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Abstract

-Background: The growing interest in neuroimaging technologies generates a massive amount of biomed-
ical data of high dimensionality. Tensor-based analysis of brain imaging data has been recognized as an
effective analysis that exploits its inherent multi-way nature. In particular, the advantages of tensorial over
matrix-based methods have previously been demonstrated in the context of functional magnetic resonance
imaging (fMRI) source localization. However, such methods can also become ineffective in realistic challeng-
ing scenarios, involving, e.g., strong noise and/or significant overlap among the activated regions. Moreover,
they commonly rely on the assumption of an underlying multilinear model generating the data.
-New Method: This paper aims at investigating the possible gains from exploiting the 4-dimensional

nature of the brain images, through a higher-order tensorization of the fMRI signal, and the use of less
restrictive generative models. In this context, the higher-order Block Term Decomposition (BTD) and
the PARAFAC2 tensor models are considered for the first time in fMRI blind source separation. A novel
PARAFAC2-like extension of BTD (BTD2) is also proposed, aiming at combining the effectiveness of BTD
in handling strong instances of noise and the potential of PARAFAC2 to cope with datasets that do not
follow the strict multilinear assumption.
-Comparison with Existing Methods: The methods were tested using both synthetic and real data

and compared with state of the art methods.
-Conclusions: The simulation results demonstrate the effectiveness of BTD and BTD2 for challenging

scenarios (presence of noise, spatial overlap among activation regions and inter-subject variability in the
Haemodynamic Response Function (HRF)).
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1. Introduction

Functional Magnetic Resonance Imaging (fMRI)
is a noninvasive brain imaging technique, which in-
directly studies brain activity, by measuring fluctu-
ations of the Blood Oxygenation Level Dependent
(BOLD) signal [1]. BOLD fluctuation usually oc-
curs between 3 to 10 seconds after the stimulus, and
this effect is modeled by the so-called Haemody-
namic Response Function (HRF). During an fMRI
experiment and while the subject performs a set of
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tasks responding to external stimuli (task-related
fMRI) or no tasks (resting-state fMRI), a series
of 3-D brain images is acquired. The localization
of the activated brain areas is a challenging Blind
Source Separation (BSS) problem [2], in which the
sources consist of a combination of spatial maps
(areas activated) and time-courses (timings of acti-
vation). fMRI data involve multiple modes, such as
trial, session and subject, in addition to the intrinsic
modes of time and space [3]. Up to now, multivari-
ate bi-linear (i.e., matrix-based) methods, based on
the concatenation of different modes, have been,
the state of the art in fMRI BSS [4, 5]. However,
by definition, such methods fall short in exploiting
the inherently multi-way nature of fMRI data.

On the other hand, the multi-way nature of the
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data is preserved in multi-linear (tensor) models,
which, in general, a) produce unique (modulo scal-
ing and permutation ambiguities) representations
under mild conditions [6], b) can improve the abil-
ity of extracting spatiotemporal modes of inter-
est [3, 7, 8], and c) facilitate neurophysiologically
meaningful interpretations [3]. The state-of-the-
art in tensorial methods for analyzing multi-subject
fMRI data include the Canonical Polyadic Decom-
position (CPD)-based analysis [3] and the Ten-
sor Probabilistic Independent Component Analysis
(TPICA) [9]. Both methods view the multi-subject
fMRI data as a 3rd-order tensor, namely as space ×
time × subjects. Although the subjects mode cor-
responds to a third dimension, the methods share
an initial step of unfolding each of the original 3-D
images of fMRI, one per time instance, into a single
vector. However, with this type of unfolding, inher-
ited from the matrix-based methods, the intrinsic
geometry of the original problem is neglected and
not taken into full consideration. In contrast, in this
paper, our intention is to exploit the fact that every
single brain image (per time point) is a 3-D tensor;
to this end, we will resort to higher- (than three)
order tensor models, in the multi-subject case.

Furthermore, both CPD and TPICA assume that
the data obey a multilinear model; in other words,
the underlying signal sources (spatial maps and
time-courses) are the same for the different sub-
jects, up to a scaling. Of course, this presupposes
that physiological artifacts, which are not likely to
satisfy this assumption, have been removed prior to
the analysis, and, also, that different subjects share
the same HRF. The latter assumption, of a global
HRF, is certainly not a valid one, since intra-subject
and inter-subject variability is known to exist [10].
Hence, more flexible models, which can accommo-
date such variations, need to be considered.

In order to better exploit the spatial information
that resides in the available data, our kick-off point
will be to bypass the initial step of unfolding the 3-D
brain images into vectors. Furthermore, the Block-
Term Decomposition (BTD) model [11, 12, 13] will
be adopted, for the first time in fMRI BSS, in view
of its higher modeling potential and its reported
robustness to noise. PARAFAC2 [14], which is a
model appropriate for multi-way data that do not
admit a perfect multilinear representation and al-
lows one of the modes to vary, will be also studied.
In addition to its wide use in chemometrics [15],
PARAFAC2 has only been recently adopted in fus-
ing electroencephalography (EEG) and fMRI [16]

and, also, has been shown to be effective in the
analysis of the functional connectivity in resting-
state fMRI [17].

These two tensorial methods (BTD and
PARAFAC2) will be tested via extensive simula-
tions with respect to their potential to overcome
drawbacks of the state-of-the art techniques,
through improving upon the accuracy of their
decomposition results. This will be especially
demonstrated in challenging scenarios that involve
high noise level and variations in the HRFs of
the subjects, respectively. A new method, called
BTD2, which extends the rationale behind the
PARAFAC2 to the BTD setup so that the latter
be able to cope with data that do not comply
with a (strict) multilinear representation, is also
proposed. BTD2 is a novel tensor model and
could be potentially applied in a broader range of
applications such as hyperspectal imaging [18] or
multi-set factor analysis [19] or other biomedical
applications, such as analysis of EEG [20] and
electrocardiography (ECG) [21].

The main contributions of the paper are: (a) the
adoption of a higher-order unfolding of the spatial
domain of the brain, and the use of a more flexible
model, namely BTD; (b) the use of non-multilinear
models, like PARAFAC2, in task-related fMRI, and
(c) the introduction of BTD2, a new tensor model,
that combines the advantages of (a) and (b). A
heuristic for the estimation of the rank of the block
terms in BTD is also proposed. Preliminary shorter
versions of the work presented here have previously
appeared in [22] and [23].

1.1. Notation

Vectors, matrices and higher-order tensors are
denoted by bold lower-case, upper-case and cal-
ligraphic upper-case letters, respectively. For a
matrix A, A> and A† denote its transpose and
pseudo-inverse, respectively. An entry of a vector
a, a matrix A, or a (3rd-order) tensorA is denoted
by ai, ai,j , or ai,j,k, respectively. Matlab notation
is used to denote a column of a matrix A, namely
A(:, j) is its jth column. Im is the mth-order iden-
tity matrix and 1m denotes the m × 1 vector of
all ones. The symbols ⊗ and ∗ denote the Kro-
necker and the Hadamard (elementwise) products,
respectively. The column-wise Khatri–Rao product
of two matrices, A ∈ RI×R and B ∈ RJ×R, is de-
noted by A�B =

[
a1 ⊗ b1,a2 ⊗ b2, . . . ,aR ⊗ bR

]
,

with aj , bj being the jth columns of A,B, respec-
tively. The outer product of two tensors is denoted
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Figure 1: (a) Brain images unfolded in vectors and stacked in matrices (b) per subject and (c) for the multi-subject
case.

by ◦. For an Nth-order tensor, A ∈ RI1×I2×···×IN ,
A(n) ∈ RIn×I1Is···In−1In+1···IN is its mode–n un-
folded (matricized) version (whose rank is known as
mode–n rank), which results from mapping the ten-
sor element with indices (i1, i2, . . . , iN ) to a matrix

element (in, j), with j = 1 +
∑N

k=1,k 6=n[(ik − 1)Jk],

Jk =

{
1, for k = 1 or k = 2 and n = 1,∏k−1

m=1,m 6=n Im, otherwise.

The multilinear rank of a tensor is the N -tuplet of

its N mode–n ranks [11].

2. Methods and Materials

2.1. Tensors and (un)folding of fMRI data

Traditionally, after acquiring a 3-D fMRI image
(with spatial dimensions Ix × Iy × Iz) at a time
instance n (Fig. 1), the data (referred to here as
folded data) is reshaped to a lower dimension (un-
folded), giving rise to a sequence of vectors, tn,
for n = 1, 2, . . . , It (with Ixyz = Ix · Iy · Iz vox-
els each). These It vectors (3-D images at different
time instants) are stacked together to form a ma-
trix (Fig. 1(a)). Such a matrix is formed for each
one of the subjects, i.e., T k, k = 1, 2, . . . , Is (Is dif-
ferent subjects in the multi-subject case, Fig. 1(b)).
These Is matrices are in turn concatenated to form
T ∈ RItIs×Ixyz (Fig. 1(c)), for which a decomposi-
tion is sought such that:

T ≈MA>, (1)

with A ∈ RIxyz×R containing the weights of the
spatial maps and M ∈ RItIs×R containing the con-
catenated time-courses of all subjects, R being the
estimated number of sources [3, 1]. Note that, in
practice, the decomposition cannot be exact due to
unmodeled phenomena including noise. In this way,
the intrinsically 5th-order (dimension x × dimen-
sion y × dimension z × time × subjects) problem
of a multi-subject fMRI analysis has been trans-
formed into a 2nd-order one. This type of unfold-
ing of higher-order data into two-way arrays leads

to decompositions that are non-unique, unless spe-
cific assumptions on the involved factors are made.
Moreover, and most importantly, such an unfold-
ing can result in a loss of underlying informative
correlations that may exist, because the neighbor-
hood information is not respected. In this context,
the approaches most frequently pursued are the In-
dependent Component Analysis (ICA) [4, 24], in
particular Group ICA (GICA) [25] for the multi-
subject case, and Dictionary Learning [5, 26, 27]
(or combinations thereof [28]). ICA solves Eq. (1)
by assuming that the matrix A contains statisti-
cally independent spatial maps in its columns, each
one corresponding to a time-course in the associ-
ated column of the (mixing) matrix M .1 On the
other hand, dictionary learning capitalizes on the
assumption of sparsity for the rows of A. An alter-
native to GICA for multi-subject cases is Indepen-
dent Vector Analysis (IVA), which maximizes inde-
pendence among source signals of each subject rep-
resented as random vectors, and dependence among
the source signals within the vector (across sub-
jects) [30, 31].

Although research on tensor decompositions has
been active for several decades, it is only recently
that such methods have attracted a high interest in
a large number of applications. The main reason
for their increasing popularity is their potential to
extract information hidden in the correlations that
underlie multidimensional data sets. The tensorial
formulation of the data may be suggested either
from the nature of the problem under study (e.g.,
biomedical imaging applications, the 3-D spatial
structure of the human body) or due to the specific
design of the experiment (e.g., using the data from
multiple subjects, which perform the same task).
Often, tensor tools can be applied after “tensoriz-
ing” the data. Tensorization transforms the vector
or the matrix under consideration to a tensor, via
1This formulation of ICA in fMRI is called spatial ICA. Tem-
poral ICA, where independence in the time-courses is as-
sumed instead, can be also applied [29].
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some kind of folding, or by applying an appropri-
ate transformation (e.g., Wavelet transform, Han-
kelization, Loewnerization, etc.). Such techniques
can be useful when the data itself has a latent low-
rank structure, which would then translate into a
low-rank tensor [32, 33].

