Challenges in Model-Driven Software
Engineering

Ragnhild Van Der Straeten!, Tom Mens?, and Stefan Van Baelen®

1 Software and Systems Engineering Lab, Vrije Universiteit Brussel,
rvdstrae@vub.ac.be
2 Service de Génie Logiciel, Université de Mons-Hainaut,
tom.mens@umh.ac.be
3 DistriNet, Department of Computer Science, K.U.Leuven,
Stefan.VanBaelen@cs.kuleuven.be

Abstract. After more than a decade of research in Model-Driven En-
gineering (MDE), the state-of-the-art and the state-of-the-practice in
MDE has significantly progressed. Therefore, during this workshop we
raised the question of how to proceed next, and we identified a number
of future challenges in the field of MDE. The objective of the workshop
was to provide a forum for discussing the future of MDE research and
practice. Seven presenters shared their vision on the future challenges in
the field of MDE. Four breakout groups discussed scalability, consistency
and co-evolution, formal foundations, and industrial adoption, respect-
ively. These themes were identified as major categories of challenges by
the participants. This report summarises the different presentations, the
MDE challenges identified by the workshop participants, and the discus-
sions of the breakout groups.

1 Introduction

MoDELS’08 is already the eleventh conference on UML, modelling and model-
driven engineering (MDE). After more than a decade, research in MDE has
significantly evolved and improved. Nevertheless, still a lot of fundamental and
practical issues remain. A recent article by France and Rumpe [1] described some
challenges to realise the MDE vision of software development. The existence of
the article and a number of recent events show the real need for a forum to
discuss future challenges in MDE. One such forum was the Dagstuhl Perspect-
ives Workshop 08331 on “Model Engineering of Complex Systems”* which was
organised at Dagstuhl, Germany on August 10-13, 2008.

The MoDELS workshop on “Challenges in Model-Driven Software Engin-
eering” can be considered as a continuation of the discussions held during this
Dagstuhl seminar. More specifically, our workshop addressed the question of how
to proceed next, by identifying the future short-term and long-term challenges
in MDE, and proposing ways to address these challenges. The main objective of
the workshop was to provide a forum for people from academia and industry to:

* http://kathrin.dagstuhl.de/08331/

identify obstacles to MDE research and practice;

— facilitate transfer of research ideas to industry;

— propose “revolutionary” novel ideas;

proclaim important challenges that are either fundamental or pragmatic.

Our initiative was strengthened by the MoDELS’08 panel on the “Past and
Future of MDD” that took place three days after our workshop. Partly based
on questions raised during our workshop, panelists presented their vision of how
MDD technologies and particular aspects of model-driven development research
will evolve over the next 10 or more years.

This report summarises the presentations, the discussions held, and the chal-
lenges identified during the workshop. It can be used as a guide to researchers
in software engineering to help them plan their future research, and to convince
policy makers of the continuing and increasing importance of MDE research.

2 About the Workshop

The event was one of the most successful workshops co-located with MoDELS’08.
There were 66 registered participants coming from 19 different countries, of which
5 non-European ones. From a gender perspective, about 21% of the participants
were female.

In total, we received 15 submissions, of which 11 were accepted. Seven of those
were invited to present their ideas during the workshop. A short abstract of each
presentation is listed below. The articles of the three presentations marked with
(*) are included in this Workshop Reader. For the other articles, as well as for
the accepted submissions that were not presented during the workshop, please
consult the electronic workshop proceedings [2].

Parastoo Mohagheghi (*) MDE Adoption in Industry: Challenges and Suc-
cess Criteria [3]
MDE has been promoted to solve one of the main problems faced by soft-
ware industry today: coping with the complexity of software development by
raising the abstraction level and introducing more automation in the pro-
cess. The promises are many. Among them are: improved software quality
by increased traceability between artifacts, early defect detection, reducing
manual and error-prone work and including knowledge in generators. How-
ever, to be successfully adopted by industry, MDE must be supported by a
rich ecosystem of stable, compatible and standardised tools. It should also
not introduce more complexity than it removes. The presentation reported
on the authors’ experience in adoption of MDE in industrial and research
projects. It also discussed the areas in which MDE has potential for success
and what the key success criteria are.

Dimitrios Kolovos (*) Scalability: The Holy Grail of MDE [4]
Scalability is a desirable property in MDE. The current focus of research in
MDE is on declarative languages for model management, and scalable mech-
anisms for persisting models. The presenter claimed that, instead, modular-
ity and encapsulation in modelling languages should be the main focus. This

claim was justified by demonstrating how those two principles apply to a
related domain, namely code development, where the issue of scalability has
been addressed to a much greater extent than in MDE.

Ernesto Posse A foundation for MDE [5]
MDE is still lacking adoption by developers. To live up to its full potential
MDE must rest on a solid foundation. Therefore, one of the main challenges
facing MDE today is the establishment of such a foundation. In this present-
ation, UML-RT was used as a case study to illustrate what can be achieved,
what is missing and what kind of issues must be addressed by a successful
approach to MDE.

Antonio Vallecillo (*) Behaviour, Time and Viewpoint Consistency: Three
Challenges for MDE [6]
Three problems that MDE should tackle in order to be useful in industrial
environments were outlined in this presentation. Firstly, the specification
of the behavioural semantics of meta-models so that different kinds of ana-
lysis can be conducted, e.g., simulation, validation and model checking. A
second challenge is the support of the notion of time in these behavioural
descriptions, to be able to conduct, e.g., realistic performance and reliability
analysis of industrial systems. As a third challenge, not only the accidental
complexity involved in building software systems needs to be tackled, but
their essential complexity should be addressed too. To achieve this, more ef-
fective use needs to be made of independent but complementary viewpoints
to model large-scale systems, and correspondences between them to reason
about the consistency of the global specifications need to be specified.

Dennis Wagelaar Challenges in bootstrapping a model-driven way of software
development [7]
According to the presenter, current MDE technologies are often demon-
strated using well-known scenarios that consider the MDE infrastructure
to be already in place. If developers need to develop their own infrastructure
because existing tools are insufficient, they will encounter a number of chal-
lenges. Generally, developers cannot just implement all their model trans-
formations and other MDE infrastructure immediately, because it simply
takes too long before they get usable results. An incremental approach to
putting model-driven development into place gives you the necessary “break-
points”, but poses extra challenges with regard to the MDE technologies
used. Some of these challenges are: how to bootstrap a step-wise refinement
chain of model transformations, how to bootstrap the modelling language us-
age, how to fit in round-trip engineering, and what are the useful properties
for a model transformation tool.

Robert Clarisé UML/OCL Verification in Practice [8]
One of the promises of model-driven development is the ability to identify
defects early, at the level of models, which helps to reduce development
costs and improve software quality. However, there is an emerging need for
“lightweight” model verification techniques that are usable in practice, i.e.,
able to find and notify defects in realistic models without requiring a strong
verification background or extensive model annotations. Some promising ap-

proaches revolve around the satisfiability property of a model, i.e., deciding
whether it is possible to create a well-formed instantiation of the model.
Existing solutions in the UML/OCL context were discussed. The presenter
claimed that this problem has not yet been satisfactorily addressed.

Jordi Cabot Improving Requirements Specifications in Model-Driven Develop-
ment Processes [9]
Understanding the organisational context and rationales that lead up to
system requirements helps to analyse the stakeholders’ interests and how
they might be addressed or compromised by the different design alternat-
ives. These aspects are very important for the ongoing success of the system
but are not considered by current MDE methods. The presenter argued for
the necessity of extending existing methods with improved requirement tech-
niques based on goal-oriented techniques for the analysis and specification of
the organisation context, and discussed the benefits and challenges of such
integration.

3 Identified Challenges

During the plenary session that took place after the presentations, all workshop
participants identified some of the major challenges in MDE. Those challenges
are enumerated below. It is important to note that this list is inevitably incom-
plete. Also, the order in which we present the challenges here is of no particular
importance.

