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INTRODUCTION 

Acute kidney injury (AKI) frequently occurs in hos- 
pitalized patients, especially in the ICU [1]. AKI has a 
strong association with increased short-term and 
long-term morbidity and mortality, and increased 
use of healthcare resources [2,3]. The consensus 
diagnosis and staging of AKI according to increased 
serum creatinine (SCr) or reduced urinary output, 
has undergone slight modifications from the origi- 
nal RIFLE and AKI Network criteria [4,5] to the most 
recent Kidney Disease Improving Global Outcome 
(KDIGO) criteria [6]. No specific treatment has 
proven to change the course of AKI, and manage- 

The development of AKI depends on many 
parameters, including patient characteristics such 
as age and comorbidities, the causal event, the host 
response and impact on vital functions, and the 
initiated treatment and resulted responses [9]. 
Recent advances in the field  of  informatics  and 
the ability to collect and store unlimited data have 
led to the increased use of electronic health records 
in the advent of clinical decision supports. The 
tremendous computational capabilities of new tech- 
nologies could complement and enhance human 
performance in overview and interpret all these data 

ment is mainly supportive of preventing further    
deterioration. Progressive decline in kidney func- 
tion,  fluid  overload,  or  metabolic  complications 
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(RRT) when the kidney cannot satisfy the demands 
of osmolar and fluid load [7]. On the contrary, an 
increase in SCr is a late and insensitive marker of the 
underlying decline in glomerular filtration rate 
(GFR), and significant damage has already occurred 
at the time of diagnosis [8]. Consequently, the win- 
dow to adapt treatment to prevent AKI is short. 
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URRENT 
PINION 

Purpose of review 

Acute kidney injury (AKI) frequently complicates hospital admission, especially in the ICU or after major 
surgery, and is associated with high morbidity and mortality. The risk of developing AKI depends on the 
presence of preexisting comorbidities and the cause of the current disease. Besides, many other parameters 
affect the kidney function, such as the state of other vital organs, the host response, and the initiated 
treatment. Advancements in the field of informatics have led to the opportunity to store and utilize the 
patient-related data to train and validate models to detect specific patterns and, as such, predict disease 
states or outcomes. 

Recent findings 

Machine-learning techniques have also been applied to predict AKI, as well as the patients’ outcomes 
related to their AKI, such as mortality or the need for kidney replacement therapy. Several models have 
recently been developed, but only a few of them have been validated in external cohorts. 

Summary 

In this article, we provide an overview of the machine-learning prediction models for AKI and its outcomes 
in critically ill patients and individuals undergoing major surgery. We also discuss the pitfalls and the 
opportunities related to the implementation of these models in clinical practices. 
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on a continuous basis [10]. Several model building 
and machine learning techniques have been devel- 
oped and are increasingly applied in ICU [11]. Mod- 
els can be constructed by regression learning for 
continuous outcome parameters [11]. For binary 
outcomes, ‘classification learning’ is used to train 
models to classify patterns based upon characteristic 
variables (Table 1). The selection of independent 
variables can be made by Least Absolute Shrinkage 
and Selection Operator. Regression and classifica- 
tion techniques can both be applied in big datasets. 
The models’ performance is evaluated by discrimi- 
nation or area under the receiver-operating curve 
(AUROC), calibration, and area under the precision 
curve [11,12]. Here we provide an overview of artifi- 
cial intelligence-based tools created to predict AKI in 
critically ill patients and in patients undergoing 
major surgical procedures and ICU outcomes in 
patients with AKI. 

 
METHODS 

We searched PubMed using Medical Subject Head- 
ings terms ‘artificial intelligence’ or ‘machine learn- 
ing’, and ‘acute kidney injury’. All 51 reports were 
analyzed, and the reference list was searched for 
additional relevant reports. Also, we evaluated the 
citing articles of all related articles. Then, we classi- 
fied the articles into the type of admission (ICU, 
perioperative or general ward) and the predicted 
outcome. We included only the reports with a 
detailed description of the model evaluation in 
ICU patients and patients undergoing major surgery 
(Tables 2 and 3). 