Following the tensorial rationale, in contrast to
the previously discussed unfolding, instead of form-
ing a matrix T by concatenating the matrices
T k=1,2,...,Is in Fig. 1, the latter can be arranged
to form a third-order tensor T ∈ RIxyz×It×Is and
hence a tensor decomposition method can be mobi-
lized for the BSS task [34] of (1). Tensorial meth-
ods provide, in most of the cases, improved spatial
and temporal localization of the activity, compared
to the matrix-based approaches [3, 9]. However,
such tensor formulation approached inherit from
their matrix-based counterparts the initial step of
the unfolding of the 3-D spatial data into a vector
tn. That is, they do not fully exploit the multi-way
nature of the acquired data, which seems to be the
natural path to follow for the task at hand.

In addition, the unfolding into vectors misses to
fully reveal the low-rank content of the spatial sig-
nal, which can only be unveiled through a multi-
way model. In fact, the main argument for the
use of a matrix (instead of a tensor) model for
the single-subject fMRI signal has been that there
is no additional low-rank content than that repre-
sented ; (1) [35]. The low rankness of the fMRI sig-
nal per slice has been used in image reconstruction
techniques for compressed sensing applications [36]
(usually in the z-axis). Moreover, low-rank con-
straints (in the spatial domain of fMRI) have been
very recently used in a multi-way alternative of the
classical General Linear Model (GLM) [37] for mon-
itoring brain responses. Further evidence that mo-
tivates the use of low-rank constraints in the spa-
tial domain, per slice, is provided by the Multi-
Subject Dictionary Learning (MSDL) probabilistic
atlas [38]. Every slice of that atlas consists of 48×48

voxels (and hence has a maximum rank of 48). The
maximum slice rank computed among all the Re-
gions Of Interest (ROIs) is 15 (the detailed table
with the maximum rank per ROI is presented in
the Supplementary Material); hence, all the ROIs
are of low rank. Even when different ROIs (of sim-
ilar function) are combined, the combinations re-
main of low rank, with maximum rank equal to 17
(combined Language regions). Note that this com-
bination has been considered as an extreme case,
since there is not yet evidence that all the Lan-
guage regions can be activated simultaneously (as
one source)2

Furthermore, as it has been shown by Phan et
al. [40, 41], unfolding higher-order noisy data to
lower-order tensors generally results in a loss of the
accuracy in the respective decomposition. The ex-
tent of this loss in accuracy depends on the degree
of collinearity among the columns of the unfolded
mode. Also, as pointed out in [42], the potential
of multi-way representations that lead to more ro-
bust predictions, compared to their two-way coun-
terparts, seems to increase with the noise level. The
use of higher-order tensor models could, therefore,
improve the separation performance, both in terms
of accuracy and robustness to noise.

A possible way to benefit from the findings men-
tioned above is to adopt an alternative type of data
unfolding. For the unfolding proposed in this pa-
per, we adopt the mode-1 (frontal) matricization of
the respective data tensor, An (Fig. 2(a)) (by sym-
metry, mode-2 or mode-3 can also be used with sim-
ilar results). By stacking the It matrices together,

a 3rd-order tensor, T̃ k (all the tensors generated
by the suggested alternative unfolding will be de-
noted with a tilde), is formed for the kth subject
(Fig. 2(c)). For Is different subjects, a 4th-order

2For example, Broca’s area, which is responsible for the
production of language, follows the activation of Wer-
nicke’s [39] area, which is responsible for the comprehension
of language.

Figure 2: (a)Brain images unfolded in matrices and stacked in (b) 3rd-order tensors per subject and (c) 4th-order
tensors for a number of subjects.
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tensor, T̃ , is created, by stacking together all 3-
way tensors, T̃ k = T̃ (:, :, :, k). It is of interest to
note the close connection of this alternative unfold-
ing with what is called segmentation in the recent
tensorization literature [43] and its primary role in
translating the BSS problem (1) to the 4-way BTD
model of Section 4. A 5th-order tensor (using di-
rectly the 3-D spatial brain images) could also be
considered, albeit at a complexity increase. In the
following sections (2.2–3.1.4), the 4th-order tensor
will be considered. The synthetic data used in Sec-
tions 3.2–3.4 (obtained from [7, 8, 44]) simulate the
brain as a single slice brain, and hence in order to
compare directly our results with [7, 8, 44] a 4th-
order tensor is considered (since the z dimension
of the spatial domain does not exist).3 In the real
data section (Section 3.2), tensorizations of both
4th-order and the 5th-order are considered. Yet
the results are very similar. It should be noted that
all the equations presented in the following sections
can be naturally extended to tensors of higher or-
der.4

2.2. Models of tensorial fMRI Analysis

2.2.1. Canonical Polyadic Decomposition (CPD)

CPD (or PARAFAC) [45, 3] approximates the
3rd-order tensor of fMRI data, T ∈ RIxyz×It×Is ,
by a sum of R (estimated number of sources) rank-
1 tensors, namely

T ≈
R∑

r=1

ar ◦ br ◦ cr. (2)

The above can be equivalently written as

T (1) ≈ A(C �B)>, (3)

and for the kth frontal slice of T :

T k ≈ ADkB
>, k = 1, 2, . . . , Is, (4)

where A =
[
a1,a2, . . . ,aR

]
is a matrix that

contains the R spatial components (Ixyz voxels
per component) and B =

[
b1, b2, . . . , bR

]
,C =[

c1, c2, . . . , cR
]

are similarly defined matrices,
which contain the associated time-courses (It time

3The 5th-order tensorization has been also tested in prelim-
inary simulations not reported here, with cylindrical 3-D
brains, with only small gains in the unmixing performance
(and of course an increase in the computational cost).

4For the rank-(L,L, L, 1, 1) case the two-fold segmentation
algorithm, as proposed at [43], has been used.

points) and the subject activation levels (Is sub-
jects), respectively. Dk is the diagonal matrix with
the elements of the kth row of C on its diago-
nal. The main advantage of the CPD, besides its
simplicity, is the fact that it is unique (up to per-
mutation and scaling) under mild conditions [46].
Uniqueness of CPD is crucial to its application in
fMRI. In fact, it was demonstrated [7, 8] that CPD
with fMRI data is robust to overlaps (spatial and/or
temporal). On the other hand, the result of CPD is
largely dependent on the correct estimation of the
tensor rank, R [47, 48].

2.2.2. Tensor Probabilistic Independent
Component Analysis (TPICA)

ICA is a powerful tool for separating a multi-
variate signal into additive components based on
the assumption that they are statistically indepen-
dent. In other words, the assumption of uncorre-
lated components of the well-known Principal Com-
ponent Analysis (PCA) is strengthened to statis-
tically independent components. ICA has been
demonstrated to provide good results in the char-
acterization of fMRI data [4]. TPICA, as proposed
in [9], is essentially a hybrid of the Probabilistic
ICA (PICA) [49] method and the CPD method for
multi-subject analyses.5 Given a 3rd-order tensor
of fMRI data, T , TPICA approximates it as (see
(3)):

T (1) ≈ AM>, (5)

where the columns of A are assumed to be samples
of independent, non-Gaussian [49] random variables
and M = C �B is a Khatri–Rao structured mix-
ing matrix (cf. (1)). TPICA decomposes the tensor
T in two steps: an ICA step, which estimates M
and A, and a Khatri–Rao factorization of M (us-
ing Singular Value Decomposition (SVD)) to de-
termine B and C. These two steps are performed
iteratively, in an alternating fashion, until conver-
gence. It has been shown in [8, 51] that iterations in
TPICA are redundant and, hence, it was proposed
that the algorithm be used with only one iteration.
TPICA is more robust than CPD to rank estima-
tion errors but it exhibits inferior performance in
the presence of overlap among the sources and/or
strong noise [7, 8].

5 TPICA has been selected as the main tensorial ICA
method, for comparison since it is the state-of-the-art ten-
sorial method used in the fMRI community [8, 7]. In fact, it
is the only tensorial method implemented in the FMRIB’s
Software Library (FSL [50]), a widely employed tool for
fMRI analysis.
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2.2.3. Block Term Decomposition (BTD) for fMRI

Following the arguments presented in Section 2.1,
an alternative unfolding and a higher than 3rd-
order tensor model is a more natural way to perform
the unmixing of the sources. However, the use of
CPD (and hence TPICA) with such a formulation
can be problematic in cases where the components
are not of rank one. Let us consider the following
example. Assume that only one source of activation
exists (i.e. R = 1) and CPD is used for the 4-way

tensor (Fig. 2(c)), T̃ . The CPD for the 4-D data
can then be expressed as [52] (with R = 1 in our
case):

T̃ ≈
R∑

r=1

xr ◦ yr ◦ br ◦ cr. (6)

Thus, the spatial map of the source (since now we
have two spatial modes) is necessarily expressed as
an outer product, xr◦yr. In cases where the spatial
map is indeed of “spatial rank” 1 (we will refer to
the rank of the 2-D spatial image as “spatial rank”
for simplicity), CPD will succeed in decomposing
correctly the data (S1 source in Fig. 3(a), like the
motion perception areas simulated in [8]). However,
if the spatial activation is of higher “spatial rank”
(S2 source, Fig. 3(b)), CPD would result in phan-
toms (resulting from the multiplication of xa with
yb, xb with ya and yc, etc.). This is because it is
impossible to express such a spatial map (image) as
an outer product of vectors. An example of a source
of the form of S2 is that of the motion perception
areas, which, of course, are not two equally sized
perfect rectangles as simulated in [8] but of higher
spatial rank, as can be viewed in Fig. 4. Hence, the
constraint imposed by CPD (that all terms should
be of rank one) can be too restrictive in such cases.
On the other hand, it seems less restrictive to de-
compose the tensor in low multilinear rank terms,
which, however, are not necessarily restricted to be
of rank one.6 This enhances the potential for mod-
eling more general phenomena [53]. As an alterna-
tive to CPD, the use of Block Term Decomposition
(BTD) [11, 12, 13] in the 4-way (and 5-way) ten-
sorization of the fMRI signal is investigated in this
work, for the first time. The adoption of BTD is
dictated by the need of a more flexible model that
reveals the low rankness of the spatial mode [43].

BTD is a generalization of CPD, which can cap-
ture latent factors of rank higher than one in each
component. In particular, the rank-(Lr, Lr, 1) BTD

6Note that a rank-1 tensor can be seen as a multilinear rank-
(1, 1, . . . , 1) tensor [12].

Figure 3: Decomposition of sources S1 and S2.

