k−1

ng

)
be the exceptional divisor of

πk and let ϕk := πk|Ŝ : Ŝ → Ŝ be the restriction map with exceptional divisor Ek := Ek∩Ŝ.
Once more, we split the exposition in different parts.

Global situation. The new exceptional divisor Ek is given in homogeneous coordinates

[x0 : xk : . . . : xg] ∈ Pg−k+1
ωk

(
ek−1;−1, nk−1β̄k−1

nk
, . . . , nk−1β̄k−1

ng

)
by the equations

(38)


xnkk − x

b
(k−1)
k

0 + λk+1x
nk+1

k+1 = 0

x
nk+1

k+1 + λk+2x
nk+2

k+2 = 0
...

x
ng−1

g−1 + λgx
ng
g = 0,

and has
nk+1 · · · ng

lcm(nk+1, . . . , ng)
=

ek
lcm(nk+1, . . . , ng)

irreducible components that contain the point Pk = [1 : 1 : 0 : . . . : 0] and are pairwise
disjoint outside Pk by Proposition 5.1. Note that Ek is irreducible if k = g − 1, and that
Pk = Ek ∩Hi for i = k+ 1, . . . , g. With Proposition 5.1, one can also compute that Ek has

ek−1

lcm(nk, . . . , ng)

intersections with Ek−1 and

β̄k

lcm( β̄k
ek
, nk+1, . . . , ng)

with Hk, where the cardinality of Ek∩Ek−1 is precisely the number of components of Ek−1.
Furthermore, Proposition 5.4 tells us that the components of Ek−1 are disjoint, and that
the intersections of Ek and Ek−1 are equally distributed. Lastly, the strict transform Ŷ of
Y and Ek intersect in the single point Pk. In the next step, we will blow up this point.

Points in Ek \ (Ek−1 ∪
⋃g
i=kHi). Outside the coordinate axes of Ek, the Jacobian crite-

rion can be used to check that Ŝ is smooth. Studying the stabilizer subgroup of a generic
point in Ek \ (Ek−1 ∪

⋃g
i=kHi) using local equations in the first chart as in (33), one can

compute the multiplicity Nk of Ek, which is equal to lcm( β̄k
ek
, nk, . . . , ng).
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Points in the intersection Ek ∩Hk. The local situation around these points can be stud-
ied from the local charts as in (34) and becomes at [(x0, xk)] the following:

(39)

Ŝ = X

(
gcd

(
ek−1,

nkβ̄k
nk+1

, . . . ,
nkβ̄k
ng

)
;−1, β̄k

)
Ek : xnkβ̄k0 = 0, Hk : xk = 0.

Clearly, the total transform of Y under ϕ1 ◦· · ·◦ϕk is a Q-normal crossings divisor around
these points.

Points in the intersection Ek ∩ Ek−1. Using the second chart on which Ek corresponds
to xk = 0, the local equations at these points are given by

(40)


Ŝ = X

 nkβ̄k−nk−1β̄k−1

lcm(nk,...,ng)
1 −1

(nkβ̄k − nk−1β̄k−1)ek −β̄k nk−1β̄k−1

nk


Ek−1 : x

nk−1β̄k−1

0 = 0, Ek : xnkβ̄kk = 0,

cf. (35), and the total transform of Y has again Q-normal crossings at each of these points.

The point Pk = Ek ∩Hi for i = k + 1, . . . , g. After centering the first chart around Pk,
we distinguish for the last time two different cases.

If k = g − 1, then Ŝ ' X
(
ng;−1, ng−1β̄g−1

ng

)
in the variables x0 and xg. The total

transform (ϕ1◦· · ·◦ϕg−1)−1(Y ) of Y is defined by the equation x
ng−1β̄g−1

0 (x
ng
g −xb

(g−1)
g

0 ) = 0,

where the exceptional divisor Eg is given by x
ng−1β̄g−1

0 = 0, the strict transform Ŷ by

x
ng
g − xb

(g−1)
g

0 = 0, and Hg by xg = 0.

If 2 ≤ k ≤ g−2, then Ŝ is locally around Pk = [(0, . . . , 0)] in X
(
ek;−1, nkβ̄k

nk+1
, . . . , nkβ̄k

ng

)
with the variables x0, xk+1, . . . , xg given by equations of the form

x
nk+1

k+1 − x
b
(k)
k+1

0 + λk+2(x
nk+2

k+2 − x
b
(k)
k+2

0 x
b(k+2)(k+1)

k+1 ) + (x
nk+1

k+1 − x
b
(k)
k+1

0 )R
(k)
k+1(x0, xk+1) = 0

x
nk+2

k+2 − x
b
(k)
k+2

0 x
b(k+2)(k+1)

k+1 + λk+3(x
nk+3

k+3 − x
b
(k)
k+3

0 x
b(k+3)(k+1)

k+1 x
b(k+3)(k+2)

k+2 )

+(x
nk+1

k+1 − x
b
(k)
k+1

0 )R
(k)
k+2(x0, xk+1, xk+2) = 0

...

x
ng−1

g−1 − x
b
(k)
g−1

0 x
b(g−1)(k+1)

k+1 · · ·xb(g−1)(g−2)

g−2 + λg(x
ng
g − xb

(k)
g

0 x
bg(k+1)

k+1 · · ·xbg(g−1)

g−1 )

+(x
nk+1

k+1 − x
b
(k)
k+1

0 )R
(k)
g−1(x0, xk+1, . . . , xg−1) = 0,

for some R
(k)
i (x0, xk+1, . . . , xi) ∈ C{x0, xk+1, . . . , xi} satisfying R

(k)
i (0, xk+1, . . . , xi) = 0.

