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Can we Count on Early Numerical Abilities for Early Probabilistic 

Reasoning Abilities? 

Previous research has shown that early numerical abilities are predictive of later 

mathematical achievement. In line with these previous studies, we investigated 

whether early numerical abilities are also associated with later probabilistic 

reasoning abilities. In the present study, we examined children’s numerical 

abilities in the second grade of preschool and their probabilistic reasoning 

abilities one and two years later. On the one hand, our results indicate that early 

numerical abilities assessed in the second grade of preschool predict the use of 

erroneous solving strategies to compare probabilities and create equal 

probabilities in the third grade of preschool. On the other hand, our results also 

indicate that the same early numerical abilities predict the use of more advanced 

or correct strategies when children are in the first grade of primary school. We 

discuss these seemingly contradicting findings in light of current research on 

probabilistic reasoning abilities. 

Keywords: Early numerical ability; probabilistic reasoning; preschool; primary 

school 

  



Introduction 

In many situations, probabilistic reasoning of children and adults is 

characterized by misconceptions. In the 1970’s, Fischbein pointed towards instruction 

in search for an explanation for the occurrence of these misconceptions (Fischbein & 

Gazit, 1984). Fischbein (1975) commented upon education, stating: “Whatever does not 

conform to strict determinism, whatever is associated with uncertainty, surprise, or 

randomness is seen as being outside the possibility of a consistent, rational, scientific, 

explanation” (pp. 124). According to several authors, this focus on causal and 

deterministic explanations in schools still holds and is also manifested in school 

mathematics, possibly impeding children’s idea of chance (Falk et al., 2012; Meletiou-

Mavrotheris, 2007). Stohl (2005) explained that many mathematics teachers hold a 

computational orientation towards mathematics and are often described as having 

deterministic views. Nonetheless, English and Watson (2016) commented that children 

in the 21st century are part of a “chance-laden society” (p. 29) and that this should be 

taken into account during their first mathematical experiences in schools. 

These first mathematical experiences take place at the preschool level. They 

seem to be strongly oriented towards stimulating children’s early numerical abilities, 

involving activities such as counting, ranking, and comparing quantities. Such activities 

are deterministic in nature: two and two sums to four, always. Activities stimulating 

children’s early numerical abilities (i.e., their informal knowledge of number and 

arithmetic) are assumed to prepare them for later formal mathematics education. Indeed, 

research has found that early numerical abilities of kindergartners and young primary 

school children are predictive of their later mathematical performance (De Smedt et al., 

2009; Duncan et al., 2007; Nguyen et al., 2016; Passolunghi & Lanfranchi, 2011). Thus, 

such findings might support curriculum designers to explain the strong focus that is 



usually put on the development of early numerical abilities in preschool (Nguyen et al., 

2016).  

Nonetheless, Cirino et al. (2016) pointed out that few studies have focused on 

the effect of early mathematical abilities on more advanced mathematical abilities. 

Mathematical achievement is often operationalized as performance on general tests 

which assess a wide range of abilities that are included in primary school curricula (e.g., 

Jordan et al., 2010; Nguyen et al., 2016; Sasanguie et al., 2013). Other studies 

operationalized mathematical achievement as performance on tests that focus on one 

specific component, for example exact arithmetic, which receives a great deal of 

attention in the primary school mathematics curricula (e.g., Bartelet et al., 2014; Lyons 

et al., 2014; Sasanguie et al., 2013). Researchers in the aforementioned studies might 

have simply defined a high mathematical achiever as a child with good grades for 

(certain topics in) mathematics in school. However, Dede (2010) inspires to be vigilant 

to more complex abilities that are, today, often not included in primary school curricula 

but may be (more) helpful in our modern society.  

In the present study, we focused particularly on probabilistic reasoning as one of 

those more complex abilities. Effective probabilistic reasoning helps us in our daily 

lives (Gal, 2005). Given the strong focus on numerical abilities, it seems relevant to 

understand how these numerical abilities affect probabilistic reasoning skills before 

formal instruction. More specifically, we aimed to investigate the effect of early 

numerical abilities on children’s abilities to recognize certainty, compare probabilities, 

and create equal probabilities. In the literature review, we explained the reasons for this 

focus.   



Literature Review 

Probability as a topic is often lacking in countries’ primary school curricula 

(e.g., United States, Belgium, United Kingdom, France; see Langrall, 2018). Langrall 

(2018) suggested that one of the possible reasons for the absence of probability in many 

primary school curricula is because probability is regarded as too complex to be 

introduced in the primary grades. Pratt (2000, p. 602) also spoke of a “sort of folklore, 

among teachers, that probability is extremely difficult to learn.” In the first section 

below, we described the literature on the development of probabilistic reasoning 

abilities with a focus on research that is of particular interest for the present study. In a 

second section, we elaborated on the literature that fuelled our interest to investigate the 

role of early numerical abilities for probabilistic reasoning abilities.  

Probabilistic Reasoning Abilities in Children 

Probabilistic reasoning abilities involve the understanding and integration of a 

range of sub-concepts related to probability (Bryant and Nunes, 2012). Bryant and 

Nunes (2012) reviewed literature on the development of probabilistic reasoning and 

identified four cognitive demands for the understanding of probability: understanding 

randomness, working out the sample space, comparing and quantifying probabilities, 

and understanding correlation. These cognitive demands are not to be seen as unrelated. 

For example, to calculate the probability of an event, an understanding of the sample 

space is also required. As another example, when you correctly identify the event with 

the highest probability of occurring out of two possible events, you need to know about 

randomness to understand why it is still possible that the other event could occur. 

Moreover, each demand requires several insights. For example, in the chapter 

“quantifying probabilities”, Bryant and Nunes (2012) described how children solve 

probability-related questions (e.g., calculate single probabilities, compare two (or more) 



probabilities, calculate conditional probabilities). It was beyond our means to 

investigate the entire range of sub-concepts related to probability. In the present study, 

we chose to assess three abilities, as they have been studied before in young children: 

(a) recognizing (un)certainty, (b) comparing probabilities, and (c) creating equal 

probabilities. In describing the literature on the development of probabilistic reasoning, 

we focused on findings that are especially relevant for these abilities of interest in this 

study.   

Piaget and Inhelder (1951/1975) were the first to intricately study the 

development of probabilistic reasoning abilities or what they called “the idea of chance” 

in children. They conducted several interviews with children and concluded that 

children’s notions about chance can be classified into three developmental phases: 

preoperational (4 to 7 years); concrete operational (8 to 11 years); and formal 

operational (from 11 years). They, for example, found that children in the 

preoperational stage would be unable to grasp the difference between certain and 

uncertain events. Children in the concrete operational stage would be able to grasp this 

distinction, but would be unable to effectively use proportional information to compare 

probabilities. In summary, Piaget and Inhelder concluded that formal operations, which 

are generally not obtained before the age of 11, are required to properly understand and 

evaluate probabilities. Their findings might have led to the idea that instruction about 

probability is only useful for children starting from the age of 11.  