 
PREDICTION OF ACUTE KIDNEY INJURY 

 

ICU risk models 

We found eleven AKI prediction models for ICU 
patients      [13 –16,17

&

,18,19
&

,20,21
&&

,22,23].      While 

most studies included mixed ICU  populations 
[13 –16,17&,18,19&,20], two included all hospitalized 
patients but reported the model performance of ICU 
patients separately [17&,21&&], and two studies 
focused on patients with severe burns [22,23]. Six 
studies used SCr to define AKI [13 –16,17&,21&&], one 
also included estimated GFR [18], and four studies 
used both SCr and urinary output [13,19&,22,23]. 
The baseline SCr was not determined uniformly. 
While some studies used the average SCr from 365 
to 1 day before admission [13 –16,21&&], others used 
SCr upon admission [17&], back-calculated SCr based 
upon the modified diet and renal disease (MDRD) 
formula [18], or any measured SCr throughout the 
hospitalization [20]. Three studies did not report the 
definition of baseline SCr [19&,22,23]. In articles that 
reported the rate of missing SCr baseline values, the 
percentage of back-calculated SCr by the MDRD 
formula was 21.8–30.0%  [14,15].  The  occurrence 
of AKI was predicted during the first 24–48 h after 
ICU admission in five studies [14,18,20,22,23], two 
studies estimated the risk every 15 min [13,19&], two 
studies made a daily prediction [17&,21&&], one study 
on four different time points early during ICU 
admission [15], and one study did not report it 
[16]. The prediction window was 1 week in five 
studies [14,15,21&&,22,23], while two studies pre- 
dicted AKI in the following 72 h [16,18], one study 
within 48 h [17&], and three studies did not report it 
[13,19&,20]. 

Three models were validated in external cohorts 
[14,15,23]. Malhotra et al. [14] developed the model 
locally and validated it in an external cohort with a 
higher incidence of AKI, which suggests that the 
populations were not entirely comparable. Despite 
differences in the incidence of AKI in two popula- 
tions, the discrimination of the models was good in 
both development and validation cohorts. Flechet 
et al. [24] compared the model versus physicians’ 
prediction in a prospective observational study in 
the same tertiary, teaching hospital, and included 
urinary output along with SCr to define AKI. The 
lower incidence of AKI in this cohort was related to 
excluding nonsurgical patients. They found a good 
discrimination and accuracy, for both the machine 
learning model and physicians’ predictions. How- 
ever, there was a delay in the physicians’ risk deter- 
mination as compared with the prediction time by 
the AKI predictor. The authors concluded, an auto- 
mated alert is likely to predict AKI earlier as physi- 
cians are not able to process all parameters 
continuously. Moreover, the prediction from physi- 
cians with less experience demonstrated a lower 
discrimination  and  calibration.   Lastly,   Rashidi 
et al. [23] developed and validated an AKI prediction 
model among severely burned patients. However, 
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KEY POINTS 

• Artificial intelligence is a helpful tool to predict the 
occurrence of AKI in critically ill patients. 

• Several models have been developed and are ready 
for external validation. 

• Artificial intelligence-based predictions may be helpful 
to indicate in whom biomarkers for AKI may be 
more powerful. 

• Further research is needed to assess the impact of AKI 
predicting models on the outcome. 

http://www.co-criticalcare.com/
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Table 1. Overview of the most frequently applied machine learning techniques for acute kidney injury prediction 

 
 
 

NB Link from target variable to nontarget 
variables 

Assumes that all predictors are not 
dependent on each other 

DT Tree-shaped model that sequentially splits 
the data according to the most 
predictive attribute. Identification of a 
small set of variables that have high 
predictive power for the predicted 
parameter 

RF Repeated number of DT, on slightly 
perturbed versions of the original 

dataset. Generates a combined 
prediction from the different DT 

 
GBT A combined prediction from different DT. 