The total transform of Y is defined by
xnkβ̄k0 (x

nk+1

k+1 − x
b
(k)
k+1

0 ) = 0

xnkβ̄k0 (x
nk+2

k+2 − x
b
(k)
k+2

0 x
b(k+2)(k+1)

k+1 ) = 0
...

xnkβ̄k0 (x
ng
g − xb

(k)
g

0 x
bg(k+1)

k+1 · · ·xbg(g−1)

g−1 ) = 0,
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where Ek = {xnkβ̄k0 = 0} and Hi = {xi = 0} for i = k + 1, . . . , g.

To conclude, we have exactly the same situation as the one we had at the beginning of
Step k but in one variable less. Further blowing up at the point Pk and repeating this
procedure will lead after g steps to an embedded Q-resolution of Y ⊂ S as illustrated in
Figure 4.

...
...

...

· · ·

...
...

...

· · ·

· · ·

...

· · · · · ·

Ŷ

Eg−1

Eg−2

E1

E2

E3

Eg

Q0Q1

Q2Q3

Qg−2

Qg−1Qg

Figure 4. Resolution of Y ⊂ S.

5.3. Main result. We summarize the previous construction in the following result.

Theorem 5.8. Let Y ⊂ Cg+1 be a space monomial curve defined by the equations (4) with
g ≥ 2, and consider Y as a Cartier divisor on a generic surface S = S(λ2, . . . , λg) ⊂ Cg+1

given by (12), where (λ2, . . . , λg) are chosen such that Section 4 applies. There exists an

embedded Q-resolution ϕ = ϕ1 ◦ · · · ◦ ϕg : Ŝ → S of Y ⊂ S which is a composition of g
weighted blow-ups ϕk with exceptional divisor Ek such that the pull-back of Y is given by

ϕ∗Y = Ŷ +
∑

1≤k≤g
1≤j≤rk

NkEkj,

where Ek = Ek1 + · · · + Ekrk is the decomposition of Ek into rk = ek
lcm(nk+1,...,ng)

if k =

1, . . . , g−2 and rg−1 = rg = 1 irreducible components, and Nk = lcm( β̄k
ek
, nk, . . . , ng) is the

multiplicity of Ek. Furthermore, each divisor Ek for k = 2, . . . , g − 1 only intersects Ek−1

and Ek+1, and Eg only intersects Eg−1. Finally, for every k = 2, . . . , g, the intersections of
Ek−1 and Ek are equally distributed; each of the components Ekj of Ek intersects precisely
rk−1

rk
components of Ek−1, each component E(k−1)j of Ek−1 is intersected by only one of

the components of Ek, and each non-empty intersection between two components Ekj and
E(k−1)j′ consists of a single point. In particular, the dual graph of the resolution is a tree
as in Figure 5.

Remark 5.9. Besides the monodromy zeta function, this resolution could also be used to
compute other invariants associated with the curve singularity Y ⊂ S, such as the mixed
Hodge structure on the cohomology of the Milnor fiber.
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· · ·

· · ·

· · · · · · · · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·· · ·

· · ·

E1

E2

E3

Eg−2

Eg−1

Eg
Ŷ

Figure 5. Dual graph of the resolution of Y ⊂ S.

6. The monodromy zeta function of a space monomial curve

Using the embedded Q-resolution ϕ : Ŝ → S of a space monomial curve Y seen as a
Cartier divisor on a generic surface S constructed in the previous section, we will now
compute the monodromy zeta function of Y . More precisely, we will compute the zeta
function of monodromy Zmon

Y,0 (t) of Y ⊂ S at the origin with the A’Campo formula from
Theorem 3.3 in terms of ϕ. To this end, we still need to stratify the exceptional divisor
such that the multiplicity defined in (8) is constant along each stratum, and compute the
Euler characteristic of these strata.

With Figure 4, we define a stratification of the exceptional divisor as follows. The first
set of strata are the points of the intersection E1 ∩ H0, which we will all denote by Q0;
there are

β̄0

lcm(n1, n2, . . . , ng)

such points, see (24). From (27), we know that the local equation of E0 at each Q0 is given
by xn1 : X(gcd( n

n1
, n
n2
, . . . , n

ng
); n
n0
,−1)→ C. Hence, the multiplicity m(E0, Q0) is equal to

m(E0, Q0) =
n

gcd( n
n1
, n
n2
, . . . , n

ng
)

= lcm(n1, . . . , ng).