However, many researchers criticized drawing such strong conclusions from the 

work of Piaget and Inhelder (1951/1975). First, the verbally high-demanding tasks used 

by Piaget and Inhelder were often questioned. Researchers have come to the 

understanding that “a complete understanding of the concept of probability” involves 

the understanding of several sub-concepts (e.g., sample space, combinatorics, 



probability comparison, conditional probability), and that such an understanding can 

also become apparent in children’s behaviour in concrete situations, rather than (only) 

in their verbalisations. Nevertheless, the work of Piaget and Inhelder, paved the way for 

an increase in research on both teaching and learning probability. Later research is 

characterized by studies with great diversity in conceptual topics related to probability 

(e.g., randomness, sample space, language of chance, independence) and studies with 

students from different age groups (e.g., college, high school students, elementary 

students; Falk et al., 2012; Jones & Thornton, 2005). Depending on the sub-concept, 

research has shown that children might already show meaningful behavior in 

probabilistic situations before the age of 11. For example, Yost et al. (1962) and Davies 

(1965) suggested that even children as young as 4 and 5 years old are able to make the 

correct choice in non-verbal probabilistic comparison situations and thus concluded that 

even preoperational children have some understanding of probability. Falk (1980) also 

observed that when children had to compare probabilities which required ratio 

comparison, they tended to perform above chance level from the age of 6. Also more 

recent studies challenged conclusions of Piaget and Inhelder (1951/1975). Denison and 

Xu (2014) suggested that even preverbal infants are able to use proportional information 

to make decisions in probabilistic comparison situations. Unfortunately, none of these 

later studies seemed as influential or were cited as often as the initial work of Piaget and 

Inhelder. 

Second, Fischbein (1999) claimed that in the work of Piaget and Inhelder, there 

was not enough consideration for the role of instruction. This critique is twofold. First, 

Fischbein argued that the observation that children are unable to solve a certain problem 

does not mean that these children are not able to acquire this ability by instruction. 

Kipman et al. (2019) conducted an intervention that, among other outcomes, targeted 



the comparison of probabilities and the understanding of probabilistic terms such as 

“certain” or “possible” in 6- to 12-year old children. They found the intervention to be 

effective for all participants and noted the largest improvement in the youngest 

participants, which supports Fischbein’s view. Such findings bring into question the 

absence of probability in many primary school curricula. Second, and more importantly 

for the present study, Fischbein also criticized Piaget for not taking into account the 

effect of children’s prior knowledge. 

Probabilistic Reasoning Abilities and Early Numerical Abilities 

Overall, based on the above literature, there seems to be support for the idea that 

young children may already be able to reason probabilistically in some situations. These 

findings together with the ideas of Fischbein (1999), raised the question of how young 

children’s prior knowledge today predicts children’s probabilistic reasoning abilities. 

Regarding prior knowledge, it seemed relevant to focus on numerical abilities for 

several reasons. First, the stimulation of early numerical abilities is prevalent in school. 

Second, early numerical abilities are shown to be predictive for later mathematical 

achievement, but this is not yet investigated for probabilistic reasoning. Third, when 

children are introduced to probability later in school, their probabilistic reasoning 

abilities would be evaluated based on their capacity to use the right formula to calculate 

the probability of an event. For this calculation, children rely on their numerical 

abilities. Or, as Laplace (1816, p. 220) puts it “The theory of probabilities is basically 

just common sense reduced to calculus”. Lastly, it might also be of interest to 

investigate how children’s early numerical abilities are predictive of their probabilistic 

reasoning abilities before formal instruction in probability starts, assuming that these 

young children are not actually calculating the probabilities of events they are 

confronted with.  



Little is known about the relationship between numerical abilities and 

probabilistic reasoning abilities in general or the specific abilities investigated in the 

present study. Interestingly, several researchers have suggested that counting abilities 

might foster the use of erroneous counting strategies in probabilistic comparison 

situations, thus better counting abilities might impede rather than enforce children’s 

judgement (Denison & Xu, 2014; Fontanari et al., 2014). However, this hypothesis has 

not been explicitly investigated so far. In one study, Ruggeri et al. (2018) investigated 

the impact of number sense and the Approximate Number System (assessed by the 

Panamath test) on the performance of 7- and 10- year olds and adults on a probabilistic 

binary choice task. In binary choice tasks, participants have to choose the best of two 

sets, each containing desired and undesired elements, to blindly draw from (Falk et al., 

2012).  Ruggeri et al. (2018) found positive correlations between the numerical and 

probabilistic reasoning abilities across age groups and within the youngest age group.  

Notably, Ruggeri et al. (2018) only assessed children’s ability to compare 

probabilities. In their literature review, Bryant and Nunes (2012) described probability 

as a complex concept for which we have to fall back on our understanding of different 

sub-concepts: randomness, sample space, quantification and comparison of 

probabilities, and correlation. Assessing the full understanding of probability in one 

study might be a utopian ideal. Nonetheless, findings of Ruggeri et al. (2018) raised the 

question whether early numerical abilities relate to all aspects of probability in the same 

way. For example, quantification and comparison of probabilities is directly related to 

children’s proportional reasoning abilities, while this relation is less prominent for other 

aspects of probability (Bryant & Nunes, 2012).  

Given the limited number of studies that are available on numerical abilities in 

relation to probabilistic reasoning abilities, it may be useful to dwell on similar studies 



from mathematical domains that are related to probability. For example, some studies 

suggest that proportional reasoning and numerical abilities are related. Cirino et al. 

(2016) showed that numerical abilities positively predict proportional reasoning 

abilities. Primi et al. (2017) suggested that difficulties with rational number concepts 

(i.e., concepts involving fractions, decimals, and percentages) could be one of the 

possible reasons for students struggling with probability. Many studies have already 

shown the associations between numerical abilities and fraction knowledge (see for 

example Bailey et al., 2014; Steffe & Olive, 2010). Given these findings and given that 

early numerical abilities have been shown to predict later math achievement more 

generally, correlations between early numerical abilities and the ability to compare 

probabilities can be expected.  

However, probability is more than just calculus and specifying specific 

hypotheses about the relation between early numerical abilities and components that 

differentiate probabilistic reasoning from other forms of mathematical reasoning seems 

more challenging. Take the probabilistic notions of certainty and uncertainty. The 

notion of certain events is described by Fischbein and Gazit (1984, p.13) as “one of the 

basic concepts of the theory of probability.” Uncertainty is inherent to random situations 

and chance events. Perhaps, the ability to distinguish certain from uncertain events is 

independent of children’s early numerical abilities. Perhaps, to recognize certainty and 

uncertainty, understanding randomness is more important than the ability to quantify 

and compare probabilities. For example, imagine a child who understands that for 

uncertainty or randomness, several possible events are required, but who also cannot 

use proportional reasoning to compare probabilities. This child might succeed in the 

recognition of a certain event when comparing it to an uncertain one, but fail when 

comparing the probabilities of two  uncertain events.  



