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Chapter 1

Introduction

Non-life insurance offers individuals and companies the possibility to manage
their risk by transferring potential future losses to the insurance company in
exchange for a deterministic premium. Such a risk transfer is essential in our
modern society as it enables policyholders to take risks, e.g. driving a car,
organise events or manufacture products, that could otherwise have significant
financial consequences. Managing these risks is the task of the insurance
company. For this task, non-life insurers predict the number and size of future
claims when setting premiums and set aside funds, the so-called reserve, to cover
future losses from policies sold in the past. This work puts focus on quantitative
methods and frameworks to estimate the reserve in non-life insurance.

Traditional methods for claim reserving summarize the available claim data
in a two dimensional table by aggregating payments by occurrence year and
development year, i.e. the number of years elapsed since the occurrence of
a claim. In a second step the reserve is estimated with a simple statistical
model fitted to the aggregated data. Computational constraints from the past
explain the popularity of first aggregating the data, which drastically reduces
the number of available data points. However, aggregating the data masks the
underlying claim dynamics. This encompasses a risk, when these dynamics
vary over time. Detecting and correcting for such changes is a sheer impossible
task when only aggregated data is available. Therefore, insurers are nowadays
increasingly interested in reserving models that predict the reserve by analysing
the development of individual claims.

Figure 1.1 visualizes the development process of a single claim over time. This
claim development process starts when an accident happens. After the accident,
the insured reports his claim to the insurer at the so-called reporting date. Only
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2 INTRODUCTION

at this point the insurer becomes aware of the existence of the claim. The delay
between the occurrence and reporting of the claim is called the reporting delay.
These delays are strongly portfolio dependent and can be substantial when the
insured does not immediately notice the damage. Once the claim is reported,
the insurer reimburses the loss with a single payment or a series of payments.

Time

Occurrence Reporting Settlement

Settlement delayReporting delay

Figure 1.1: Sketch of the development process of a single claim

This thesis presents new tools for estimating the claim reserve by modelling
each of the components in the claim development process. At the individual
level, reserve computations are often split into a reserve for incurred, but not
(yet) reported (IBNR) claims and a reserve for reported, but not (yet) settled
(RBNS) claims.

1.1 Modelling the occurrence and reporting of
claims

Only reported claims appear in the insurer’s claim data set. Since there is no
incentive for policyholders to quickly report their insurance claims, a significant
fraction of the claims from recent occurrence days is still missing. Correcting the
claim data set for these missing claims is an important aspect of IBNR reserving
and requires a solid understanding of the claim occurrence and reporting process.

In Chapter 2 we model the occurrence and reporting process using daily data.
Modelling the occurrence process with daily data enables our model to flexibly
adapt to short term events, such as hail storms, which result in sudden spikes in
the occurrence process. Since almost no claims get reported during the weekend
and on holidays, a reporting model at daily level should be capable of capturing
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these calendar day effects. This chapter develops an intuitive approach, the
so-called time change strategy, to model all calendar day effects in the data.

In Chapter 4 we present an alternative approach for IBNR reserving when daily
data is not available. This chapter follows an individual reserving approach
in which we identify the characteristics of the policyholders, who have not
yet reported their claim. Identifying these characteristics enables us to better
predict the cost of unreported claims.

1.2 Modelling the development of reported claims

Nowadays insurers collect vast amounts of data over the lifetime of claims. We
can divide this information in static claim characteristics (e.g. the cause of the
claim) which become available at reporting and dynamic claim characteristics
(e.g. the total amount paid, the settlement status of a claim) that can change
during the lifetime of a claim. In theory, insurers only need to predict the total
amount paid. However, in practice, jointly modelling the amount paid with
the other claim characteristics often results in models with a higher predictive
accuracy.

In Chapter 3 we present the hierarchical reserving model as an intuitive and
flexible approach for jointly modelling claim characteristics. By decomposing
the joint model in a set of building blocks, called layers, hierarchical reserving
models can be easily adapted to a specific portfolio. An R package accompanies
this chapter to assist insurers in implementing this model in practice.

Chapter 4 extends the hierarchical reserving model such that this approach can
also be used to predict the cost of IBNR claims. To the best of our knowledge
this is the first application of an individual reserving model to reinsurance data.
This demonstrates that individual reserving is not necessarily limited to large
portfolios with many claims.

1.3 Unifying pricing and reserving methodology

Although both pricing and reserving models rely on data from past claims,
insurance companies approach pricing and reserving as separate tasks. Pricing
actuaries model the number of claims and (average) claim severity per
policyholder, but ignore the fact that exact counts and severities are not
available for all policyholders and claims due to delays in the claim development
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process (see Figure 1.1). Predicting the future development of claims, and thus
completing the claim information, is the task of an individual reserving model.

Chapter 4 presents the occurrence and development model as a unified approach
for pricing and reserving. Both of these actuarial tasks benefit from an
increased collaboration and knowledge transfer between the pricing and reserving
department. In reserving, using policyholder characteristics results in a reserve
that is more robust against changes in the portfolio composition. In pricing,
better predictions of the future development of claims result in more accurate
premium estimates.

The various chapters in this thesis can be found in

(i) Jonas Crevecoeur, Katrien Antonio, and Roel Verbelen. Modeling the
number of hidden events subject to observation delay. European Journal
of Operational Research, 277(3):930 – 944, 2019. ISSN 0377-2217. URL
https://doi.org/10.1016/j.ejor.2019.02.044

(ii) Jonas Crevecoeur and Katrien Antonio. A hierarchical reserving model
for non-life insurance claims. 2020a. Available at arXiv: https://arxiv.
org/abs/1910.12692

(iii) Jonas Crevecoeur and Katrien Antonio. Bridging the gap between pricing
and reserving with an occurrence and development model for non-life
insurance claims. 2020b. Working paper

The author also contributed to the following original publication

(i) Roel Verbelen, Katrien Antonio, Gerda Claeskens, and Jonas Crevecoeur.
Modeling the occurrence of events subject to a reporting delay via an
EM algorithm. 2019. Available at arXiv: https://arxiv.org/abs/1909.
08336

https://doi.org/10.1016/j.ejor.2019.02.044
https://arxiv.org/abs/1910.12692
https://arxiv.org/abs/1910.12692
https://arxiv.org/abs/1909.08336
https://arxiv.org/abs/1909.08336


Chapter 2

Modeling the number of
hidden events
subject to observation delay

Abstract

We consider the problem of predicting the number of events that have occurred
in the past, but which are not yet observed due to a delay. Such delayed events
are relevant in predicting the future cost of warranties, pricing maintenance
contracts, determining the number of unreported claims in insurance and in
modeling the outbreak of diseases. Disregarding these unobserved events results
in a systematic underestimation of the event occurrence process. Our approach
puts emphasis on modeling the time between the occurrence and observation
of the event, the so-called observation delay. We propose a granular model for
the heterogeneity in this observation delay based on the occurrence day of the
event and on calendar day effects in the observation process, such as weekday
and holiday effects. We illustrate this approach on a European general liability
insurance data set where the occurrence of an accident is reported to the insurer
with delay.