Analogously, each point in an intersection Ek ∩ Hk for k = 1, . . . , g will be a stratum
denoted by Qk, the total number of such Qk is

β̄k

lcm( β̄k
ek
, nk+1, . . . , ng)

,

and the multiplicity at each such point is m(Ek, Qk) = lcm( β̄k
ek
, nk+1, . . . , ng).

Remark 6.1. For g = 2, the resolution was already illustrated in Figure 2, together with
the order of the underlying small group at the pointsQ0, Q1 andQ2. This provides another
way of computing the multiplicity at these points. For example, at Q0, we know that E0 is
given by xn1 : X(gcd( n

n1
, n
n2

); n
n0
,−1)→ C. Using the morphism [(x0, x1)] 7→ [(x0, x

n02n12
1 )],

the space X(gcd( n
n1
, n
n2

); n
n0
,−1) can be normalized into X( n0

n02
; n1n2

n02n12
,−1) on which E0 is
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locally given by the function x
n

n02n12
1 . This yields the same multiplicity. In general, one

could also first normalize the space around the points to compute the multiplicity.

Another set of strata are the intersection points Ek ∩ Ek+1 for k = 1, . . . , g− 1, denoted
by Qk(k+1). For every k = 1, . . . , g−1, the number of points Qk(k+1) is equal to the number
of irreducible components of Ek, see Theorem 5.8, and the multiplicity at these points can
be computed from the results in the previous section: for example, if g ≥ 3 and k = 1,
it can be computed from (35) with the more general definition of multiplicity introduced
in [Mar2]. As these strata will not contribute to the zeta function of monodromy, see

Theorem 3.3, we will not go into more detail. Similarly, the intersection point Eg ∩ Ŷ is
a stratum that we do not have to consider. The last set of strata are the parts of the
irreducible components Ekj for j = 1, . . . , rk of Ek for each k = 1, . . . , g that are not yet
contained in the previous strata. Because all Ekj for fixed k have the same behavior, we
will consider them at once; we introduce

Ěk :=


E1 \ ((E1 ∩H0) ∪ (E1 ∩H1) ∪ (E1 ∩ E2)) for k = 1
Ek \ ((Ek ∩Hk) ∪ (Ek ∩ Ek−1) ∪ (Ek ∩ Ek+1)) for k = 2, . . . , g − 1

Eg \ ((Eg ∩Hg) ∪ (Eg ∩ Eg−1) ∪ (Eg ∩ Ŷ )) for k = g.

The multiplicity along each of these ‘strata’ Ěk is equal to the multiplicity of Ek given by

Nk = lcm( β̄k
ek
, nk, . . . , ng). It remains to compute their Euler characteristics.

The Euler characteristic of Ěg is easy to compute: as Eg ' P1, we find χ(Ěg) = −1. The
other Euler characteristics can be computed from the following proposition, in which we
work in the same situation as Proposition 5.4. Because of the symmetry in the variables
x2, . . . , xg, the result is written in such a way that it is independent of the choice of chart
in the proof, cf. Proposition 5.1 and, in particular, Remark 5.3.

Proposition 6.2. Consider the quotient Pr(p0,...,pr)
(d; a0, . . . , ar) of some weighted projec-

tive space Pr(p0,...,pr)
under an action of type (d; a0, . . . , ar) with r ≥ 2. Let E be defined in

this space by a system of equations
xm0

0 + xm1
1 + xm2

2 = 0
xm2

2 + xm3
3 = 0

...
x
mr−1

r−1 + xmrr = 0

for positive integers mi such that d | aimi for i = 0, . . . , r and such that each equation
is weighted homogeneous with respect to the weights (p0, . . . , pr). Assume that the inter-
section of E with {xi = 0} for i = 2, . . . , r only consists of one fixed point A, and that

aipj − ajpi = 0 for all i, j ∈ {1, . . . , r}. Then, χ
(
E \⋃r

i=0{xi = 0}
)

is given by

−m1 · · ·mr · gcd
(
dP · (p0, . . . , pr), (p0Q− a0P ) · (p1, . . . , pr)

)
dp0P

,

where P :=
∏r

i=1 pi and Q := ai
∏r

j=1,j 6=i pj for i = 1, . . . , r.

To prove this result, we will reduce the problem of computing this Euler characteristic
to computing the less complicated Euler characteristic considered in the next lemma.

Lemma 6.3. Let C in P2
(p0,p1,p2)(d; a0, a1, a2) be defined by a single equation of the form

xm0
0 +xm1

1 +xm2
2 = 0 which is weighted homogeneous with respect to the weights (p0, p1, p2).
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Put K = p0m0 = p1m1 = p2m2, and let Mi for i = 0, 1, 2 be the 2× 2-minor of(
p0 p1 p2

a0 a1 a2

)
where the column of pi is removed. Then, we have

χ
(
C \

2⋃
i=0

{xi = 0}
)

= −K
2 · gcd

(
d · (p0, p1, p2),M0,M1,M2

)
dp0p1p2

.