Typically, it will combine weakly 
performing DTs in an iterative way. As 

the boosting process continues, the 
new trees will focus more on the 
examples that were misclassified by 
previous trees 

NN Collection of processing units 
interconnected to increase the power 
over a single unit 

 
 

 
KNN Classifies examples, and assigns them a 

value according to the plurality of their 
nearest neighbors. K refers to the (low) 
number of neighbors considered by 
the model 

SVM Combination of several dimensions of 

binary classification 

Easy and quick 
Does not need large training datasets 

 

 
Easily understandable 
Robust to labeling errors and noise 
Costs may be assigned to attributes 

 
 

 
Fast 
Can deal with missing data 

Removing influence of small random 
variations 

Better performance than DT 

Reduces bias 

Can convert a weak classifier into a 
stronger classifier 

 
 
 

 
Robust to errors, well suited for noisy 

examples 
Frequently outperforms other ML 

techniques 

Can be used for many types of data, 
including images, audio...  

Robust to errors, well suited for noisy 
examples 

 
 

 
Outperform multivariate linear regression 
Easy to train 

Assumption that predictors are 
independent is very unlikely in most 
data 

Notably poor in estimating probabilities 

Do not always perform well 

High risk of overfitting because of small 
random variations in the data 

 
 

 
More difficult to interpret than a DT 
High risk of overfitting because of small 

random variations in the data 
 

 
Difficult to interpret 
Risk of overfitting can be overcome by 

limiting the allowed number of trees in 
the model 

 
 

 
Risk of overfitting 
Needs large datasets for training 
Long training times 
Difficult to interpret, ‘black box’ model 

 

 
Needs large datasets for training 

Long training times 

Determining the value of K is critical 
High  computational  cost 

 
Only binary classifiers, but solutions for 

regression exist 
 

 

AKI prediction is a classification learning tool. AKI, acute kidney injury; DT, decision trees; GBT, gradient boosted trees; KNN, K-nearest neighbors; ML, machine 

learning; NB, näıve Bayes; NN, neural networks; RF, random forest; SVM, support vector machines. 

 

the sample size for both the development and vali- 
dation of was small. 

 
Perioperative risk models 

Major surgery is frequently complicated by AKI, 
which is associated with increased short-term and 
long-term mortality and morbidity [25,26]. During 
the latest decades, the awareness of perioperative 
AKI has increased, and guidelines for perioperative 
management have been published [27]. Although 
the KDIGO-based diagnosis of AKI is frequently 
made postoperatively in the intensive or postopera- 
tive care unit, in most cases, AKI develops already in 
the operating theatre. 

Thottakkara et al. [28] were the first to report an 
machine learning prediction model for 

postoperative AKI. The input variables were preop- 
erative information, without including periopera- 
tive hemodynamic parameters. The model was able 
to predict AKI in the first postoperative week with 
good discrimination. Bihorac et al. [29] further 
explored this model to develop and validate a score 
to predict mortality and major postoperative com- 
plications named MySurgeryRisk. The model has 
been compared with the prediction by clinicians 
in 150 patients and found to have significantly 
higher discrimination for predicting AKI than the 
clinicians’ forecast [30]. Trainees misclassified 
patients more often as compared with attending 
physicians, but the differences were NS. 

The same investigators added perioperative data 
to the model to build a dynamic machine learning 
algorithm [31]. Postoperative AKI before hospital 
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Table 2. Overview of the machine learning generated prediction models for acute kidney injury in ICU patients and in postoperative patients; for the need of renal 

replacement therapy; and for volume responsiveness and mortality in critically ill acute kidney injury patients 

 

 
Prediction of AKI in ICU 

Ahmed 2015 [13] Retrospective 

development 
 
 

Retrospective 

validation 

 
 

482 USA, Olmsted County, 

Mayo Clinic July  

2010– December 2010 

 
462 USA, Rochester, Mayo 

Clinic January 2010– 

March 2010 

 
 

Tertiary-mixed 

ICU 

 
 

AKIN SCr and UO Median of all values during 

180 days prior to the 

admission or by calculation 

from the MDRD formula 

 
 

MATLAB Every 15 min – 30.0% 
 
 
 

