

1

Citation	Dauwe D, Gunst J, (2020), Propofol-infusion syndrome in traumatic brain injury: consider the ECMO option Intensive Care Medicine, 2020 Oct 14 – online ahead of print
Archived version	Author manuscript: the content is identical to the content of the published paper, but without the final typesetting by the publisher
Published version	http://dx.doi.org/10.1007/s00134-020-06280-3
Journal homepage	Intensive Care Medicine
Author contact	<u>greet.vandenberghe@kuleuven.be</u> + 32 (0)16 34 40 21
IR	https://lirias2.kuleuven.be/viewobject.html?cid=1&id=3243772

(article begins on next page)

Propofol-Infusion Syndrome in Traumatic Brain Injury: Consider the ECMO Option.

Dieter Dauwe¹, Jan Gunst¹, Dirk Vlasselaers¹, Geert Meyfroidt¹

¹. Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium

Dear Editor,

Propofol-infusion syndrome (PRIS) is a life-threatening complication of prolonged (>48h) highdose (>4mg/kg/h) propofol sedation. Mortality is high and traumatic brain-injured (TBI) patients are particularly at risk[1, 2]. Symptomatology is variable and management requires urgent discontinuation of propofol and aggressive supportive treatment[3]. Considering potential reversibility, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) may offer temporary cardiac support in PRIS-induced cardiogenic shock or arrest, although VA-ECMO is often withheld in trauma patients due to bleeding risks.

We present a single-center, retrospective, consecutive case-series (1/12/2015-1/12/2017) of four young TBI patients developing PRIS-induced refractory cardiogenic shock or arrest. All patients received VA-ECMO-support and survived with good neurological outcome and quality-of-life.

At hospital admission, all patients (23±6years, 2/4male, mean APACHE-II 18[range:9-26]) required intubation for reduced and deteriorating consciousness (GCS:9±2). Initial CT-brain documented mild intracranial hemorrhage in all *(Supplementary Table-1)*. Predicted 6-month unfavorable outcome was 18[range:9-34]% according to the TBI-IMPACT-Score. All patients received an external ventricular drain (EVD), analgo-sedation with propofol and opioids, and

1

goal-directed management of intracranial hypertension according to Brain Trauma Foundation guidelines. Propofol was administered at 4.6±0.6mg/kg/h average for a total of 6±1days.

All patients developed increasing vasopressor requirements, greenish discoloration of urine and mild rhabdomyolysis in the days preceding cardiogenic shock or arrest (Supplementary Table-1&2). Consistent and dynamic ECG-changes started <24h before collapse, including progressive QRS-widening and STT-segment changes, which culminated in a sinusoidal ECGpattern in two patients (Figure-1). All patients developed type-1 Brugada pattern, prolonged QTc and episodes of ventricular tachycardia. Femoral-femoral VA-ECMO was initiated for refractory cardiac arrest (n=2), and for inotrope-resistant cardiogenic shock (n=2), 4-7days after ICU-admission, and propofol was discontinued. ECMO-circuits were heparin-coated and patients received 5000-IU heparin loading upon ECMO-cannulation. Two patients required left ventricular venting. Considering the bleeding risk in patients with TBI and EVD, no additional therapeutic anticoagulation was provided during the ECMO-run. Two patients required major extracranial surgery during ECMO-support. In the first 72h after discontinuation of propofol, progressive resolution of QRS-widening and type-1 Brugada patterns occurred, while prolonged diffuse STT-segment changes remained (Figure-1). Patients were successfully weaned from ECMO after mean 3[range:1-5]days, and inotropic support could be stopped after mean 3[range:1-6]days. Median ICU-stay was 27[range:22-112]days. All patients survived with good neurological outcome (Cerebral Performance Category Scale:CPC-1) and functional independence (Barthel Index:20/20) with overall good self-reported quality-of-life (36-Item-Short-Form-Survey-Score) at mean 43[range:32-53]months after ICU-admission (Supplementary Table-1).