Proof. We will once more simplify the problem of computing this Euler characteristic by
looking at an easier Euler characteristic. More precisely, we consider the curve C̃ in P2

defined by xK0 + xK1 + xK2 = 0. As this is a smooth curve of degree K, we know its genus

g(C̃) =
(K − 1)(K − 2)

2
,

and, hence, its Euler characteristic χ(C̃) = 2−2g(C̃) = −K2+3K. Since each intersection
C̃∩{xi = 0} for i = 0, 1, 2 consists of K points, we find that χ(C̃ \⋃2

i=0{xi = 0}) = −K2.

From this result, we can deduce χ(C \ ⋃2
i=0{xi = 0}) by considering the well-defined

surjective morphism

h : P2\
2⋃
i=0

{xi = 0} −→ P2
(p0,p1,p2)(d; a0, a1, a2)\

2⋃
i=0

{xi = 0} : [x0 : x1 : x2] 7→ [xp0

0 : xp1

1 : xp2

2 ],

under which h−1
(
C \⋃2

i=0{xi = 0}
)

= C̃ \⋃2
i=0{xi = 0}. We claim that h is a covering

map of degree

D =
dp0p1p2

gcd(d · gcd(p0, p1, p2),M0,M1,M2)
.

Then, indeed,

χ
(
C\

2⋃
i=0

{xi = 0}
)

=
χ
(
C̃ \⋃2

i=0{xi = 0}
)

D
= −K

2 · gcd
(
d · gcd(p0, p1, p2),M0,M1,M2

)
dp0p1p2

.

First, to show that h is a covering map, one can see that it is enough to show that
h is a local homeomorphism. To prove the latter, we can work locally around a point
x ∈ P2 \⋃2

i=0{xi = 0} by considering the chart where x0 6= 0:

h0 : C2 \
2⋃
i=1

{xi = 0} −→ X

(
p0 p1 p2

dp0 M2 M1

)
\

2⋃
i=1

{xi = 0} : (x1, x2) 7→ [(xp1

1 , x
p2

2 )].

Because X
( p0

dp0

∣∣ p1 p2

M2 M1

)
\ ⋃2

i=1{xi = 0} is smooth at h0(x), we can further reduce to
showing that(

C2 \
2⋃
i=1

{xi = 0}, x
)
−→

(
C2 \

2⋃
i=1

{xi = 0}, h0(x)
)

: (x1, x2) 7→ (xp1

1 , x
p2

2 )

is a local homeomorphism, which is clearly true. Second, to find the degree of h, we
can still work with h0 on the chart where x0 6= 0. Because the morphism h0 can be
decomposed into the morphism σ : C2 → C2 defined by (x1, x2) 7→ (xp1

1 , x
p2

2 ) and the
projection pr : C2 → X

( p0

dp0

∣∣ p1 p2

M2 M1

)
, its degree is equal the product of the degrees of

σ and pr. Clearly, the morphism σ has degree p1p2. For the degree of pr, the result
in [AMO2, Lemma 5.1] tells us that this is equal to

dp0

gcd(d · gcd(p0, p1, p2),M0,M1,M2)
.
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Together, these degrees yield the correct expression for the degree D. �

In the proof of Proposition 6.2, we will work similarly as in the proof of Lemma 6.3:
we will construct a covering from which the Euler characteristic of E \⋃r

i=0{xi = 0} can
be easily computed. To find the degree of this covering, we will use the following lemma.

Lemma 6.4. Consider a cyclic quotient space X of the form X(K
k

; K
k0
, . . . , K

kr
) where r ≥ 2

and k, k0, . . . , kr | K. Let E in X be defined by
xk0

0 + xk1
1 = c1

xk2
2 = c2

...
xkrr = cr

for some constants ci ∈ C \ {0}, and denote by N its number of irreducible components.
Consider also the cyclic quotient space X̃ = X(K

k
; K
k0
, K
k1

) and Ẽ in X̃ defined by the

single equation xk0
0 + xk1

1 = c1. The degree of the projection pr : E \ ⋃r
i=0{xi = 0} →

Ẽ \⋃1
i=0{xi = 0} given by [(x0, . . . , xr)] 7→ [(x0, x1)] is

KN · gcd(K
k
, K
k0
, . . . , K

kr
)

k · gcd(K
k
, K
k0
, K
k1

) · gcd(K
k
, K
k2
, . . . , K

kr
)
.

Proof. First of all, the projection pr is a covering map: as in the proof of Lemma 6.3, it
suffices to see that pr is a local homeomorphism around every point x ∈ E \⋃r

i=0{xi = 0}.
In this case, because X and X̃ are smooth around x and pr(x), respectively, the problem
is equivalent to showing that the projection(

E \
r⋃
i=0

{xi = 0}, x
)
⊂
(
Cr+1 \

r⋃
i=0

{xi = 0}, x
)

−→
(
Ẽ \

1⋃
i=0

{xi = 0}, pr(x)
)
⊂
(
C2 \

1⋃
i=0

{xi = 0}, pr(x)
)

is a local homeomorphism, which is again easy to see. To compute the degree of pr, we
count the number of elements in pr−1([(a0, a1)]) of a point [(a0, a1)] ∈ Ẽ \⋃1

i=0{xi = 0}.
These elements are of the form [(ξ

K
k0 a0, ξ

K
k1 a1, b2, . . . , br)] for some ξ ∈ µK

k
and bi ∈ C for

i = 2, . . . , r satisfying bkii = ci. Note that the irreducible components of E are pairwise dis-
joint and given by {[(x0, x1, b2, . . . , br)] | xk0