9.7 h 40.0% 

Malhotra 2017 

[14] 

Retrospective 

development 

 
Retrospective internal 

validation 

 
Prospective external 

validation 

573 USA, UCSD, San Diego 

June  2006–December 

2008 

144 USA, UCSD, San Diego 

June  2006–December 

2008 

1300 USA, Olmsted County, 

Mayo Clinic January 

2010– December 2010 

ICU patients, first 

48 h of 

admission 

AKI  KDIGO  SCr Mean of 7– 365 days prior to 

admission, imputation when 

missing baseline (24%) 

Mean of 7– 365 days prior to 

admission, imputation when 

missing baseline (24%) 

Mean of 7– 365 days prior to 

admission, imputation when 

missing baseline (30%) 

Multiple LR Once, first 48 h of 

admission 

7 Days (median time 

23.2 h) 

 
7 Days (median time 

23.2 h) 

 
7 Days (median time 

24.4 h) 

22.0% 
 
 

24.0% 
 
 

45.0% 

Flechet 2017  [15] Retrospective 

development 
 
 
 

Retrospective 

validation 

2123 Belgium, Leuven August 

2007– November 2010 
 
 
 

2367 Belgium, Leuven August 

2007– November 2010 

Tertiary-mixed 

ICU 

AKI  KDIGO  SCr Lowest in 3 months before 

admission 77.2%, MDRD 

formula in 21.8% 
 
 

Lowest in 3 months before 

admission in 77.1%, MDRD 

formula in 22.9% 

RF Before and upon 

admission, after 

1 day in ICU and 

after first 24 h in 

ICU 

First week ICU stay 27.7%  AKI, 

14.0% AKI 

2–3 
 
 

29.2% AKI, 

14.7% AKI 

2–3 

Flechet 2019 [24] Prospective validation    252 Belgium, Leuven 2018 Tertiary surgical 

ICU 

AKI KDIGO 2 or 3 

(SCr and UO) 

Lowest SCr in 3 months prior to 

and not including admission, 

when not available 

calculated from MDRD 

formula 

Upon admission, first 

morning in ICU 

and after 24 h 

27.1 h in admission 

cohort, 39.7 h in 

day 1 cohort and 

39.7 h in day 

1þ cohort 

12.0% 

Mohamadlou 2018 

[16] 
 

 
& 

Retrospective 

development  and 

three-fold cross- 

validation 

48 582 USA, Boston, MIMIC-III 

database 2001–2012 

ICU AKI stage 2 or 3 NHS 

England AKI 

algorithm 

Lowest value past week or 

median value from past 8 to 

365  days 

GBT Not reported Up till 72 h 2.7% 

Koyner 2018 [17  ]    Retrospective 

development 
 
 

Retrospective 

validation 

72 694 USA, Chicago November 

2008– January 2016 
 
 

48 464 

Tertiary urban 

hospital, 

28.9% of AKI 

in ICU 

AKI KDIGO 2 SCr Admission SCr GBT Daily 48 h (median 41 h for 

AKI stage 2) 

14.4% AKI 

3.5% AKI 

stage 2 

Zimmerman 2019 

[18] 

Retrospective 

development 

23 950 Israel, MIMIC III 2001– 

2012 

ICU patients without 

preexisting CKD 

or AKI 

KDIGO SCr or 

GFR < 0.5 ml/kg/h 

for more than 6 h 

Calculated MDRD formula LR, RF, NN On day 1 of ICU 

admission 

Within 72 h of ICU 

admission 

16.5% 

Chiofolo 2019 
& 

[19  ] 

Retrospective 

development 

4572 USA, Minnesota October 

2004– April 2011 

Mixed ICU AKI AKIN SCr and 

UO 

Not reported RF Every 15 min 30% (All stages) 

Retrospective 

validation 

1958 30% (All stages) 

Parreco 2019 [20]    Retrospective 

development 10- 

fold cross 

validation 

151 098        USA 2014–2015 ICU KDIGO  SCr Daily serum creatinine in the 

ICU 

GBT, LR, 

deep 

learning 

Once, first 48 h of 

admission 

5.6% 
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Table 2 (Continued) 
 