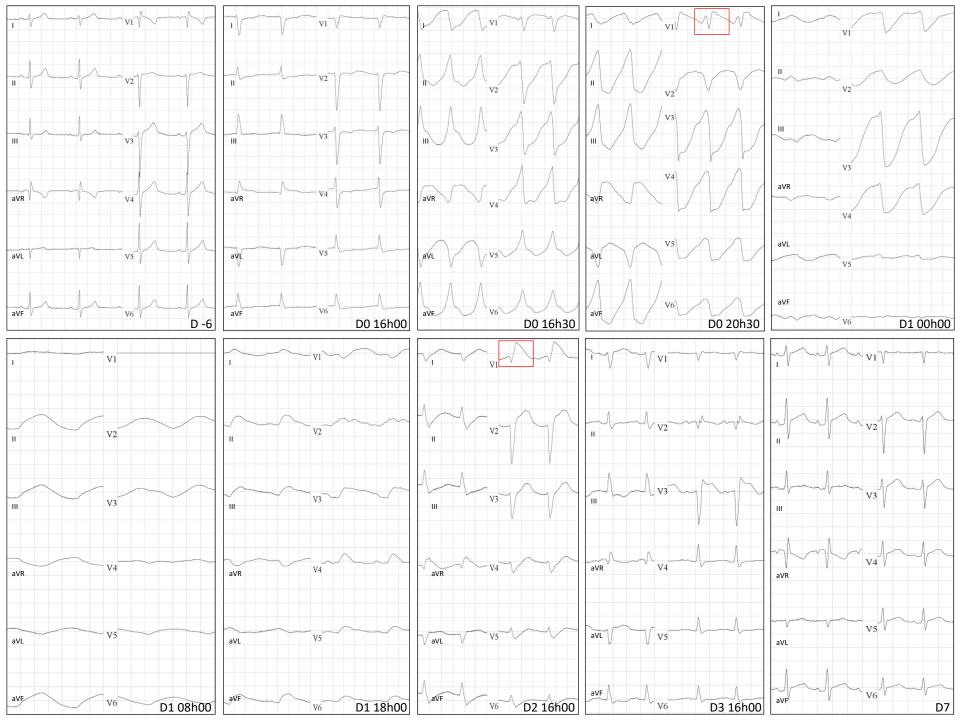
2

We report the largest case-series of severe PRIS requiring VA-ECMO-support, resulting in full cardiac recovery with good neurological outcome and quality-of-life. A high index of suspicion, early recognition and timely discontinuation of propofol are crucial to prevent PRIS. Otherwise unexplained increasing vasopressor requirements, greenish urine discoloration and mild rhabdomyolysis were the earliest potential signs of looming PRIS throughout this case-series. Typical dynamic ECG-changes appeared a sensitive albeit late omen of impending cardiovascular collapse[4]. Given the swift reversibility, VA-ECMO should be strongly considered as bridge-to-recovery in selected patients with PRIS. Severe TBI with EVD inserted and mild intracranial hemorrhage should not be considered an absolute contra-indication for ECMO-initiation[5]. Anticoagulation should be individually tailored, taking intracranial bleeding risk into account.

Word Count: 499/500

Figure-1: Dynamic PRIS-induced ECG-changes: Peak of hemodynamic instability was referenced as day 0. ECMO was initiated day 0 at 18h00. Typical type-1 Brugada patterns are indicated with red rectangles.

Supplementary Table-1: Detailed clinical, laboratory and electrocardiographic description of the individual PRIS-cases. Worst laboratory values 2 days before ECMO-initation and up to 5 days after ECMO-initiation are presented, *[Reference Values]*. §. TBI-IMPACT score was calculated according to the Core + CT + Lab model, *. Ischemic leg after ECMO-cannulation, [£]. Inotropic support: adrenaline or dobutamine, [@]. Laparotomy: partial resection ileum and caecum (ischemia), ^{\$}. Amputation: upper leg (ischemia), [#]. Mini-thoracotomy: apical left ventricular vent, [&]. Laparotomy: segmental hepatectomy (laceration), [€]. SF-36 with higher scores indicating less disability.


Abbreviations: TBI = traumatic brain injury, ICB = intracranial bleeding, SDH = subdural hematoma, SAH = subarachnoid hemorrhage, IPH = intraparenchymatous hemorrhage, EDH = epidural hematoma, ICP = intracranial pressure, EVD = external ventricular drain, ND = not documented, VT = ventricular tachycardia, LVEF = left ventricular ejection fraction, AKI = acute kidney injury, ECPR = extracorporeal cardiopulmonary resuscitation, CAR = cardiogenic shock, Fem = femoral, Jug = jugular, CRRT = continuous renal replacement therapy, IHD = intermittent hemodialysis, IPPV = intermittent positive pressure ventilation, PEEP = positive end expiratory pressure, Pplat = plateau pressure, SAVE Score = survival after veno-arterial ECMO score, ICU = intensive care unit.