Model quality. We need to deal with quality aspects in modelling and model-
driven engineering. This gives rise to a number of open questions:
— How can we define model quality?
— How can we assure, predict, measure, improve, control, manage quality?
— How can we reconcile conflicting quality aspects?
These and many related challenges are very important, and have been dis-
cussed in more detail in the MoDELS’08 workshop on “Quality in Model-
ling”. There is also a recent book that addresses these topics [10].
Run-time models. In model-driven software engineering focus has been primar-
ily on using models at analysis, design, implementation, and deployment
stages of development. The use of models during run-time extends the use
of modelling techniques beyond the design and implementation phases of
development and introduces a number of challenges:
— How can we represent dynamic behaviour?
— What should a run-time model look like? How can we use and maintain
such models at run-time?
— How do they relate to “static” models?
— What are good approaches to follow when developing run-time models?
— What are the differences, advantages and shortcomings of model inter-
pretation, model simulation/execution and code generation techniques?
These and many related challenges have been discussed during the MoD-
ELS’08 workshop on “Models@run.time”.

Requirements modelling. Research related to requirements is underrepresen-
ted in the MDE community. Nevertheless a number of important challenges
remain to be tackled:

— How can we model requirements?

— How can we bridge the gap between informal (textual) requirement spe-
cifications and formal requirement models?

— How can we integrate the activity of requirement specifications into tra-
ditional modelling?

— How can we achieve traceability between requirement specifications and
design models?

Standards and benchmarks. There is a need for standards and benchmarks
to compare different tools and approaches. Benchmarks provide an excellent
resource to measure progress and the significance of a contribution. However,
widely accepted benchmarks do not exist yet. This leads to the following open
questions:

— How to design and develop benchmarks that facilitate comparison between
tools and approaches?

— Which standards are needed to facilitate interoperability between tools?

— How can we obtain and share common data (models, model transform-
ations, case studies)?

Modelling languages. Models cannot be developed without precise modelling
languages. Modelling languages are one of the main themes of the MoDELS
conferences. Although the state of research in modelling languages has sig-
nificantly progressed, a number of open questions remain:

— Which languages, methods, principles and tools are necessary to design
precise meta-models?

— How can we support better modularity in MDE?

— How to describe design pragmatics (as opposed to syntax and semantics)?

— How can we allow for and deal with multi-models and multi-formalism
modelling?

Domain-specific modelling. Domain-specific modelling languages are designed
to provide precise abstractions of domain-specific constructs. Models for
complex systems encompass several domains. Capturing all important as-
pects of such a complex system requires developing multiple models using
different DSMLs and introduces many challenges.

— How to develop and integrate models using different domain-specific
modelling languages?

— What process and which tools should we use to analyse, design, develop,
verify and validate domain-specific models and languages?

— How can we increase reuse across different domain-specific modelling
languages?

— How can we facilitate code generation from domain-specific modelling
languages?

— What is the trade-of between general-purpose modelling languages, tools,
techniques and domain-specific ones? Do we get a higher degree of spe-
cialisation, higher expressiveness, and higher potential for code genera-
tion, model execution and formal reasoning?

Panelists of the MoDELS’08 panel on “Addressing the Challenges of Multi-
Modelling for Domain-Specific Modelling Languages” have commented on
these and related challenges.

Empirical analysis. In the context of MDE, the topic of empirical analysis
raises a number of interesting challenges:

— What are the main obstacles and potential remedies when performing
empirical studies of MDE?

— What are the strengths and weaknesses of evaluating MDE activities,
tools and techniques in laboratory and field settings, as well as industrial
case studies?

— How should we deal with the unavoidable trade-offs between realism and
control?

— How can we obtain adequate estimations for an MDE process and which
measurements are relevant for MDE?

These and related challenges have been addressed and discussed at the MoD-
ELS’08 workshop on “Empirical Studies in Model Driven Engineering”.

Model verification and validation. Asin any software development approach,
verification and validation are essential for MDE. In the context of MDE, it
imposes a number of additional challenges:

— How can we verify, validate, debug, and test the models and the code
generated from those models?

— How can we automatically generate test cases from models?

— How can we provide incremental support for verification and validation?

— How can we deal with partially incomplete and inconsistent models?

— How can we support formal verification of models?

— How can we address validation and verification in a multi-model world?

Process support. Model-driven engineering encompasses many more activities
than merely modelling. One important aspect that is often overlooked by
the scientific community is process support. This gives rise to a number of
essential questions:

— Which processes should be used for MDE?

— How should existing processes embrace MDE?

— How should we teach and educate people in adopting MDE technology?

— How can we incorporate the MDE environment in the MDE process?

Fuzzy modelling. Models are not always complete and sometimes inconsist-
encies need to be tolerated. This gives rise to specific questions like:

— How can we deal with modelling in presence of uncertainty?

— How can we deal with models that are imperfect or ambiguous?

— How can we reason about models that are incomplete or inconsistent?

— How can we cope with imprecision of models?

Industrial adoption. This topic will be discussed in section 4.1.

Formal foundations. This topic will be discussed in section 4.2.

Scaleability issues. This topic will be discussed in section 4.3.

Model consistency and co-evolution. This topic will be discussed in sec-
tion 4.4.

As a general kind of meta-challenge, it was suggested by one of the parti-
cipants that we need to be aware more of relevant past research (possibly in
other software engineering domains), rather than trying to reinvent the wheel.

4 Discussion of Breakout Groups

Because it was not possible to explore all of the above challenges in detail during
the workshop, we decided to break out into 4 different groups, each one focusing
on a particular set of challenges that were considered to be important by the
majority of participants.

4.1 Industrial Adoption

The “engineering” aspect of model-driven engineering implies that research in
MDE is useless without having industrial adoption. The MDE community could
benefit a lot from concrete industrial use cases, both positive and negative ones.

From the positive side, it would be good to learn which companies have suc-
cessfully adopted MDE technology, and what was the reason of this success:
Which tools, techniques and processes have been used, and what was the added
value brought by MDE? Several participants mentioned examples of such suc-
cess stories. For example, in the automotive industry, the use of MDE technology
is standard practice. The same appears to be true for real-time and embedded
systems. Also in the area of web application development there are various ap-
proaches that support MDE (e.g., AndroMDA). Finally, there were examples of
the use of MDE in the telecommunications and insurance domains.

The opposite question was also discussed. Can we find failures of the use of
MDE in industry, and the reasons underlying these failures? Similarly, can we
find reasons why some software companies are not using MDE? Some interesting
points were raised when discussing about these questions. First of all, there is
a significant technological threshold and learning curve before you can actually
use MDE in industry. Therefore, using MDE technology may not be cost effect-
ive for many industrial application scenarios. The argument was also made that,
although some companies do not use MDE, they do use models for communica-
tion. Finally, while some companies may be interested in using MDE technology,
it may not be possible if they still have a large legacy code base available that
has been around for decades, and has been developed in “old” technology (e.g,
COBOL code) that may be too costly or too hard to migrate.

One thing that appeared to be common to all discussed industrial use cases
was the use of domain-specific modelling languages. This seems to indicate that
MDE works well for specific problems in specific domains, and that the use of
a universal modelling language (e.g., UML) may possibly not work well in an
industrial setting.

We also discussed how MDE can bring value to industry. In some of the
industrial cases discussed, MDE was used because of its ability to formally specify
and analyse (part of) the system. This leads to a reduction in ambiguity and
improved quality. Other potential advantages are cost reduction, productivity
improvement, easier maintenance, and detection of problems and inconsistencies
in the software system early in the life cycle. Of course, it is essential to keep in
mind that any of these potential advantages should not be detrimental to the
performance of the software system to be produced.

The main issue with the above is that we need to convince industry that there
is actually added value of MDE, and we should come up with a deployment
model to enable the adoption of MDE technology in industry. The only way
this can be done is by performing convincing empirical case studies of the use
of MDE in industry. Obviously, to be able to perform such studies, we need
to be able to obtain detailed data about MDE practice from industry itself.
In practice, it turns out to be very difficult to obtain industrial data, and to
transfer technology and research results from academia to industry. Participants
of the breakout group basically agreed that the only viable way to achieve this
is by direct contact between the research community and industry. One way
to establish such contact is via exchange programmes in which PhD students
spend a couple of months in a company to understand the process used and the
particular activities that are amenable to automation via MDE technology, as
well as to raise awareness of industry in the benefits of MDE. Other possibilities
are the use of dedicated industrial education and training programmes.

4.2 Formal Foundation

Verification and validation is an important research theme in the MDE com-
munity. To be able to verify and validate models and model transformations, a
formal foundation is a necessity. The first challenge identified by the participants
of this breakout group was to integrate formal verification tools into modelling
environments. This needs to be done in such a way that the user of the model-
ling environment does not need to have expertise in the different formalisms and
techniques used for verification. The feedback of these verification tools needs to
be formulated in a language or formalism that the end user of the environment
is familiar with.