  
 

Study design 

 
 

n 

 
 

Region and time period 

 

Patient 

population 

 
 

Prediction 

 
 

Baseline SCr 

 
 

ML 

 

Prediction 

frequency 

 
 

Prediction window 

 

Prediction 

incidence 

Tomašev 2019 
&& 

[21    ] 

Retrospective  training 563 026 USA, Veterans Affairs 

January  2011– 

September 2015 

Hospital 

admission 

AKI KDIGO creatinine Median of all values 1 year 

prior to admission 

RNN Continuously 48 h 13.4% in total 

cohort (not 

reported for 

ICU separately) 

 Retrospective 35 189         
validation 

Retrospective 

calibration 

 
35 189 

 Retrospective test 70 378  
Tran 2019 [22] Retrospective 40 Not reported Adults with burns AKI KDIGO SCr and Not reported KNN 1x within 24 h First week of ICU stay, 50.0% 

 
development 

 
Retrospective 

validation 

 

 
10 

 
2'20% TBSA UO 

  
following burn IC 
admission 

U mean 42.7 h 
 

Rashidi 2020 [23] Retrospective 

development 

50 Not reported Burns 

TBSA 2' 20% 

AKI KDIGO SCr and 

UO 

Not reported LR,  KNN, 

SVT, RF, 

NN 

Once First week of ICU stay    50.0% 

Prospective validation     51 Burns 

TBSA 2' 20% or 

nonburn 

trauma 

requiring 

surgery 

AKI KDIGO SCr and 

UO 

First week of ICU stay, 

mean  71.5 h 

34.2% 

Prediction of AKI after surgery 
 

Thottakkara 2016 

[28] 

Retrospective 

development 

35 223 USA, Florida January 

2000– November 2010 

Major surgery KDIGO SCr Preoperative serum creatinine LR, GAM, 

NB, SVT 

Once preoperative AKI in the first 7 days 

after surgery 

36.0% 

 Retrospective 15 095         
 validation          

Bihorac 2019 [29]     Retrospective 41 166 USA, Florida January Major surgery 

development 2000– November  2010 

KDIGO SCr Preoperative serum creatinine GAM, RF Not reported AKI during admission 38.9% 

Retrospective 10 291 USA, Florida January 

validation 2000– November 2010 
   Not reported   

Brennan 2019 [30]   Retrospective 150 USA, Florida January Major surgery KDIGO SCr Preoperative serum creatinine  Once preoperative AKI in the first 7 days 38.0% 

 validation  2000– November 2010      after surgery  
Adhikari 2019 [31]   Retrospective 2038 USA, Florida January Surgery KDIGO SCr Lowest value 7 days prior to RF, GAM Perioperatively and 3 Days after surgery, 46.0% 

development  and 

five-fold cross- 

validation 

 
Retrospective 

validation 

 
 
 
 

873 

2000– November 2010 admission, median 

creatinine 8–365 days prior 

to admission or calculated 

using the MDRD 

immediately after 

surgery 

7 days after 

surgery, and 

overall 

hospitalization 

Lei  2019  [32] Retrospective 

development 

25 616 USA, Pennsylvania January 

2014– April 2018 

Major  noncardiac 

surgery 

KDIGO   SCr Lowest creatinine value within  

7 days before surgery, if not 

available the most recent 

value up to 365 days before 

surgery 

Elastic net 

selection, 

GBT, RF 

Prehospitalization, 

preoperative, 

perioperative 

AKI 1 week after 

surgery 

10.4% 

Retrospective 

validation 

8505 9.6% 

Retrospective test 8494 9.9% 

C
E

: S
w

a
ti; M

C
C

/2
6

0
6

0
4

; T
o
ta

l n
os o

f P
a

g
es: 1

0
; 

M
C

C
 

2
6

0
6

0
4
 

A
c
u

te
 k

id
n
e
y
 in

ju
ry

 in
 th

e
 IC

U
 D

e
 V

lie
g

e
r e

t a
l. 