This chapter is based on Jonas Crevecoeur, Katrien Antonio, and Roel Verbelen.
Modeling the number of hidden events subject to observation delay. European
Journal of Operational Research, 277(3):930 – 944, 2019. ISSN 0377-2217. URL
https://doi.org/10.1016/j.ejor.2019.02.044.
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6 MODELING THE NUMBER OF HIDDEN EVENTS SUBJECT TO OBSERVATION DELAY

2.1 Introduction

In many domains within operational research analysts are interested in building
a stochastic model for the occurrence of events. However, the events of interest
are often observed or reported with some delay. Analysts should account for
these unobserved events since ignoring them will bias the decisions based on
the stochastic model under consideration. Figure 2.1 visualizes this setting. We
specify a well defined observation window (on the x-axis) in which we observe
the creation of new objects (e.g. products or contracts). Over the course of
their lifetimes some objects may experience the event of interest (object 1 and
2 in Figure 2.1) before a given evaluation date, and others will not (object
3 and 4 in Figure 2.1). Upon occurrence the event is initially hidden from
the decision maker. The time that elapses between the onset of the object’s
lifetime and the occurrence of the event is called the event delay. Only after
a so-called observation or reporting delay the decision maker becomes aware
of the existence of the event. This chapter outlines a data driven strategy to
predict the number of events that occurred in the past (before the evaluation
date), but which are hidden at the time of evaluation and will only be observed
or reported in the future. Subject 2 in Figure 2.1 is an example of such an
event.

Time since start

Observation window Future

Start

1

Hidden
event

Observed
event

Even
t delay

Observ
atio

n delay

2 3 4

Evaluation date

Figure 2.1: Occurrence and observation of events

The modeling of the time to occurrence of an event (‘the event delay’), the
number of (hidden) events that occurred during a specific time window and
the delay between occurrence and observation (‘the observation delay’) have
been active research areas in the literature on operational research, actuarial
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science and epidemiology. Typical examples of applications where this predictive
problem matters are: a portfolio of maintenance, warranty or insurance contracts,
but also an outbreak of a specific disease fits within this framework. We highlight
some relevant contributions and explain how this chapter extends the existing
literature.

A warranty contract requires the manufacturer to compensate the buyer for all
failures occurring within the warranty period. Manufacturers hold capital for
future compensations related to goods produced in the past. The amount of
capital required depends on the number of defective products that have been sold.
Accurate estimation of this number is complicated due to the incompleteness of
the data. The diagonal time line in Figure 2.1 begins when a defective product is
produced. However, the warranty period only starts when the product is sold to
a customer. Manufacturers are typically not aware of these sales and we consider
them as a hidden events. Once the defect emerges and the customer calls his
warranty contract, the manufacturer is informed of the sale (‘the observed
event’). Akbarov and Wu [2012] and Ye and Ng [2014] simultaneously model
the time to sale and the delay between sale and failure of the product using
parametric methods. Since both processes interact in the likelihood, estimation
is difficult. Akbarov and Wu [2012] resolve to numerical maximization, whereas
Ye and Ng [2014] use a Stochastic Expectation Maximization strategy. While
these authors model the time to sale with a simple, parametric distribution
without covariates, our framework accounts for the seasonal effects, promotions
holidays and weather effects typically present in sales data.

Epidemiologists face a similar statistical problem when modeling the evolution
of diseases [Harris, 1990, Salmon et al., 2015]. In this setting, subjects are
followed over time and a recent disease infection may remain unobserved due
to either delay in disease diagnosis by a medical doctor or incubation time.
Modeling these delays allows to take the yet unobserved infections (‘the hidden
events’) into account and thus enables a faster and more accurate identification
of disease outbreaks and epidemics [Noufaily et al., 2016].

Maintenance contracts are typically sold together with large industrial appliances.
Under these contracts the manufacturer or a third party guarantees the continued
use of the equipment. A machine failure (‘the observed event’) is often the result
of previous defects (‘the hidden event’) which remained unobserved. These
defects can be detected by on site inspections and timely repairs will prevent
expensive failures or breakdowns of the machine. However, the profitability of
these inspections depends largely on the number of hidden defects. Observation
delay was first modelled in the context of maintenance contracts by Christer
[1973], where it is called delay-time. Since then several papers have focussed
on the delay-time concept. Baler and Wang [1993] model delay-time from
observed failure data using maximum likelihood estimation. In this approach
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both the time to defect as well as the time to observation of the machine failure
are tackled with parametric distributions. This literature typically assumes a
constant intensity for the occurrences of defects and ignores heterogeneity in
the delay-time distribution. Wang [1997] and Apeland and Scarf [2003] rely on
expert opinions to formulate a fully subjective delay-time model. Wang [2010]
and Berrade et al. [2018] focus on economic decision making when the delay-time
distribution is known. In line with the current era of big data analytics (see
Mortenson et al. [2015]), our approach goes beyond these assumptions and
proposes a data driven strategy to capture heterogeneity in both the occurrence
of defects as well as in the delay between a defect and its observation.

The case-study presented in this chapter illustrates our data driven approach
with an insurance data set where contracts are sold to policyholders. Some
policyholders will be involved in an accident or other type of insured event,
while others will not. In insurance parlance the delay between the occurrence
(‘the hidden event’) of an accident and the reporting or filing of the claim
to the insurance company (‘the observed event’) is called the reporting delay.
These delays are strongly portfolio dependent and can be substantial when
the insured does not immediately notice the damage. In the remainder of the
chapter we only consider accidents that will eventually be reported. Accidents
that are never reported do not get reimbursed and are not relevant for the
balance sheet of the insurer. Once the claim is reported and accepted by the
insurer, the insurer reimburses the loss with a single payment or a series of
payments. Insurance companies book a reserve to be able to settle the claims
that are Incurred But Not yet Reported (IBNR) and refer to this capital as the
IBNR reserve. Estimating the number of claims from past exposures that will
be reported beyond the evaluation date (the so-called IBNR claim counts) is
crucial in setting this reserve. Motivated by computational constraints from the
past, many estimation methods in insurance structure the data from Figure 2.1
in a two dimensional table that aggregates the number of accidents by their
year of occurrence and year of reporting. We refer the reader to Taylor [2000],
Wüthrich and Merz [2008, 2015] for more details on reserving with aggregate
methods. Relatively few papers address the problem of specifying a model at
granular level for the phenomenon sketched in Figure 2.1. Badescu et al. [2016]
and Avanzi et al. [2016] focus on modeling the accident arrival process at a
weekly level using Cox processes. These models allow to capture over-dispersion
and serial dependence, which is often encountered in such occurrence data. The
assumption of independence between the occurrence date and the reporting
delay is a disadvantage of the models presented in Badescu et al. [2016] and
Avanzi et al. [2016]. Verrall and Wüthrich [2016] were the first to present a
model for IBNR counts at a daily level, including the heterogeneity in reporting
delays based on the occurrence date of the claim and the strong weekday pattern
leading to less claims being reported during the weekend. This weekday pattern
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relates to calendar day effects in the reporting process which are difficult to
model using classical techniques designed for aggregated data (see Kuang et al.
[2008]). Verrall and Wüthrich [2016] provide a method to incorporate this
weekday pattern for reporting delays of less than one week. Verbelen et al.
[2019] extend this weekday pattern to reporting delays beyond the first week by
separately estimating weekly and intra week reporting probabilities. Moreover,
Verbelen et al. [2019] present the Expectation Maximization algorithm as a
framework for jointly estimating the occurrence and reporting process.