Figure 4: Real motion perception areas of “spatial
rank” higher than 1. Picture obtained from [54].
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of the tensor T̃ k ∈ RIx×Iyz×It (in Fig. 2) is given
by

T̃ k ≈
R∑

r=1

Ar ◦ br =

R∑
r=1

(XrY
>
r ) ◦ br, (7)

k = 1, 2, . . . , Is, where Ar = XrY
>
r ∈ RIx×Iyz

and the matrices Xr ∈ RIx×Lr and Y r ∈ RIyz×Lr

are of full column rank. BTD, for the case of a
3rd-order tensor, has been successfully applied in
modeling epileptic seizures in EEG [33] and proved
capable of modeling non-stationary (in frequency or
in space) seizures, better than other techniques. A
generalization of BTD has also been used in EEG
Motor Imagery Data (MID) [55] and in ECG signal
analysis [56]. BTD has not been previously applied
in fMRI analysis, to the best of the authors’ knowl-
edge. In this work, it is proposed to decompose the
4th-order data (Fig. 2(c)) BTD:

T̃ ≈
R∑

r=1

Ar ◦ br ◦ cr =

R∑
r=1

(XrY
>
r ) ◦ br ◦ cr. (8)

The two spatial factors are of low rank (Lr) while
the time and subject factors are of rank one (those
modes have not been folded and the assumption of
rank one is still valid). Thus, in the example of
Fig. 3(c), source S2 could be perfectly represented
by a rank-(3,3,1,1) BTD (of a single term). The use
of this model offers the ability to estimate sources of
“spatial rank” higher than one (which are the cases
where CPD fails) correctly, using the proposed un-
folding. The rank-(Lr, Lr, Lr, 1, 1) BTD will be em-
ployed when the 5th-order tensor is considered. For
simplicity, and as it is the standard practice in the
BTD applications, we choose all Lr’s in the follow-
ing to be equal (to L).

Estimating L is an open problem in the BTD
literature. Greedy algorithms, like [57], could
be used. Furthermore, model order estimation
techniques, dictated from corresponding CPD ap-
proaches have been proposed [33] as well as hybrids,
depending on the application at hand [58]. In the
case of fMRI, and since L is connected with the
“spatial rank” of every slice, brain atlases can be
used to provide indications for the rank of the ar-
eas under consideration. The result of the decom-
position in most of the BTD applications, as re-
ported in the literature, is relatively insensitive to
overestimation of L (the relative robustness to the

choice of L has been also demonstrated in [59]). Of
course, higher L values result in increased complex-
ity. A compromise between accuracy and complex-
ity must be made. In order to obtain an indication
of the appropriate L (basically select a value close to
the maximum “spatial rank” of the sources) for the
BSS problem of fMRI, a heuristic is proposed here.
When L is set higher than the actual “spatial rank”
(e.g., L = 6 in Fig. 3(d) instead of 3 in Fig. 3(c)),
some column pairs of Xr and Y r do not contain
any signal information (e.g., X1(:, 5),Y 1(:, 5) and
X1(:, 6),Y 1(:, 6) in Fig. 3(d)) and some splits occur
(e.g., Y 1(:, 3) of Fig. 3(c) into Y 1(:, 3) and Y 1(:, 4)
of Fig. 3(d)).

This procedure (stated bellow as Heuristic 1)
aims at identifying the pairs of columns which do
not contain any useful signal information and de-
creases the Lr value accordingly. After computing

φ← probability density function of normal distribution
(:)← vectorization

Input : A 4th-order tensor T̃ ∈ RIx×Iyz×It×Is , α
(usually set equal to 0.05), Linit, and R

Output: L

1 Set Linit (overestimate)

2 T̃ =
∑R

r=1(XrY
>
r ) ◦ br ◦ cr (BTD)

3 p = α/(Ix · Iyz) (Bonferonni corrected p-value)

4 Zn = φ−1(p) (Compute Z threshold)
5 for r ← 1 to R do
6 for j ← 1 to Linit do
7 Im = Xr(:, j)Y r(:, j)>

8 Q(:, j) = Im(:)

9 end
10 µ = mean(Q(:))
11 σ = std(Q(:))
12 Lr = 0
13 for j ← 1 to Linit do
14 i = 1
15 do
16 zi,j = (qi,j − µ)/σ (Compute z-stat)
17 if zi,j < Zn then
18 Lr = Lr + 1
19 i = Ix · Iyz
20 end
21 i = i+ 1

22 while i < Ix · Iyz
23 end

24 end
25 L = max(Lr)
when using a different Lr per source, line 25 is omitted

Heuristic 1: Estimation of L.

the factors, and following the assumption that all
the voxels of the sources obtained can be consid-
ered independent of each other [7, 9], a Z-test in
all the voxels is performed. The new Lr value is
set equal to the number of columns which contain
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at least one significant voxel (a voxel for which the
null hypothesis is rejected) after applying the Bon-
feronni correction in order to correct the Family
Wise Error (FWE) [60]. Bonferronni correction is
considered conservative and other correction proce-
dures could be used instead [61]. As a last step, in
the case that a single L is used, it is obtained as
the maximum of the Lr.

Regarding the uniqueness of BTD, it
was proved in [11] that the decomposition
in (7) is (essentially) unique, provided that
the matrices

[
X1 X2 · · · XR

]
and[

Y 1 Y 2 · · · Y R

]
are full column rank

and the matrix B =
[
b1 b2 · · · bR

]
does

not contain collinear columns, up to the following
indeterminacies: a) scaling and permutation, as in
CPD, and b) the simultaneous post-multiplication
of Xr by a non-singular matrix F and at the
same time the pre-multiplication of Y r by its
inverse. Note that the latter indeterminacy is
of no consequence to our results, since it is the
product Ar = XrY

>
r (our spatial map) that is of

interest in our study. An argument showing that
this type of uniqueness can be extended to the
rank-(L,L, 1, 1) case follows.

Proof. As suggested in [6], the uniqueness of a
higher-order tensor decomposition can be shown
through a reduction to a third-order tensor, which
is “the first instance of multilinearity, for which
uniqueness holds and from which uniqueness prop-
agates by virtue of Khatri–Rao structure” [6]. As-
sume that the matrices

[
X1 X2 · · · XR

]
and

[
Y 1 Y 2 · · · Y R

]
are of full column rank

and the matrices B, C =
[
c1 c2 · · · cR

]
do

not contain collinear or null columns (a realistic
assumption for matrices that represent time and
subjects, assuming that the correct R has been se-
lected). In view of the above, uniqueness for (8)
can be proved via the uniqueness of a 3-way coun-
terpart of T̃ , T̃ (1,2) ∈ RIx×Iyz×IsIt , created by the
concatenation of the third and fourth modes, such
that the fourth mode is nested into the third one:

T̃ (1,2) =

R∑
r=1

Ar ◦ gr, (9)

where G =
[
g1 g2 · · · gR

]
= B � C is

the Khatri–Rao product of two matrices of nei-
ther null nor collinear columns, and hence it does
not involve null or collinear columns either [62,
Proposition 1]. Following Theorem 4.1 of [11],

since the matrices
[
X1 X2 · · · XR

]
and[

Y 1 Y 2 · · · Y R

]
have full column rank and

the matrix G has no collinear columns, the decom-
position is essentially unique.

2.3. Non strictly multilinear tensor models

2.3.1. PARAFAC2

PARAFAC2 [14] differs from CPD in that strict
multilinearity is no longer a requirement. CPD
assumes the same factors across all the different
modes, whereas PARAFAC2 relaxes this constraint
and allows variation across one mode (in terms of
the values and/or the size of the corresponding fac-
tor matrix). For this reason, PARAFAC2 is not a
tensor decomposition model in the strict sense, as
it can represent both regular tensors, with weaker
constraints than CPD, as well as irregular ten-
sors (collections of matrices of different dimensions)
with size variations along one of the modes (Fig.
5). It can be written in terms of the (here frontal)

slices of the permuted tensor T (p) ∈ RIt×Ixyz×Is

(the tensor is permuted because the multilinearity
constraint will be relaxed in the time domain per
subject, so as to account for the inter-subject vari-
ability of the HRF) as:

T
(p)
k ≈ BkDkA

>, k = 1, 2, . . . , It, (10)

and allowing Bk to be different for different k’s (Dk

and A are matrices defined as in (4)). This type of
decomposition is clearly non unique [14]. Thus, in
order to allow for uniqueness, it has been proposed
to add the constraint that the cross products B>k Bk

be constant over k, a much more relaxed constraint
than the requirement for equal Bk’s in CPD. This
has been shown [18] to be equivalent with Bk =
P kH, where the R × R matrix H is the same for
all slices, while the variability is represented by the
columnwise orthonormal It ×R matrix P k. Under
this constraint, one has to fit the equivalent model

P>k T
(p)
k ≈HDkA

>, k = 1, 2, . . . , Is. (11)

As shown in [18], P k can be computed as P k =
V kU

>
k , where Uk and V k are the left and right

singular matrices of HDkA
>T

(p)>

k . As can be seen
from Eq. (11), the problem of fitting PARAFAC2
has been transformed into that of fitting a CPD
model to transformed data.
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Applications of PARAFAC2 in fMRI analysis in-
clude [16] and [17]. The former study is con-
cerned with joint EEG-fMRI analysis in single-
subject cases, with the different modes being time-
courses, spatial maps per slice, and slices, and al-
lowing the mode that represents the spatial maps
to vary over slices. In [17], the modes considered
are time, subjects and space, as in this paper. In
that work, PARAFAC2 was evaluated along with
other models w.r.t. its effectiveness in capturing
the brain’s functional connectivity.

2.3.2. Block Term Decomposition 2 (BTD2)

As described in Section 2.2.3, the use of the alter-
native unfolding, which has been proposed (Fig. 2)
or the consideration of the 3-D brain image (with-
out the application of any unfolding) dictates the
use of a more flexible model than CPD. Similarly
to CPD, PARAFAC2 is not an appropriate model,
again due to the rank-1 assumption. Hence, a BTD
analog of PARAFAC2 is proposed here aiming at
the combination of the advantages of BTD with the
simultaneous use of higher-order tensors (robust-
ness to the noise) and of PARAFAC2 (better per-
formance in non strictly multilinear datasets with
realistic scenarios, involving different time-courses
per subject due to inter-subject HRF variability).

Using the (mode-1) unfoldings, T̃
(p)

k(1), of the

T̃
(p)

k = T̃
(p)

(:, :, :, k) ∈ RIt×Ix×Iyz tensors (Fig. 2)
yields the BTD2 decomposition:

T̃
(p)

k(1) = (BkS)D̃k(X�Y )>, k = 1, 2, . . . , It. (12)

The matrices S = blockdiag(1>L ,1
>
L , . . . ,1

>
L ) and

D̃k = blockdiag(ck1IL, . . . , ckRIL) appear in for-
mulating BTD as CPD, as in [63]. Spatial matri-

ces are defined as X = [X1,X2, . . . ,XR], Y =
[Y 1,Y 2, . . . ,Y R] with Xi ∈ RIx×L and Y i ∈
RIyz×L. Extending the PARAFAC2 direct fit algo-
rithm from [18] to the above 4-way model and ap-
propriately adapting the Alternating Least Squares
(ALS) iterations from CPD to BTD as in [63, 11]
results in Algorithm 1.7 First, the gradient of
the cost function with respect to each compo-
nent matrix is calculated (following Eq. (12) for
all the possible unfoldings). Then, at a second
step, the ALS update rules for the proposed cost-
function are obtained by setting the calculated gra-
dients to zero (lines 13–19 of Algorithm 1). Ma-
trices W x,W y,W h and W c result from the well-
known property of the pseudoinverse of Khatri–Rao
product of two matrices A and B, (A�B)

†
=

((A>A) ∗ (B>B))
†
(A�B)

>
[64].