w
w

w
.co

-critica
lca

re.co
m

 
5

 
1

0
7

0
-5

2
9

5
 C

o
p

y
rig

h
t ©

 2
0

2
0

 W
o

lte
rs K

lu
w

e
r H

e
a

lth
, In

c. A
ll righ

ts re
se

rve
d

. 

http://www.co-criticalcare.com/


 

 

Retrospective 

validation 

1143 

 
 
 

 
 

Table 2 (Continued) 
 

 
 

Patient    
 

Prediction  
 

Prediction 

Study design n Region and time period population Prediction Baseline SCr ML frequency Prediction window incidence 

Lee  2018  [33] Retrospective 

development 

 
 
 

30.0% 

848 Korea, Seoul November 

2004– December 2015 

Liver transplantation, 
adults 

AKIN  SCr Most recent 

SCr 

before 

surgery 

DT, RF, GBM, SVT, 

NB, multilayer 

perceptron and 

deep belief 

networks 

At transplantation First 2 

postoperative 

days 

Retrospective 

validation 

Prediction of the need for RRT 

363 31.0% 

 

Cronin 2015 [34] Retrospective 

development and 

validation by 

bootstrapping 

1620 898 USA, Veterans Affairs 

hospitals January 

2003– December 2012 

Hospital 

admissions  

48 h–30  days 

RRT Mean outpatient creatinine from 

365 to 7 days before 

admission 

LR, LASSO 

LR, RF 

Not reported 48 h–9 days after 

admission 

0.12% 

Flechet 2017 [15] Retrospective 2123 Belgium, Leuven August Tertiary-mixed RRT Lowest in 3 months before RF Before and upon First week ICU stay 7.3% 

 development  2007– November 2010 ICU  admission in 77.1%, MDRD  admission,  after   
      formula in 22.9%  1 day in ICU and   
        after first 24 h in   
        ICU   
 Retrospective 2367        7.6% 

 validation          
Saly 2017 [35] Retrospective 1098 USA, Pennsylvania AKI in hospital, RRT  RF  1 Week 7.5% 

 development  September 2013– April 30.2% ICU       
   2014        

 
 

& 

Koyner 2018 [17  ]    Retrospective 
development 

 

72 694 USA, Chicago November 

2008– January 2016 

 

Tertiary urban 

hospital, 

20.8%  ICU 

admissions 

RRT > 48 h after 

admission 

 

NA GBT Daily 0.68% 

Retrospective 

validation 

48 464 AKI KDIGO stage 2 

creatinine 

Admission SCr 

Prediction of volume responsiveness in AKI patients in the ICU 

Zhang 2019 [40] Retrospective 

development 
 
 
 
 

Retrospective 

validation 

Prediction of mortality in AKI patients in the ICU 

5012 USA, Boston June 2001– 

October 2012 
 
 
 
 

1670 

ICU patients with 

UO < 0.5 ml/ 
kg/h for 6 h 
and fluid 

intake >5 l  
during next 6 h 

Volume responsiveness 

(UO 2' 0.65 ml/kg/ 

h 

next 12 h) 

LR and 

XGBoost 

with 

decision 

trees 

Once Next 18 h 58.1% 

Lin  2018  [41] Retrospective 

development and 

five-fold cross- 

validation 

19 044 USA, Boston 2001– 2012     ICU patients with 

AKI (KDIGO 

criteria) 

In-hospital mortality NA RF,  NN, 

SVM 

Once Hospitalization 13.6% 

 
 

AKI, acute kidney injury; AKIN, AKI Network; CKD, chronic kidney disease; GAM, generalized additive model; GBT, gradient boosted trees; GFR, glomerular filtration rate; KDIGO, Kidney Disease Improving Global 

Outcome; KNN, K-nearest neighbors; LASSO, Least Absolute Shrinkage and Selection Operator; LR, logistic regression; MDRD, modified diet and renal disease; ML, machine learning; NN, neural networks; RF, random 

forest; RNN, recurrent neural networks; RRT, renal replacement therapy; SCr, serum creatinine; TBSA, total BSA; UO, urinary output. 
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Acute kidney injury in the ICU De Vlieger et al. 
 