Moreover, while many studies explored the association between early numerical 

competence and later mathematical performance, studies that explored the association 

between numerical abilities and probabilistic reasoning abilities such as the study of 

Ruggeri et al. (2018) could not be found in other (educational) contexts and age groups. 

Indeed, the only study that explored the association between numerical abilities and 

probabilistic reasoning abilities focused on just one time point. Moreover, the study by 

Ruggeri et al. (2018) had two specific features that might impede its interpretation in 

terms of an association between children’s numerical abilities and children’s ability to 

compare probabilities. First, their binary choice task contained 75% so-called 

“congruent trials”, and 25% “incongruent trials”. In congruent trials (e.g., set A: four 

desired and five undesired elements and set B: three desired and seven undesired 

elements), participants would be able to correctly identify the best set to blindly draw 

from by choosing the set containing the highest absolute number of desired elements, 

regardless of the number of undesired elements. In incongruent trials (e.g., set A: two 

desired and three undesired elements and set B: three desired and five undesired 

elements), this absolute number heuristic (for desired elements) would lead participants 

to the non-optimal set. In this example, they would have to take both the desired and 

undesired elements into account to identify the best set. Falk et al. (2012) showed that 

the type of trial (i.e., congruent vs. incongruent) plays a major role in children’s 

performances on binary choice tasks and that younger children are more prone to the 

absolute number heuristic than older children. Despite Ruggeri et al. (2018) including 

both types of trials, they did not take the type of trial into account in their analyses to 

investigate the correlation between performance on the binary choice task and 

children’s numerical skills. Nonetheless, it has been suggested that counting might 

promote the use of the absolute number heuristic, a popular strategy in young children 



that would lead to failure on incongruent items but to success in congruent items 

(Denison & Xu, 2014; Falk et al, 2012; Fontanari et al., 2014). It therefore could be that 

the positive correlations between numerical abilities and the binary choice task found in 

Ruggeri et al. (2018) are explained by the ratio of congruent to incongruent items in the 

binary choice task. 

The Current Study 

Previous studies reported evidence for associations between early numerical and 

later mathematical abilities. In these studies, mathematical ability is often 

operationalized as one very specific mathematical activity (e.g., exact arithmetic) or as a 

general test aggregating various curricular topics. In the present study, we aimed to look 

beyond math that is generally taught in school by investigating whether an association 

exists between early numerical abilities of 4- and 5-year olds in the second grade of 

preschool (T1) and specific components of their probabilistic reasoning abilities, one 

year (T2: third grade of preschool) and two years (T3: first grade of primary school) 

later. As the present study was one of the first to investigate the influence of early 

numerical abilities on specific probabilistic reasoning abilities, we did not have any 

hypotheses regarding associations between these components and specific numerical 

abilities. Moreover, we were interested in the effect of children’s prior knowledge 

related to numerical abilities overall. Therefore, the early numerical abilities measure 

reflected the range of skills pre-schoolers are confronted with in early educational 

settings. 

Regarding the probabilistic reasoning abilities, we limited ourselves to 

investigating children’s abilities to: a) recognize certainty, b) compare probabilities, and 

c) create equal probabilities. These aspects were feasible to investigate at this young 

age,. The last two abilities primarily tap into the cognitive demand that Bryant and 



Nunes (2012) describe as quantifying probabilities and generating hypotheses about 

their relation with numerical abilities seems straight forward. Therefore we first 

described our expectations regarding the relationship between numerical abilities and 

these two probabilistic reasoning abilities before discussing the ability to recognize 

certainty.  

Concerning the second ability, we expected a positive relationship between early 

numerical abilities and children’s ability to compare probabilities in a binary choice task 

one and two years later. However, as mentioned above, the composition and types of 

trials in a binary choice task influence children’s performance. Therefore, we examined 

the relationship between early numerical abilities and the ability to compare 

probabilities in congruent and incongruent trials separately.  

Regarding the third ability, we expected a positive relationship between early 

numerical abilities and children’s ability to create equal probabilities one and two years 

later. Concerning children’s ability to create equal probabilities, Falk and Wilkening 

(1998) showed that young children often use typical erroneous solving strategies. 

Children were offered two sets, one complete set with desired and undesired elements 

and one incomplete set with only one type of elements, and they were asked to add 

elements of the other type to the incomplete set to equalize the probabilities of both sets. 

Younger children tend to use a strategy by which they only attend to the numerator of 

the probabilities: adding the number of elements needed to equalize the numerators of 

both probabilities. Older children tend to add the number of elements needed to get the 

same absolute difference between desired and undesired elements in both probabilities. 

As counting is an important element for these strategies, we also looked into the 

association between early numerical abilities and the use of these erroneous strategies 

when creating equal probabilities. 



For the first ability, we did not have specific predictions about the association 

between early numerical abilities and children’s later ability to recognize (un)certainty. 

On the one hand, the ability to recognize (un)certainty might depend on a conceptual 

insight related to understanding randomness that can be acquired independently of 

numerical abilities. On the other hand, children might use characteristics of the sample 

space or still calculate the probabilities to infer certainty. If the latter is the case, it is 

plausible that children use their numerical abilities in such situation.   

As described above, we did not have the same expectations for each 

probabilistic reasoning ability and its association with early numerical abilities. 

Consequently, we aimed to investigate whether the associations between numerical 

abilities and each of the assessed probabilistic reasoning abilities differ. Furthermore, 

Falk et al. (2012) and Falk and Wilkening (1998) found that children of different ages 

differ in their approaches to probability problems. Therefore, we aimed to investigate 

whether the associations between early numerical abilities and the probabilistic 

reasoning abilities assessed remain the same across development. We examined the 

probabilistic reasoning abilities in the third grade of preschool and the first grade of 

primary school to test whether the associations are similar or not. 

Method 

Participants 

The present study is part of a more extensive longitudinal research project on the 

development of young children’s early mathematical competencies called Wis & Co 

(https://ppw.kuleuven.be/o_en_o/WisenCo). Seventeen schools were selected to assure 

the representation of children from the whole range of socio-economic backgrounds. 

Parents of 410 children gave consent for participation at the start of the project. Belgian 



pupils attend three years of preschool and six years of primary school. For the present 

study, data were collected from participants attending the second half of their second 

grade of preschool (T1), the second half of their third grade of preschool (T2; one year 

later), and the first grade of primary school (T3; two years later). Children were on 

average 4 years and 10 months at the first moment of testing. Due to drop out (e.g., 

children moving away, motivational problems, illness) complete data were available for 

348 students on all time points.  