This chapter models the occurrence of hidden events non-parametrically.
This allows to capture fluctuations in occurrence counts (for example due
to seasonality or weather conditions) without explicitly modeling these events.
Moreover, extending the work of Verrall and Wüthrich [2016] and Verbelen
et al. [2019] we model the observation delay in the presence of multiple
covariates, including calendar day effects. Examples of such calendar day
effects are: a reduction in observed events during the weekend, the effect of
national holidays and seasonality in observation delay. Our strategy introduces
the concept of observation exposure as an intuitive and flexible framework
for incorporating (multiple) calendar day effects through regression. This
approach elegantly transforms the observation delay distribution by scaling the
probability of observing an event on a certain date based on covariates. As
such, the transformed observation delay distribution becomes independent of
these covariates and is then modelled with a simple, parametric distribution.
This makes our approach suitable to a wide range of problems.

This chapter is organized as follows. Section 2.2 describes a statistical framework
for modeling the number of hidden events subject to an observation delay. In
Section 2.3 we illustrate this approach in a case-study involving an insurance
data set. We also investigates the performance of our model in four simulated
scenarios. The online appendix provides detailed expressions for implementing
the model and links our approach to the non-parametric Kaplan-Meier estimator
[Kaplan and Meier, 1958].

2.2 A granular model for the occurrence of events
subject to delay

Denote by Nt the number of events occurring on date t, where t = 1 is the date
of the first event. These events remain hidden until their observation at date s
after a delay s− t. Let Nt,s be the number of events that occurred on date t
and are observed on date s. Since all events will be observed at some point in
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the future, we find
Nt =

∑
s≥t

Nt,s.

Consider an evaluation date τ at which we have to predict the number of hidden
events. At τ we split the events from a past occurrence date t into observed
(s ≤ τ) and hidden events which are not yet observed (s > τ), respectively
denoted by

NObs
t (τ) =

τ∑
s=t

Nt,s and NHidden
t (τ) =

∞∑
s=τ+1

Nt,s for t ≤ τ.

We obtain the total number of hidden events by aggregating the unobserved
events from all past occurrence dates, i.e.

NHidden(τ) =
τ∑
t=1

NHidden
t (τ) =

τ∑
t=1

∞∑
s=τ+1

Nt,s.

This total count is the number that we want to predict. Following Jewell [1990]
and Norberg [1993], we formulate two distributional assumptions from which
the number of hidden events can be predicted:

(A1) The event occurrence process (Nt)t≥1 follows an inhomogeneous Poisson
distribution with intensity (λt)t≥1.

(A2) The observation delay is independent and identically distributed for events
occurring on the same date.

Denote by pt,s the probability of observing an event from occurrence date t on
date s. We use the notation pObs

t (τ) for the probability that an event from date
t is observed by the evaluation date τ . This probability is

pObs
t (τ) =

τ∑
s=t

pt,s.

By assumption (A1) and (A2) the conditions for the Poisson thinning property
[Kingman, 1993] are satisfied. The thinning property implies that all Nt,s are
independent and

Nt,s ∼ Poisson(λt · pt,s). (2.1)
This allows us to construct the likelihood for the observed data at time τ . Let
χ denote the available data, consisting of all events that are observed on the
evaluation date τ

χ = {Nt,s | t ≤ s ≤ τ}.
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The loglikelihood of the observed data is

`(λ,p;χ) =
τ∑
t=1

τ∑
s=t

[
Nt,s · log(λt) +Nt,s · log(pt,s)−λt ·pt,s− log(Nt,s!)

]
(2.2)

where λ is a vector with components λt for observed occurrence dates t and
p = {pt,s | t ≤ s ≤ τ}. This chapter puts focus on the observation process
without imposing any structure on λt. A straightforward computation shows
that the loglikelihood in (2.2) is maximal for

λt =
∑τ
s=tNt,s∑τ
s=t pt,s

= NObs
t (τ)
pObs
t (τ)

. (2.3)

Replacing λt by this expression the loglikelihood in (2.2) becomes

`(p;χ) =
τ∑
t=1

τ∑
s=t

Nt,s · log(pt,s)−
τ∑
t=1

NObs
t (τ) · log(pObs

t (τ)) + constants. (2.4)

Up to constants this is the loglikelihood for a right truncated observation delay
random variable. The truncation point is τ − t, which is the maximal observed
delay for an event that occurred on date t.

2.2.1 A time change strategy to model observation delay

We are interested in structuring the observation probabilities pt,s based on
covariates corresponding to the occurrence date t and the reporting date s of
the event. The probabilistic nature of the data enforces the constraints

pt,s ≥ 0, ∀t, s and
∑
s≥t

pt,s = 1, ∀t. (2.5)

The proposed time change strategy transforms the reporting probabilities such
that they can be linked with covariates while preserving these constraints.
This transformation is depicted in Figure 2.2, where we consider an event that
occurred on a Thursday and for which observation is less likely during the
weekend.

First, we view the discrete observation delay as a realization of a continuous
random variable Ut under interval censoring. This is graphically illustrated
in Figure 2.2a (discrete setting) and 2.2b (continuous setting). Second, we
define a time change operator ϕt which assigns a positive length αt,s, called
the observation exposure, to each combination of an occurrence date t and
an observation date s. This time change operator is similar to the concept
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of operational time, which is a common technique in continuous financial
mathematics, see Swishchuk [2016]. We perceive dates as having variable
lengths, whereas prior to this time change an equal length of one time unit was
attached to each date. The probability of observing an event on a certain date
is scaled by the duration of this date, which motivates calling this length the
observation exposure. We define the time-changed delay ϕt(d) for an event with
occurrence date t and an observation delay of d days as

ϕt(0) = 0 and ϕt(d) =
d∑
i=1

αt,t+i−1, d ∈ N \ {0}. (2.6)

This is the sum of all observation exposures αt,s assigned to dates in between
the occurrence date t and date t+d−1. By applying ϕt on the observation delay
random variable Ut we obtain a time-changed random variable Ũ := ϕt(Ut)
which is independent of the occurrence date t of the event. The discrete
observation probabilities are easily extracted from this distribution using the
relation

pt,s = P (Ut ∈ [s− t, s− t+ 1)) (2.7)

= FŨ

(
s−t+1∑
i=1

αt,t+i−1

)
− FŨ

(
s−t∑
i=1

αt,t+i−1

)
.

Under the time change transformation the constraints (2.5) become

αt,s ≥ 0, ∀t, s and
∑
s≥t

αt,s =∞, ∀t.

We specify a regression model for the daily observation exposure as a function
of covariates. We set

log(αt,s) = x
′

t,s · γ,
for a vector xt,s of covariates related to observing on date s an event that
occurred on date t and the corresponding parameter vector γ. In contrast with
classical regression methods, the reporting probabilities pt,s not only depend
on the characteristics of the observation date, but instead take the full history
between the event occurrence and observation date into account through the
time change strategy.

Figure 2.2c illustrates this time change. Since less claims get reported during
the weekend, we model observation exposure as a function of the reporting
day of the week. The time change then assigns lower observation exposures to
Saturday and Sunday, hereby transforming the continuous distribution from
Figure 2.2b into a time-changed distribution that can be modeled using standard
loss distributions.
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Figure 2.2: Observation delay distribution for an event that occurred on a
Thursday. We illustrate (a) the discrete observation delay probabilities pt,s,
(b) the density of the continuous observation delay distribution Ut and (c) the
density of the time-changed observation delay distribution Ũ .