Supplementary Table-2: Detailed timeframe of vasopressor/inotrope doses and PRIS-related laboratory values in relation to hemodynamic collapse. *. Ischemic leg after ECMO-cannulation. ND = not documented.

Supplementary Table-3: Literature search on all currently published cases of ECMO-support in patient with traumatic brain injury. TBI = traumatic brain injury, ICH = intracranial hemorrhage, IPH = intraparenchymatous hemorrhage, EDH = epidural hematoma, FIM = functional independence measure. *. No further information.

REFERENCES

- 1. Hemphill S, McMenamin L, Bellamy MC, Hopkins PM, (2019) Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth 122: 448-459
- Otterspoor LC, Kalkman CJ, Cremer OL, (2008) Update on the propofol infusion syndrome in ICU management of patients with head injury. Curr Opin Anaesthesiol 21: 544-551
- 3. Vasile B, Rasulo F, Candiani A, Latronico N, (2003) The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med 29: 1417-1425
- 4. Vernooy K, Delhaas T, Cremer OL, Di Diego JM, Oliva A, Timmermans C, Volders PG, Prinzen FW, Crijns HJ, Antzelevitch C, Kalkman CJ, Rodriguez LM, Brugada R, (2006) Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm 3: 131-137
- 5. Kruit N, Prusak M, Miller M, Barrett N, Richardson C, Vuylsteke A, (2019) Assessment of safety and bleeding risk in the use of extracorporeal membrane oxygenation for multitrauma patients: A multicenter review. J Trauma Acute Care Surg 86: 967-973

SUPPLEMENTARY TABLES:

PATIENT	Case 1	Case 2	Case 3	Case 4
Age (y)	19	28	17	28
Sex	Male	Female	Female	Male
Weight (kg)	75	67	62	70
Body Mass Index (kg/m ²)	23.2	24	21.5	22.5
ADMISSION				
Admission diagnosis	Non-isolated	Non-isolated	Isolated	Isolated
-	ТВІ	ТВІ	TBI	ТВІ
Initial Glasgow Coma Scale (GCS)	8	10	6	10
APACHE II Score	24	9	26	12
TRAUMATIC BRAIN INJURY	<u> </u>			<u> </u>
TBI IMPACT Score §				
-Predicted 6 month mortality	9%	16%	5%	8%
-Predicted 6 month unfavorable	13%	34%	9%	16%
outcome				
Marshall CT Score	II	11	II	11
ICB	Minimal SAH	Mild SDH, mild SAH, mild IPH	Minimal IPH	Mild EDH, minimal SAH
ICP catheter during ECMO-run	EVD + bolt (Codman)	EVD + bolt (Codman)	EVD	EVD
Maximum ICP prior to ECMO-initiation (mmHg)	22	28	24	29
Maximum ICP after ECMO-initiation (mmHg)	21	25	24	23
PROPOFOL DOSING	I	<u> </u>		1
Average propofol dose (mg/kg/h)	4.7	3.8	5.1	4.8
Maximum propofol dose (mg/kg/h) and	4.8	4.5	6.5	6.3
duration maximum propofol dose	106	32	78	38
(hours)				
Cumulative propofol dose (mg/kg)	604	365	735	686
Total duration propofol infusion (days)	6	4	7	5
Multimodal analgo-sedation prior				
collapse:	4.0mm=/h (2-l)	7.0~~/~/~-/	15m-/h / C-D	
-midazolam (dose, start prior collapse) -ketamine	4.8mg/h (-2d)	7.2mg/h (-5d)	15mg/h (-6d)	10.5mg/h (-4d)
-opioids	No Yes	Yes Yes	No Yes	No Yes
ECG FINDINGS	165	163	105	163
				1
Brady-arrhythmia's	ND	ND	ND	ND
Brady-arrhythmia's	ND	ND		ND
Tachy-arrhythmia's	Yes (VT)	Yes (VT)	Yes (VT)	Yes (VT)