To realise this smooth integration, the participants of the breakout group
agreed that transformations from modelling languages to formal verification and
analysis models need to be defined. The definition of transformations triggers
several interesting challenges. How to define such transformations? How to prove
correctness of model transformations, especially if the source models are in-
formal? And how to proof that the transformation is correct? It is possible that
the transformation of an informal model to a formal model is correct by con-
struction, since the main goal of such semantic mapping is to define a precise
semantic meaning for the concepts of the informal model. All participants of
the breakout group agreed that first of all the notion of correctness needs to
be defined, because many variations of correctness definitions exist in state-of-
the-art literature. Once models are transformed into a certain formalism and
verification of properties has been executed in this formalism, feedback needs to
be given to the end user and incorporated into the source model. The question
arises on how to reinterpret these results in the source models and tools.

There is a lot of existing work on using formalisms to support model-driven
engineering. Examples are graph transformation theory, algebraic specifications,
model checking, logic-based approaches and SAT solvers, and category theory.

In the programming language area, operational, denotational and axiomatic se-
mantics exist. These different approaches are useful for investigating different
kinds of properties. The participants also recognised that different semantics and
formalisms may be necessary at different phases in the development life cycle,
and at at different levels of abstraction, since a single formalism may not fit all
the models describing various aspects of a complex system. This gives rise to an
interesting challenge: how to relate these levels and how to define the relation-
ships between them. The participants posed the question whether it is necessary
to define relations between the different formalisms. As a complex system is
gradually being modelled using a multitude of often large models, and regularly
extended and adapted, incremental verification and validation and scalability of
the verification and validation tools become key challenges for MDE.

Precisely defining domain-specific modelling languages was another discus-
sion topic. This raises the question how to help developers design good modelling
languages that guarantee useful properties to the users of these languages. Re-
usability was recognised as a key issue in modelling language design. In analogy
with design patterns, the participants propose to identify and define patterns
and anti-patterns for designing modelling languages. The main challenge that
was identified is to define domain-specific modelling languages that enable and
enforce model correctness by construction.

All participants agreed that, despite the multitude of existing formalisms and
experiments to use them in MDE, a lot of research still needs to be done. This is
especially true for tool support for verification and validation, as well as support
for defining well-designed modelling languages. A goal-driven approach for MDE
was suggested, by focusing on the question of what needs to be the added value
of the languages, techniques, and tools?

4.3 Scaleability

Scaleability is a general problem in software engineering. Many software engin-
eering research areas are struggling to cope with scaleability issues, and a large
research effort has already been spent to develop solutions for overcoming scale-
ability problems. The MDE community must therefore focus on (1) the kind of
scalability issues that are intrinsic for MDE; (2) elements about MDE do not
scale well and the underlying reasons thereof; and (3) specific scalability prob-
lems for MDE that cannot be addressed by existing solutions from other software
engineering domains.

Concerning the intrinsic type of scalability needed for MDE, one of the main
problems is that MDE has to be able to cope with very large models in order
to model systems of systems and Ultra-Large-Scale (ULS) systems. These mod-
els have to be constructed, transformed, merged, and used as a base for code
generation. So one could try to develop solutions for optimising these activities
in order to use them adequately on large models. However, often solutions for
one type of activity can be rather different than those necessary for other types
of activities. The question arises whether generic optimisation solutions can be
developed for MDE activities. In addition, one must be aware that the time to

load huge models is often greater than the time needed for checking, merging or
transforming such models.

Elements that can cause scalability problems in an MDE approach are, among
others, multi-site collaborative development, complexity of algorithms manipu-
lating models, computer resources needed to manage huge models, and technical
limitations of the used notations and tools (concerning support for modularity,
concurrent access, distribution, etc.). In addition, the accidental complexity of
underlying MDE technology should be reduced.

Mechanisms and techniques from other software engineering domains could
be useful for solving MDE scaleability issues. From the programming com-
munity, techniques such as modular engineering principles, incremental pro-
cessing, caches, and indices could be beneficial for MDE. Further solutions can
come from logic inference engines for model checking, and high performance
computing for optimisation techniques. The participants assessed that there are
known solutions to all the problems they thought of, however, the issue is to
generalise them for MDE. In addition, the design of modelling languages seems
not always to respect known scaling problems in concrete languages.

4.4 Model Evolution and Inconsistency Management

Models do not appear after a big bang, but are often developed by different per-
sons in a distributed setting using different modelling languages. Such multi-user
distributed setting, combined with the usage of different modelling languages to
model a system, can cause inconsistencies in and between models. Models evolve
and so do their meta-models. The major challenge is to assess the impact of
change of a model or meta-model on the other models and meta-models. The
challenge increases if models are distributed. The participants of this breakout
group propose — as a small step towards a solution — to categorise the different
change types and the possible ways to resolve the inconsistencies introduced by
the changes.

Models are built using a variety of domain-specific modelling languages. The
question arises how to develop DSMLs can be efficiently extended, adapted or
customised. The term efficiency is strongly related to traditional quality meas-
ures. More effort should go to a DSML process. One possible solution would be
to have rapid prototyping for building DSMLs. Prototyping has the advantage of
giving continuous, incremental feedback. In the context of evolution the question
arises how a DSML evolves from version n — 1 to version n and what happens
with the existing models adhering to the DSML version n — 17

Other challenges that were identified are: how to deal with long-lived models
and legacy models? How to maintain models? How to avoid model erosion? How
to support long-lived software intensive systems that have been generated using
MDE? The participants stated that more effort should go to a model-driven
development process.

Once inconsistencies are identified in or between models, the question arises
how to deal with these inconsistencies. Model-driven development environments
need built-in support for inconsistency handling and resolution. Built-in support

for inconsistency detection and handling is also needed in versioning tools. In a
model-driven software development process, handling inconsistencies at model
level will also affect the (generated) code. As such, an important research ques-
tion is how to support model-code synchronisation and round-trip engineering.

Formalisms and techniques to detect, handle and resolve inconsistencies can
be based on formal verification techniques used in other software engineering
domains such as programming language engineering, but also on formalisms and
techniques used in database engineering and artificial intelligence.

The participants also discussed the question how collaboration in this field
can be improved. They suggest two possible approaches. First, the development
of an ontology for the consistency/evolution area, and second, a survey that
unifies the different existing perspectives.

5 Past and Future of MDD

As one of the outcomes of the workshop, besides the current workshop report,
each breakout group prepared a single question that was passed to the panelists
of the MoDELS’08 panel on the “Past and Future of MDD”. These questions
were:

— How can we better understand the software process and activities that com-
panies use and improve them with MDE technology?

— Can incremental model verification and model checking contribute to suc-
cessful adoption of MDE?

— Are there scalability problems that are specific to MDE, and how can we
address them?

— How can we deal with co-evolution of models, meta-models and transform-
ations in a distributed multi-developer environment?

6 Conclusions

During the workshop, a large number of challenges for MDE have been iden-
tified, covering a broad range of topics that are important for the successful
application of MDE in practice. The organisers hope that the workshop results
help to identify an MDE research agenda, to define the roadmap for future MDE
research, and to inspire researchers for tackling important problems and develop
novel and adequate solutions.

Acknowledgements

This workshop was organised in the context of three research projects:

— the research project “Modelling, Verification and Evolution of Software (MoVES)”,
an TAP-Phase VI Interuniversity Attraction Poles Programme funded by the
Belgian State, Belgian Science Policy, http://moves.vub.ac.be

— the research project “Model-Driven Software Evolution”, an Action de Recher-
che Concertée financed by the Ministere de la Communauté francaise - Dir-
ection générale de I'Enseignement non obligatoire et de la Recherche scien-
tifique.