0 +xk1
1 = c1} for some fixed solution [(b2, . . . , br)]

of xk2
2 − c2 = · · · = xkrr − cr = 0 in X(K

k
; K
k2
, . . . , K

kr
). It follows that the degree is equal

to the product of the number N of irreducible components and the number of points

[(ξ
K
k0 a0, ξ

K
k1 a1, b2, . . . , br)] for some ξ ∈ µK

k
and fixed [(b2, . . . , br)] ∈ X(K

k
; K
k2
, . . . , K

kr
).

Working analogously as in the proof of Lemma 5.2, the latter number is equal to∣∣∣{(ξ Kk0 , ξ
K
k1

) ∣∣ ξ ∈ µK
k

}∣∣∣
|Im h| ,

where h is the group homomorphism h : µgcd(K
k
, K
k2
,..., K

kr
) −→

{
(ξ

K
k0 , ξ

K
k1 ) | ξ ∈ µK

k

}
given

by η 7→ (η
K
k0 , η

K
k1 ) with kernel µgcd(K

k
, K
k0
,..., K

kr
). Finally, an easy computation gives that∣∣{(ξ

K
k0 , ξ

K
k1 ) | ξ ∈ µK

k

}∣∣ =
K

k · gcd(K
k
, K
k0
, K
k1

)
,

and we find the degree stated in the lemma. �
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With these two preliminary results, we are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. For r = 2, the result follows from Lemma 6.3 in which M0 =
a1p2− a2p1 = 0. For r ≥ 3, we work similarly as in the proof of Lemma 6.3: we will show
that the well-defined surjective morphism

h : E \
r⋃
i=0

{xi = 0} −→ C \
2⋃
i=0

{xi = 0} : [x0 : . . . : xr] 7→ [x0 : x1 : x2],

where C := {xm0
0 + xm1

1 + xm2
2 = 0} ⊂ P2

(p0,p1,p2)(d; a0, a1, a2), is a D-sheeted covering with

D =
m3 · · ·mr · gcd

(
dp2 · (p0, . . . , pr), (a2p0 − a0p2) · (p1, . . . , pr)

)
p2 · gcd

(
d · (p0, p1, p2), a2p0 − a0p2, a1p0 − a0p1

) .

Together with Lemma 6.3 applied to C with M0 = 0, we find that χ(E \⋃r
i=0{xi = 0}) is

given by

(41) − m1 · · ·mr · gcd
(
dp2 · (p0, . . . , pr), (a2p0 − a0p2) · (p1, . . . , pr)

)
dp0p2

.

This can be rewritten as the formula in the statement. To show that h is a covering map,
it is once more enough to show that h is a local homeomorphism. This time, we consider
the chart where x2 6= 0: this gives

h2 : E ′ \
r⋃

i=0,i 6=2

{xi = 0} −→ C ′ \
1⋃
i=0

{xi = 0} : [(x0, x1, x3, . . . , xr)] 7→ [(x0, x1)],

where E ′ is given by 
xm0

0 + xm1
1 + 1 = 0
1 + xm3

3 = 0
...

x
mr−1

r−1 + xmrr = 0

in the embedding space

X

(
p2 p0 p1 p3 . . . pr
dp2 −M1 0 0 . . . 0

)
,

with M1 = a2p0 − a0p2, and C ′ by {xm0
0 + xm1

1 + 1 = 0} in X
( p2

dp2

∣∣ p0 p1

−M1 0

)
. Because

the embedding spaces of E and E ′ are smooth outside their coordinate hyperplanes, one
can conclude by working similarly as in Lemma 6.4. To prove the correct formula for the
degree of h, we again consider the chart where x2 6= 0. The morphism h2 can be further
simplified with an isomorphism

X

(
p2 p0 p1 p3 . . . pr
dp2 −M1 0 0 . . . 0

)
' X

(
p2;

dp0p2

gcd(dp2,M1)
, p1, p3, . . . , pr

)
as in (16) under which E ′ is transformed into

x
m0 gcd(dp2,M1)

dp2
0 + xm1

1 + 1 = 0
1 + xm3

3 = 0
...

x
mr−1

r−1 + xmrr = 0.

Using the corresponding isomorphism on the embedding space of C ′ under which C ′ is
transformed in the same way as E ′, we arrive at the situation of Lemma 6.4 with K = mipi
for i = 0, . . . , r and N = m3···mr gcd(p2,...,pr)

p2
(see (15)), which leads to the degree D. �
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Corollary 6.5. For k = 1, . . . , g, the Euler characteristic of Ěk is given by

χ(Ěk) = − nkβ̄k

lcm( β̄k
ek
, nk, . . . , ng)

.