QTc prolongation	Yes	Yes	Yes	Yes
LABORATORY VALUES				
Lowest pH and HCO3 (mmol/L) [7,35-				
7,43; 22-29]				
- Prior to ECMO-initiation	7.46 – 20.1	7.35 – 16.6	7.25 – 21.4	7.2 – 14.2
- After ECMO-initiation	7.09 – 11	7.06 – 11.3	7.3 – 22.4	7.41 – 22.1
Highest Lactate (mmol/L) [0,5-2,2]				
 Prior to ECMO-initiation 	0.9	1.7	3.28	5.14
 After ECMO-initiation 	13.9	16	1.7	2.7
Highest CKs (U/L) <u>[<</u> 190]				
 Prior to ECMO-initiation 	5209	283	444	935
- After ECMO-initiation	235060 *	3091	19859	4376
Highest potassium (mmol/L) [3,45-4,45]				
- Prior to ECMO-initiation	4.6	5.0	5.88	5.48
- After ECMO-initiation	7.2	5.5	5.3	4.7
Highest triglycerides (mg/dL) [<150]	• • •			
- Prior to ECMO-initiation	341	149	ND	ND
- After ECMO-initiation	196	166	271	243
Highest ALT (U/L) [<41]				
- Prior to ECMO-initiation	104	35	15	23
- After ECMO-initiation	4857	113	203	72
Highest AST (U/L) [<37]	220	26	24	22
- Prior to ECMO-initiation	239	36	31	32
- After ECMO-initiation	14612 *	552	679	98
Highest hs-Troponin T (μ g/L) [\leq 0,013]	0.04.4	0.000	0.00	
- Prior to ECMO-initiation	0.014	0.699	0.03	ND
- After ECMO-initiation	0.682	0.680	0.705	0.063
Highest Creatinin (mg/dL) [0,67-1,17]	0.0	0.0	0.72	1.04
 Prior to ECMO-initiation After ECMO-initiation 	0.9 1.67	0.9 2.91	0.72 1.45	1.04 1.15
CLINICAL FINDINGS	1.07	2.91	1.45	1.15
CLINICAL FINDINGS				
Highest temperature (°C)	40	37.9	39.1	38.5
'Greenish' discoloration urine and	Yes	Yes	Yes	Yes
Appearance before collapse (hours)	-34	-67	-92	-96
Noradrenaline requirements				
(μg/kg/min)				
 72h prior to collapse 	0.18	0.07	0.21	0.19
 48h prior to collapse 	0.24	0.17	0.51	0.36
- 24h prior to collapse	0.31	0.37	0.61	0.76
- Collapse & ECMO initiation	0.42	1.15	0.50	1.00
Duration inotropic support [£] (days)	6	3	1	3
Cardiac Failure	Yes	Yes	Yes	Yes
Cardiac arrest	Yes	Yes	Yes	No
Worst documented LVEF (%) by	0	< 10	40	30
echocardiography				
Pattern of systolic LV-dysfunction	Global	Global	Global	Global
Acute Kidney Injury Stage (KDIGO)	AKI 3	AKI 3	AKI 2	AKI 2
Duration CRRT (days)	21	5	0	0
Duration IHD (days)	15	0	0	0

	TION	r		r	
VA-ECMO indication	ECPR	ECPR	CAR	CAR	
and configuration	Fem-Fem	FemJug-Fem	Fem-Fem	Fem-Fem	
and LV-vent	Yes	Yes	No	No	
ECMO retrieval	No	No	Yes	Yes	
Duration VA-ECMO support (days)	3	5	1	3	
ECMO therapeutic anticoagulation	No	No	No	No	
LV venting technique	LV apical vent	LV apical vent	/	/	
	through mini-	through mini-			
	thoracotomy	thoracotomy			
Surgery during ECMO-support	Laparotomy @	Laparotomy &	No	No	
	Amputation ^{\$}	Thoracotomy #			
	Thoracotomy #				
Average ECMO Blood Flow (L/min)	3.8	3.8	2.4	3.4	
Average ventilator Settings during					
ECMO-support					
 Ventilation mode 	IPPV	IPPV	IPPV	IPPV	
- Tidal Volume (mL)	470	375	324	453	
- Frequency (/min)	18	11	11	14	
- PEEP (cmH ₂ O)	11	11	5	6	
- FiO2 (%)	60	36	40	35	
- Pplat (cmH ₂ 0)	26	23	17	17	
SAVE Score	-4	2	-2	1	
SAVE Score Estimated Survival Rate (%)	30-40	50-60	35-45	45-55	
OUTCOME					
Duration ICU stay (days)	112	29	25	22	
Duration hospital stay (days)	247	110	80	27	
Survival to hospital discharge	Yes	Yes	Yes	Yes	
Cerebral Performance Category Scale	CPC-1	CPC-1	CPC-1	CPC-1	
(CPC) at hospital discharge					
36-Item Short Form Survey (SF-36) [€]					
- Months after admission	53	52	36	32	
 Physical functioning 	35%	100%	65%	95%	
- Role limitations physical health	100%	25%	25%	100%	
- Role limitations emotional problems	100%	67%	100%	100%	
- Energy/fatigue	55%	40%	25%	45%	
- Emotional well-being	92%	64%	60%	76%	
- Social functioning	75%	63%	63%	100%	
- Pain	78%	90%	23%	68%	
- General health	55%	70%	55%	50%	
Barthel Index	20/20	20/20	20/20	20/20	
- Months after admission	53	52	36	32	