The bottleneck of the CPD-ALS algorithm (and
of its extensions, BTD-ALS and BTD2-ALS) is
the computation of the Matricized-Tensor-Times-
Khatri–Rao-Product (MTTKRP). For example, in
Algorithm 1, it corresponds to Z(1)((CS)�(HS)�
Y ) when solving for X (line 13) and similarly in
lines 15, 17 and 19 when solving for the other
modes. For large tensors, the brute-force compu-
tation of the MTTKRP is very costly in terms of
both computation and memory. In order to reduce
the MTTKRP complexity and fully parallelize the
algorithm with respect to the Is subjects, a MT-
TKRP kernel can be used, similarly to [65].

Concerning uniqueness of PARAFAC2, concrete
results have only been reported for the special cases
of rank R = 2 or 3 [66, 19]. For the general

7Note that the scaling of the columns of two of the factor
matrices, commonly performed in CPD ALS to avoid over-
/under-flow, is translated in [63, 13] to a column orthonor-
malization (via QR decomposition).

Figure 5: Non strictly multilinear tensor models: PARAFAC2 and BTD2.
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case, a sufficient (but not necessary) condition was
proved in [67]. All of these conditions can be
extended to BTD2. For instance, the condition
in [67], which is based on the maximum number
of unique combinations of four diagonal elements
(with possible repetition) of Dk, can be generalized
as It ≥ R̄(R̄ + 1)(R̄ + 2)(R̄ + 3)/24, with R̄ = LR.
Furthermore, it is of interest to observe that the
rank-(L,L, 1, 1) BTD2 will still be unique, even if
no constraints are imposed on Bk, since the rank-
(L,L, 1, 1) unconstrained BTD2 is equivalent to a
rank-(L,L, 1) BTD of the 4-way data unfolded to
a 3-way tensor (with dimensions Ix × Iyz × ItIs,
check Fig. 3 of the Supplementary Material). This
uniqueness property does not hold for the 3-way
PARAFAC2 [15].

Input : A 4th-order tensor T̃ (p) ∈ RIt×Ix×Iyz×Is ,
R and L

Output: Spatial factors X = [X1,X2, . . . ,XR],
Y = [Y 1,Y 2, . . . ,Y R] with Xi ∈ RIx×L

and Y i ∈ RIyz×L, temporal factor
B ∈ RIs×R and subject factor C ∈ RIt×R.

1 Choose initial values of X, Y , H and C using
multi-initialization technique

2 S ← blockdiag(1>L ,1
>
L , . . . ,1

>
L )

3 repeat
4 for k ← 1 to Is do

5 D̃k ← blockdiag(ck1IL, . . . , ckRIL)

6 Form T̃
(p)
k(1) ∈ RIt×IxIyz (12)

7 SVD (HS)D̃k(X � Y )>T̃
(p)>

k(1) = Uk∆kV
>
k

8 P k ← V kU
>
k

9 Zk(1) ← P>k T̃
(p)

k(1)

(Zk = Z(:, :, :, k) ∈ RR×Ix×Iyz )
10 end
11 repeat

12 Wx ← ((S>C>CS) ∗ (S>H>HS) ∗ (Y >Y ))

13 X ← Z(1)((CS)� (HS)� Y )Wx
†

14 Wy ← ((S>C>CS) ∗ (S>H>HS) ∗ (X>X))

15 Y ← Z(2)((CS)� (HS)�X)Wy
†

16 Wh ← S((S>C>CS) ∗ (Y >Y ) ∗ (X>X))S>

17 H ← Z(3)((CS)� Y �X)S>Wh
†

18 Wc ← S((S>H>HS) ∗ (Y >Y ) ∗ (X>X))S>

19 C ← Z(4)((HS)� Y �X)S>Wc
†

20 until stopping criterion has been met

21 until stopping criterion has been met
22 for k ← 1 to Is do
23 Bk ← P kH
24 end

Algorithm 1: BTD2 algorithm for a 4th-order tensor.

2.4. ICA based methods used in the simulations

Four different methods based on the indepen-
dence assumption are tested and compared in the

results section. Namely, GICA [25], IVA [30],
Sparse ICA (SICA) [28] and Canonical Parallel fac-
tor Analysis with independence constraint (ICA-
CPA) [51].

The main steps involved in GICA and IVA de-
composition are as follows (for more details, see [25]
and [30]).

GICA:

1. Subject-level PCA.

2. Temporal concatenation of the PCA-reduced
subject data (Fig. 1).

3. Group-level PCA.

4. ICA (with Infomax algorithm [68]).

5. Back reconstruction using the spatio-temporal
regression (STR) [69] method in order to com-
pute the spatial map and time-course per sub-
ject. The subject-specific time-courses (B̆k)

and the subject-specific spatial maps (Ăk) are

given by B̆
>
k = T̃ kA

† and Ăk = (B̆
T

k )†T̃ k

respectively (the same back reconstruction
method is used for BTD, with A computed
from (8)).

IVA:

1. Subject-level PCA.

2. Concatenation of the PCA-reduced subject
data along the third dimension.

3. IVA with multivariate Laplace prior [30] as im-
plemented in GIFT [70].

4. Back reconstruction is not required for the
subject-specific spatial maps since they are
provided by IVA. Subject-specific time-courses

are given as B̆
>
k = T̃ kĂ

†
k .

Sparsity and independence (as mentioned before)
are two constraints that have been proved useful
in BSS. In [71], a unified mathematical framework
that enables the exploitation of both independence
and sparsity was introduced. The cost function in
that approach, which from now on will be called
Sparse ICA (SICA), has two terms, namely, an in-
dependence term and a sparsity term. The latter
penalizes the ICA cost function through l1 regular-
ization. Two regularization parameters are used,
ε and λ, for smoothing and sparsity, respectively.
The tuning of these parameters is problem depen-
dent. Indicative values are given in [71]. The code
implementing SICA comes from [72].
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As mentioned previously, TPICA imposes the in-
dependence of the sources and the trilinear struc-
ture of CPD in different steps. TPICA suffers from
a divergence issue caused by the two different objec-
tives, of the ICA step and the Khatri–Rao step (es-
timation of B and C). An alternative way of com-
bining ICA and CPD was proposed in [51], as an
attempt to overcome the disadvantages of TPICA.
ICA-CPA proposes the incorporation of the trilin-
ear structure during the ICA computation, which
is shown to amount to the CPD of a 5th-order par-
tially symmetric tensor containing the 4th-order cu-
mulants of the 3-way data. In the simulation sec-
tion, ICA-CPA has been implemented with the use
of Tensorlab [73].

2.5. Implementation and Performance measures

2.5.1. Algorithms and Model Selection

Tensorlab 3.0 [73], a Matlab package for tensor
algebra, is the tool that was mainly used for the
tensor decompositions in this paper. The Non Lin-
ear Least Squares (NLS) method is employed, both
for CPD (3-way, (2)–(4)) and BTD, as implemented
in Tensorlab. PARAFAC2 was implemented based
on [15] following an ALS implementation similarly
with [74], hence in the related simulations the ALS
implementation (and not the NLS one) of CPD [73]
was adopted (in order to ensure that the perfor-
mance differences are due to the models and not
to the specific optimization method, ALS/NLS).
TPICA was used in its non-iterative version [75],
since the iterative version was shown to be flawed
[8]. TPICA was tested with both FastICA (the al-
gorithm originally proposed [9]) and Infomax [68]
(as proposed in [8]), in order to assess the influence
to the performance of the ICA algorithm. The im-
plementation of IVA using a multivariate Laplace
prior [30] included in Group ICA of the fMRI Tool-
box (GIFT) [70] was adopted. Multiple conver-
gence criteria have been used and the algorithms
were terminated when at least one of those was
met. Those criteria are: a) maximum number of
iterations equal to 2000; b) a lower bound on the
relative change in the value of the objective function
during a step (meaning |f(xi+1) − f(xi)|/|f(xi)|)
equal to 10−6 and c) a lower bound on the size of
the step (meaning |xi+1 − xi|) equal to 10−12.

Rank estimation in the simulations was per-
formed with the aid of the Core Consistency Diag-
nostic (CorConDia) method [47] and the triangle
method [48]. Following [7], the Contrast to Noise

Ratio (CNR) is defined as the Frobenius norm of
the signal divided by the Frobenius norm of the
noise. The estimated rank of the decomposition
increases as the CNR levels decrease significantly,
because some peaks of the noise have higher am-
plitude than the useful signal and are recognized
as additional sources [7]. BTD and CPD are sensi-
tive to the correct estimation of R (both overesti-
mation and underestimation result in loss of accu-
racy). The performance of BTD is not sensitive to
overestimation of L.

2.5.2. Initialization

Initialization is crucial for CPD, BTD and
PARAFAC2 approximations, since they are known
to suffer from local minima issues (also observed in
our simulations). In order to overcome such prob-
lems, we used the multi-initialization technique. It
consists of choosing first a “small” value for the
associated convergence criterion (that is, a crite-
rion that can be easily met) and running the algo-
rithm multiple times (30 times in our case). Then,
we select the initialization that gives the solution
with the best fit, which is subsequently adopted
to re-run the algorithm with a normal value for
the convergence criterion. For CPD, the general-
ized eigenvalue decomposition (GEVD) method [76]
was also considered, as implemented in Tensor-
lab 3.0 [73] (and is usually the one selected as “opti-
mal” during the multi-initialization procedure). It
was used as one of the possible initializations also
for PARAFAC2 but not with equally good results
(as it is designed for multilinear models). It has

Input : A 3rd-order tensor T ∈ RIxyz×It×Is , R
and L

Output: Spatial factors X = [X1,X2, . . . ,XR],
Y = [Y 1,Y 2, . . . ,Y R] with Xi ∈ RIx×L

and Y i ∈ RIyz×L, temporal factor
B ∈ RIt×R and subject factor C ∈ RIs×R.