— the EUREKA-ITEA2 research project “Evolutionary Validation, Verification
and Certification (EVOLVE)”, partially funded by the Flemish government
institution IWT (Institute for the Promotion of Innovation by Science and
Technology in Flanders), http://www.evolve-itea.org

We thank all workshop participants for the lively discussions and the useful
feedback we received. We thank the workshop programme committee members
for their helpful reviews: Jean Bézivin, Xavier Blanc, Dirk Deridder, Gregor
Engels, Vincent Englebert, Robert France, Dragan Gasevic, Sébastien Gérard,
Wouter Joosen, Anneke Kleppe, Jochen Kiister, Richard Paige, Ivan Porres,
Laurent Rioux, Bernhard Rumpe, and Hans Vangheluwe.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: FOSE ’07: 2007 Future of Software Engineering, Washington, DC,
USA, IEEE Computer Society (2007) 37-54

2. Van Baelen, S., Van Der Straeten, R., Mens, T., eds.: ChaMDE 2008 Workshop
Proceedings: International Workshop on Challenges in Model-Driven Software En-
gineering. VUB, UMH, K.U.Leuven (2008)

3. Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., Giliani, W.: MDE ad-
option in industry: Challenges and success criteria. In: ChaMDE 2008 Workshop
Proceedings: International Workshop on Challenges in Model-Driven Software En-
gineering. (2008) 5-9

4. Kolovos, D.S., Paige, R.F., Polack, F.A.: Scalability: The holy grail of model driven
engineering. In: ChaMDE 2008 Workshop Proceedings: International Workshop on
Challenges in Model-Driven Software Engineering. (2008) 10-14

5. Posse, E., Dingel, J.: A foundation for MDE. In: ChaMDE 2008 Workshop Proceed-
ings: International Workshop on Challenges in Model-Driven Software Engineering.
(2008) 15-19

6. Rivera, J.E., Romero, J.R., Vallecillo, A.: Behavior, time and viewpoint consist-
ency: Three challenges for MDE. In: ChaMDE 2008 Workshop Proceedings: Inter-
national Workshop on Challenges in Model-Driven Software Engineering. (2008)
2024

7. Wagelaar, D.: Challenges in bootstrapping a model-driven way of software devel-
opment. In: ChaMDE 2008 Workshop Proceedings: International Workshop on
Challenges in Model-Driven Software Engineering. (2008) 25-30

8. Cabot, J., Claris6, R.: Uml/ocl verification in practice. In: ChaMDE 2008 Work-
shop Proceedings: International Workshop on Challenges in Model-Driven Software
Engineering. (2008) 31-35

9. Cabot, J., Yu, E.: Improving requirements specifications in model-driven develop-
ment processes. In: ChaMDE 2008 Workshop Proceedings: International Workshop
on Challenges in Model-Driven Software Engineering. (2008) 36-40

10. Rech, J., Bunse, C., eds.: Model-Driven Software Development: Integrating Quality
Assurance. Information Science Reference (2008)

MDE Adoption in Industry: Challenges and Success
Criteria

Parastoo Mohagheghi', Miguel A. Fernandez?, Juan A. Martell?,
Mathias Fritzsche® and Wasif Gilani®

L SINTEF, P.O.Box 124-Blindern, N-0314 Oslo, Norway
parastoo.mohagheghi@sintef .no
2 Telefonica Research & Development, Valladolid, Spain
mafgetid.es, jamartellegfi-info.com
3 SAP Research CEC Belfast, United Kingdom
{mathias.fritzsche, wasif.gilani}@sap.com

Abstract. Model-Driven Engineering has been promoted for some time as the
solution for the main problem software industry is facing, i.e. complexity of
software development, by raising the abstraction level and introducing more
automation in the process. The promises are many; among them improved
software quality by increased traceability between artifacts, early defect
detection, reducing manual and error-prone work and including knowledge in
generators. However, in our opinion MDE is still in the early adoption phase
and to be successfully adopted by industry, it must prove its superiority over
other development paradigms and be supported by a rich ecosystem of stable,
compatible and standardized tools. It should also not introduce more
complexity than it removes. The subject of this paper is the challenges in MDE
adoption from our experience of using MDE in real and research projects,
where MDE has potential for success and what the key success criteria are.

Keywords: Model-driven engineering, challenges, domain-specific modeling,
performance engineering, traceability.

1 Introduction

Today’s software systems are complex in nature; the size has been growing because
of the increased functionality, heterogeneity is also becoming a bigger concern as
systems are built from several systems or include legacy code, systems are distributed
over multiple sites and there are new requirements such as dynamicity and autonomy
(self-* properties, for example self-healing). Handling each of these challenges
requires specific approaches which often include domain-specific knowledge and
solutions. However, based on the experience gained from multiple domains and
projects, some solutions may be identified as beneficial to complex software
development in general.

Model-Driven Engineering (MDE) is an approach built upon many of the
successful techniques applied in software engineering: It can be characterized by: a)
raising the abstraction level by hiding platform-specific details ; b) taking advantage

of models in all the phases of software development to improve understanding; c)
developing domain-specific languages and frameworks to achieve domain
appropriateness; and d) taking advantage of transformations to automate repetitive
work and improve software quality [6]. These are all techniques useful for complex
system development and therefore one may expect rapid adoption of the paradigm by
industry. So far, we cannot see such wide adoption, as also confirmed by a review of
industrial experiences presented in [7]. In fact, and based on the model of technology
adoption life cycle presented in [8], we think that MDE is still in the early adoption
stage. Early adopters do not rely on well-established references in making their
buying decisions, preferring instead to rely on their own intuition and vision.
However, they are keys to opening up any high-tech market segment. To be accepted
by the majority, the industry must gain confidence on the promises of MDE and have
access to proper tools and experts.

There are many challenges in complex system development, such as managing
requirements, which MDE is not a direct answer to, but it might facilitate their
handling by providing mechanisms for easy traceability between artifacts. There are
also challenges such as dealing with legacy code that may be difficult to handle and
must be either worked around or, better yet, integrated into the MDE approaches. But
there are challenges that MDE may provide an answer to based on the MDE core
practices (such as extensive modeling and the usage of transformations) as discussed
in [6].

The European research projects MODELWARE! and its continuation
MODELPLEX? have focused on MDE approaches and tools with the goal of making
them suitable for complex system development. Some of the companies involved in
these projects have experience from applying MDE in real projects while others think
that MDE is not yet mature enough to be taken from research projects to industry
production. This paper therefore elaborates on where we can expect added value from
MDE and what the barriers are from experiences gained in the context of these
projects. In the remainder of this paper we discuss industry expectations and
experience in Sections 2 and 3 and conclude our discussion in Section 4.

2 SAP Experience

SAP has already started working towards applying MDE concepts, and currently
employs models in various stages of business application development. The tool
called NetWeaver BPM within the Composition Environment [10] is one example
where MDE concepts are applied for efficient development of Composite
Applications. Composite Applications are self-contained applications that combine
loosely coupled services (including third party services) with their own business
logic, and thereby provide user centric front-end processes that transcend functional
boundaries, and are completely independent from the underlying architecture,
implementation and software lifecycle. With Composition Environment even the non-
technical users, such as business domain experts, consultants, etc., having no

1 http://www.modelware-ist.org/
2 http://www.modelplex-ist.org/

programming skills, are able to model and deploy customized applications suited to
their specific business requirements.

Based on our experience [5] with the currently employed MDE tools for business
processes, such as the Composition Environment, we identified the general need of
supporting non-technical users with regards to non-functional requirements, such as
the impact of their design decisions on performance, etc. Within the context of
performance engineering, for instance, such a support means guidance towards better
design / configuration that actually meets the timelines, and optimized resource
mapping against each activity in the business process.

We implemented such performance related decision support as an extension of
MDE. By implementing this extension, named Model-Driven Performance
Engineering (MDPE), we realized the need for supporting requirements with respect
to non-functional aspects, especially performance. The implementation of MDPE
heavily uses the MDE concepts such as meta-modeling, transformations, model
weaving and mega-modeling. For instance, ten different meta-modeling languages are
employed in order to make the process usable for a number of domain-specific
modeling languages. During the implementation of MDPE, we recognized that the
application of MDE concepts enabled us to focus on the creative tasks of development
rather than repetitive coding. For instance, code generation for our meta-models saved
us significant development effort. The only place where a significant amount of
coding effort was required was for the integration of MDPE into the existing tool
infrastructure.

Meta-model extension is the generally employed technique for model annotations,
such as done with profiles in the case of UML [3]. However, this is not applicable
while dealing with the proprietary models. The application of model weaving enabled
us a high degree of flexibility as we are able to annotate any kind of proprietary
model with the help of a generic editor [3]. Higher-order transformations are used to
enable traceability in our approach [4]. Additionally, mega-modeling enables us to
locate our model artifacts, such as the tracing models related to the models in our
transformation chain [1].

As for the challenges, we experienced that MDE concepts are on the one hand very
systematic and efficient, but on the other hand also difficult to understand for
developers as they require quite a high level of abstraction and training. Also, the
MDE tool support is sometimes not mature enough. Especially the available tooling to
define model transformation chains lacks capabilities of modern IDEs (Integrated
Development Environments), which could decrease the development time for model
transformations significantly.