2.2.2 Calibration

Our approach divides the observation delay model into two components. The
time change transformation ϕt defined in (2.6) captures the heterogeneity in the
observation process. This transformation is expressed by the daily observation
exposures, which require the calibration of the regression parameters γ. The
time transformed observation delay Ũ is modeled with a simple parametric
probability distribution, where the data will assist us in choosing the best
candidate. We optimize the loglikelihood in (2.4) with respect to γ, i.e. we
maximize

`(γ;χ) =
τ∑
t=1

τ∑
s=t

Nt,s · log
[
FŨ

(
s∑
v=t

αt,v

)
− FŨ

(
s−1∑
v=t

αt,v

)]

−
τ∑
t=1

NR
t (τ) · log

[
FŨ

(
τ∑
v=t

αt,v

)]
,

with αt,v = exp
(
x
′

t,v · γ
)
. Online appendix 2.6 describes an optimization

strategy for this loglikelihood that is applicable to any sufficiently smooth
distribution FŨ ( · ). The described strategy is generic and does not immediately
take properties from the chosen distribution into account. Significant reductions
in computation time can be obtained when Ũ follows a standard exponential
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distribution. The loglikelihood then becomes

`(γ;χ) = −
τ∑
t=1

τ∑
s=t

Nt,s ·
(
s−1∑
v=t

αt,v − log (1− exp (−αt,s))
)

(2.8)

−
τ∑
t=1

NR
t (τ) · log

(
1− exp

(
−

τ∑
v=t

αt,v

))
.

The first line in (2.8) is a sum in which each term depends on a single observation
exposure, αt,s. Since this facilitates computing first and second order derivatives
with respect to the reporting exposure, this results in a lower computation time.

2.2.3 Predicting the number of hidden events

At the evaluation date τ we predict the number of events from past occurrence
dates t that will be observed on future dates s. Hence our focus is on

Nt,s, for t ≤ τ and s > τ.

We aggregate these future daily observation counts to find the total number of
hidden events

NHidden(τ) =
τ∑
t=1

NHidden
t (τ) =

τ∑
t=1

∞∑
s=τ+1

Nt,s.

Following the Poisson assumption in (2.1) each random variable Nt,s is
independently Poisson distributed with mean

E(Nt,s) = λt · pt,s.

The observation delay model developed in Section 2.2.1 provides estimates for
the observation probabilities pt,s, see (2.7)

p̂t,s = P (Ũ ∈ [ϕt(s− t), ϕt(s− t+ 1)) | γ̂).

In (2.3) we proposed a pragmatic, non-parametric estimator for the claim
occurrence intensity on date t, namely

λ̂t = NObs
t (τ)
p̂Obs
t (τ)

. (2.9)

This estimator depends only on the observed events and the estimated
observation delay distribution. This is an advantage when the event generating
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process is volatile. For dates with unexpectedly many events the number of
observations will be higher and thus we correctly predict more event occurrences.
On the downside, (2.9) is less reliable for recent dates when the denominator is
close to zero or when the number of daily events is low. When the data set is
small, the non-parametric estimator can be replaced by a parametric estimator
following the strategy outlined in Bonetti et al. [2016] and Verbelen et al. [2019].
In a parametric framework the estimator for the occurrence intensity may
include the daily risk exposure, expressed as the number of policies in effect on
a day. Including risk exposure increases the robustness of parametric models
to evolutions in the portfolio size and may potentially improve the predictive
performance of the model.

2.3 Case-study: reporting delay dynamics in insur-
ance

2.3.1 Data characteristics

We illustrate our approach with the analysis of a liability insurance data set from
the Netherlands. The same data is studied in Pigeon et al. [2013], Pigeon et al.
[2014] and Godecharle and Antonio [2015] with focus on calculating reserves
in discrete time, Antonio and Plat [2014] model reserves in continuous time
and Verbelen et al. [2019] who propose a model for the number of hidden claim
counts at a daily level. The data registers 506 235 claims related to insured
events that occurred and were reported between July, 1996 and August, 2009.
From these claims, we remove 75 observations with a reporting date prior to the
accident date and 559 claims that are the result of transitions in the reporting
system. We focus on the occurrence date of accidents and the corresponding
reporting delay in days, i.e. the time (in days) between occurrence of the accident
and reporting or filing of the claim to the insurer. To avoid losing valuable
insights by aggregation, we study the data at a daily level. This is the most
granular timescale at which the data is available.

Occurred accidents Figure 2.3 shows the daily number of accidents that
occurred between July, 1996 and August, 2009 and initiated a claim reported
to the insurance company before August 31, 2009. Since only claims reported
before August 31, 2009 are observed, we see a decrease in observed event counts
for the most recent dates which have a substantial number of unreported claims.
Two outliers are not shown in this plot, namely 456 accidents on October 27,
2002 and 818 accidents on January 18, 2007. Both outliers correspond to a
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storm in the Netherlands causing many insured events.1 The red line in this
figure shows the moving average of the number of occurrences, calculated over
the latest 30 days. This trend reveals a seasonal pattern in the occurrence
process with more events occurring during the summer months. The trend
slightly increases over time due to an increase in portfolio size. Several of the
outlying observations in Figure 2.3 correspond to occurrences on the first of
January as indicated by the vertical gray bars at the beginning of each year.

0

100

200

300

400

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

occurrence date in days

ob
se

rv
ed

 a
cc

id
en

t c
ou

nt

Figure 2.3: Daily number of accidents that occurred between July, 1996 and
August, 2009 and were reported before August, 2009. The solid line shows the
moving average of occurred accidents, calculated over the latest 30 dates. Two
outliers are not shown on the graph: October 27, 2002 (456 accidents) and
January 18, 2007 (818 accidents).

Reported claims Figure 2.4 shows the daily number of claims reported between
July 1996 and August 2009. Again the red line shows the moving average of the
number of reported claims, calculated over the latest 30 days. The seasonality
in event counts observed in Figure 2.3 leads to a similar seasonal pattern in
reported claim counts, though with a slight lag due to the delay in reporting a
claim. Figure 2.4 reveals two regimes of reporting. On most dates many claims
get reported, but there is a substantial number of dates on which few or almost
no claims are reported. These dates with few reports correspond to the weekend
(Saturday, Sunday) and national holidays.2 This separation in two regimes
is not the case for the occurrence process, since accidents continue to occur
during the weekend and on holidays. We further illustrate these calendar day

1Details (in Dutch) about the storms by the royal national meteorological
institute of the Netherlands (KNMI): https://knmi.nl/over-het-knmi/nieuws/storm-van-
27-oktober-2002-was-zwaarste-in-twaalf-jaar and https://knmi.nl/over-het-knmi/
nieuws/de-zware-storm-kyrill-van-18-januari-2007

2List of national holidays in the Netherlands: http://www.officeholidays.com/
countries/netherlands/

https://knmi.nl/over-het-knmi/nieuws/storm-van-27-oktober-2002-was-zwaarste-in-twaalf-jaar
https://knmi.nl/over-het-knmi/nieuws/storm-van-27-oktober-2002-was-zwaarste-in-twaalf-jaar
https://knmi.nl/over-het-knmi/nieuws/de-zware-storm-kyrill-van-18-januari-2007
https://knmi.nl/over-het-knmi/nieuws/de-zware-storm-kyrill-van-18-januari-2007
http://www.officeholidays.com/countries/netherlands/
http://www.officeholidays.com/countries/netherlands/
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effects, where reporting is substantially reduced on specific dates, in Figure 2.5.
The left hand side lists the average number of reported claims between July,
1996 and August, 2009 on ten national holidays during which all businesses are
closed. These averages are compared with the overall daily average of reported
claim counts over the observation period. This shows that reporting is strongly
reduced on national holidays. We include two non-official holidays, New Year’s
Eve and Good Friday. These dates show a slight reduction in reporting because
many people take a day off from work. The reporting behavior on weekdays
is shown in Figure 2.5b. During the weekend and especially on Sunday the
number of reports is reduced. These calendar day effects motivate a model for
IBNR claim counts at a daily level, capable of incorporating the weekday and
holiday effect observed in our empirical analysis.
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Figure 2.4: Daily number of claims that were reported on each date between
July, 1996 and August, 2009. The solid line shows the moving average of
reported claims, calculated over the latest 30 dates.