 

discharge occurred in 46% of the patients, of whom 
87% developed it within the first week after surgery. 
More than half of the patients were admitted to the 
ICU for 48 h or more. Adding the perioperative data 
improved the discrimination and accuracy of the 
prediction and resulted in a net reclassification index 
of 11.02% during the first 72 postoperative hours. 

Lei et al. [32] developed an AKI prediction model 
for the first postoperative week in patients undergo- 
ing major, noncardiac surgery. They constructed 
three models using prehospitalization, preoperative, 
and perioperative variables. The model improvement 
was more significant when adding preoperative var- 
iables as compared with perioperative variables. 

Finally, Lee et al. [33] developed a model to 
predict AKI within 48 h after liver transplantation. 
A model build with the gradient boosting technique 
had the best performance with an AUROC of 0.90. 

 

PREDICTION OF THE NEED FOR RENAL 
REPLACEMENT  THERAPY 

Four models predicted the need for RRT in hospital- 
ized patients [15,17&,34,35]. One study included 
only ICU patients [15], whereas in two others, 20 
and 30% of the patients were admitted to the ICU 
[17&,35], and one  study included all hospitalized 
patients [34]. The time window of prediction varied 
from the next 48 h to the total duration of admis- 
sion. Models discriminations were good, with 
AUROC between 0.82 and 0.96. 

 

OTHER OUTCOME PREDICTIONS IN ICU 
PATIENTS WITH ACUTE KIDNEY INJURY 

 

Volume responsiveness 

Intravenous fluid challenges are often administered 
in critically ill patients to restore cardiac output and 
improve kidney function. On the other hand, fluid 
overload is more common in AKI patients and is 
associated with worse outcome [36,37]. Restrictive 
fluid management has shown to reduce the worsen- 
ing of AKI in septic patients [38] but may increase the 
risk of developing AKI among patients undergoing 
major abdominal surgery [39]. Zhang et al. investi- 
gated whether artificial intelligence may predict fluid 
responsiveness in oliguric patients who received fluid 
resuscitation. Fluid responsiveness was defined as an 
increase in urinary output. In an internal validation, 
the model had an AUROC of 0.860 [40]. 

 
Mortality 

Lin et al. [41] developed a prediction model for 
mortality  in  ICU  patients  with  AKI.  Included 

comorbidities were limited to AIDS, metastatic can- 
cer, and hematologic malignancy. As death is fre- 
quently secondary to comorbidities and the 
decision not to start RRT and/or withdraw treatment 
is inseparable from the patient’s medical history, 
including more parameters, it may further improve 
the model. 

 
DISCUSSION 

AKI often results from several exposures and presents 
more frequently in patients with comorbidities. Risk 
assessment for AKI also includes these current expo- 
sures, age, comorbidities, host response, treatments, 
and treatment response. Artificial intelligence can 
integrate all parameters and may be valuable for 
AKI prediction. Several models have been developed 
and validated to predict AKI in ICU and perioperative 
settings. Most of them show a good discrimination 
and accuracy in internal validation, and also three 
models that were validated in external cohorts show 
promising results [14,23,24]. 

Nevertheless, artificial intelligence can never 
replace physicians because machines are not able 
to integrate the predictions into a balanced clinical 
decision [42]. Instead, artificial intelligence must be 
considered as a rapid and efficient tool to detect 
patients at risk [43]. Several models can predict AKI 
in the next 48–72 h with good accuracy 
[15,16,17&,18]. Models that predict the risk for a 
shorter period (in other words, closer window to 
AKI development) perform better but may lack the 
possibility to improve outcomes on short notice. 
Indeed, patients will potentially benefit from a cor- 
rect prediction if action is taken early enough to 
allow effective preventive measures, so a consider- 
able time window is needed to allow the physician 
to intervene and prevent further deterioration [44]. 
The question of whether machine learning models 
may improve outcomes must be evaluated in an 
‘impact study’, that is a randomized controlled trial 
that compares a cohort that physicians have access 
to the model results versus a cord of standard of care 
[45,46]. 