Procedure 

Children individually received a test battery of 30 minutes assessing numerical 

abilities at T1 (Spring 2017). At T2 (Spring 2018) and T3 (Spring 2019), the same 

group of children individually received two tasks assessing three probabilistic reasoning 

abilities, i.e., the ability to a) distinguish a certain from an uncertain event, b) compare 

probabilities, and c) create equal probabilities. Together these tasks took less than 30 

minutes to complete. 

Materials 

Early Numerical Abilities 

Based on recent research, a test battery was developed to assess various 

components of numerical abilities, which consisted of eight tests previously used in 

research with children of a similar age range (see Bakker et al., 2018). The test battery 

consisted of five paper-and-pencil tasks covering verbal counting, object counting, 

calculation, Arabic numeral recognition, and number order. Additionally, three 

computerized tasks were administered covering symbolic and non-symbolic number 

comparison and dot enumeration. Following Wijns et al. (2019) the sum of the Z-scores 



for performance on each of the tests was used for analyses. Moreover, the high internal 

consistency (α = .93) of this test battery supported the decision to work with one 

composite score. 

Probabilistic Reasoning Abilities 

Binary Choice Task. Supply et al. (2020) developed a computerized item set 

based on the study of Falk et al. (2012) to assess children’s abilities to a) distinguish a 

certain from an uncertain event and to b) compare two probabilities (discussed below). 

The item set was presented on animated slides and children were introduced to a 

blindfolded bird that loves black berries but hates white and green berries. At T2, 29 

trials were presented to children in which they had to decide which of two presented 

boxes was best for the bird to blindly pick from. The presented boxes contained 

different numbers of white, black, and green berries. At T3, 10 additional items were 

administered along with the same 29 items assessed at the previous time point. The 

internal consistency for the complete item set was acceptable (α = .74 at T2 and α = .76 

at T3). The complete set of items can also be subdivided in categories.   

Recognizing (Un)Certainty. In five items at T2 and seven items (i.e., the same 

items of T2 and two additional items) at T3 one of the two presented boxes only 

contained black berries, while the other box contained black and white and/or green 

berries. These items were developed to investigate if children are able to recognize a 

box with a certainty of a successful draw (certain box) compared to a box in which a 

successful draw is not guaranteed (uncertain box). In the first five items (T2 and T3) the 

“certain box” contained a smaller number of black berries than the “uncertain box”. In 

the two additional items presented at T3 the “certain box” contained a larger number of 

black berries than the “uncertain box”. We referred to this category of items as “certain 



items”. The internal consistency for this subset of items was acceptable (α = .84 at T2 

and α =.75 at T3). 

Comparing Probabilities. The remaining items of the binary choice task were 

developed to investigate children’s ability to compare two probabilities and can be 

subdivided in two main categories. The first category consisted of 12 items at T2 in 

which the box with the highest probability of blindly drawing a black berry 

corresponded with the box with the largest number of black berries. At T3, eight 

additional items were presented together with the original 12 items. These eight items 

are congruent to the absolute number heuristic, i.e., deciding by the largest number of 

desired elements (Falk et al., 2012), and we referred to these items as “the congruent 

items.” The internal consistency for this subset of items was acceptable (α = .73 at T2 

and α = .72 at T3). 

The second category of items consisted of 12 items that were presented at T2 

and T3 in which the box with the highest probability of blindly drawing a black berry 

corresponded with the box with smallest number of black berries. These items are 

incongruent to the absolute number heuristic and will be referred to as “the incongruent 

items”. The internal consistency for this subset of items was high (α = .91 at T2 and α = 

.89 at T3). 

For a more elaborate description of the procedure of administering and the 

structure of the item set, see Supply et al. (2020). Note that, based on previously 

reported limitations, additional items were included at T3 compared to the instrument 

described in the study of Supply et al. (2020) that was used at T2. The complete item set 

for the present study can be found in Table 1. An accuracy score was derived by 

dividing the number of items solved correctly by the total number of items for each 

category of items and was used for analysis. 



Creating Equal Probabilities. One task was developed based on the 

probability-adjustment task of Falk and Wilkening (1998). During the assessment of 

this task, children were introduced to different concrete materials (see Figure 1). 

Children were introduced to two identical birds that love black berries and hate white 

berries. Each bird has a box with berries and in every trial each bird can blindly draw 

one berry from its box. The box of the first bird always contained black and white 

berries, but the box of the second bird only contained white berries. The children were 

asked to add black berries to the box of the second bird to make it a fair game. Children 

received nine items. The complete item set for the present study can be found in Table 

2.  

In their study, Falk and Wilkening (1998) identified several rules that children 

might use to complete the incomplete box. Children who used the correct proportional 

rule, would have put the correct number of black berries in the incomplete box. If 

children used the ‘one-dimensional rule’ (OD), they would have only taken into account 

the number of black berries in the complete box and put the same number of black 

berries in the incomplete box. If children used the ‘difference rule’ (DIF), they would 

have calculated the difference between black and white berries in the complete box and 

added the number of black berries needed to arrive at the same difference in the 

incomplete box. The use of every rule predicted a different answer. For each child three 

total scores were calculated: the total number of answers as predicted by the a) correct 

rule (α = .39 at T2 and α = .62 at T3), b) OD rule (α = .96 at T2 and α = .95 at T3), and 

c) DIFF rule (α = .53 at T2 and α = .75 at T3). 

Statistical Analysis 

For the first research question, partial correlation analyses (Cohen et al., 2003) 

were performed to test the associations between children’s early numerical abilities on 



the one hand and probabilistic reasoning abilities at T2 and T3 on the other hand, 

controlling for children’s age. The age control was included because children within the 

same grade can differ up to twelve months in age. 

William’s tests (1959) are t-tests that can be used to compare two correlations that are 

not independent (e.g., correlations based on the same sample) and have one variable in 

common (Weaver & Wuensch, 2013). Concerning the second research question, 

Williams’s tests were conducted to compare the dependent correlation coefficients with 

early numerical abilities as the variable in common within time points. Concerning the 

second research question, Williams’s tests were conducted to compare the dependent 

correlation coefficients between time points. To control the family-wise error rate at the 

nominal level (α = .05) the Bonferroni-Holm method (Holm, 1979) was applied for each 

research question. 

Results 

The means and standard deviations of all variables are shown in Table 3. Table 4 

shows for the two time points (third grade of preschool (T2) and first grade of primary 

school (T3)) the frequency distributions of the total accuracies in percentages on items 

assessing children’s ability to a) distinguish certain from uncertain events, b) compare 

probabilities in congruent items, c) compare probabilities in incongruent items, and d) 

create equal probabilities. Partial correlations controlling for age between children’s 

numerical abilities in the second grade of preschool (T1) and their performance on the 

probability tasks one (T2) and two (T3) years later are reported in Table 5.  