1 Use GEVD to compute A ∈ RIxyz×R, B ∈ RIt×R and

C ∈ RIs×R (Eq. (3))

2 Fold A into Ã ∈ RIx×Iyz×R (tensorization)
3 for r ← 1 to R do

4 SVD of Ãr = Ur∆rV
>
r (= Ã(:, :, r))

(Keep the L most significant singular values)
5 Xr ← Ur(:, 1 : L)∆r(:, 1 : L)
6 Y r ← V r(:, 1 : L)

7 end

Algorithm 2: Computation of BTD based on GEVD
for CPD.

been shown in [11] that, in the noise-free case, BTD
can also be computed with the aid of a GEVD.
Nevertheless, for the sake of simplicity, we used in
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our simulations (as one of the possible initialization
of the multi-initialization procedure) the scheme
called here Algorithm 2, based on GEVD for CPD.8

2.5.3. Performance evaluation

The performance evaluation is based on the Pear-
son correlation, ρ (as in [7, 9]). In all cases, the
sources with the highest correlation with the true
ones are included in the correlation matrices (see
Supplementary Material) and in the figures (e.g., in
the case of R = 3) every source is matched to the
one with which it has the highest correlation. If two
or more obtained sources match the same artificial
source, then the one with the highest correlation
is selected and the second one is matched to the
source with the second highest correlation. We de-
fine a metric called Absolute Concrete Correlation
Distance (ACCD), which quantifies the deviation
of the absolute Pearson correlation of the obtained
sources (Ao) with the actual ones (A) from the ab-
solute Pearson correlation of the actual ones with
themselves:

ACCDi,j =|ρ(Aoi ,Aj)| − |ρ(Ai,Aj)|+ 1,

i, j = 1, 2, . . . , R.
(13)

For i = j, ACCDi,i is equal to the Pearson cor-
relation. Usually, the metric employed for eval-
uation of the algorithms is the correlation of the
source obtained with the true one, ρ(Aoi ,Aj) for
i = j, which would ideally be equal to 1. How-
ever, this metric does not provide all the required
information, since it does not account for the resid-
uals among the sources. In a correlation matrix,
the residual (cross-talk between the maps) is repre-
sented at the off-diagonal elements, which are ide-
ally zero, if the sources have no correlation. Hence,
a good separation result corresponds to high di-
agonal and low off-diagonal elements. The use of
ACCD allows an easier interpretation of the result;
the correlation of the actual sources with them-
selves is taken into consideration and hence a per-
fect separation will result into a matrix with ones
everywhere (no matter if there is overlap or not
between sources). The ACCD of the diagonal el-
ements will be called principal ACCD, while the
ACCD of the off-diagonal elements will be called
cross-talk ACCD. The use of the absolute value of
the correlation makes this metric insensitive to the
sign indeterminacy of the multi-way models. In the

8Thanks to Dr. Otto Debals, KU Leuven, for fruitful dis-
cussions about this question.

real data case, we will resolve the sign indetermina-
cies using the flip sign methods proposed in [77].
The standard deviations of the mean correlation
coefficients were similar for all methods (slightly
higher in datasets where the power of the signal of
activation is lower) and hence they are not reported
here.

2.5.4. Compression

Prior to decomposing large datasets, it is use-
ful to compress the data to reduce the computa-
tional load. Assuming a tensor T ∈ RI1×Is×It with
I1 > ItIs, the QR decomposition of T (1) is given
by the matrix product QR, with Q ∈ RI1×ItIs

having orthonormal columns and R ∈ RItIs×ItIs

being upper triangular. If R has a perfect CPD
fit, R = Â(C � B)>, then QR = QÂ(C � B)>

and hence T has a perfect CPD fit [7], with fac-
tors Q, Â,B and C. Thus, it is sufficient to calcu-
late a CPD decomposition for R, instead of the
much bigger T (1). In the data considered here,
since I1 = 64 × 64 × 30 = 122800 is larger than
the product of It = 370 with Is = 18, instead
of computing the CPD of T (1) ∈ R122800×6660 we
will compute the CPD of R ∈ R6660×6660. In the
absence of noise, the tensor could be further com-
pressed, to T̂ ∈ RR×R×R. The same compression
ratio has been used for BTD throughout our simula-
tions. For CPD and TPICA, a grey-matter mask is
applied prior to the unfolding and to the compres-
sion done. For the application of BTD, a perfect
square (or cube in 5-D data) is needed, and hence
voxels, which belong to areas outside the brain or
the ventricles, are included in the analysis. In order
to decrease the effect of the non grey-matter voxels
on the separation performance, two methods have
been tested: (a) The grey-matter mask is applied on
the data and all the non-grey matter voxels are set
to zero. Compression is then performed (and hence
the zero-valued voxels are suppressed). (b) The
non-grey matter voxels are considered as missing
values and the decomposition of an incomplete ten-
sor is sought for [78, 73]. We noted that, although
the second method is theoretically more accurate
(since the non-white matter voxels do not partici-
pate in any stage of the analysis), the results were
similar, with a significant difference in the compu-
tation time; method (b) (incomplete tensors) needs
time more than double than that of method (a).
Hence, to decrease the effect of the non grey-matter
voxels, method (a) has been used in all the simula-
tions presented next.
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3. Results

3.1. Synthetic data

The results of three different simulation studies
are presented, with scenarios and data reproduced
from [7, 8, 44]. We opt to consider these three dif-
ferent simulated experiments in order to exhibit the
performance gain from the use of higher-order ten-
sorization, along with BTD and BTD2, within dif-
ferent settings. In the first simulation study, indi-
cated as “simulation of a perception study”, the im-
portance of the higher-order tensorization is demon-
strated and the effect of the choice of L on the
performance of BTD is examined. TPICA with
Infomax [68], CPD, ICA-CPA [51], SICA [28] and
BTD are tested, with simulated data from [8]. In
the section titled “Simulation with artifacts,” where
datasets simulated with SIMTB are used, the effect
of different types of physiological noise (artifacts)
is reported with the aid of GICA [25], IVA [30],
SICA and BTD. In that section, we also evalu-
ate the performance of the higher-order unfolding
against matrix-based ICA methods, in the presence
of physiological artifacts of higher rank. After hav-
ing verified that higher-order unfolding with BTD
outperforms all the other methods in different set-
tings, a last simulation with data used in [9, 7] is
performed. In this last simulation study, indicated
as “Multi-slice simulation”, different HRFs per sub-
ject are considered and the algorithms tested in-
clude TPICA (with FastICA, as in [9], in order to
check for the effect of the ICA method adopted),
CPD and BTD.

The noise added is white Gaussian (to follow the
structure of the TPICA model, so that no further
preprocessing is necessary), with different standard
deviations per voxel.9 Preprocessed resting-state
fMRI data (the same resting state data as in [9, 7])
were used to estimate background noise parameters,
voxel-wise means and standard deviations.

3.1.1. Simulation of a perception study

The data of three subjects were simulated under
the assumptions of a simplified version of a realis-
tic perception study [8]. The simulated data used
are a 60×50 axial slice of voxel activity from some-
where near the level of Broca’s area. The data from
each subject contained three sources with different

9Rician noise has also been tested with similar findings. We
stick to the Gaussian model here for easier comparison
with [7, 8, 9].

activation levels; the three activation patterns have
strengths (3, 4, 5), (2, 3, 4) and (2, 2, 3) times the
average noise standard deviations for subjects 1–3,
respectively. As stated in [7, 8, 9], these are rea-
sonable subject activation weights for typical fMRI
data.

The spatial maps and the time-courses of these
sources are presented in Fig. 6. The first compo-
nent represents the activation in the Broca’s area
while the second and third components represent
the visual and motion perception components, re-
spectively. In [8], 4 different versions of Spatial
Map 3 with different percentage of overlap (between
maps 3 and 2) were used. In this paper, an adapted
version of the maximum overlapped source (50% of
shared active voxels and correlation with Spatial
Map 2 equal to 0.4693) will be examined. Instead
of S1 of Fig. 3 (which has been used in [8]), we
used the more realistic S2 source (Figs. 3 and 6),
which has higher spatial rank. The activity level
at each active voxel was randomly sampled from a
Uniform [0.8,1.2] distribution for each replication
of each simulation condition. For later use (com-
parison using the correlations with the estimated
sources), we provide here the correlations of the
spatial maps, A, and the time-courses, B, with
themselves:

Cor(A) =

 1 0.03 0.04
0.03 1 0.36
0.04 0.36 1

 ,Cor(B) =

 1 0.14 0.06
0.14 1 0.46
0.06 0.46 1


All the previously stated rank estimation meth-

ods resulted in the same value for the rank R. The
rank of the decomposition was estimated as R = 3
for high CNR, while for CNR = 0.08, for CPD
and BTD it was R = 4. When values higher than
R = 6 were used, the performance of the CPD and
BTD decompositions was degraded, while the per-
formance of TPICA was not affected from the over-
estimation of R. The influence of overestimation
of R is similar for CPD and BTD and this is the

Figure 6: Spatial maps and time-courses of the three
sources used in the perception study.
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reason that no tables with correlation comparisons
based on the rank are presented here (for such com-
parisons, see [7]). In order to select the appropriate
L for BTD, different values were tested with dif-
ferent levels of noise. The best performance is ob-
tained for L equal to the “spatial rank” of the third
source (L = 3). As can be seen in Fig. 7, at high
and medium CNRs (0.50 and 0.15), the result of
the decomposition is robust to the overestimation
of L. For values of L lower than 3, the separation of
the third source is not good. For higher instances
of noise (CNR= 0.08), it can be noted that, al-
though values of L lower than 3 still give the worst
results, the increase of L to values higher than 6
results also in a deterioration of the performance.
As an example of the use of Heuristic 1, its result
for the lowest CNR (CNR= 0.08) can be viewed in
Supplementary Material.

In Figs. 8, 9 and Fig. 10, the performance gain
of BTD over the other methods, as the noise power
increases, can be observed (mean of 30 runs). Fig. 8
shows the mean (over the 3 different sources) prin-
cipal ACCD (Pearson correlation) of the five meth-
ods tested (the standard deviation per source is
also presented). For SICA, after fine tuning, the
values of the regularization parameters were set to
λ = 0.01 and ε = 0.1. It must be noted that the
performance of SICA is very sensitive (at least in
this simulation setting) to the λ value but not so
sensitive to the ε value (especially to its underesti-
mation). In Fig. 9, the principal ACCDs for all the
methods, for each source (not the mean), are shown
with barplots while the mean cross-talk ACCDs
(the mean off-diagonal elements for every source)
are represented with diamonds. TPICA starts fail-
ing even at values of CNR around 0.25. Indeed,
the second and third spatial maps are recognized

Figure 7: Decomposition of the data with different L
values at different CNR values (perception study).

as one (Fig. 9). Although ICA-CPA seems to be
more robust to noise than TPICA, it has the same
behavior in the presence of overlap. In overlapped
sources (Sources 2 and 3), the result of the decom-
position is not accurate. All the methods succeed
in recognizing the first source, which does not have
any spatial overlap with the others, almost perfectly
(small cross-talk is observed only at low CNR val-
ues). CPD, in line with the findings of [8], main-
tains the almost perfect separation of the sources at
values of CNR ≈ 0.15 and starts having small prob-
lems with overlap at CNR = 0.12 (not shown in the
figure). We can note that, especially for the time-
course of Sources 1 and 2, the separation result is
really bad at CNR = 0.08. SICA (if tuned properly)
has comparable performance with CPD, and out-
performs the other independence-based methods.
Sources 2 and 3, which are spatially overlapped,
are recognized correctly (with the aid of the spar-
sity regularizer) and the crosstalk is smaller than
in CPD and BTD. On the other hand, the per-
formance is less robust to the noise than in CPD
(and BTD), since the level of noise impacts also
the level of sparsity. For CNR = 0.08, the first two
sources of TPICA and ICA-CPA are noise-like and
this is the reason why the principal ACCD is so
high, while a combination of the second and third
sources is obtained in Source 3. The fact that BTD
identifies the sources correctly in the overlapping
areas, even at CNR = 0.08, must be emphasized.
The performance of BTD starts degrading only at
CNR < 0.06.