Proof. For k = g, we already know that χ(Ěg) = −1. Because gcd(β̄g, ng) = eg = 1, this is
the same as the expression in the statement. For k = 1, by construction of the resolution,
Ě1 is isomorphic to E1 \

⋃g
i=0{xi = 0} in Pgw1

after the first blow-up. From (41) in the
proof of Proposition 6.2 applied to the equations (22), we indeed find that

χ(Ě1) = −
n1 · · ·ng gcd( n

n0
, . . . , n

ng
)

n
n0

= − n1β̄1

lcm( β̄1

e1
, n1, . . . , ng)

,

where we used that n = n1β̄1 and the relation (2). If g ≥ 3 and k ∈ {2, . . . , g − 1}, the
Euler characteristic of Ěk can be computed from (38) in the same way. �

We are finally ready to compute the zeta function of monodromy associated with a
space monomial curve Y ⊂ Cg+1.

Theorem 6.6. Let Y ⊂ Cg+1 be a space monomial curve defined by the equations (4) with
g ≥ 2. Consider a generic embedding surface S = S(λ2, . . . , λg) ⊂ Cg+1 given by (12),
where (λ2, . . . , λg) are chosen such that Section 4 applies. Denote by σ : X ′ → Cg+1 the
blow-up of Cg+1 with center Y and by S ′ the strict transform of S under σ. Then, the
monodromy zeta function of Y considered in Cg+1 at the generic point p = S ′ ∩ σ−1(0) is
given by

Zmon
Y,p (t) =

g∏
k=0

(1− tMk)
β̄k
Mk

g∏
k=1

(1− tNk)
nkβ̄k
Nk

,

where Mk := lcm( β̄k
ek
, nk+1, . . . , ng) for k = 0, . . . , g, and Nk := lcm( β̄k

ek
, nk, . . . , ng) for

k = 1, . . . , g.

Proof. This immediately follows from all the results in this section: the strata Qk for
k = 0, . . . , g yield the factors in the numerator, and the ‘strata’ Ěk for k = 1, . . . , g yield
the factors in the denominator. �

We illustrate this theorem with two examples, in which we already see that every pole of
the motivic Igusa zeta function induces an eigenvalue of monodromy. In the next section,
we will prove this in general.

Example 6.7.

(i) The irreducible plane curve given by (x2
1 − x3

0)2 − x5
0x1 = 0 has (4, 6, 13) as minimal

generating set of its semigroup, and leads to the space monomial curve Y1 ⊆ C3 defined
in three variables (g = 2) by {

x2
1 − x3

0 = 0
x2

2 − x5
0x1 = 0.

The expression for the monodromy zeta function in Theorem 6.6 gives

Zmon
Y1,p1

(t) =
(1− t2)2(1− t6)(1− t13)

(1− t6)2(1− t26)
=

(1− t2)2(1− t13)

(1− t6)(1− t26)
.

In [MVV, Example 4.1], it was shown that the motivic Igusa zeta function of Y1 has three

poles: L2,L 8
6 and L 37

26 . Every pole L−s0 of these three induces a monodromy eigenvalue

e2πis0 : e−4πi is a zero of Zmon
Y1,p1

(t), while e
−8πi

3 and e
−37πi

13 are poles of Zmon
Y1,p1

(t).
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(ii) Consider the space monomial curve Y2 ⊆ C4 associated with the plane curve defined
by ((x2

1 − x3
0)2 − x5

0x1)2 − x10
0 (x2

1 − x3
0) = 0, whose semigroup is minimally generated by

(8, 12, 26, 53). Its equations are given by x2
1 − x3

0 = 0
x2

2 − x5
0x1 = 0

x2
3 − x10

0 x2 = 0.

Using Theorem 6.6, we find

Zmon
Y2,p2

(T ) =
(1− t2)4(1− t6)2(1− t26)(1− t53)

(1− t6)4(1− t26)2(1− t106)
=

(1− t2)4(1− t53)

(1− t6)2(1− t26)(1− t106)
.

The poles of the motivic zeta function of Y2 were also computed in [MVV, Example 4.1]:

they are given by L3,L 11
6 ,L 50

26 , and L 235
106 . Similarly as in the previous example, it is easy

to see that they all induce eigenvalues of monodromy associated with Y2.

7. The monodromy conjecture for a space monomial curve

This last section consists of a proof of the main result in this article, namely the
monodromy conjecture for a space monomial curve Y ⊂ Cg+1 with g ≥ 2. In other words,
we will show that every pole L−s0 of the motivic Igusa zeta function associated with Y
yields a monodromy eigenvalue e2πis0 of Y .

In [MVV], it was shown that a complete list of poles of both the local and global motivic
Igusa zeta function of a space monomial curve Y ⊂ Cg+1 is given by

Lg, L
νk
Nk , k = 1, . . . , g,

where

(42)
νk
Nk

=
1

nkβ̄k

( k∑
l=0

β̄l −
k−1∑
l=1

nlβ̄l

)
+ (k − 1) +

g∑
l=k+1

1

nl
,

and Nk = lcm( β̄k
ek
, nk, . . . , ng). Clearly, the first pole, Lg, and the poles L

νk
Nk with νk

Nk
∈ N

induce the trivial monodromy eigenvalue 1. We claim that for every k = 1, . . . , g with
νk
Nk

/∈ N, the candidate monodromy eigenvalue e
−2πi

νk
Nk is a pole of the monodromy zeta

function of Y computed in the previous section.