Reporting delay Figure 2.6 illustrates the empirical reporting delay distri-
bution in days over the first three weeks after the occurrence of the insured
event. The empirical probability of reporting peaks the day after the claim
occurred and strongly decreases afterwards. The increase in reporting after
exactly fourteen days is most likely a consequence of data quality issues, where
insureds who no longer recall the exact occurrence date report that the accident
happened two weeks ago. The same effect to a lesser degree is visible after
exactly one week. Figure 2.6b and Figure 2.6c show the empirical reporting
delay distribution constructed using only accidents that occurred on Monday
and Thursday, respectively. This reveals the effect of the occurrence’s day of
the week on the reporting delay distribution. An accident that happened on a
Monday has a decreased probability of reporting after six or seven days, since
these delays correspond to Saturday and Sunday, respectively. Accidents that
occurred on a Thursday show the same pattern of reporting delay, but the
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Figure 2.5: Average number of reported claims on (a) national holidays and (b)
weekdays, calculated over all claims that occurred and were reported between
July, 1996 and August, 2009.
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Figure 2.6: Empirical reporting delay distribution in days over the first three
weeks after the occurrence of the claim using (a) all claims, (b) claims that
occurred on a Monday and (c) claims that occurred on a Thursday.

weekend then corresponds to a different delay. The effect of the weekend is no
longer visible in the empirical distribution using all claims (Figure 2.6a), since
the weekend then no longer corresponds to a specific reporting delay.

The number of hidden events The evaluation date refers to the date on which
the insurer computes the reserve. In practice this date is often the last day
of a quarter or the financial year. Figure 2.7 uses a rolling evaluation date to
illustrate the daily number of IBNR claims. For each evaluation date we show
the number of claims corresponding to insured events that occurred before this
date but were reported afterwards (and before August 31, 2009, the last day of
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Figure 2.7: Number of unreported claims at each evaluation date between
September 2003 and August 2004. These are the number of claims that occurred
before this date, but were reported afterwards (but before the end of the
observation period, i.e. August 31, 2009). The bottom panel zooms in on
evaluation dates in October and November, 2003.

our observation period). The top panel of Figure 2.7 shows the daily number of
IBNR claims on each evaluation date between September 1, 2003 and August
31, 2004. The number of unreported claims varies throughout the year with
more unreported claims in the summer, when more accidents occur. IBNR
counts peak around the start of the new year since many accidents occur on
the first of January and reporting is slow due to a clustering of holidays. The
bottom panel of Figure 2.7 zooms in on the unreported claims between October
1, 2003 and November 30, 2003. Large fluctuations in unreported claims appear
when we evaluate IBNR on a daily basis. These movements follow a seven day
pattern where five days of decrease in IBNR are followed by two days of strong
upward movement. These upward moves correspond to the weekend when many
new insured events occur, but almost no events get reported.

2.3.2 Model specification

We opt for computational efficiency and model the time-changed reporting delay
Ũ with an exponential distribution. The reporting exposures include six effects
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and are structured as
αt,s = αocc. dom

t · αocc. month
t · αrep. holiday

s · αrep. month
s · αrep. dow, first week

s,s−t · αdelay
s−t

(2.10)

= exp
(

(xocc. dom
t )

′ · γocc. dom + (xocc. month
t )

′ · γocc. month

= exp( + (xrep. holiday
s )

′ · γrep. holiday + (xrep. month
s )

′ · γrep. month

= exp( + (xrep. dow, first week
s,s−t )

′ · γrep. dow, first week + (xdelay
s−t )

′ · γdelay
)
.

We model the impact of the occurrence date on the reporting delay by
incorporating effects for the day of the month αocc. dom

t and the month
αocc. month
t on which the accident occurs. The holiday effect in Figure 2.5a

is modeled by αrep. holiday
s , which distinguishes between national and unofficial

holidays. Seasonal variations in reporting are captured by αrep. month
s , which

scales reporting exposure based on the month in which the claim is reported.
An interaction effect αrep. dow, first week

s,s−t estimates the reporting exposure for
combinations of a reporting delay in the first week (s− t = 0, 1, . . . , 6) and the
day of the week on which the claim is reported. Separate weekday parameters are
estimated for delays of more than one week, s− t ≥ 7. As such, we capture the
weekday effect from Figure 2.5a with additional flexibility in the first week after
the claim occurs. Finally, αdelay

s−t partitions the time elapsed since the accident
occurred in 23 bins according to the strategy specified in online Appendix 2.8.
These bins adapt the tail of the distribution as well as increase the probability
of reporting after 14, 30 and 365 days.

2.3.3 Results

Parameter estimates

We estimate the model parameters by maximizing the loglikelihood in (2.8) using
8 years of data i.e. all accidents that occurred and were reported between July
1, 1996 and September 5, 2004. The resulting training data set contains 274 187
reported claims, for which we model the reporting process using 125 parameters.
Figure 2.8 shows the maximum likelihood estimates for the reporting exposure
parameters exp(γ) in (2.10). Together with these point estimates we plot
95%-confidence intervals derived from the Fisher information matrix for γ.

Occurrence day of month Figure 2.8a shows the effect of the day of the month
on which the accident occurred. Reporting exposure is lower for accidents that
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Figure 2.8: Maximum likelihood estimates with 95%-confidence intervals for
the reporting exposure parameters exp(γ) in (2.10).

occur on the first or fifteenth of the month, which implies that accidents from
these days have a longer reporting delay. This is most likely the result of data
quality issues. Insureds who report a claim with a long reporting delay might
no longer remember the exact occurrence date of the corresponding accident,
which leads them to register the occurrence date at the start (first) or middle
(fifteenth) of the month. This creates an increase in the average reporting delay
for events that occurred on the first and fifteenth of the month. The same effect
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to a lesser degree is visible on the 5th, 10th, 20th, 25th and 30th of the month.

Month Two month effects are included in the reporting exposure structure.
Figure 2.8b shows the effect for exp(γocc. month) which considers the month
in which the accident occurs. These parameters indicate that reporting is
slower for accidents that occurred around the beginning of the year (January,
February) and faster in the summer. Figure 2.8d visualizes the parameters
for the reporting month, exp(γrep. month). We observe a reduction in reporting
exposure during the summer months. Slightly counterintuitive, we find that
the parameters γocc. month and γrep. month largely offset each other for accidents
that occur and get reported in the same calendar month. When combining
these effects, the reduction in reporting exposure during the summer is mostly
noticeable for claims that occurred before the summer months.