Split-half reliability analysis has shown that the
tensor decomposition methods (CPD and BTD)
will provide identical results if the correct num-
ber of components is chosen [79]. The same results
are also obtained even if the sample size is reduced
more than half (keeping in mind that it must remain
It > R). In ICA-based methods, where statistical
assumptions are crucial, there is a mild decrease in
the correlation of the two datasubsets when fewer
samples are used. In SICA, it was observed that the
reliability of the algorithm deteriorates with large
λ values.

In terms of their computational requirements,
BTD and ICA-CPA are the most costly. Some
indicative values of the required time per run are
given in Table 1. It must be noted that, when com-
pression is used, the time needed for both CPD and
BTD decreases significantly. Taking into consider-
ation the higher complexity of ICA-CPA as com-
pared with TPICA, the similar performance of the
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Figure 8: Mean ACCD at different values of CNR (per-
ception study).

Figure 9: ACCD per source at different values of CNR
(perception study).

Figure 10: Decomposition of the data with differ-
ent values of CNR. a) CNR=0.50 b) CNR=0.15 c)
CNR=0.08 (perception study).

two algorithms in the presence of overlap, and the
fact that TPICA is widely known in the fMRI com-
munity, TPICA will be considered instead of ICA-
CPA, despite the superior performance of the latter
in the presence of noise.

Methods No Compression Compression

TPICA 0.906655 s.
SICA 1.234582 s.

ICA-CPA* 13.583246 s.
CPD 1.939442 s. 1.012235 s.

BTD

L = 1 1.832343 s. 0.984838 s.
L = 2 2.123863 s. 1.323457 s.
L = 3 5.402858 s. 1.844389 s.
L = 4 5.735463 s. 2.343239 s.
L = 5 8.862472 s. 4.65328 s.
L = 6 11.810893 s. 5.203684 s.
L = 7 18.45496 s. 6.123953 s.
L = 8 23.253864 s. 8.426508 s.
L = 9 26.831358 s. 8.910285 s.
L = 10 30.513510 s. 10.023486 s.

*The code used in [51] is not available. The implementation,
made by the authors, might not be the optimal in terms of efficiency.

Table 1: Mean computation time of each method in
seconds (s).

3.1.2. Simulation with artifacts

SIM TB [80], a simulation toolbox running in the
Matlab environment, which allows flexible genera-
tion of fMRI datasets under a model of spatiotem-
poral separability. The dataset used in this section
has also been used in [44, 81] and it is publicly avail-
able in [82]. It consists of 8 sources (Fig. 11), one
is task-related (1), two are transiently (occurring
during only one or more portions of a task) task-
related (2, 6), and five are artifact-related (3, 4, 5, 7,
8). Furthermore, five of them are super-Gaussian
(1, 2, 5, 6, 8), two are sub-Gaussian (3, 7), and
one is Gaussian (4) in the spatial domain. The
characteristics of the various artifacts (physiolog-
ical noise) are different. The time-course for head
motion varies slowly with sudden transient fluctua-
tions (8), while those of the respiratory and cardiac
pulsation components appear to have random fluc-
tuations (4, 5). Scanner drift is another artifact and
is characterized by a slowly rising time-course (7).
Each spatial map consists of a single slice of 60×60
voxels and each time-course lasts 100 seconds. Data
for 5 different subjects were generated. The data of
each subject consists of all the sources with different
amplitude, and the amplitude per subject for each
source was drawn from a half-normal distribution
with mean µ = 0 and standard deviation σ = 3.

Using the sources of [82] (Fig. 11), three different
simulations with different datasets were performed:
Dataset a is the one provided in [82] with two dif-
ferent instances of noise. In Dataset b, the Gaus-
sian Source 4 was replaced by Source 9 (Fig. 11)
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Figure 11: Sources used in [84].

with high spatial overlap (50% overlap) and tem-
poral overlap (around 20%) with Source 1. Two
different instances of noise were also considered.
In Dataset c, subject variability was introduced in
the spatial domain in two of the sources of inter-
est (1, 6). For introducing subject variability to
the dataset, rotation of the spatial map of Source 6
and simultaneous translation of that of Source 1
were performed (similarly to [83]). Two different
levels of variability were examined. In the low level
variability case, the first subject has 0 degrees of
rotation and all the other subjects have a rotation
in increments of 4 degrees (hence a rotation of 16
degrees for the fifth subject). In an analogous man-
ner, subjects 2–5 have voxel shifts at increments of
2 voxels with respect to the 1st subject (hence a
shift of 8 voxels in the 5th subject). In the high level
variability dataset, the increments were set equal to
6 degrees for the rotation and 4 voxels for the shift.

The performance evaluation is once more based
on ACCD and visual inspection, with a small dif-
ference to the previous sub-section. Instead of pre-
senting the ACCD values for every source, a mean
principal ACCD for all the sources will be given,
since the number of sources (8) is large and the re-
sulting figures would be hard to read. Furthermore,
a mean principal ACCD for the sources of interest
(1, 2, 6) will be presented (we have noted that IVA
and GICA have poor performance for sources 3 and
7, which are sub-Gaussians with high overlap but
not of high interest, since they are artifacts and
hence they are omitted). The following color code
is employed to highlight the most important table
entries. Green (with a star) is used when a method
is significantly better than the other(s), blue (with
a double dagger) is used when the result (correla-
tion) of a method is not good but still the source can
be identified, while red (and a dagger) highlights
cases where a method fails to identify a source or

has a very strong cross-talk (correlation with wrong
sources). In cases where all the methods perform
equally well, no color is used.

3.1.2.1. Dataset a [82]

For CNR=2, R was estimated equal to 8, while
for CNR=0.80, R was set equal to 9. The perfor-
mance of GICA and IVA is not sensitive to overes-
timation of R, while for BTD and R values higher
that 11, the mean correlation starts decreasing.
Source 4 has high “spatial rank” (equal to 58).
Hence, in order to obtain good separation results
with BTD, a high L is needed (L = 40). Of course,
this renders it more complex (and hence expensive
in terms of computational time) compared to IVA
and GICA. As it can be noted from Table 2, all
the methods succeed in identifying almost perfectly
the sources of interest at high CNR. We can note
that SICA, in contrast to the previous simulation,
performs worse than the other ICA methods. This
deterioration in the performance of SICA is due to
the fact that some of the sources are dense (not
sparse) and since they can not be well presented by
a sparse model the residual of the source (the “left-
overs” of the signal of the source which has not been
modelled) causes a general drop in the performance.
IVA and GICA have slightly worse results in the
mean correlation of all sources (first two columns
for each CNR value in Table 2) since they fail to
distinguish Sources 3 and 7 (this was noted in sim-
ulations with all datasets so it will not be mentioned
again). The extra noise added (CNR=0.80) influ-
ences the performance of the algorithms. GICA
and IVA start suffering from cross-talk (mainly in
the artifact sources) and in areas with overlap (even
minimum), while the performance of BTD remains
stable, apart from some minor problems with the
time-courses, which are

Methods
CNR=2.00 CNR=0.80

All sources Task related All sources Task related
Maps Tcs Maps Tcs Maps Tcs Maps Tcs

IVA 0.88 0.82 0.92 0.90 †0.66 †0.60 0.78 ‡0.69
GICA 0.88 0.81 0.84 0.88 ‡0.75 †0.66 0.81 ‡0.75
BTD 0.88 0.88 0.95 ?0.98 ?0.83 ?0.88 ?0.92 ?0.95
SICA †0.68 †0.66 ‡0.82 ‡0.85 †0.56 †0.54 †0.58 †0.56

Table 2: Mean ACCDi,j for i = j of Dataset a.

slightly affected from the residual of Source 4
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adding a small trend, similar to its time-course.10

3.1.2.2. Dataset b – Spatial and temporal overlap

Similary to Dataset a, in Dataset b (where
Source 4 has been replaced by a source of high over-
lap), R was estimated equal to 8 for CNR = 2.00,
while for CNR = 0.80, R was set to 9. The way
all algorithms perform with respect to the rank es-
timation is similar to that for Dataset a. From Ta-
ble 3, it can be observed that, even at high CNR
(CNR = 2.00) GICA and IVA have difficulties in
separating correctly the sources. cross-talk between
the overlapped areas is observed in Fig. 12 (a) and
(b) (which depicts one representative run of the al-
gorithms). This cross-talk increases at CNR = 0.80
(Fig. 13(a) and 13(b)). A difference in IVA and
GICA can be seen here. Namely, the performance
of IVA is affected more by the overlaps in the spa-
tial maps while that of GICA in the time-courses.
Notice that in Sim TB all the areas of activation
are generated as 2-D Gaussian distributions, hence,
although the overlap in percentage of voxels intro-
duced is quite high, the fact that the Gaussian den-
sity is unimodal aids the algorithms. The same per-
centage of overlap introduced in a source with acti-
vation area created by a uniform distribution (as in
Section 6.1) or by a Tuckey (tapered cosine) win-
dow causes even stronger cross-talk in the sources
obtained by GICA and IVA. Again, the robustness
of BTD can be observed. It is even more robust
(in the time-course mode) compared to Dataset a,
since now the high-rank Source 4 does not exist
(the only source that sometimes is not perfectly re-
overed from BTD is Source 8, which has the lowest
amplitude).

Methods
CNR=2.00 CNR=0.80

All sources Task related All sources Task related
Maps Tcs Maps Tcs Maps Tcs Maps Tcs

IVA ‡0.69 ‡0.73 ‡0.75 0.78 †0.45 †0.57 †0.57 †0.62
GICA 0.80 ‡0.69 0.76 ‡0.66 ‡0.69 †0.53 ‡0.74 †0.62
BTD ?0.94 ?0.99 ?0.98 ?0.99 ?0.80 ?0.94 ?0.89 ?0.95

Table 3: Mean ACCDi,j for i = j of Dataset b.

10Since the value of L used is smaller than the true “spatial
rank,” a small residual exists. In Section 4.2 of the Sup-
plementary Material, figures with the result of BTD with
different L values are included and the effect of the un-
derestimation of L can be noted therein. The effect could
be avoided by increasing L even more, but the gain is not
worth the corresponding increase in the complexity. Fur-
thermore, uniqueness issues could then come up (affecting
the column rank of matrices A and B and invalidating the
assumption of Theorem 4.1 [11], since min(Ix, Iyz) is less
than LR)) instead of being greater than or equal.

Figure 12: Results from the decomposition of Dataset b
at CNR=2.00 a) GICA b) IVA c) BTD.

Figure 13: Results from the decomposition of Dataset b
at CNR=0.80 a) GICA b) IVA c) BTD.
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3.1.2.3. Dataset c – Subject variation

The performance of the algorithms with respect
to the spatial subject variability is evaluated in this
simulation. Source 9 with overlap is removed (now
we have only 7 sources) and the simulation is per-
formed only at high CNR (CNR = 2.00), to re-
move any influence from overlap and noise. Ta-
ble 4 demonstrates the superiority of IVA in han-
dling datasets where the variability of the spatial
maps is high. At the low level variability, we can
note that all methods perform similarly (note that
without variability at this CNR, BTD would result
in slightly higher correlations). With high level of
variability, it is evident that IVA outperforms the
other two methods, and BTD is the worst due to
the assumption of multilinearity, since every subject
must have the same (or at least very similar) spa-
tial map for every source for the ,method to work
properly.