Remark 7.1. It is possible that νk
Nk

is an integer for some k ∈ {1, . . . , g}; for example,

the space monomial curve Y ⊂ C3 defined by{
x2

1 − x3
0 = 0

x6
2 − x17

0 x1 = 0

corresponds to the generators (12, 18, 37) with ν1

N1
= 1.

To prove this claim, we will not work directly with the monodromy zeta function of Y
at the point p = S ′ ∩ σ−1(0), but we will again consider Y as the Cartier divisor {f1 = 0}
on a generic surface S. All the interesting information is contained in the characteristic
polynomial ∆(t) of the monodromy transformation on H1(ψf1C·)0. From Theorem 6.6, it
follows that

∆(t) =

(t− 1)
g∏

k=1

(tNk − 1)
nkβ̄k
Nk

g∏
k=0

(tMk − 1)
β̄k
Mk
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is a polynomial of degree µ = 1 +
∑g

k=1(nk − 1)β̄k − β̄0 > 0. Hence, if we show that

the candidate monodromy eigenvalue e
−2πi

νk
Nk 6= 1 is a zero of ∆(t), then it will be an

eigenvalue of monodromy associated with Y ⊂ Cg+1 at the generic point p = S ′ ∩ σ−1(0).

Theorem 7.2. Let Y ⊂ Cg+1 be a space monomial curve defined by the equations (4)
with g ≥ 2, and denote by σ : X ′ → Cg+1 the blow-up of Cg+1 with center Y . Every
pole L−s0 of the local or global motivic Igusa zeta function associated with Y induces a
monodromy eigenvalue e2πis0 of Y at a point in σ−1(B ∩ Y ) for B a small ball around 0.

Proof. It remains to show that every λk := e
−2πi

νk
Nk for k = 1, . . . , g with νk

Nk
/∈ N is a

zero of the characteristic polynomial. To this end, we will write ∆(t) as the product of g
polynomials of which each has one of the elements λk as a zero. More precisely, we will
write ∆(t) as a product of polynomials of the form

(ta − 1)p · (tgcd(b,c) − 1)gcd(q,r)

(tb − 1)q · (tc − 1)r
,

where a, b, c, p, q and r are positive integers with b, c | a and q, r | p. For this purpose,
let Lk := lcm(nk, . . . , ng) for k = 1, . . . , g and let Lg+1 := 1. With the definitions

Nk = lcm( β̄k
ek
, nk, . . . , ng) and Mk = lcm( β̄k

ek
, nk+1, . . . , ng), it is easy to see that Mk, Lk | Nk

and that β̄k
Mk
, ek−1

Lk
| nkβ̄k

Nk
for all k = 1, . . . , g. Furthermore, we have for all k = 1, . . . , g

that

gcd(Mk, Lk) = lcm
(
Lk+1, gcd

( β̄k
ek
, nk
))

= Lk+1,

where we used in the first equality the general property gcd(lcm(α, γ), lcm(α, δ)) =

lcm(α, gcd(γ, δ)), and in the second equality the fact that gcd( β̄k
ek
, nk) = 1, see Section 1.

Finally, using the relation (2) and gcd(β̄k, ek−1) = ek, we see for k = 1, . . . , g that

gcd
( β̄k
Mk

,
ek−1

Lk

)
= gcd

(
ek,

β̄k
nk+1

, . . . ,
β̄k
ng
,
ek−1

nk
, . . . ,

ek−1

ng

)
= gcd

( ek
nk+1

, . . . ,
ek
ng

)
=

ek
Lk+1

.

All this together implies for each k = 1, . . . , g that

Pk(t) :=
(tNk − 1)

nkβ̄k
Nk · (tLk+1 − 1)

ek
Lk+1

(tMk − 1)
β̄k
Mk · (tLk − 1)

ek−1
Lk

is a polynomial of the above form. It is also easy to see that ∆(t) =
∏g

k=1 Pk(t).

Fix now some k ∈ {1, . . . , g}. We prove that λk = e
−2πi

νk
Nk is a zero of Pk(t). Clearly,

it is a zero of tNk − 1, but we still need to show that this candidate zero does not get
canceled with the denominator. To show this, we distinguish the following four cases.

(i) The candidate zero λk is not a zero of tMk − 1 = 0, nor of tLk − 1 = 0: trivially, the
candidate zero λk is not canceled in Pk(t).
(ii) The candidate zero λk is a zero of tMk − 1 = 0, but not of tLk − 1 = 0: in this case,

it is sufficient to prove that nkβ̄k
Nk

> β̄k
Mk

in order to conclude that λk is a zero of Pk(t).