Holiday Figure 2.8c shows the effect of holidays on reporting exposure. Hardly
any claim gets reported on national holidays and the reporting probability is
reduced by more than 50% on unofficial holidays (Good Friday and New Year’s
Eve). These estimates are of the same magnitude as the effects found in the
empirical analysis in Figure 2.5.

Reporting day of the week We include the day of the week effect in the
reporting exposure specification (2.10) through an interaction between the time
elapsed after the accident occurred s− t and the day of the week on which the
claim is reported. Figure 2.8e shows a grouping of the estimated coefficients
based on the time elapsed since the occurrence of the accident. For all delays we
notice a reduction in reporting exposure during the weekend, with few reports
on Saturday and almost no reports on Sunday. This interaction is important
as the estimated parameters differ strongly based on the delay considered. For
example, accidents that occur on Friday or Saturday are often reported on the
next Monday, which corresponds to a delay of two and three days respectively.
Since Monday is the reference level, the fitted parameters for other weekdays
are lower at these delays. The right most panel in Figure 2.8e shows the effect
of the reporting day of the week for delays beyond one week. For these longer
delays, all working days (Mon - Fri) have a similar reporting exposure.

Delay Figure 2.8f shows the evolution of the reporting exposure component
exp(γdelay) in (2.10) as a function of the time elapsed since the accident occurred.
This effect scales the reporting probability at specific delays such that the time-
changed reporting delay Ũ better resembles an exponential distribution. We
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identified 23 bins upfront based on the strategy of online appendix 2.8. The
first eight days after occurrence end up in separate bins. These short delays
are important, since many claims get reported soon after their occurrence date.
Moreover, Figure 2.8f shows that the calibrated effect changes strongly for
these delays. The model also contains bins to capture the increase in reporting
probability for delays of exactly 14, 21 and 31 days as well as for reporting after
one year. The bin size widens when reporting delay increases. The final two
bins [158, 364] and [370,∞) let the model capture the tail of the distribution.

2.3.4 Out-of-time predictions

We predict the number of hidden events, i.e. the IBNR claim count, following
the strategy outlined in Section 2.2.3. Because the non-parametric occurrence
estimators are unreliable for recent event dates for which few events are observed,
we propose a pragmatic approach to get around this drawbacks. Insurance
companies use very specific evaluation dates when calculating reserves, such as
the end of a quarter, semester or financial year. Typically the calculations are
not performed at those exact evaluation dates, but a couple of days later (at
the so-called computation date). Accordingly we predict the number of hidden
events on August 31, 2004 using data until September 5, 2004. As such, the
granular model predicts 2012.7 unreported claims on August 31, 2004, whereas
the true number of IBNR claims (based on data until August 31, 2009) was
2049.

Future observation of hidden events Our daily model splits the total IBNR
point estimate of 2012.7 claims by future reporting date. Figure 2.9a shows the
estimated number of daily reported claims in September and October, 2004 for
accidents that occurred before August 31, 2004. The dashed line in Figure 2.9a
indicates the computation date. We do not make predictions for dates falling
before the computation date as this data is observed. The model accurately
predicts the low report counts during the weekend. This is the merit of adding
the day of the week effect in the reporting exposure model. Also the overall
reporting pattern closely matches the observed values. Figure 2.9b aggregates
these daily report counts by month. This figure shows the estimated number
of reported claims in the first twelve months following August, 2004. In these
months the observed and predicted IBNR counts are very similar.

Evolution of the number of hidden events The primary focus of our granular
model is estimating the total IBNR count. The top panel of Figure 2.10 plots
the predicted number of unreported claims on each evaluation date between
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Figure 2.9: Out-of-time prediction of the number of reported claims for accidents
that occurred before August 31, 2004. These predictions are compared with
the actual number of reported claims. (a) Estimated at a daily level for the
next two months. The dashed line indicates the last observed date (September
5, 2014). (b) Estimates aggregated by reporting month for the next twelve
months.

September, 2003 and August, 2004. Each point estimate is an out-of-time IBNR
estimate obtained from the granular model calibrated on the historical data
available five days after the corresponding evaluation date. We compare these
estimates with the actual number of IBNR claims computed from the data until
August 31, 2009. Our model recognizes the trend in IBNR counts with more
unreported claims during the summer compared to the winter months. The
model also correctly predicts an increase in IBNR claims at the start of the year
(here: January 1, 2004) as a result of the holidays in this period. The middle
panel of Figure 2.10 shows the prediction error, i.e. the difference between the
predicted number of IBNR claims and the actual count. The prediction error
for the granular model is centred around zero and there are no large outliers.
The bottom panel of Figure 2.10 zooms in on the estimates for dates in October
and November, 2003. This figure shows that the day of the week parameters
allow the model to accurately capture the weekday pattern in IBNR counts.

Benchmark with a model for aggregate data We benchmark our granular
approach to Mack’s chain ladder method Mack [1993] on aggregated data, which
is the industry standard in claims reserving. This method discretizes time
and aggregates the observed events into a two dimensional table based on the
occurrence period and the discretized reporting delay. A Poisson generalized
linear model (GLM) then models the effect of the occurrence and reporting
period on these aggregated records. We investigate two aggregation levels,
namely aggregating based on a yearly as well as a 28 day grid. We refer to
Huang et al. [2015] for a more detailed discussion on reserving with granular
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Figure 2.10: Out-of-time prediction of the total IBNR count by the granular
reserving method for each evaluation date between September 2003 and August,
2004. These estimates are compared with the observed values using data until
August, 2009. The middle panel shows the difference between the predicted and
actual IBNR count. The bottom panel zooms in on the estimates in October
and November, 2003.

data versus data aggregated in two dimensional tables. Figure 2.11 shows the
estimated IBNR counts under both chain ladder implementations evaluated on
each date between September, 2003 and August, 2004. Both versions of the
chain ladder detect the seasonal pattern in unreported claim counts, which is
related to seasonality in the occurrence process. The end of the year holidays
and corresponding increase in IBNR counts is a yearly seasonal effect in the
reporting process. The chain ladder assumptions allow for seasonal effects when
the period of seasonality coincides with the discretized time periods. For this
reason, the yearly chain ladder method correctly predicts an increase in IBNR
counts around the end of the year, whereas the 28 day chain ladder method
severely underestimates IBNR counts for these dates. The bottom panel of
Figure 2.11 zooms in on the period October to November 2003. The 28 day
chain ladder method retrieves the day of the week effect, since the length of
every bin is a multiple of 7 and therefore contains the same weekdays. The
yearly chain ladder method has bins with either 365 or 366 days. Since both
bin sizes are not divisible by 7, the yearly chain ladder method is unable to
recognize the day of the week effect. This results in a systematic overestimation
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Figure 2.11: Out-of-time prediction of the total IBNR count by the yearly and
28 day chain ladder methods for each evaluation date between September 2003
and August, 2004. These estimates are compared with the observed values using
data until August, 2009. The middle panel shows the difference between the
predicted and actual IBNR count. The bottom panel zooms in on the estimates
in October and November, 2003.

of IBNR counts on Fridays and an underestimation on Sunday. The middle
panel of Figure 2.11 shows the difference between the predicted and actual
IBNR count. The inability of the 28 day chain ladder to capture the holiday
effect results in large underestimations around this time of the year. The yearly
chain ladder overall performs better, but the prediction error is sensitive to the
day of the week on which the reserve is calculated. Capturing the holiday and
the day of the week effect simultaneously requires a model specified at the daily
level. The chain ladder method assumes independence between the reporting
delay distribution and the occurrence period of the claim. Since Figure 2.5 and
2.6 indicate that this assumption is not valid at the daily level, a daily chain
ladder would not perform well. Our granular method explains both phenomena
together by abandoning this independence assumption.
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2.3.5 Scenario testing