First, partial correlations between early numerical abilities assessed at T1 and 

the probabilistic reasoning abilities assessed at T2 are described. Concerning the binary 

choice task, no significant partial correlation was found between children’s early 

numerical abilities and their performance on the certain items. A significant partial 



correlation was found between early numerical abilities and performance on the 

congruent items, r = .26, p < .001, but not for performance on the incongruent items. 

Concerning the task on creating equal probabilities, no significant partial correlation 

was found between early numerical abilities and children’s use of the correct rule. A 

significant partial correlation between early numerical abilities and children’s use of the 

OD rule was found, r = .29, p < .001, but not with children’s use of the DIF rule.  

Second, partial correlations between early numerical abilities assessed at T1 and 

the components of probabilistic reasoning abilities assessed at T3 are described. 

Concerning the binary choice task, significant partial correlations were found between 

early numerical abilities and performance on the certain items, r = .19, p < .001, 

congruent items, r = .15, p = .005, and incongruent items, r = .17, p = .001. Concerning 

the task on creating equal probabilities, significant partial correlations were found 

between children’s early numerical abilities and the use of the correct rule, r = .16, p = 

.003.  No significant correlation was found between early numerical abilities and the use 

of the OD rule. A significant correlation was also found between early numerical 

abilities and use of the DIF rule, r =.23, p < .001.  

Williams’s tests were conducted to investigate whether correlations between 

numerical abilities on the one hand and each of the probabilistic reasoning abilities 

aspects on the other hand differed from each other. All t-values can be found in Table 6. 

Concerning probabilistic reasoning abilities at T2, results show that the correlation 

between early numerical abilities and performance on the congruent items of the binary 

choice task was significantly higher than the correlations between early numerical 

abilities and performance on the certain items, t(345)= 3.24, p = .02; d = 3.21, 

incongruent items, t(345)= 3.26, p = .02; d = 3.23, and use of the correct rule, t(345)= 

3.21, p = .02; d = 3.18, in the task on creating equal probabilities. Furthermore, the 



correlation between early numerical abilities and preschoolers’ use of the erroneous OD 

rule when creating equal probabilities was significantly higher than the correlations 

between early numerical abilities and performance on the certain items, t(345)= 4.30, p 

< .001; d = 4.24, incongruent items, t(345)= 4.36, p < .001; d = 4.30, of the binary 

choice task, and use of the correct rule, t(345)= 3.17, p = .03; d = 3.14, in the task on 

creating equal probabilities. Note that all effect sizes for the reported analyses were 

found to exceed Cohen’s (1988) convention for a large effect (d ≥ .80).  

Concerning probabilistic reasoning abilities assessed at T3, the correlation 

between early numerical abilities and the use of the OD rule when creating equal 

probabilities was significantly weaker than the correlations between early numerical 

abilities and performance on the certain items, t(345)= 3.38, p = .01; d = 3.35, 

incongruent items, t(345)= 3.17, p = .02; d = 3.14, congruent items, t(345)= 3.01, p = 

.03; d = 2.99 of the binary choice task, and use of the DIF rule, t(345)= 3.22, p = .02; d 

= 3.19 when creating equal probabilities. All effect sizes for the reported analyses, were 

found to exceed Cohen’s (1988) convention for a large effect (d ≥ .80). 

Williams’s tests were also conducted to investigate whether correlations 

between numerical abilities on the one hand and each of the probabilistic reasoning 

abilities assessed at T2 differed from the correlations between early numerical abilities 

and the corresponding probabilistic reasoning ability assessed at T3. All t-values can be 

found in Table 7. Concerning the binary choice task, the correlation between early 

numerical abilities and performance on the certain items at T2 was significantly weaker 

than the correlation found at T3, t(345)= 3.95, p < .001; d = 3.90. The correlation 

between early numerical abilities and performance on the congruent items at T2 did not 

differ significantly from the correlation found at T3. The correlation between early 

numerical abilities and performance on the incongruent items was significantly weaker 



than the correlation found at T3, t(345)= 3.58, p = .002; d = 3.54. Concerning the task 

on creating equal probabilities, the correlation between early numerical abilities on the 

one hand and the use of the correct rule at T2 or T3 on the other hand did not differ 

significantly after appliance of the Bonferroni-Holm correction. The correlation 

between early numerical abilities and the use of the OD rule at T2 was significantly 

higher than the correlation found at T3, t(345)= 5.39, p < .001; d = 5.28. Finally, the 

correlation between early numerical abilities and the use of the DIF rule at T2 was 

significantly weaker than the correlation found at T3, t(345)= 2.53, p = .04; d = 2.52. 

All effect sizes for the reported analyses, were found to exceed Cohen’s (1988) 

convention for a large effect (d ≥ .80). 

Discussion 

A number of studies found evidence that early numerical abilities are predictive 

of later mathematical achievement (e.g., De Smedt et al., 2009; Duncan et al., 2007; 

Nguyen et al., 2016; Passolunghi & Lanfranchi, 2011). In these studies, probabilistic 

reasoning abilities were often not considered as a component of mathematical 

achievement. 

The current study was a first step in grasping the association between early 

numerical abilities and later probabilistic reasoning abilities. Although our results 

supported the idea that associations exist between early numerical abilities and later 

probabilistic reasoning abilities of children, they also showed that this relation is not 

clear-cut. Early numerical abilities in the second grade of preschool seemed to be only 

positively associated with performance on congruent comparison items (where only 

focusing on the number of desired outcomes is sufficient to get the correct answer) and 

the use of the erroneous one-dimensional (OD) rule in the equal probability creation 

task one year later. Limiting ourselves to these findings would have led us to conclude 



that early numerical abilities in the second grade of preschool did not predict stronger 

probabilistic reasoning abilities in the third grade of preschool, but rather predicted the 

use of incorrect strategies. 

However, a different picture emerges when we considered performance of 

children on probabilistic reasoning tasks when they are one year older. Positive 

associations were found between early numerical abilities in the second grade of 

preschool and performance on all probabilistic reasoning tasks in the first grade of 

primary school. Moreover, a positive association between early numerical abilities and 

the use of the erroneous one-dimensional strategy could not be replicated with the same 

children who are one year older. It is also worth noting that the reported effect sizes can 

be considered as large (Cohen 1988), suggesting that the differences in correlation were 

substantial and cannot merely be explained by small differences in correlations that 

become significant due to the large number of children participating in the present 

study.  

A possible explanation for the results differing depending on the age of the 

children, might be due to the gradual development of probabilistic reasoning abilities in 

this age range. Following Piaget and Inhelder (1975), children might move through 

different developmental stages that impact their understanding of and approach towards 

probability. Younger children’s reasoning ability is often characterized by the use of 

one-dimensional strategies, which will result in children choosing the set in which the 

number of desired elements is larger, regardless of the number of undesired elements. 