Methods
Low variation High variation

All sources Task related All sources Task related
Maps Tcs Maps Tcs Maps Tcs Maps Tcs

IVA 0.80 0.76 0.86 0.80 ?0.74 ?0.78 ?0.81 ?0.83
GICA 0.79 0.77 0.84 0.79 †0.75 †0.66 †0.68 †0.69
BTD 0.81 0.82 0.84 0.83 †0.54 †0.62 †0.61 †0.66

Table 4: Mean ACCDi,j for i = j of Dataset c.

3.1.3. Multi-slice simulation

The signal consists of artificial voxel activation
maps (of three different slices), time patterns and
activation strengths for three subjects. In this
simulation setting, the brain consists of 3 slices,
so the cross-talk between different slices can be
also checked. The voxel-wise noise mean and vari-
ance are the same for each subject. Beckmann
and Smith [9] consider five different artificial fMRI

Figure 14: Spatial maps of Datasets A and G. Common
time-courses.

datasets, named A–E, which differ only in their sig-
nal part and have no spatial overlap, while Stege-
man [7] added three more, F–H, with high percent-
age of overlap between the sources. In Dataset G,
the first two spatial maps are a combination of Spa-
tial Maps 1 and 2 of Dataset A, hence, the activity
of the first two maps takes place in the first two
brain slices, and they have 51% and 63% of their ac-
tive voxels in common (high percentage of overlap),
respectively. In Map 3, the time-courses B, and the
noise instances are the same as in Dataset A. Hav-
ing been convolved with a canonical HRF, the time-
courses and the spatial maps consist of three differ-
ent spatiotemporal processes, which are present in
every subject with different amplitude (same with
Section 3.1.1 and [9, 7]). Figs. 15–16 depict the
principal ACCDs and mean cross-talk ACCDs. As
in Section 3.1.1, we will provide the correlation ma-
trices of the actual sources with themselves for the
sake of comparison:

Cor(A) =

 1 0.04 0.16
0.04 1 0.04
0.16 0.04 1

 ,Cor(B) =

 1 0.02 0.16
0.02 1 0.05
0.16 0.05 1



Cor(Ã) =

 1 0.49 0.05
0.49 1 0.05
0.05 0.05 1

 ,

where A stands for the spatial maps of Dataset A
and Ã for those of Dataset G (as previously men-
tioned, the time-courses B are common).

In this paper, Datasets A, G (lowest and highest
spatial overlap) (Fig. 14) and C are used. Dataset C
has the same spatial maps as A, but with different
convolution parameters for the generation of the
time-courses. In Datasets A and G, a canonical
HRF is assumed for all subjects, while in Dataset C,
the HRFs of every subject differ in mean lag and
standard deviation (stdev = 3, 3.5, and 4 seconds,
mean lag of 4, 5, and 6 seconds). This induces
small differences in the temporal signal per sub-
ject. Using the same HRF parameters (as Dataset
C) and spatial maps of Dataset G, an extra dataset,
Dataset I, has been generated with different time-
courses per subject with high spatial overlap. Fur-
thermore, the mean lag in Datasets C and I has
been increased to test the performance of the algo-
rithms in such conditions. The data of Datasets C
and I do not have a strict multilinear structure
and it has been shown [7, 8] that, in such cases,
CPD fails to correctly identify the components.
The noise instances used in all the datasets are the
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same, however, the CNR values are different be-
tween Datasets A and G (and hence C and I), due
to the fact that Dataset G has a stronger signal.

3.1.3.1. BTD

The rank R was set equal to 4 (estimated rank,
as also shown in [7]), and the L value was estimated
(with the use of Heuristic 1) equal to 10. At high
and medium CNR values, the result is robust to
overestimation of L even with values up to 30, while
at the lowest CNR used in Figs. 15 and 16 a mild
degradation of the performance is noted for L > 16.

Dataset A – Low spatial overlap. Note the
stability in the performance of BTD compared to
the other two methods. Furthermore, the different
effect of noise in TPICA and CPD can be read-
ily observed. In TPICA, the correlation between
the estimated spatial map and the “true” one de-
creases dramatically as the level of the noise gets
higher, while in CPD the decrease is slower but
with a significant increase of the cross-talk (cor-
relation among “wrong” spatial maps). In terms
of cross-talk between different sources, TPICA per-
forms better than CPD and BTD (if the sources
are indeed independent as in Dataset A). The fact
that no overlap exists also improves the result of
the other methods (compared to cases with over-
lap), since the problem is now easier. Generally,
when the components are truly spatially indepen-
dent, TPICA (and all the other methods based on
the independence assumption) yields better results
in terms of crosstalk than unconstrained tensor de-
composition methods. Employing constraints that
agree with the data is expected to yield better re-
sults. The present case is an instance of this, since
if no overlap exists, the independence assumption,
on which the ICA-based methods rely, is valid.

Figure 15: ACCD of the sources of Dataset A with
different values of CNR.

Dataset G – High spatial overlap. Fig. 16
demonstrates the poor performance of TPICA com-
pared to CPD and BTD in cases of high over-
lap, and the gains offered by BTD against the
other two methods, in the presence of high levels
of noise. Even at relatively high CNR (=0.12),
TPICA fails to correctly separate the first two
sources which overlap. Visual inspection shows that
Spatial Map 1 of TPICA is an approximation of the
common part of Sources 1–2. This could mean that
TPICA splits the common part and the two unique
parts of the sources. However, this is not the case
since Spatial Map 2 is not the unique part of one
of the sources but a combination of the two unique
parts with the common part and Source 4 is noise.
We can note that TPICA exhibits lower cross-talk
for the independent Source 3 compared to the other
methods (similarly to Dataset A) and higher corre-
lation (at high CNR). Similarly to Dataset A, the
main problem of CPD is the high cross-talk (be-
tween Sources 1 and 3). As the noise level increases,
the difference in the performance of the decompo-
sitions increases in favor of BTD as the result of
BTD is less affected by noise.

3.1.3.2. PARAFAC2

Even in datasets where the assumption of mul-
tilinearity is valid (Datasets A and G with the
same time-course per subject) PARAFAC2 per-
forms well, similarly with CPD, only with a slightly
higher cross-talk (cf. Fig. 18). In Datasets C
and I, where multilinearity is not satisfied, CPD
completely fails to correctly extract three different
sources, even if we consider an equivalent multilin-
ear model of higher rank (R = 9). TPICA manages
to handle the non-overlapped case of Dataset C (the
result is slightly better than that of PARAFAC2,
with better crosstalk ACCD), but in cases of high

Figure 16: ACCD of the sources of Dataset G at dif-
ferent values of CNR.
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overlap (Datasets G–I), it fails dramatically to sepa-
rate the spatially overlapped sources. If we increase
the lag introduced to HRF, the result of TPICA
gets worse, while PARAFAC2 remains stable (as
despite the lag introduced by HRF the cross prod-
uct of time-courses is stable) and gets better than
TPICA even for Dataset C. The rank R was set to
3 both for CPD and PARAFAC2.

Figure 17: Spatial maps of Datasets C and I.

Figure 18: ACCD of the data at different Datasets.

3.1.3.3. BTD2

Having verified the effectiveness of BTD and
PARAFAC2 in the multi-slice simulation scenar-
ios of Section 5.2, the focus is now turned to
the proposed BTD2 method using noise of varying
strength. L was estimated to be equal to 30 and R
to 3 at CNR = 0.08, for dataset C, and at CNRs
0.15 and 0.12 for Dataset I, while at CNRs 0.08 and
0.06, for Dataset C and CNR = 0.08 for Dataset I,
the estimated value was equal to 4.

It can be seen in Figs. 19 and 20 that BTD2 is
more robust to noise than PARAFAC2, especially in
the noisier cases. The performance of PARAFAC2
deteriorates significantly at CNR values lower than
0.05 for Dataset C and 0.10 for Dataset I, while
the result of TPICA worsens at even higher values
of CNR. It can also be observed that the compo-
nent which is less influenced by noise is component
no. 3. This is quite reasonable, since it has the min-
imum spatial and temporal overlap with the other
sources. The result of BTD2 is fairly insensitive to
the overestimation of L, similarly to BTD. On the
other hand, BTD2 is computationally more com-
plex since more factors need to be computed.

Figure 19: ACCD of Dataset C at different values of
CNR (BTD2 - Section 3.1.4).

Figure 20: ACCD of Dataset I at different values of
CNR (BTD2 - Section 3.1.4).
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3.2. Real data

In this subsection, results from the analysis of
real data will be presented. The dataset used was
obtained from the OpenfMRI [85] database. Its ac-
cession number is ds000157 and it has been previ-
ously used in [86]. During the experiments, subjects
alternately viewed 8 blocks of 24 seconds of palat-
able food images and the same number of non-food
images (e.g., office utensils), with an intersection
of 8–16 sec resting blocks (for more information
about the task and the experiment, see [86]). It was
demonstrated that visual stimuli connected with
food elicit increased attention, since higher activa-
tion of the primary visual cortex has been noted. In
addition, it was found that viewing images of palat-
able food results in activation of the self-regulation
areas (e.g., the lateral prefrontal and orbitofrontal
cortex) and the reward regions (e.g., caudate nu-
cleus, ventral striatum and amygdala) [86].

The initial dataset involves 30 different sub-
jects. After performing a quality assessment in the
dataset, we identified the subjects with high per-
centage of movement (subjects 9, 16, 18, 24, 25
and 26) and we excluded them from the analysis.
Furthermore, from the remaining 24 subjects, we
noted that 6 of them (Subjects 1, 2, 3, 4, 8 and
10) had a different number of time points (378 in-
stead of 370). Since in [86] no details were pro-
vided about this difference in the time points, those
6 subjects have been also excluded, leading to a
dataset of 18 subjects. The spatial analysis for ev-
ery image is 64 × 64 × 30 with Repetition Time
TR = 1.6 and voxel size 4 mm. fMRI data prepro-
cessing was carried out using FMRI Expert Anal-
ysis Tool (FEAT) Version 6.00, part of FMRIB’s
Software Library (FSL [50]). The following pre-
statistics processing was applied. Motion correc-
tion using Motion Correction FMRI’s Linear Im-
age Registration Tool (MCFLIRT [87]); no slice-
timing correction; non-brain removal using Brain
Extraction Tool (BET) [88]; spatial smoothing us-
ing a Gaussian kernel of Full Width at Half Max-
imum (FWHM) of 8 mm (twice the voxel size);
grand-mean intensity normalisation of the entire 4-
D dataset by a single multiplicative factor; highpass
temporal filtering (Gaussian-weighted least-squares
straight line fitting, with FWHM=100 seconds).