Investigated scenarios

We further evaluate our approach with portfolios simulated along four different
scenarios. Each scenario generates data from an insurance portfolio from
January 1, 1998 onwards. Figure 2.12 outlines the structure of these data sets.
The insurer observes the claims that are reported before the computation date
(the gray area in Figure 2.12) and predicts the number of claims that were
not yet reported on the evaluation date (the hatched area in Figure 2.12). We
consider two evaluation dates (December 31, 2003 and August 31, 2004) to
visualize the impact of holidays near the end of the year on the accuracy of
IBNR claim count predictions. The four scenarios focus on characteristics of the
portfolio or the claim handling process that have an impact on the total IBNR
count. Figure 2.13 visualizes the occurrence, reporting and IBNR processes for
a single simulated data set from each of the four scenarios.

Reporting delay s− t

Occurrence date t

January 1, 1998

Evaluation date τ
Computation date τ + 5

Figure 2.12: Structure of a simulated data set. We simulate accidents that
occur between the first of January, 1998 and the computation date, together
with their associated reporting delay. The gray area shows the data that is used
to fit the model and to predict the hatched area, which consists of the number
of unreported claims at the evaluation date τ . We obtain perfect predictions
for the intersection of the gray area and the hatched area, since in this region
the reported counts are observed.

Scenario 1: Baseline scenario This is the basic scenario from which the other
three scenarios will slightly deviate. The occurrence of insured events follows a
Poisson distribution with an average of 100 claims on each occurrence date. For
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these occurrences the reporting delay is simulated along the model specification
outlined in Section 2.2, i.e. the distribution of the time-changed reporting delay
Ũ follows a lognormal distribution with density

fŨ (u) = 1
uσ
√

2π
e
− 1

2 ·
(

ln(u)−µ
σ

)2

,

where µ = 0 and σ = 1. The daily reporting exposure depends only on the
reporting date and is given by

αt,s = 0.10 · (0.20)1s∈Sat+1s∈unofficial-holiday · (0.01)1s∈Sun+1s∈national-holiday ,

where Sat, Sun, national-holiday and unofficial-holiday are the sets of
all Saturdays, Sundays, national holidays and unofficial holidays respectively.
As such, the reporting probability is reduced by 80% on Saturdays and unofficial
holidays and by 99% on Sundays and national holidays. These effects are of the
same order as those found in the exploratory data analysis, see e.g. Figure 2.5 in
Section 2.3.1 and result in an average reporting delay of slightly more than three
weeks. The top row of Figure 2.13 visualizes a simulation from this baseline
scenario. The middle panel shows two regimes of reporting, where the days
with few reported claims correspond to the weekend and holidays.

Scenario 2: Volatile occurrences In this scenario external causes, such as
the weather, have a large effect on the number of accidents that occur on a
given date. The environment can be in two states, a good state with an average
of 100 accidents per day and a bad state in which there are on average 400
accidents. The transitions between these states follow a Markov process with
transition matrix (from/to good bad

good 0.9 0.1
bad 0.6 0.4

)
.

The model starts in the good state and then occasionally moves to the bad
state. From this bad state there is a large probability of returning to the good
state with less occurrences on average. The second row of Figure 2.13 (lhs)
visualizes the impact of this bad state on the occurrence process. The reporting
delay distribution is the one described in the baseline scenario.

Scenario 3: Low claim frequency This scenario illustrates the effect of a
strong reduction in the number of occurred accidents. The occurrence process
is modeled by a Poisson distribution with a daily average of two claims. The
reporting model from the baseline scenario is used. This scenario is visualized
in the bottom row of Figure 2.13. We observe that a low number of accidents
leads to more volatility in the IBNR process.
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Scenario 4: Online reporting In this scenario the insurer introduces an online
tool for claim reporting. This online tool is launched at January 1, 2003 and
increases the number of reports in the weekend and on holidays. The new
reporting exposures become

αt,s =
{

0.10 · (0.20)1s∈Sat+1s∈Unofficial-holiday · (0.01)1s∈Sun+1s∈Holiday s < 01/01/2003
0.10 · (0.50)1s∈Sat+1s∈Unofficial-holiday · (0.20)1s∈Sun+1s∈Holiday s ≥ 01/01/2003

.

This reporting model is combined with the same occurrence process as in the
baseline model, that is a Poisson process with a constant intensity of 100 claims
each day. The bottom row of Figure 2.13 visualizes a simulation from this
scenario. A vertical black line indicates the breakpoint on January 1, 2003.
After the introduction of online reporting we no longer observe dates with zero
reports.



30 MODELING THE NUMBER OF HIDDEN EVENTS SUBJECT TO OBSERVATION DELAY

05010
0

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

oc
cu

rr
en

ce
 d

at
e

observed accident count

O
cc

ur
re

nc
e

05010
0

15
0

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

re
po

rt
in

g 
da

te

reported claim count

R
ep

or
tin

g

20
00

22
00

24
00

26
00

28
00

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

E
va

lu
at

io
n 

da
te

unreported claims

IB
N

R

Baseline

0

10
0

20
0

30
0

40
0

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

oc
cu

rr
en

ce
 d

at
e

observed accident count

0

10
0

20
0

30
0

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

re
po

rt
in

g 
da

te

reported claim count

25
00

30
00

35
00

40
00

45
00

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

E
va

lu
at

io
n 

da
te

unreported claims

Volatile occurrences

02468

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

oc
cu

rr
en

ce
 d

at
e

observed accident count

02468

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

re
po

rt
in

g 
da

te

reported claim count

405060

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

E
va

lu
at

io
n 

da
te

unreported claims

Low claim frequency

05010
0

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

oc
cu

rr
en

ce
 d

at
e

observed accident count

05010
0

15
0

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

re
po

rt
in

g 
da

te

reported claim count

20
00

22
50

25
00

27
50

20
03

-0
1

20
03

-0
7

20
04

-0
1

20
04

-0
7

E
va

lu
at

io
n 

da
te

unreported claims

Online reporting

Fi
gu

re
2.
13
:
Ea

ch
ro
w

vi
su
al
iz
es

a
sim

ul
at
ed

da
ta

se
t
fro

m
on

e
of

th
e
fo
ur

sc
en

ar
io
s.

T
he

le
ft

co
lu
m
n
sh
ow

s
th
e

da
ily

nu
m
be

r
of

ac
ci
de

nt
s
th
at

we
re

re
po

rt
ed

by
A
ug

us
t
31

,2
00

4
(c
f.
Fi
gu

re
2.
3)
.
T
he

m
id
dl
e
co
lu
m
n
sh
ow

s
th
e

da
ily

nu
m
be

ro
fr

ep
or
te
d
cla

im
s
(c
f.
Fi
gu

re
2.
4)
.
Th

e
rig

ht
co
lu
m
n
vi
su
al
ize

s
th
e
nu

m
be

ro
fu

nr
ep

or
te
d
ac
cid

en
ts

us
in
g
a
ro
lli
ng

ev
al
ua

tio
n
da

te
(c
f.
Fi
gu

re
2.
7)
.
T
he

re
d
da

sh
ed

lin
es

in
th
e
IB

N
R

pl
ot
s
in
di
ca
te

th
e
ev
al
ua

tio
n

da
te
s
of

D
ec
em

be
r
31
,2

00
3
an

d
A
ug

us
t
31
,2

00
4.