Concluding, based on the experiences gained with the development of MDPE, we
are optimistic regarding the capabilities of MDE in case the tool support improves,
and the MDE community meets the challenges associated with the MDE process,
such as providing support for dealing with non-functional aspects of system
development.

3 Telefonica Experience

In [2], we have discussed the experience of Telefonica in moving from a code-centric
to a model-centric software development. Earlier efforts in modeling failed due to the
complexity of UML, the lack of proper tools and the inability to maintain models in
synch with code, among other issues. Due to the above problems with UML, we
decided to develop our own programming tools and frameworks addressing the
problem domain. But without any industry standards to rely on, this approach had no
future in the long term and was also difficult to use for non-technical staff, such as
telecom domain experts, as it did not have the required abstraction level.

This was an experience from eight years ago, but not so many things seem to have
fundamentally changed. What we look for is a domain-specific modeling (DSM)
language integrated in a development environment that will permit the modeling of
our basic domain concepts, such as interfaces, devices, networks, protocols and
services. We also emphasize adhering to current industry standards in the domain,
since we now look for a domain-specific solution, not a company-wide solution.
Other requirements are: a) the ability to model in multiple abstraction levels, hiding
details as desired; b) the integration of model verification tools based on OCL or other
constraint languages and c) the composition / weaving of the models at run time to
reflect the changes in the network’s operational status. Some of these approaches are
further discussed in [9].

In the road toward these objectives we foresee numerous challenges. First of all,
the UML standard has evolved but, with this evolution, the syntax has become even
more complex and the necessary supporting mechanisms and tools for dealing with
this added complexity are not yet available. Even something as conceptually simple as
exporting a UML diagram from one tool to another has not been accomplished yet
with ease. On the other hand, developing a DSM solution requires high skills related
to meta-modeling and tool development. Also a big concern with Domain-Specific
Languages (DSLs) is getting the people in that domain to agree upon a standard
syntax. Another challenge is having that DSL interact properly with anything outside
of its domain, having a different underlying syntax to that of other languages.

Model synchronization (for example applying multiple profiles to a source model)
and roundtrip engineering are yet to be addressed successfully and mechanisms for
dealing with very large and complex models, such as hierarchical models, traceability
and model management in general are also in an inception phase right now, at least
regarding to the aspect of tool support. The evolution of meta-models, in a business as
dynamic as ours, is also a big concern and tools have much to improve in order to
adequately manage variability at meta-model level and not only at model level. All
these features are important to make a full-fledged MDE process work in complex,
real-life projects.

Another challenge for organizations wanting to get started in MDE, closely related
with the previous idea of managing all these artifacts, is that they may end up dealing
with more complexity than anticipated at first. From our experience in the field we
have gotten the impression that, if not adequately managed, the development of
complex systems with MDE gets treated with more complexity. The underlying
problem here is: are the techniques for handling complexity in danger of making the
software engineering process itself too complex? To adequately address complexity

we have to substitute it for something simpler not for something different but equally
complex.

It is our opinion also that there are some basic milestones a new technology has to
go through for it to be considered mainstream. To start with, we need a proper context
for it to flourish and be nurtured in. The fabric of this context is made of the proper
professionals with the proper knowledge and expertise and supporting material which
helps in turn to create these professionals. We are seeing shortcomings in this regard
so far. The community is in fact there and growing but perhaps it is not reaching
critical mass yet. We also see a gap between the academic and industrial worlds that
needs to be bridged. In the past, new paradigms have been promoted by well-known
professionals lending credibility and raising interest in the new approach. This has to
be accompanied by the development of high-quality literature, tutorials and proper
material to draw new professionals in.

The main question that an organization has to ask itself is “do I really need MDE?”
The second question relates with its ability to adapt its processes to the ones needed
from an MDE point of view (partially discussed also in [2]), adapt their staff to new
ways of looking at problems and create new layers of software development
supporting all the aspects MDE has to offer. Companies may be reluctant to change
either their structure or part of it.

To conclude, it is worth mentioning that, apart from software factories for product
line engineering (PLE), we have not seen clear evidence of other good candidates for
MDE to be fully applied to, as a complete lifecycle solution. We feel that it can be
partially applied, though, to some other scenarios like large-scale integration of
heterogeneous systems, as it is the case with Telef6nica’s Operating Support Systems
(0SS), area in which we hope to start making some progress in the short term with
Model-Based Testing (MBT).

4 Conclusions

Probably most companies cannot take the risk of adopting MDE end-to-end in large-
scale projects from scratch. They should look for areas of improvement and take the
approach incrementally and integrated with their own development environment. This
is also the best way to train people. There is an initial high cost related to developing
or adopting tools and transformations. MDE is a long-term investment and needs
customization of environment, tools and processes, and training. For companies that
have a product line, MDE can pay off since this cost is amortized over several
projects. For one-of-a-kind projects this will not pay in most cases. Despite
differences in domain and the type of systems developed in the two companies, there
are common challenges as described in this paper. The most important one is the
complexity of developing an MDE environment tailored to the company needs. This
environment requires:

e Developing proper languages for communication between technical and non-
technical experts and for modeling various aspects. One of the successes of MDE
lies in bridging the gap between technical and non-technical experts. The major
challenge here is to have the required language engineering expertise since

creating own profiles or meta-models are difficult and for complex systems we
probably need several languages. Hence more domain-specific meta-models and
profiles are needed that are supported by tools and may be reused. The current
tools for developing meta-models and editors are not user friendly, the learning
curve is steep and the documentation and support is not satisfactory.

Several tools are required for modeling, model-to-model and model-to-text
transformation, verification and simulation, and other tools to store, reuse and
compose models. There is no tool chain at the moment and companies must
integrate several tools and perform adaptation themselves.

Both of the above requirements put a high burden on companies that traditionally

used third-party tools for modeling and performed programming by hand. Training is
another major challenge here. We see advantages in gradual introduction and support
by management, as well as in the creation of teams of experts that can give support
and create the necessary tools for MDE adoption in the whole company.

Acknowledgments. Part of the ideas presented in this paper are based on conclusions
obtained in the MODELPLEX project (IST-FP6-2006 Contract No. 34081), co-
funded by the European Commission as part of the 6™ Framework Program.

References

1.

2.

8.

9.

Barbero, F. Jouault, J. Bezivin: Model Driven Management of Complex Systems:
Implementing the Macroscope's Vision. In: 15" ECBS'08, IEEE Press, pp. 277--286 (2008)
Fernandez, M.: From Code to Models: Past, Present and Future of MDE Adoption in
Telefénica. In: 3 Europen Workshop From Code Centric to Model Centric Software
Engineering: Practices, Implications and Return on Investment (C2M), co-located with
ECMDA 2008, pp. 41—51 (2008)

. Fritzsche M., Johannes J., et al: Systematic Usage of Embedded Modelling Languages in

Model Transformation Chains. Accepted at the Software Language Engineering Conference,
SLE’08 (2008)

. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of

Tracing Techniques in Model-Driven Performance Engineering. In: ECMDA-FA 4"
Workshop on Traceability (2008)

. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I.T.A, Kilpatrick, P., Brown, T.J.: Towards

utilizing Model-Driven Engineering of Composite Applications for Business Performance
Analysis. In: ECMDA-FA, LNCS 5095, pp. 369—380 (2008)

. Mohagheghi, P.: Evaluating Software Development Methodologies based on their Practices

and Promises. In Proc. Somet’08: New Trends in Software Methodologies, Tools and
Techniques, 10S Press, ISSN 0922-6389, pp. 14—35 (2008)

. Mohagheghi, P., Dehlen, V.: Where is the Proof? A Review of Experiences from Applying

MDE in Industry. In ECMDA-FA 2008, LNCS 5095, Springer, pp. 432—443 (2008)
Moore, G.A.: Crossing the chasm: Marketing and Selling High-Tech Products to Mainstream
Customers. HarperBusiness Essentials, 2™ edition (2002)

Pickering B., Fernandez M., Castillo A., Mengusoglu E.: A Domain-Specific Approach for
Autonomic Network Management. In: 3" |EEE MACE Workshop (2008)

10.Snabe, J.H., Rosenber, A., Mgller, C., Scavillo, M.: Business Process Management: The

SAP Roadmap, SAP Press, ISBN 978-1-59229-231-8 (2008)

The Grand Challenge of Scalability
for Model Driven Engineering

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York, UK.
(dkolovos, paige,fiona)@cs.york.ac.uk

Abstract. Scalability is particularly important for the adoption of Model
Driven Engineering (MDE) in an industrial context. The current focus
of research in MDE is on declarative languages for model management,
and scalable mechanisms for persisting models (e.g., using databases).
In this paper we claim that, instead, modularity and encapsulation in
modelling languages should be the main focus. We justify this claim by
demonstrating how these two principles apply to a related domain —
code development — where the issue of scalability has been addressed to
a much greater extent than in MDE.