Because λk = e
−2πi

νk
Nk is a zero of tMk − 1 = 0, we know that νkMk

Nk
is an integer. Using the

expression (42) for νk
Nk

, one can see that this implies that nkβ̄k | (
∑k

l=0 β̄l−
∑k−1

l=1 nlβ̄l)Mk,

which in turn implies, using nkβ̄k = ek−1
β̄k
ek
| β̄lMk for l = 0, . . . , k − 1, that nk | Mk. We

can conclude that Nk = Mk, and, hence, we indeed have that nkβ̄k
Nk

> β̄k
Mk

as nk > 1.
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(iii) The candidate zero λk is a zero of tLk−1 = 0, but not of tMk−1 = 0: as in the previous

case, it is enough to show that nkβ̄k
Nk

> ek−1

Lk
. From λk being a zero of tLk − 1 = 0, one can

now deduce that β̄k
ek
| (∑k−1

l=0 β̄l −
∑k−1

l=1 nlβ̄l)
Lk
ek−1

. Because ek−1 | β̄l for l = 0, . . . , k − 1, it

follows that Nk = lcm( β̄k
ek
, Lk) | (

∑k−1
l=0 β̄l −

∑k−1
l=1 nlβ̄l)

Lk
ek−1

, and, thus, that

1

Nk

≥ 1∣∣∣∑k−1
l=0 β̄l −

∑k−1
l=1 nlβ̄l

∣∣∣ ek−1

Lk
=

{
1
L1

for k = 1
1

−β̄0+
∑k−1
l=1 (nl−1)β̄l

ek−1

Lk
for k = 2, . . . , g.

The equality comes from the fact that −β̄0 + (n1 − 1)β̄1 = n1β̄1(1 − 1
n0
− 1

n1
) > 0 since

n0, n1 ≥ 2 are coprime. We can finish this case by using that β̄1 > β̄0 = e0 and β̄k >
−β̄0 +

∑k−1
l=1 (nl − 1)β̄l for k = 2, . . . , g, which follows from β̄i > ni−1β̄i−1 for i = 2, . . . , k.

(iv) The candidate zero λk is a zero of both tLk − 1 = 0 and tMk − 1 = 0: in this last
case, the candidate zero λk is also a zero of tLk+1 − 1 = 0 and we need to show that
nkβ̄k
Nk

+ ek
Lk+1
− β̄k

Mk
− ek−1

Lk
> 0. Combining case (ii) and (iii), we know that

nkβ̄k
Nk

+
ek
Lk+1

− β̄k
Mk

− ek−1

Lk
≥ (nk − 1)β̄k∣∣∣∑k−1

l=0 β̄l −
∑k−1

l=1 nlβ̄l

∣∣∣ ek−1

Lk
+

ek
Lk+1

− ek−1

Lk
,

which is positive as one can, similarly as in case (iii), see that (nk − 1)β̄k ≥ β̄k >∣∣∣∑k−1
l=0 β̄l −

∑k−1
l=1 nlβ̄l

∣∣∣ for k = 1, . . . , g.

Hence, every λk is a zero of Pk(t), and consequently, an eigenvalue of monodromy. �

Remark 7.3. In the proof of Theorem 7.2, the pole λg = e
−2πi

νg
Ng could have been treated

way easier. More precisely, the candidate zero λg is never a zero of the denominator of
Pg(t), and we are always in case (i). Indeed, in case (ii), we would have that ng | Mg =
β̄g, which is impossible. Likewise, in case (iii), we would have the impossible property

β̄g |
∑g−1

l=0 β̄l −
∑g−1

l=1 nlβ̄l because β̄g > |
∑g−1

l=0 β̄l −
∑g−1

l=1 nlβ̄l| = −β̄0 +
∑g−1

l=1 (nl − 1)β̄l.
For smaller k, however, it is possible that λk is a zero of the denominator. For instance,
we can consider the curve Y1 from Example 6.7 whose characteristic polynomial ∆(t) is
written as the product P1(t) · P2(t) where

P1(t) =
(t6 − 1)2(t2 − 1)

(t6 − 1)(t2 − 1)2
, P2(t) =

(t26 − 1)(t− 1)

(t13 − 1)(t2 − 1)
.

For λ1 = e
−8πi

3 , we are in case (ii): it is a zero of the first term of the denominator of
P1(t), but not of the second. One can also find examples in which some candidate zero
λk for k < g is in case (iii) or (iv).

One can also investigate the monodromy conjecture for the related topological and p-
adic Igusa zeta function, which are specializations of the motivic Igusa zeta function. See
for instance [DL1] and [Den1], respectively, for their expressions in terms of an embedded
resolution for one polynomial, and [VZ] for their generalizations to ideals. Since the
monodromy conjecture for the motivic zeta function implies the conjecture for the other
two zeta functions, we have simultaneously shown all these monodromy conjectures for
our monomial curves.
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[Jou] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics 42 (Birkhäuser
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50 J. MARTÍN-MORALES, W. VEYS, AND L. VOS

[Tev1] J. Tevelev, ‘Compactifications of subvarieties of tori’, Amer. J. Math. 129 no. 4 (2007), 1087–1104.
[Tev2] J. Tevelev, ‘On a question of B. Teissier’, Collect. Math. 65 no. 1 (2014), 61–66.
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