Supplementary Table-1

			Timef	rame in relation to c	ollapse		
	-72h	-48h	-24h	Immediately	+24h	+48h	+72h
				prior			
				Collapse			
Noradrenaline (µg/kg/min)							
-Case1	0.18	0.24	0.31	0.42	0.18	0.11	0.13
-Case 2	0.07	0.17	0.37	1.15	1.00	0.30	0.1
-Case 3	0.21	0.51	0.61	0.50	0.17	0.15	0.05
-Case 4	0.19	0.36	0.76	1.00	0.76	0.07	0
Adrenaline (µg/kg/min)							
-Case1	0	0	0	0	0.36	0.27	0.22
-Case 2	0	0	0	0	0.60	0.20	0.05
-Case 3	0	0	0	0.1	0	0	0
-Case 4	0	0	0	0	0	0	0
Dobutamine (µg/kg/min)							
-Case1	0	0	0	0	0	0	0
-Case 2	0	0	0	0	0	0	0
-Case 3	0	0	0	10	0	0	0
-Case 4	0	0	0	0	4.8	4.8	2.4
рН [7,35-7,43]							
-Case1	7.58	7.47	7.36	7.16	7.38	7.46	7.54
-Case 2	7.43	7.44	7.43	7.38	7.51	7.53	7.46
-Case 3	7.38	7.40	7.38	7.37	7.46	7.5	7.51
-Case 4	7.52	7.40	7.40	7.20	7.44	7.41	7.48
HCO3 (mmol/L) [22-29]							
-Case1	26.7	25.5	23.8	16.5	17.8	29.5	24.4
-Case 2	22.7	23.4	21.2	17.4	27.4	26.3	29.5
-Case 3	21	22.9	24.2	23.6	27.8	25.7	28.4
-Case 4	20.3	16.6	19.9	14.2	25.1	22.7	25.7
Lactate (mmol/L) [0,5-2,2]							
-Case1	1.4	0.4	0.5	5.7	10	3.2	3.1
-Case 2	0.6	0.9	1.7	2.6	4.2	1.2	1.3
-Case 3	1.5	1.1	1.2	3.3	0.7	0.8	1.0
-Case 4	1.0	2.1	2.0	5.1	0.9	0.8	0.7
CK (U/L) [≤190]							
-Case1	ND	ND	5209	4347*	73670*	123500*	235060*

-Case 2	ND	ND	176	283	3091	ND	ND
-Case 3	ND	299	406	2999	12274	18442	18666
-Case 4	ND	935	ND	1775	2858	3201	4376
Creatinine (mg/dL) [0,67-1,17]							
-Case1	0.98	1.19	1.09	0.90	1.57	1.48	1.54
-Case 2	0.72	0.77	0.70	0.90	1.35	1.38	1.45
-Case 3	0.72	0.67	0.77	1.19	1.45	1.12	1.02
-Case 4	0.75	0.90	0.89	1.30	1.34	1.18	1.07
Potassium (mmol/L) [3,45-4,45]							
-Case1	3.6	4	2.8	4.4	6.6	5.1	4
-Case 2	4.4	4	3.9	5.5	3.9	3.9	3.7
-Case 3	3.6	3.1	4.4	5.4	4.1	3.5	3.5
-Case 4	3.2	3.1	3.4	5.5	4.0	3.8	3.6
ALT (U/L) [<u><</u> 41]							
-Case1	99	99	93	104	1614	4857	4629
-Case 2	7	8	20	35	113	83	80
-Case 3	ND	15	ND	186	ND	203	179
-Case 4	20	23	ND	35	35	ND	47
AST (U/L) <u>[<</u> 37]							
-Case1	216	239	206	195	3261	14612	12696
-Case 2	12	18	36	70	552	352	261
-Case 3	ND	31	ND	657	ND	679	61
-Case 4	32	ND	ND	72	65	ND	98
Triglycerides (mg/dL) [<150]							
-Case1	ND	ND	ND	341	168	101	ND
-Case 2	149	ND	105	149	73	88	91
-Case 3	ND	ND	ND	57	184	271	ND
-Case 4	ND	ND	ND	104	187	243	ND