1 Introduction

The adoption of MDE technologies in an industrial context involves significant
benefits but also substantial risks. Benefits in terms of increased productivity,
quality and reuse are easily foreseeable. On the other hand, the most important
concerns raised of MDE are those of scalability [1], the cost of introducing MDE
technologies to the development process (training, learning curve) and longevity
of MDE tools and languages. To our perception, the latter two concerns (cost of
induction and longevity) are not preventive for the adoption of MDE; however
scalability is what is holding back a number of potential adopters.

2 Scalability in MDE

Large companies typically develop complex systems, which require proportion-
ally large and complex models that form the basis of representation and reason-
ing. Moreover, development is typically carried out in a distributed context and
involves many developers with different roles and responsibilities. In this con-
text, typical exploratory questions from industrial parties interested in adopting
MDE include the following:

1. In our company we have huge models, of the order of tens of thousands of
model elements. Can your tool/language support such models?

2. I would like to use model transformation. However, when I make a small
change in my (huge) source model, it is important that the change is incre-
mentally propagated to the target model; I don’t want the entire target model
to be regenerated every time.

3. (similarly) I would like to use code generation. However, when I make a small
change in my (huge) model I don’t want all the code to be regenerated.

4. In my company we have many developers and each manages only a specific
part of the model. I would like each developer to be able to check out only a
part of the model, edit it locally and then merge the changes into the master
copy. The system should also let the developers know if their changes are in
conflict with the rest of the model or with changes done by other developers.

Instead of attempting to answer such questions directly, we find it useful to
consider analogies with a proven and widely used environment that addresses
those problems in a different — but highly relevant — domain. The domain is code
development and the environment is the well known and widely used Eclipse Java
Development Tools (JDT).

As a brief overview, JDT provide an environment in which developers can
manage huge code-bases consisting of (tens of) thousands of Java source code files
(concern 1). JDT supports incremental consistency checking and compilation
(concerns 2,3) in the sense that when a developer changes the source code of a
particular Java class, only that class and any other classes affected by the change
— as opposed to all the classes in the project or the workspace — are re-validated
and re-compiled. Finally, JDT is orthogonal to version control, collaborative
development (concern 4), and multi-tasking tools such as CVS and SVN and
Mylyn.

3 Managing Volume Increase

As models grow, tools that manage them, such as editors and transformation
engines, must scale proportionally. A common concern often raised is that mod-
elling frameworks such as EMF [2] and widely-used model management lan-
guages do not scale beyond a few tens of thousands of model elements per model.
While this is a valid concern, it is also worth mentioning that the Java compiler
does not allow Java methods the body of which exceed 64 KB, but in the code-
development domain this is rarely a problem.

The reason for this asymmetry in perception is that in code development,
including all the code of an application in a single method/file is considered — at
least — bad practice. By contrast, in modelling it is deemed perfectly reasonable
to store a model that contains thousands of elements in a single file. Also, it
is reasonable that any part of the model can be hard-linked with an ID-based
reference to any other part of the model.

To deal with the growing size of models and their applications, modelling
frameworks such as EMF support lazy loading and there are even approaches,
such as Teneo [3] and CDO [4], for persisting models in databases. Although
useful in practice, such approaches appear to be temporary workarounds that
attempt to compensate for the lack of encapsulation and modularity constructs
in modelling languages. In our view, the issue to be addressed in the long run
is not how to manage large monolithic models but how to separate them into

smaller modular and reusable models according to the well understood principles
defined almost 40 years ago in [5], and similarly to the practices followed in code
development.

4 Incrementality

In the MDE research community, incrementality in model management is sought
mainly by means of purely declarative model transformation approaches [6, 7].
The hypothesis is that a purely declarative transformation can be analysed au-
tomatically to determine the effects of a change in the source model to the
target model. Experience has demonstrated that incremental transformations
are indeed possible but their application is limited to scenarios where the source
and target languages are similar to each other, and the transformation does not
involve complex calculations.

JDT achieves incrementality without using a declarative language for compil-
ing Java source to bytecode; instead it uses Java which is an imperative language.
The reason JDT can achieve incremental transformation lies mainly the design
of Java itself. Unlike the majority of modelling languages, Java has a set of well-
defined modularity and encapsulation rules that, in most cases, prevent changes
from introducing extensive ripple effects.

But how does JDT know what is the scope of each change? The answer is
simple: it is hard-coded (as opposed to being automatically derived by analysing
the transformation). However, due to the modular design of the language, those
cases are relatively few and the benefits delivered justify the choice to hard-code
them. Also it is worth noting that the scope of the effect caused by a change
is not related only to the change and the language but also to the intention of
the transformation. For example, if instead of compiling the Java source code to
bytecode we needed to generate a single HTML page that contained the current
names of all the classes we would unavoidably need to re-visit all the classes (or
use cached values obtained earlier).

5 Collaborative Development

As discussed in Section 2, a requirement for an MDE environment of industrial
strength is to enable collaborative development of models. More specifically, it is
expected that each developer should be able to check out an arbitrary part of the
model, modify it and then commit the changes back to the master copy/reposi-
tory. Again, the formulation of this requirement is driven by the current status
which typically involves constructing and working with large monolithic models.
With enhanced modularity and encapsulation, big models can be separated into
smaller models which can then be managed using robust existing collaborative
development tools such as CVS and SVN, augmented with model-specific version
comparison and merging utilities such as EMF Compare [8]. Given the criticality

of version control systems in the business context, industrial users are partic-
ularly reluctant to switching to a new version control system!. Therefore, our
view is that radically different solutions, such as dedicated model repositories,
that do not build on an existing robust and proven basis are highly unlikely to
be used in practice.

6 Modularity in Modelling Languages

The above clearly demonstrate the importance of modularity and encapsulation
for achieving scalability in MDE. There are two aspects related to modularity
in modelling: the design of the modelling language(s) used and the capabilities
offered by the underlying modelling framework. In this section we briefly discuss
how each of those aspects affect modularity and envision desirable capabilities
of modelling frameworks towards this direction.

6.1 Language Design

With the advent of technologies such as EMF and GMF [9], implementing a new
domain-specific modelling language and supporting graphical and textual editors
is a straightforward process and many individuals and organizations have started
defining custom modelling languages to harvest the advantages of the context-
specific focus of DSLs. When designing a new modelling language, modularity
must be a principal concern. The designers of the language must ensure that
large models captured using the DSL can be separated into smaller models by
providing appropriate model element packaging constructs. Such constructs may
not be part of the domain and therefore they are not easily foreseeable. For
example, when designing a DSL for modelling relational databases, it is quite
common to neglect packaging, because relational databases are typically a flat list
of tables. However, when using the language to design a database with hundreds
of tables, being able to group them in conceptually coherent packages is highly
important to the manageability and understandability of the model.

6.2 Modelling Framework Capabilities

In contemporary modelling frameworks there are three ways to capture rela-
tionships between two elements in a model: containment, hard references and
soft references. Containment is the natural relationship of one element being a
composite part of another, a hard reference is a unique-ID-based reference that
can be resolved automatically by the modelling framework and a soft reference
is a reference that needs an explicit resolution algorithm to navigate [10].

To enable users to split models over multiple physical files, contemporary
modelling frameworks support cross-model containment (i.e. the ability of a

! Evidence of this is that CVS which was introduced in the 1980s is still the most
popular version control system despite its obvious limitations compared to newer
systems such as SVN

model element to contain another despite being stored in different physical files).
With regard to hard and soft non-containment references, hard references are
typically proffered because they can be automatically resolved by the modelling
framework and thus, they enable smooth navigation over the elements of the
model with languages such as OCL and Java. Nevertheless, in our view hard
references are particularly harmful for modularity as they increase coupling be-
tween different parts of the model and prevent users from working independently
on different parts. On the other hand, soft references enable clean separation of
model fragments but require custom resolution algorithms which have to be
implemented from scratch each time.