Rank estimation is a hard (open) problem for
noisy multi-way data. With synthetic data, where
the number of simulated sources is a-priori known,
estimating the rank of the noisy tensor is easier. In

order to estimate the rank for real data, we resorted
to different tools: the CorConDia) method [47], the
triangle method [48], and the Automated Unsuper-
vised Tensor Mining (AutoTen) method [89] (and
the baseline methods described and made publicly
available in [89]). The results of the methods were
not consistent with each other as the estimated rank
ranged from 5 to 30. We decomposed the data with
all possible ranks (between 5 and 30) and checked
the results. The relative error drops dramatically
as the rank is increased up to the value of 6 and
then a moderate decrease of the error is observed
as the rank increases further. We selected R = 8.
This is because, for ranks higher than 8, the main
component (source of interest), which is the pri-
mary visual cortex activated by the blocks of im-
ages, might be split. Generally, at a reasonable
CNR, adding more components can result in mod-
elling noise and sources of no interest. Moreover,
as it has been reported, the techniques which are
trying to find a trade-off between complexity and
fit might overestimate the rank [35]. For the es-
timation of L, different heuristic methods can be
used [57]. After testing different values and with
the application of Heuristic 1, L was set equal to
20 (the result of Heuristic 1 can be viewed in Sec-
tion 1.1 of Supplementary Material).

As mentioned before, a higher activation of the
primary visual cortex is expected when the food
images appear. Since the visual component has a
common spatial map for both the food and non-
food images, the difference in the activation is de-
picted in the respective time-course. Hence, odd in-
dexed blocks (food images) turn out to have higher
amplitude than the even inedexed ones (non-food
images). The mean difference between the maxi-
mum of the (time-course of the) food blocks and the
non-food blocks has been calculated. For TPICA,
it is 0.3260, for CPD it is 0.2684 and for BTD, it
is 0.3289. Although it seems that the ability to
discriminate between food and non-food blocks in
TPICA and BTD is quite similar (and better than
CPD), this finding can be quite misleading. As it
can be observed from Fig. 21 (where time-courses
are presented detrended and low pass filtered with
a Butterworth filter), the time-course from TPICA
displays a large difference among the amplitudes of
the first blocks. In contrast, in pairs 6 and 8, we
can observe that the even block is higher than the
odd block (hence, we can not discriminate the food
or non-food blindly, based on the level of activation
of the visual cortex). BTD is the only, among the
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three methods, which results in higher amplitude
in the odd (food) blocks in all of the pairs. For
visualizing the components and computing the Z
scores, the Display GUI of the GIFT toolbox [70]
was used (and all of its post-processing tools; e.g.,
detrending and low pass filtering with a 5th-order
Butterworth filter) and Z > 2 was selected. In all
the methods, we can distinguish the main visual
component. Two of the components for CPD are
probably caused by motion and they have very high
correlation with each other (they could be merged
into a single component). Each method resulted in
at least one component in which the reward regions
can be observed. Since the component of interest is
the visual cortex, we will focus on the comparison of
the visual component obtained via the three meth-
ods (the rest of the components can be viewed at
pix.sfly.com/bziPkBS8). In Figs. 22–25, the visual
component of each method is depicted.11 We note
that the primary visual cortex is the main area ac-
tivated and it is quite similar for all three methods
with slightly higher activation for CPD and BTD
(z slices -2 to -18). The main difference between
CPD and BTD is the fact that, in CPD, the pre-
cuneus does not seem activated (z slices 14 to 42).
It is activated in the visual component of TPICA
but with significantly less power than BTD. The
precuneus has been reported to be activated during
food choice versus non-food choice [90] and is known
for its involvement in attention and connected to
visuospatial preprocessing and the recall of emo-
tions [91]. Furthermore, it has been reported that it
exhibits increased activation during inhibition ver-
sus imaginary eating [92]. The visual component
of GICA is characterized by the fact that is only
activated at the lower slices and shows almost zero
activation in the areas of the precuneus.

The visual component of BTD2 is shown in
Fig. 26 (since the time-courses are different per
subject, the common spatial map and the time-
course of the first of the 18 subjects are only de-
picted) and can be noted that, similarly to BTD,
the precuneus and the primary visual cortex are ac-
tivated. We also note that Component 8 (Fig. 27)
has a time-course with high correlation with the
food blocks (the food peaks have been denoted
with an F). The level of correlation differs per sub-
ject and the amplitude of the time-course is larger
for subjects with higher appetite (based on the

11The rank of some of the slices of the visual component of
CPD is computed in the Supplementary Material, in order
to demonstrate that the resulting regions are of low-rank.

appetite score provided with the metadata of the
dataset). The spatial map of Component 8 indi-
cates activation of the primary visual cortex, cau-
date nucleus, precuneus and the thalamus. The
activation of the thalamus has been reported to
be connected with the anticipation of food and/or
drink consumption [93], and be higher in overweight
and obese participants than healthy weight subjects
[94]. This can be connected to the higher activa-
tion of Component 8 in subjects with higher ap-
petite as observed. A possible drawback of BTD2
and PARAFAC2 (that has not been observed with
simulated data) is the fact that the resulting com-
ponents are corrupted by noise more than CPD and
BTD. The fact that in some cases the time-courses
obtained from non-multilinear models have such a
noisy shape has been also previously reported [79].
This is an indirect effect of the weaker restrictions
imposed on the time-courses. Nevertheless, since
the time-courses follow the original profiles closely,
this is not really an issue; a low pass filtering could
overcome the problem. Furthermore, we observed
that the reproducibility for R higher than 15 is
not always achieved (which may indicate unique-
ness problems for high values of R; similar observa-
tions for PARAFAC2 have been made in [20]).

3.2.0.1. Augmented data

In real data, due to the lack of ground truth, it is
difficult to identify which algorithm performs best
and hence indirect comparisons are made. As an
alternative way to make the comparisons we will
create an “augmented” dataset. An extra simu-
lated source (Fig. 28) is added to the real dataset,
which has both temporal and spatial overlap with
the primary visual component. The activity level
at each active voxel was randomly sampled from
Uniform [0.8,1.2] times the maximum activation of
visual component of every subject, while the am-

Figure 21: The time-courses of the visual component.
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Figure 22: The visual component from TPICA, R = 8.

Figure 23: The visual component from GICA, R = 8.

Figure 24: The visual component from CPD, R = 8.

Figure 25: The visual component from BTD, R = 8.

Figure 26: The visual component from BTD2, R = 8.

Figure 27: Component 8 from BTD2, R = 8.
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plitude of the time-course is analogous to the vi-
sual component per subject. Ideally, the result for
the sources originated from the real dataset should
not be affected by the extra source and hence the
sources obtained from each method with the initial
dataset plus the simulated source can be considered
as a ground truth.12 Figs. 29–34 depict the results
of the different decomposition methods. BTD sep-
arates almost perfectly the two sources and the cor-
relation of the simulated source with the obtained
source is 0.91. As expected, TPICA is the method
that suffers most from the overlap with the simu-
lated source. We can see that both the time-course
of the visual component and the spatial map are
contaminated from the artificial source. With CPD,
the time-courses are recovered relatively well but
the spatial maps have cross-talk with each other
and the correlation of the obtained map with the
ground truth for the spatial maps is only 0.72.

Similarly to the comparisons for BTD, aug-
mented data will also be used for testing the non-
multilinear methods. The source of Fig. 28 was also
used in that case but with a significant difference.
The time-course of the source is shifted randomly
for every subject from -5 to +5 seconds (compared
to the one used in Fig. 28). CPD fails in distin-
guishing correctly the two sources (Figs. 35 and 36)
even if we increase the rank of the decomposition.
On the other hand, BTD2 finds the spatial maps
accurately (Figs. 37 and 38) but with some noise of

Figure 28: The simulated component added.

12An idea following the rationale of the super-position of
pilots in communications.

Figure 29: The simulated component from TPICA.

Figure 30: The visual component from TPICA.

Figure 31: The simulated component from CPD.
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Figure 32: The visual component from CPD.

Figure 33: The simulated component from BTD.

Figure 34: The visual component from BTD.

Figure 35: The visual component from CPD for the
augmented data, with different HRF per subject.

Figure 36: The simulated component from CPD for the
augmented data, with different HRF per subject.

Figure 37: The visual component from BTD2 for the
augmented data, with different HRF per subject.
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Figure 38: The simulated component from BTD2 for
the augmented data, with different HRF per subject.

high frequency in the time-courses (as previously
noted). The constraint that the cross prod-
ucts B>k Bk are constant over k (as required in
PARAFAC2 and BTD2) is not satisfied in this case
(since we only shift one of the sources). However,
since this constraint is less strict than Bk being the
same for every subject, the performance of BTD2
is still better than that of BTD (see [15] for similar
findings in a chemometrics application).

4. Conclusions

In this paper, a novel approach to blind fMRI
source unmixing was presented. It is based on
the combined use of higher (than three)-order ten-
sors and a BTD tensor model, in an effort to bet-
ter exploit the original 3-D spatial structure of the
data. Extensive simulation results demonstrated
the enhanced robustness of the proposed method
to the presence of noise, as compared with CPD-
and ICA-based decompositions. In cases of spa-
tial and/or temporal overlap, both CPD and BTD
give better results compared to ICA-based meth-
ods [8, 7]. SICA is the only among the ICA-based
methods, which exhibits good performance (albeit
careful tuning) in the case of overlap when only
sparse sources exist; on the other hand, problems
arize when dense and sparse sources coexist. CPD
and BTD are more sensitive to the tensor rank over-
estimation. In terms of computational cost, the
complexity of BTD is higher than that of CPD. A
heuristic was proposed for the estimation of L for
the fMRI source separation problem.

Furthermore, a new decomposition method,
called BTD2, was proposed, which is based on

BTD while allowing variation across one mode. It
was demonstrated in simulated scenarios that non-
multilinear tensor decomposition methods, such as
PARAFAC2 and BTD2, are expected to be more
suitable for fMRI BSS due to the variability of the
HRF across subjects and that they result in im-
proved separation performance compared to strictly
multilinear methods like CPD and TPICA. The
proposed tensor decomposition, BTD2, combined
with the use of higher-order tensors, shows signifi-
cant robustness to noise compared to PARAFAC2,
at the cost of a higher computational complexity.
13

Our approach, based on higher-order tensoriza-
tion, has also some further important advantages
in practical applications. In contrast to statisti-
cal approaches (notably ICA and IVA), BTD only
relies on the low rank assumption. No statistical
assumptions (such as independence) nor statistics
estimates (such as of correlations or cumulants) are
necessary. The only reliance of the tensor decompo-
sition methods (such as CPD and BTD) on statis-
tics is the assumption of additive white Gaussian
noise, which underlies the least squares criterion
that was chosen for their computation. On the
other hand, ICA relies on the statistical indepen-
dence of the sources and that is why it fails in sce-
narios involving strong spatial overlap among them.

In task-related fMRI, external information is of-
ten available. The time-courses of some of the
sources of activation may be approximately known
and/or indications about the areas, which are ex-
pected to be activated, may exist. Thus, future
work may explore semi-blind (guided) versions of
BTD and BTD2 [27], which will allow prior infor-
mation to be exploited. Developing methods for es-
timating R and L, specific to the fMRI BSS prob-
lem, is another possible future research direction.
Following a similar rationale to that of Heuristic 1,
an optimization algorithm, using column pruning,
can be sought for the estimation of L. Similar op-
timization techniques, based on the nuclear norm,
have been used for the estimation of R for CPD [95].
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