Supplementary Table-2

	N	Age	Trauma	Neurosurgery	ECMO Support Mode	ECMO Support Duration	Anticoagulation	ICH progression during ECMO	PRIS	Survival	Neurological Outcome
Biscotti M, et al. (2015)[1]	Case 1	18y	Isolated TBI	No	VV-ECMO	13d	Yes	ND	No	Yes	No neurologic deficits
	Case 2	20y	Isolated TBI	No	VV-ECMO	6d	Yes	ND	No	Yes	No neurologic deficits
Leloup G, et al. (2011)[2]	1	27у	Non-Isolated TBI	ND	VV-ECMO	7d	ND	ND	No	Yes	No neurologic deficits
Stoll MC, et al. (2014)[3]	1	18y	Non-Isolated TBI	ND	VV-ECMO	7d	No	ND	No	Yes	ND
Menut R, et al. (2013)[4]	1	24y	Non-Isolated TBI	No	VA-ECMO	7d	Yes	No	No	Yes	No neurologic deficits
Reynolds HN, et al. (1999)[5]	1	16y	Non-Isolated TBI	No	VV-ECMO	7d	No	No	No	Yes	Moderate cognitive deficit
Anton-Martin P, et al. (2018)[6]	1	8у	Non-Isolated TBI	Decompression, evacuation IPH	VV-ECMO	7d	Yes	Yes	No	Yes	Mild cognitive deficit
Frickey N, et al. (2008)[7]	1	41y	Isolated TBI	No	VA-ECMO	12d	Yes	No	No	Yes	No neurologic deficits
Zhou R, et al. (2014)[8]	1	31y	Non-Isolated TBI	No	VA-ECMO	9h	Yes	No	No	Yes	No neurologic deficits
Messing J, et al. (2014)[9]	1	21y	Non-Isolated TBI	No	VV-ECMO	20d	Yes (Delayed: 5d after cannulation)	No	No	Yes	No neurologic deficits
Friesenecker BE, et al. (2005)[10]	1	34y	Non-Isolated TBI	Decompression, evacuation IPH	VV-ECMO	17d	Yes	Yes	No	Yes	GCS 11/15 at 6 mo
Yen TS, et al. (2008)[11]	1	21y	TBI *	Decompression, evacuation EDH	VA-ECMO	2d	No	No	No	Yes	No neurologic deficits
Muellenbach RM, et al. (2011,2012)[12, 13]	Case 1	53y	Non-Isolated TBI	No	VV-ECMO	8d	Yes (Delayed: 5d after cannulation)	No	No	Yes	FIM 68/126 at 4 mo
	Case 2	16y	Non-Isolated TBI	No	VV-ECMO	3d	Yes	No	No	Yes	No neurologic deficit

						(Delayed: 1d after cannulation)				
Case 3	28y	Non-Isolated	No	VV-ECMO	3d	Yes	ND	No	Yes	FIM 61/126
		ТВІ				(Delayed: 2d after				after
						cannulation)				rehabilitation

Supplementary Table-3

ADDITIONAL SUPPLEMENTARY CONTENT:

Compliance with Ethical Standards:

The protocol and consent forms were approved by the institutional review board at University Hospitals Leuven (S64304). Written informed consent was provided by all patients. None of the authors reports potential conflicts of interest regarding this manuscript.

Overview of propofol use: 1/12/2015-1/12/2017:

This is a consecutive case series of all patients with PRIS requiring VA-ECMO-support, admitted to the department of Intensive Care Medicine from the University Hospitals Leuven, from 1/12/2015 till 1/12/2017. In this timeframe, a total of 3060 patients were treated with propofol in our department. Of those, only 271 patients (8.9%) received propofol for a total duration of more than 48 hours with a median propofol dose of 2.2 mg/kg/h (IQR 1.6-2.7 mg/kg/h). All discharge letters were screened for "Propofol Infusion Syndrome" and "PRIS", resulting in four cases, all included in this case series.