To address this problem, we envision extensions of contemporary modelling
frameworks that will be able to integrate resolution algorithms so that soft ref-
erences can be used, and the efficient and concise navigation achievable with
languages such as OCL can still be performed.

7 Conclusions

In this paper we have demonstrated the importance of modularity and encapsu-
lation for achieving scalability in MDE. We have identified two main problems:
neglect of modularity constructs during the design of modelling languages and
extensive use of ID-based references that lead to high coupling between differ-
ent parts of the model. With regard to the first issue we have been working on
preparing a set of guidelines for the design of scalable and modular DSLs and
expect to report on this soon. The second issue is quite more complex and we
plan to elaborate and prototype a solution based on EMF and Epsilon [11] in
the near future.

Acknowledgements

The work in this paper was supported by the European Commission via the
MODELPLEX project, co-funded by the European Commission under the “In-
formation Society Technologies” Sixth Framework Programme (2006-2009).

References

1. Jos Warmer, Anneke Kleppe. Building a Flexible Software Factory Using Partial
Domain Specific Models. In Proc. 6th OOPSLA Workshop on Domain-Specific
Modeling, Portland, Oregon, USA, October 2006.

2. Eclipse Foundation. Eclipse Modelling Framework. http://www.eclipse.org/emf.

3. Eclipse Foundation. Teneo, 2008. http://www.eclipse.org/modeling/emft/
7project=teneo.

4. Eclipse Foundation. CDO, 2008. http://www.eclipse.org/modeling /emft/
7project=cdo.

5. David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of ACM, 15(12):1053-1058, 1972.

10.

11.

David Hearnden, Michael Lawley, Kerry Raymond. Incremental Model Trans-
formation for the Evolution of Model-Driven Systems. In Proc. Model Driven
Engineering Languages and Systems, pages 321-335.

Holger Giese, Robert Wagner. From model transformation to incremental bidirec-
tional model synchronization. Software and Systems Modeling, pages 1619-1374,
March 2008.

Eclipse Foundation. EMF Compare, 2008.
http://www.eclipse.org/modeling/emft/ ?project=compare.
Eclipse GMF - Graphical Modeling Framework, Official Web-Site.

http://www.eclipse.org/gmf.

Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack. Detecting and Re-
pairing Inconsistencies Across Heterogeneous Models. In Proc. 1st IEEE Interna-
tional Conference on Software Testing, Verification and Validation, pages 356-364,
Lillehammer, Norway, April 2008.

Extensible Platform for Specification of Integrated Languages for mOdel maNage-
ment (Epsilon). http://www.eclipse.org/gmt /epsilon.

Behavior, Time and Viewpoint Consistency:
Three Challenges for MDE

José Eduardo Rivera!, José Raul Romero?, and Antonio Vallecillo!
'Universidad de Malaga (Spain)
*Universidad de Cérdoba (Spain)
{rivera,av}@lcc.uma.es, jrromero@uco.es

Abstract. Although Model Driven Software Development (MDSD) is
achieving significant progress, it is still far from becoming a real En-
gineering discipline. In fact, many of the difficult problems of the engi-
neering of complex software systems are still unresolved, or simplistically
addressed by many of the current MDSD approaches. In this position pa-
per we outline three of the outstanding problems that we think MDSD
should tackle in order to be useful in industrial environments.

1 Introduction

Although both MDSD and MDA have experienced significant advances during
the past 8 years, some of the key difficult issues still remain unresolved. In fact,
the number of engineering practices and tools that have been developed for the
industrial design, implementation and maintenance of large-scale, enterprise-
wide software systems is still low — i.e. there are very few real Model-Driven
Engineering (MDE) practices and tools. Firstly, many of the MDSD processes,
notations and tools fall apart when dealing with large-scale systems composed of
hundred of thousands of highly interconnected elements; secondly, MDE should
go beyond conceptual modeling and generative programming: it should count
on mature tool-support for automating the design, development and analysis of
systems, as well as on measurable engineering processes and methodologies to
drive the effective use of all these artifacts towards the predictable construc-
tion of software systems. In particular, engineering activities such as simulation,
analysis, validation, quality evaluation, etc., should be fully supported.

We are currently in a situation where the industry is interested in MDE, but
we can easily fail again if we do not deliver (promptly) anything really useful to
them. There are still many challenges ahead, which we should soon address in
order not to lose the current momentum of MDE.

In this position paper we focus on three of these challenges. Firstly, the spec-
ification of the behavioral semantics of metamodels (beyond their basic struc-
ture), so that different kinds of analysis can be conducted, e.g., simulation, val-
idation and model checking. A second challenge is the support of the notion of
time in these behavioral descriptions, another key issue to allow industrial sys-
tems to be realistically simulated and properly analyzed — to be able to conduct,

e.g., performance and reliability analysis. Finally, we need not only to tackle the
accidental complexity involved building software systems, but we should also try
to deal with their essential complexity. In this sense, the effective use of inde-
pendent but complementary viewpoints to model large-scale systems, and the
specification of correspondences between them to reason about the consistency
of the global specifications, is the third of our identified challenges.

2 Adding Behavioral Semantics to DSLs

Domain Specific Languages (DSLs) are usually defined only by their abstract
and concrete syntaxes. The abstract syntax of a DSL is normally specified by
a metamodel, which describes the concepts of the language, the relationships
among them, and the structuring rules that constrain the model elements and
their combinations in order to respect the domain rules.

The concrete syntax of a DSL provides a realization of the abstract syntax of
a metamodel as a mapping between the metamodel concepts and their textual
or graphical representation (see Fig. 1). A language can have several concrete
syntaxes. For visual languages, it is necessary to establish links between these
concepts and the visual symbols that represent them — as done, e.g, with GMF.
Similarly, with textual languages links are required between metamodel elements
and the syntactic structures of the textual DSL.

0.1
1
BehavioralSemantics | ’AbstractSyntax ConcreteSyntax
0..7
+specification |, 0..1 1 [+specification 0..1 |, +specification
Semantic +source jrsource Concrete
Mapping 1| MetaModel |1 Syntax
+target +target Mapping
1 1

Fig. 1. Specification of a Domain Specific Language

Current DSM approaches have mainly focused on the structural aspects of
DSLs. Explicit and formal specification of a model semantics has not received
much attention by the DSM community until recently, despite the fact that this
creates a possibility for semantic mismatch between design models and model-
ing languages of analysis tools [1]. While this problem exists in virtually every
domain where DSLs are used, it is more common in domains in which behavior
needs to be explicitly represented, as it happens in most industrial applications
of a certain complexity. This issue is particularly important in safety-critical

real-time and embedded system domains, where precision is required and where
semantic ambiguities may produce conflicting results across different tools. Fur-
thermore, the lack of explicit behavioral semantics strongly hampers the develop-
ment of formal analysis and simulation tools, relegating models to their current
common role of simple illustrations.

The definition of the semantics of a language can be accomplished through
the definition of a mapping between the language itself and another language
with well-defined semantics (see Fig. 1). These semantic mappings [2] are very
useful not only to provide precise semantics to DSLs, but also to be able to sim-
ulate, analyze or reason about them using the logical and semantical framework
available in the target domain. In our opinion, in MDE these mappings can be
defined in terms of model transformations.

Describing Dynamic Behavior. There are several ways for specifying the
dynamic behavior of a DSL, from textual to graphical. We can find approaches
that make use of, e.g., UML diagrams, rewrite logic, action languages or Ab-
stract State Machines [3] for this aim. One particular way is by describing the
evolution of the state of the modeled artifacts along some time model. In MDE,
model transformation languages that support in-place update [4] can be perfect
candidates for the job. These languages are composed of rules that prescribe the
preconditions of the actions to be triggered and the effects of such actions.

There are several approaches that propose in-place model transformation to
deal with the behavior of a DSL. One of the most important graphical approaches
on this topic is graph grammars [5, 6], in which the dynamic behavior is specified
by using visual rules. These rules are visually specified as models that use the
concrete syntax of the DSL. This kind of representation is quite intuitive, because
it allows designers to work with domain specific concepts and their concrete
syntax for describing the rules [5]. There are also other graphical approaches,
most of which are in turn based on graph grammars. Among them, we can find
the visual representation of QVT [7] (where QVT is given in-place semantics) or
the use of different (usually extended) UML diagrams [8,9]. These approaches
do not use (so far) the concrete syntax of the DSL, but an object diagram-like
structure. Furthermore, most of them (including graph grammars approaches)
use their own textual language to deal with complex behavior, such as Java [8]
or Python [10].