Typically, children using a one-dimensional strategy will succeed when solving 

congruent items, but fail on incongruent items. When children create equal 

probabilities, the use of the one-dimensional strategy will lead them to add the same 

number of desired elements in the incomplete set as present in the complete set. The use 



of these one-dimensional strategies decreases with age and makes way for more 

“advanced” two-dimensional strategies (the incorrect “difference” strategy and the 

correct “ratio” strategy) as children move to the next developmental phase. Perhaps 

early numerical abilities are associated with how easily children move through the 

different developmental stages: first realizing the importance of the nominator, then 

realizing the importance of the nominator and denominator, and finally integrating both 

elements in the correct way to make probabilistic decisions.  

The findings of the present study have to be interpreted with caution and cannot 

be generalized to probabilistic reasoning ability overall. The development of 

probabilistic reasoning abilities requires more than just the shift from one to two-

dimensional thinking in probabilistic situations that are similar to those in the present 

study. Perhaps, numerical abilities relate differently to other aspects of probabilistic 

reasoning. On the one hand, some probabilistic reasoning abilities might be even more 

reliant on early numerical abilities than the probabilistic reasoning abilities that were 

investigated in the present study (e.g., calculating probabilities, determining the sample 

space). On the other hand, some probabilistic reasoning abilities might be unrelated to 

numerical abilities. For example, it might be interesting to investigate whether we 

use/need/profit from our numerical abilities for the understanding of the independence 

between events in random situations?  

The present study was among the first to investigate associations between early 

numerical abilities and later probabilistic reasoning abilities and contributed to existing 

literature on children’s development of probabilistic reasoning abilities and on the 

predictive role of early numerical abilities in several ways. First, many studies 

investigating the predictive role of early numerical abilities for later mathematical 

achievement considered just one time-point to assess later mathematical achievement. 



However, the current findings seem to suggest that results might depend on the moment 

of testing. It is possible that associations might be absent in the short-term, but appear in 

the long-term. Second, the current study supported the idea that probability is a complex 

concept and that findings about children’s probabilistic reasoning abilities are highly 

dependent on the task at hand (e.g., comparing probabilities vs. creating probabilities) 

or the composition of items within a task (Bryant & Nunes, 2012; Falk et al., 2012; Falk 

& Wilkening, 1998). For example, the present results showed that the association 

between early numerical abilities and the ability to compare probabilities differs 

depending on the type of item considered (congruent vs. incongruent). Ruggeri et al. 

(2018) found positive correlations between children’s performance on the Panamath test 

or on a dot enumeration tasks and their overall score on a binary choice task containing 

75% congruent trials and 25% incongruent trials. Results of the present study suggested 

that conclusions of Ruggeri et al. (2018) might have differed if congruent and 

incongruent trials were considered separately. Third, the present study was one of the 

few studies that investigates the difference between the ability to compare probabilities 

and the ability to distinguish a certain from an uncertain event. One could expect that 

numerical ability in counting or arithmetic is less relevant to distinguish certainty from 

uncertainty than it is for comparing two probabilities. However, our findings suggested 

that early numerical ability relates similarly to performance on items assessing the 

ability to distinguish certainty as to performance on incongruent items. Perhaps, 

between the third grade of preschool and the first grade of primary school, children 

realize that undesired elements matter when determining the probability of blindly 

grabbing a desired element. They might start to count the number of undesired elements 

and also note when none are present, which has implications for the certainty of an 

event. In other words, starting to recognize certainty and uncertainty in specific 



situations might be the first indication of children shifting from one- to two-dimensional 

thinking. Moreover, this recognition could predict a rapid growth for performance on 

incongruent items: It might be harder to count the number of undesired elements and 

integrate them in the correct proportional strategy when both sets contain undesired 

elements than to note that no undesired elements are present in one of the sets.  

Building on our results and interpretation, several limitations of the present 

study and avenues for future research exist. First, the findings of the current study gave 

rise to important questions concerning the role of formal education. As mentioned in the 

introduction, an overemphasis on deterministic thinking in instruction in school was 

suggested by several authors (Falk et al., 2012; Fischbein, 1975; Meletiou-Mavrotheris, 

2007;  Stohl, 2005). Although we mentioned the role of instruction earlier on, we were 

unable to capture the extent to which the children’s school curriculum had a 

deterministic focus. No guidelines exist on how to categorize a curriculum as more or 

less deterministic. In addition, even if such guidelines existed, we would have also 

needed to take into account the degree to which the teacher tolerated and understood 

uncertainty as this might affect the actual instruction of the curriculum that children 

receive. In short, the present study did not allow us to draw conclusions about the 

possible effect of a deterministic focus in instruction on the development of 

probabilistic reasoning. To better understand the effect of a deterministic emphasis in 

instruction on probabilistic reasoning,  an intervention aiming to stimulate probabilistic 

reasoning should be conducted, comparing children that were exposed to a curriculum 

with a strong deterministic emphasis to children who received a less “deterministic 

curriculum”. However, this brings us back to the question: “when can we speak of a 

deterministic curriculum?”.  



Nonetheless, the current findings did suggest something about the role of 

instruction. The findings showed that the emergence of an association between early 

numerical abilities and attending to the denominator in probabilistic situations, 

coincides with children’s transition to more formal arithmetic education. One can 

wonder whether this finding is a coincidence? Would the same relation between early 

numerical abilities and probabilistic reasoning abilities be found in countries and 

cultures where formal education starts earlier, later, or not at all? The effect of formal 

education could be explored in future studies by comparing the relationship between 

early numerical abilities and later probabilistic reasoning abilities between the oldest 

children at the end of the third grade of preschool and youngest children at the end of 

the first grade of primary school. While these preschoolers and first graders in the 

current study were close in age, only the first graders had experience with formal 

education.  

Second, the current findings also suggested that children are able to make sense 

of probabilistic situations from a very young age. Although some aspects of 

probabilistic reasoning (e.g., creating equal probabilities) are still complex for first 

graders, results suggested that most of the first graders possess the ability to 

successfully compare probabilities. These findings suggested that some aspects of 

probability might already be manageable for students in the lower primary grades. This 

challenges the possible argument of the complexity of probability that might be used by 

curriculum designers to exclude probability in younger grades (Langrall, 2018). Future 

intervention studies could investigate whether it is possible to build on children’s prior 

knowledge about probability before instruction and whether numerical abilities play a 

role in strengthening the concept of probability. Future studies could also look into the 



association between early numerical and later probabilistic reasoning abilities in older 

children after they received instruction in probabilistic reasoning.  