Overview of ECMO use: 1/12/2015-1/12/2017:

This is a consecutive case series of all patients with PRIS requiring VA-ECMO-support, admitted to the department of Intensive Care Medicine from the University Hospitals Leuven, from 1/12/2015 till 1/12/2017. In this timeframe, a total of 136 ECMO-runs (both VA-ECMO and VV-ECMO) were performed in our department. Only 4 ECMO-runs were performed in patients with TBI (all cases included in this case series).

REFERENCES SUPPLEMENTARY TABLE 3:

- Biscotti M, Gannon WD, Abrams D, Agerstrand C, Claassen J, Brodie D, Bacchetta M, (2015) Extracorporeal membrane oxygenation use in patients with traumatic brain injury. Perfusion 30: 407-409
- 2. Leloup G, Roze H, Calderon J, Ouattara A, (2011) Use of two oxygenators during extracorporeal membrane oxygenator for a patient with acute respiratory distress syndrome, high-pressure ventilation, hypercapnia, and traumatic brain injury. Br J Anaesth 107: 1014-1015
- 3. Stoll MC, Rademacher F, Klak K, Strauch J, Schildhauer TA, Swol J, (2014) Veno-venous extracorporeal membrane oxygenation therapy of a severely injured patient after secondary survey. Am J Emerg Med 32: 1300 e1301-1302
- Menut R, Larrieu N, Conil JM, Georges B, Fourcade O, Geeraerts T, (2013) [Use of ECMO (extracorporeal membrane oxygenation) in a traumatic brain injured patient with severe hypoxemia]. Ann Fr Anesth Reanim 32: 701-703
- 5. Reynolds HN, Cottingham C, McCunn M, Habashi NM, Scalea TM, (1999) Extracorporeal lung support in a patient with traumatic brain injury: the benefit of heparin-bonded circuitry. Perfusion 14: 489-493
- Anton-Martin P, Braga B, Megison S, Journeycake J, Moreland J, (2018) Craniectomy and Traumatic Brain Injury in Children on Extracorporeal Membrane Oxygenation Support. Pediatr Emerg Care 34: e204-e210
- 7. Frickey N, Kraincuk P, Zhilla I, Binder T, Plochl W, (2008) Fulminant pulmonary embolism treated by extracorporeal membrane oxygenation in a patient with traumatic brain injury. J Trauma 64: E41-43
- 8. Zhou R, Liu B, Lin K, Wang R, Qin Z, Liao R, Qiu Y, (2015) ECMO support for right main bronchial disruption in multiple trauma patient with brain injury--a case report and literature review. Perfusion 30: 403-406
- Messing JA, Agnihothri RV, Van Dusen R, Najam F, Dunne JR, Honig JR, Sarani B, (2014) Prolonged use of extracorporeal membrane oxygenation as a rescue modality following traumatic brain injury. ASAIO J 60: 597-599
- Friesenecker BE, Peer R, Rieder J, Lirk P, Knotzer H, Hasibeder WR, Mayr AJ, Dunser MW, (2005) Craniotomy during ECMO in a severely traumatized patient. Acta Neurochir (Wien) 147: 993-996; discussion 996
- 11. Yen TS, Liau CC, Chen YS, Chao A, (2008) Extracorporeal membrane oxygenation resuscitation for traumatic brain injury after decompressive craniotomy. Clin Neurol Neurosurg 110: 295-297
- 12. Muellenbach RM, Redel A, Kustermann J, Brack A, Gorski A, Rosner T, Roewer N, Wurmb T, (2011) [Extracorporeal membrane oxygenation and severe traumatic brain injury. Is the ECMO-therapy in traumatic lung failure and severe traumatic brain injury really contraindicated?]. Anaesthesist 60: 647-652
- 13. Muellenbach RM, Kredel M, Kunze E, Kranke P, Kuestermann J, Brack A, Gorski A, Wunder C, Roewer N, Wurmb T, (2012) Prolonged heparin-free extracorporeal membrane oxygenation in multiple injured acute respiratory distress syndrome patients with traumatic brain injury. J Trauma Acute Care Surg 72: 1444-1447