Model Simulation and Analysis. Once we have specified the behavior of a
DSL, the following step is to perform simulation and analysis over the produced
specifications. Defining the model behavior as a model will allow us to transform
them into different semantic domains. Of course, not all the transformations
can always be accomplished: it depends on the expressiveness of the semantic
approach. In fact, simulation and execution possibilities are available for most of
the approaches in which behavior can be specified (including of course in-place
transformations), but the kind of analysis they provide is normally limited. In
general, each semantic domain is more appropriate to represent and reason about
certain properties, and to conduct certain kinds of analysis [3].

A good example of this is Graph Transformation, which has been formalized
into several semantic domains to achieve different kinds of analysis. Examples
include Category theory to detect rule dependencies [11]; Petri Nets to allow ter-
mination and confluence analysis [5]; or Maude and rewrite logic to make models
amenable to reachability and model-checking analysis [12]. We have been work-
ing on the formalization of models and metamodels in equational and rewriting
logic using Maude [13]. This has allowed us to specify and implement some of the
most common operations on metamodels, such as subtyping or difference [14],
with a very acceptable performance. This formalization has also allowed us to
add behavior [15] in a very natural way to the Maude specifications, and also
made metamodels amenable to other kinds of formal analysis and simulation.

3 Adding Time to Behavioral Specifications

Formal analysis and simulation are critical issues in complex and error-prone ap-
plications such as safety-critical real-time and embedded systems. In such kind of
systems, timeouts, timing constraints and delays are predominant concepts [16],
and thus the notion of time should be explicitly included in the specification of
their behavior. Most simulation tools that enable the modeling of time require
specialized knowledge and expertise, something that may hinder its usability by
the average DSL designer. On the other hand, current in-place transformation
techniques do not allow to model the notion of time in a quantitative way, or al-
low it by adding some kind of clocks to the DSL metamodel. This latter approach
forces designers to modify metamodels to include time aspects, and allows them
to easily design rules that lead the system to time-inconsistent states [16].

One way to avoid this problem is by extending behavioral rules with their
duration, i.e., by assigning to each action the time it needs to be performed.
Analysis of this kind of timed rules cannot be easily done using the common
theoretical results and tools defined for graph transformations. However, other
semantic domains are better suited. We are now working on the definition of a
semantic mapping to real-time Maude’s rewrite logic [17]. This mapping brings
several advantages: (1) it allows to perform simulation, reachability and model-
checking analysis on the specified real-time systems; (2) it permits decoupling
time information from the structural aspects of the DSL (i.e., its metamodel);
and (3) it allows to state properties over both model states and actions, easing
designers in the modeling of complex systems.

4 Viewpoint Integration and Consistency

Large-scale heterogeneous distributed systems are inherently much more com-
plex to design, specify, develop and maintain than classical, homogeneous, cen-
tralized systems. Thus, their complete specifications are so extensive that fully
comprehending all their aspects is a difficult task. One way to cope with such
complexity is by dividing the design activity according to several areas of con-
cerns, or wviewpoints, each one focusing on a specific aspect of the system, as

described in IEEE Std. 1471. Following this standard, current architectural prac-
tices for designing open distributed systems define several distinct viewpoints.
Examples include the viewpoints described by the growing plethora of Enter-
prise Architectural Frameworks (EAF): the Zachman’s framework, ArchiMate,
DoDAF, TOGAF, FEAF or the RM-ODP. Each viewpoint addresses a partic-
ular concern and uses its own specific (viewpoint) language, which is defined in
terms of the set of concepts specific that concern, their relationships and their
well-formed rules.

Although separately specified, developed and maintained to simplify rea-
soning about the complete system specifications, viewpoints are not completely
independent: elements in each viewpoint need to be related to elements in the
other viewpoints in order to ensure the consistency and completeness of the
global specifications. The questions are: how can it be assured that indeed one
system is specified? And, how can it be assured that no views impose contra-
dictory requirements? The first problem concerns the conceptual integration of
viewpoints, while the second one concerns their consistency. There are many
approaches that try to tackle the problem of consistency between viewpoints,
many of them coming from the ADL community (see, e.g., [3] for a list of such
works). However, many of the current viewpoint modeling approaches to sys-
tem specification used in industry (including the IEEE Std. 1471 itself and the
majority of the existing EAFs) do not address these problems [18].

There are several ways to check viewpoint consistency. In some approaches
such as the OpenViews framework [19], two views are consistent if a design can
be found that is a refinement of both views. Other approaches, such as View-
points [20], consistency requirements are defined in terms of rules, which are
specified as queries on the database that contains the viewpoints. The database
performs then the consistency checks, using first-order logic. But the most gen-
eral approach to viewpoint consistency is based on the definition of correspon-
dences between viewpoint elements.

Correspondences do not form part of any of the viewpoints, but provide state-
ments that relate the various different viewpoint specifications—expressing their
semantic relationships. The problem is that current proposals and EAF's do not
consider correspondences between viewpoints, or assume they are trivially based
on name equality between correspondent elements, and are implicitly defined.
Furthermore, the majority of approaches that deal with viewpoint inconsisten-
cies assume that we can build an underlying metamodel containing all the views,
which is not normally true. For instance, should such a metamodel consist of the
intersection or of the union of all viewpoints elements? Besides, the granularity
and level of abstraction of the viewpoints can be arbitrarily different, and they
may have very different semantics, which greatly complicates the definition of
the common metamodel.

Our efforts are currently focused on the development of a generic framework
and a set of tools to represent viewpoints, views and correspondences, which are
able to manage and maintain viewpoint synchronization in evolution scenarios,
as reported in [21], and that can be used with the most popular existing EAFs.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Kleppe, A.G.: A language description is more than a metamodel. In: Proc. of
ATEM 2007. (2007) http://megaplanet.org/atem2007/ATEM2007-18.pdf.
Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10) (2004) 64-72

Vallecillo, A.: A Journey through the Secret Life of Models. Position paper at
the Dagstuhl seminar on Model Engineering of Complex Systems (MECS) (2008)
http://drops.dagstuhl.de/opus/volltexte/2008/1601.

Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA’03 Workshop on Generative Techniques in the context of MDA. (2003)
de Lara, J., Vangheluwe, H.: Translating model simulators to analysis models. In:
Proc. of FASE 2008. Number 4961 in LNCS, Springer (2008) 77-92

Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented execution
semantics using graph transformations. In: Proc. of FMOODS 2006. Number 4037
in LNCS, Springer Verlag (2006) 186—201

Markovié, S., Baar, T.: Semantics of OCL Specified with QVT. Software and
Systems Modeling (SoSyM) (2008)

Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language. In: Proc. of the VI In-
ternational Workshop on Theory and Application of Graph Transformation. (1998)

. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: A

graphical approach to the operational semantics of behavioral diagrams in UML.
In: Proc. of UML 2000. Number 1939 in LNCS, Springer (2000) 323-337

de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation
through meta-modelling and graph transformation. Journal of Visual Languages
and Computing 15(3—4) (2006) 309-330

Ehrig, H., Karsten, Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral
semantics of visual modeling languages with maude. In: Proc. of SLE 2008. LNCS,
Toulouse, France, Springer (2008)

Romero, J.R., Rivera, J.E., Durdn, F., Vallecillo, A.: Formal and tool support for
model driven engineering with Maude. JOT 6(9) (2007) 187-207

Rivera, J.E., Vallecillo, A.: Representing and operating with model differences. In:
Proc. of TOOLS Europe 2008. Number 11 in LNBIP, Springer (2008) 141-160
Rivera, J.E., Vallecillo, A.: Adding behavioral semantics to models. In: Proc. of
EDOC 2007, IEEE Computer Society (2007) 169-180

Gyapay, S., Heckel, R., Varrd, D.: Graph transformation with time: Causality and
logical clocks. In: ICGT. (2002) 120-134

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2) (2007) 161-196

Romero, J.R., Vallecillo, A.: Well-formed rules for viewpoint correspondences spec-
ification. In: Proc. of WODPEC 2008. (2008)

Boiten, E.A., Bowman, H., Derrick, J., Linington, P., Steen, M.W.: Viewpoint
consistency in ODP. Computer Networks 34(3) (2000) 503-537

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: a framework for integrating multiple prespectives in systems development.
SEKE journal 2(1) (1992) 31-58

Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management in
multi-viewpoint systems using ASP. In: Proc. of WODPEC 2008. (2008)