Third, although the present study did include several probabilistic reasoning 

abilities, it was impossible to cover all aspects of probabilistic reasoning abilities. It has 

been argued that formal education, which is often deterministic in nature, might impede 

children’s conceptualization of uncertainty (Fischbein, 1999). However, the present 

study included probabilistic reasoning ability tasks which children might solve correctly 

relying solely on their proportional reasoning abilities, not taking into account the role 

of uncertainty or the probabilistic context. Future studies could investigate whether 

early numerical abilities also predict children’s ability to handle situations which require 

an understanding of uncertainty and randomness, for example, understanding the 

independence between repeated die rolls. To understand the role of context, future 

studies could also investigate whether early numerical abilities predict children’s ability 

differently in proportional comparison situations compared to probabilistic comparison 

situations. Moreover, it might be possible to enrich the probabilistic reasoning tasks that 

were included in the present study to allow for a better understanding of the 

development of two-dimensional thinking. For example, as suggested above, suddenly 

succeeding on the certainty-uncertainty items might indicate a shift of one- to two-

dimensional thinking. This hypothesis might be further investigated by exploring 

children’s reaction to binary choice items in which a successful draw is certain for both 

sets (i.e., none of the two sets contain undesired elements). It can be expected that two-

dimensional thinkers would show hesitation or even refuse to express a choice for one 

of two sets in such a situation, while one dimensional thinkers might easily decide on 

one set. Additionally, it might be interesting to include binary choice items with two 

uncertain sets that have equal probabilities of a successful draw and to investigate 



performance on these items in relation to numerical abilities. We might observe two 

groups of two-dimensional thinkers. A first group of two-dimensional thinkers might be 

able to recognize certainty and hesitate when two certain sets are presented, but still 

choose one set in situations where the probabilities of two uncertain events are equal. 

For these children the calculations needed to compare probabilities might still be too 

complex, which might also be related to poor proportional reasoning abilities or 

fractional knowledge. A second group of two-dimensional thinkers might be able to 

recognize certainty and to perform the correct calculation to incorporate the number of 

desired and undesired elements in the correct proportional strategy. These children 

might hesitate in choosing a set when two certain sets are presented and also hesitate 

when two uncertain sets with equal probabilities are presented.  

Fourth, future studies could differentiate between specific skills within 

numerical abilities. The numerical abilities measure in the present study was not 

conceived and designed for a systematic and deep analysis of specific associations 

between different numerical abilities and probabilistic reasoning abilities. The 

numerical tasks that make up the early numerical measure in the present study are 

intended to be an overall indicator of children’s general early numerical abilities. As 

this is one of the first studies exploring the relationship between early numerical 

abilities and probabilistic reasoning abilities, it seemed more appropriate to first look 

into children’s general numerical skills. However, research has shown that some early 

numerical abilities are more important for later mathematical achievement than others 

(e.g., Bartelet et al., 2014). Future studies could investigate if such findings can be 

replicated for the probabilistic reasoning abilities investigated in the present study as 

well as other probabilistic reasoning abilities. From a theoretical viewpoint, it is 

possible to generate a range of hypotheses. For example, that the absolute number 



heuristic leads to high scores on congruent probabilistic comparison trials and low 

scores on incongruent probabilistic comparison trials. It is conceivable that the 

occurrence of this heuristic is related to young children’s non-symbolic number 

comparison abilities. Likewise, it is conceivable that, for example, number order 

abilities do not explain individual differences related to the absolute number heuristic. 

Also, as two-dimensional thinking in probabilistic reasoning is related to taking into 

account two dimensions (the number of undesired and desired elements), it might be 

possible that performance on probabilistic tasks is better predicted by numerical tasks 

that require calculation (e.g., arithmetic problems) in which several terms have to be 

taken into account. Likewise, one-dimensional thinking in probability might be 

predicted by children’s performance on tasks that require attention to just on term (e.g., 

counting task, (non-)symbolic number recognition tasks). Moreover, future studies 

could also aspire to isolate the effect of age/grade from the ability factor by including 

additional time points regarding numerical abilities. For example, one could compare 

the probabilistic reasoning abilities of “higher achievers” on a (specific) numerical 

abilities (sub)task in the second grade of preschool, with children who are one year 

older and were originally “lower achievers” in the second grade of preschool but 

become as good as “the higher achievers” one year later. This could lead to additional 

important insights regarding the role of numerical ability for probabilistic reasoning 

independent of age/grade.   

Fifth, whereas the present study suggested that relations between early 

numerical abilities and probabilistic reasoning abilities exist, intervention studies are 

needed to gain a deeper understanding of the direction of these relations. The growth in 

both early numerical abilities and probabilistic reasoning abilities can be compared 



between different groups receiving business as usual or interventions that aim to 

stimulate (specific) numerical abilities and probabilistic reasoning abilities.   

Conclusion 

There is an emphasis on the stimulation of early numerical abilities in preschool 

to prepare children for formal mathematical education in primary school. The present 

study showed that early numerical abilities of children are also related to children’s 

ability to recognize (un)certainty, compare probabilities, and create equal probabilities. 

Initially, these numerical abilities predicted the use of incorrect strategies (i.e. a one-

dimensional focus on favourable outcomes), but importantly, they also predicted the use 

of correct strategies one year later. In sum, the present study suggested that children’s 

early numerical abilities are related to their later probabilistic reasoning abilities, which 

supported Fischbein’s (1999) ideas about the role of prior knowledge.   
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Table 1.  

Items of the Comparison Task With Composition of Berries. 

ItemID Item 

Congruent 1 (35:30)>(25:35) 

Congruent 2 (5:6)>(3:7) 

Congruent 3 (40:5:15)>(30:10:15) 

Congruent 4 (6:3:4)>(3:4:4) 

Congruent 5 (7:4)>(5:5) 

Congruent 6 (35:25)>(30:35) 

Congruent 7 (35:15)>(30:25) 

Congruent 8 (5:5:1)>(4:4:4) 

Congruent 9 (5:5)>(4:7) 

Congruent 10 (3:5)>(2:8) 

Congruent 11 (30:10:15)>(10:10:5) 

Congruent 12 (3:4)>(1:3) 

Congruent 13 (8:1:2)>(3:1:1) 

Congruent 14 (25:35)>(10:25) 

Congruent 15 (4:4)>(2:3) 

Congruent 16 (30:15:30)>(5:5:5) 

Congruent 17 (4:7)>(1:3) 

Congruent 18 (5:4:4)>(1:2:1) 

Congruent 19 (5:9)>(1:4) 

Congruent 20 (20:45)>(5:25) 

Incongruent 1 (15:5)>(20:45) 

Incongruent 2 (15:5:5)>(20:25:20) 

Incongruent 3 (3:2)>(4:4) 

Incongruent 4 (10:10:5)>(15:20:25) 

Incongruent 5 (5:1)>(6:5) 

Incongruent 6 (3:1)>(4:3:1) 

Incongruent 7 (15:5)>(35:20) 

Incongruent 8 (4:1)>(8:2:2) 

Incongruent 9 (5:1)>(9:4) 

Incongruent 10 (20:5)>(45:25) 

Incongruent 11 (3:1)>(8:3:2) 

Incongruent 12 (15:5)>(45:15:15) 

Certain 1 (2:0)>(5:2) 

Certain 2 (3:0)>(7:2:1) 

Certain 3 (1:0)>(8:2) 

Certain 4 (25:0)>(35:5) 

Certain 5 (10:0)>(45:10:5) 

Certain 6 (5:0)>(2:3) 

Certain 7 (15:0)>(5:1) 

Note. Every item is described by the numerical composition of berries within each box. The numbers 
between the first brackets indicate the correct box, or in other words the box with the greater probability 
for a desired black berry. The second brackets indicate the incorrect box. Within brackets, the first 
number indicates the count of desired black berries, the second number indicates the count of undesired 
white berries and if applicable, the third number indicates the count of undesired green berries. 