Implementation of machine learning models in 
daily practice may help to improve the algorithm, as 
machine learning allows to improve the perfor- 
mance in the presence of additional curated infor- 
mation [42]. Therefore, continuous input of data is 
needed to recalibrate the model. As models likely 
overestimate the risk after improvement in medical 
care, the recalibration leads to continued accurate 
prediction [12,47]. 

Physicians must be aware of the pitfalls when a 
model is introduced into clinical practice. First, the 
quality of the prediction depends on the quality of 
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data (garbage in, garbage out) [48]. To apply artificial 
intelligence in clinical practice, data need to be 
available in real-time, curated, and assessed for accu- 
racy and reliability, similar to their availability dur- 
ing development and validation. Second, initiation 
of the model will be most optimal if the model is 
used in a similar population to where it was built 
[49]. For instance, algorithms generated on data- 
bases of the (predominantly male) Veterans Affairs 
will initially misclassify women more frequently. 
This could be corrected by recalibration, provided 
data on female patients become available. This is 
also the reason why models must be validated in 
previously unseen populations, prospectively, and 
ideally in every hospital where the model is intro- 
duced. Besides, reports of prediction models must 
summarize the characteristics of the population in 
whom the model is built, which is very relevant for 
the physician to assess whether a model can be used 
in a particular setting. Recommendations for report- 
ing prediction models are summarized in the Trans- 
parent Reporting of a multivariable prediction 
model for individual Prognosis or Diagnosis state- 
ment [12]. Third, the predicted outcome should be 
defined according to objective and measurable adju- 
dicating criteria (e.g., length of stay, AKI [50], or 
death), and should be clinically relevant. A drop in 
performance may be expected if the predicted out- 
come is a medical intervention (e.g., RRT), especially 
when treatment strategies differ between hospitals. 
While the KDIGO criteria define AKI according to a 
rise in SCr or a drop in urinary output, most models 
only use the SCr criterion and some use nonstandar- 
dized definitions of baseline SCr. Preferably, the 
predicted outcome should have an established phys- 
iological and clinically relevant association with the 
predictors. For example, in a model for prediction of 
fluid responsiveness, an increase in urinary output 
was used to assess fluid responsiveness [40], even 
while such increase in urinary output is not gener- 
ally accepted as a proper parameter of fluid respon- 
siveness [51]. Artificial intelligence models are 
particularly attractive as they can also be used to 
predict other relevant clinical outcomes (e.g., ARDS, 
heart failure, liver failure, shock) or even the effect of 
specific treatments. Such predictions may propose 
potentially successful treatments to the clinician, 
which would increase the clinical applicability of 
machine learning models, according to a survey 
[52]. Fourth, ample research has been done on the 
warning threshold and alerting method for such AKI 
sniffers. The benefit of a high sensitivity must be out 
weighted to the risk of alarm fatigue caused by a low 
positive predictive value [53,54]. 

AKI prediction models are often compared with 
laboratory biomarkers. It is well known that the 

 
performance of AKI prediction biomarkers varies 
in different populations [55,56], and may be more 
accurate in high-risk populations. Compared with 
biomarker tests, machine learning models could be 
used to predict AKI continuously without additional 
costs [13,19&]. This continuous risk evaluation may 
detect those  high-risk patients, in whom further 
testing with biomarkers is indicated. Further 
research is needed to evaluate the performance of 
AKI biomarkers in high-risk patients identified by 
machine learning algorithms. 

 
CONCLUSION 

Artificial intelligence is increasingly used in medi- 
cine. Large ICU databases are used to build machine 
learning prediction models for AKI and other out- 
comes. While several groups have developed models 
with acceptable to very good performance, it is time 
to take these models to the next level. Prospective 
external validation is a first necessary step before 
prospective interventional trials can demonstrate 
clinical impact. Artificial intelligence models have 
a huge potential in the prevention of AKI, and 
developing novel treatments. 
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