 

Table 2.  

Design of the Task on Creating Equal Probabilities. 

 Berries within each box The number of black berries that would be 

added to the incomplete box as predicted by 

rule 

 Complete Incomplete 

Item White Black White Correct OD DIFF 

1 2 1 4 2 1 3 

2 3 2 6 4 2 5 

3 3 1 6 2 1 4 

4 2 6 1 3 6 5 

5 4 2 6 3 2 4 

6 2 3 4 6 3 5 

7 1 2 2 4 2 3 

8 1 3 2 6 3 4 

9 1 2 3 6 2 4 

 



Table 3.  

Descriptive Statistics for Age, Composite Scores of Numerical Ability and Accuracy 

Scores on Probabilistic Reasoning Abilities as well as the Use of the One-Dimensional 

(OD) and Difference (DIF) Rule When Creating Equal Probabilities. 

Measure M SD Range 

Age in months T1 58.13 3.42 51 – 64  

Numerical ability T1 0.44 5.39 -11.86 – 14.99  

Comparing probabilities in certain items T2 .47 .38 .00 – 1  

Comparing probabilities in congruent items T2 .75 .22 .17 – 1 

Comparing probabilities in incongruent items T2 .38 .34 .00 – 1 

Use of correct rule T2 .04 .09 .00 – .44 

Use of OD rule T2 .55 .43 .00 – 1  

Use of DIF rule T2 .04 .09 .00 – .78 

Comparing probabilities in certain items T3 .82 .23 .00 – 1 

Comparing probabilities in congruent items T3 .80 .15 .15 – 1 

Comparing probabilities in incongruent items T3 .64 .31 .00 – 1 

Use of correct rule T3 .08 .13 .00 – .78 

Use of OD rule T3 .61 .41 .00 – 1  

Use of DIF rule T3 .11 .18 .00 – .89 

Note. Values of the probabilistic reasoning parameters are reported in percentages. Depending on the 
variable in question, a value of 1 indicates that the child gave the correct answers or answers 
corresponding to a certain rule on all items.  
 

  



Table 4.  

Frequency Distributions of the Total Accuracies in Percentages on Items Assessing 

Children’s Ability to 1) Distinguish Certain From Uncertain Events, 2) Compare 

Probabilities in Congruent Items, 3) Compare Probabilities in Incongruent Items, 4) 

Create Equal Probabilities Assessed in the Spring of Their Third Grade in Preschool 

(T2) and First Grade in Primary School (T3). 

Frequency 
Distribution of 
Accuracy 
Scores on  

T2 T3 

Certain items 

  

Congruent 
items 

  

Incongruent 
items 

  



Creating equal 
probabilities 

  

  



Table 5.  

Partial Correlations Between the Composite Scores on Numerical Abilities in the 

Second Grade of Preschool and Performances on the Probabilistic Reasoning Ability 

Measures in the Third Grade of Preschool (Below Diagonal) and the First Grade of 

Primary School (Above the Diagonal) While Controlling for Age. 

  Binary choice task Creating equal probabilities 

 Numerical 

ability 

Certain 

items 

Congruent 

items   

Incongruent  

items 

Correct rule OD rule DIF rule 

Numerical ability - .19***a .15**a .17***a .16**a -.084 .23***a 

Certain items -.05 - -.28*** .81*** .21*** -.19*** .18*** 

Congruent items   .26***a -.59*** - -.37*** .04 .03 .06 

Incongruent items -.05 .83*** -.63*** - .26*** -.30*** .25*** 

Correct rule .02 .05 -.02 .04 - -.60*** .36*** 

OD rule .29***a -.13* .14** -.13* -.35*** - -.71*** 

DIF rule .06 .14* -.05 .16** .33*** -.34*** - 

Note. OD rule refers to the use of an erroneous strategy to create equal probabilities in which children add 
the same number of black berries in the incomplete set as present in the complete set. The DIF rule refers 
to the erroneous strategy in which children calculate the difference between black and white berries in the 
complete box and add the number of black berries needed to arrive at the same difference in the 
incomplete box. 
* p < .05 
** p < .01 

*** p < .001 
a Significant after application of Bonferroni-Holm correction 
 

  



Table 6. 

T-values for Williams’s Tests for any Pair of Correlations With Early Numerical Ability 

as the Variable in Common. 

r between early 
numerical and 

… 

Performance 
on certain 

items 

Performance 
on 

congruent 
items 

Performance 
on 

incongruent 
items 

Use of 
correct rule 

Use of OD 
rule 

Use of DIF 
rule 

Performance on 
certain items 

- 0.5 0.55 0.48 3.38* -0.57 

Performance on 
congruent items 

-3.24* - -0.28 -0.14 3.17* -1.12 

Performance on 
incongruent 
items 

0.05 3.26* - 0.22 3.01* -0.88 

Use of correct 
rule 

0.86 3.21* -0.054 - 2.56 -1.18 

Use of OD rule -4.3* -0.41 -4.36* -3.17* - -3.22* 
Use of DIF rule  -1.5 2.62 -1.59 -0.68 2.69 - 

Note. T-values for differences in correlations between early numerical ability and each of the probabilistic 
reasoning aspects assessed at T2 are presented below the diagonal. T-values for differences in 
correlations between early numerical ability and each of the probabilistic reasoning aspects assessed at T3 
are presented above the diagonal. 
* Significant after Bonferroni-Holm correction 
 

  



Table 7.  

T-values for Williams’s Tests for Pairs of Correlations Between Early Numerical 

Ability and Eeach of the Probabilistic Reasoning Aspects at T2 or T3. 

r between early 
numerical and 

… 

Performance 
on certain 

items 

Performance 
on 

congruent 
items 

Performance 
on 

incongruent 
items 

Use of 
correct rule 

Use of OD 
rule 

Use of DIF 
rule 

 T3 
T2  -3.95* 1.65 -3.58* -2.06 5.39* -2.53* 

* Significant after Bonferroni-Holm correction 
 

 

 

 

  



Figure 1.  

Example of an Item Setup 

 