CASE-STUDY: REPORTING DELAY DYNAMICS IN INSURANCE 31

Calibrated models: granular versus aggregate

We compare the accuracy of the predictions of the hidden event counts using
three models, namely the exact granular model from which we simulated the
data, an approximate granular model and a model for yearly aggregated data.
The historical information (gray area in Figure 2.12) is used to predict the
number of IBNR claims (hatched area in Figure 2.12). Under the granular
approach these predictions naturally extend to delays beyond those yet observed,
whereas in the aggregate approach we limit the prediction window to the longest
observed delay. We consider a gap of five days between the computation and the
valuation date. The observations from these five days improve the prediction of
the occurrence intensities λt and the reporting probabilities pt,s, whereas there
is no straightforward way to incorporate this data in the method for yearly,
aggregated data. The ability to use this additional data is one of the advantages
of the granular approach.

Exact granular model We use our knowledge of the shape of the distribution
and reporting exposure structure behind the various scenarios and calibrate
the exact same model for reporting delay on the historical data. Hence we
estimate the variance parameter in the lognormal distribution for the smoothed
reporting delay Ũ and the parameters γ for the covariate effects in the reporting
exposures αt,s. The reporting exposure αt,s changes the scale of the time axis
which is similar to the effect of the scale parameter exp(µ) of the lognormal
distribution. We avoid identifiability issues by setting µ equal to zero. The
occurrence process is modeled non-parametrically as described in Section 2.2.

Approximate granular model This model considers the more realistic situation
where the insurer wants to fit the model of Section 2.2, but is unaware of the
exact underlying distribution. Motivated by computational benefits the insurer
chooses an exponential distribution for the smoothed reporting delay Ũ , and
structures the reporting exposures as

αt,s = αdow
s · αholiday

s · αdelay
s−t (2.11)

= exp((xdow
s )

′ · γdow + (xholiday
s )

′ · γholiday + (xdelay
s−t )

′ · γdelay).

In this specification αdow
s captures the day of the week effect, αholiday

s identifies
national and unofficial holidays and αdelay

s−t adapts reporting exposure based
on the time elapsed since the claim occurred. For a single simulated data set
we bin reporting delay in 13 bins according to the strategy outlined in online
appendix 2.8. These same bins are then reused to construct the delay covariate
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for all other simulations. In the fourth scenario (online reporting), we estimate
different parameter values for the parameters γdow and γholiday for reporting
dates before and after January 1, 2003.

A model for aggregated data: the chain ladder The chain ladder method
described in Section 2.3.4 is the industry standard for predicting the number
of unreported claims. We aggregate the simulated data by calendar year and
benchmark our granular approach to the chain ladder method on this aggregated
data.

Results and discussion

We evaluate the performance of the reserving models by predicting the total
number of IBNR claims at the evaluation date, which corresponds to the hatched
area in Figure 2.12. This prediction is compared with the actual number of
unreported claims as observed in the simulated data set. We simulate 1000
data sets and calibrate the three models outlined in Section 2.3.5 on each of
these. The prediction accuracy is measured by the percentage error (PE), i.e.

PE = 100 · N
IBNR(τ)− ̂N IBNR(τ)

N IBNR(τ) .

Positive percentage errors reflect underestimation, whereas negative values
indicate an overestimation of IBNR counts. Table 2.1 shows the mean and
standard deviation of the percentage error for the two granular models and the
chain ladder method. In Figure 2.14 boxplots of the percentage error visualize
the model performance across the four scenarios.

Impact of evaluation date We observe in all four scenarios an increase in
unreported claims on New Year’s Eve (see the last column in Figure 2.13). This
is the result of multiple holidays at the end of the year, which prevents clients
from reporting their claim. We compare the average percentage error in Table 2.1
on December 31, 2003 and August 31, 2004 to quantify the impact of these
holidays on prediction accuracy. The exact granular model fits the distributional
specification that was used in the simulation. Therefore this model can perfectly
capture the effect of holidays and has an average error close to zero on both
dates. Seasonal effects do not violate the chain ladder assumptions when their
seasonal cycle coincides with the chain ladder period. Since the end of the year
holidays can be seen as a yearly seasonal event they do not affect the prediction
accuracy in the yearly chain ladder method. This explains the fairly similar
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Scenario Eval. date exact granular approx. granular chain ladder
µ σ µ σ µ σ

Baseline 31 Dec 2003 -0.09 3.17 4.85 2.75 2.70 2.17
31 Aug 2004 -0.01 2.75 -0.18 2.82 1.20 2.36

Volatile occurrences 31 Dec 2003 0.11 2.64 5.01 2.93 0.16 15.52
31 Aug 2004 -0.04 2.27 -0.20 2.51 -0.82 14.90

Low claim frequency 31 Dec 2003 -0.69 23.89 4.42 20.85 1.65 16.25
31 Aug 2004 -2.30 20.19 -2.52 20.72 -1.33 17.96

Online reporting 31 Dec 2003 -0.13 3.12 2.93 3.07 -12.46 2.91
31 Aug 2004 0.02 2.80 0.73 2.89 -7.00 2.68

Table 2.1: Evaluation of the mean and standard deviation of the percentage
error of the exact granular model, the approximate granular model and the
chain ladder method across four different scenarios and two evaluation dates.
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Figure 2.14: Boxplots of the Percentage Error (PE) of the IBNR estimate across
the four scenarios and on both evaluation dates.

errors on both evaluation dates for the chain ladder method. Table 2.1 reveals
an underestimation of IBNR counts for the approximate granular model on
December 31 across all four scenarios. The data is simulated with a lognormal
distribution for the smoothed reporting delay, whereas in the approximate
granular model we fit an exponential distribution. Since these distributions are
quite different, we include a delay effect αdelay

s−t in (2.11). This effect can increase
the reporting probability at specific delays, hereby moving the time-changed
data closer to an exponential distribution. However, the delay covariate can
not remove all differences between these distributions and this leads to a small
underestimation on December 31, 2004 in all scenarios. For all three models
the choice of evaluation date does not influence the standard deviation of the
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percentage error.

Baseline The top row of Figure 2.13 visualizes a single data set from the
baseline scenario. Both the occurrence and reporting process are stable. This
leads to a yearly periodical pattern in IBNR counts, which is easy to predict.
Since all three models perform well (see Figure 2.14), there is no reason to
replace the chain ladder method by a granular model in this scenario.

Volatile occurrences The range of IBNR values encountered throughout a
year is much wider in this scenario compared to the other three scenarios.
Table 2.1 and Figure 2.14 show that the performance of the granular models is
in line with their performance in the baseline scenario. The occurrence process
has little effect on the prediction accuracy, since we model the occurrence process
non-parametrically. The chain ladder method performs well on average, but the
standard deviation has risen compared to the baseline scenario. In over half of
the cases the chain ladder produces an error of more than 10% when predicting
the number of unreported claims. The chain ladder method aggregates claims
by occurrence year, hereby losing the exact occurrence information. When
the model was in the bad state on the evaluation date, this leads to large
underestimations of total IBNR counts. This scenario identifies an unstable
accident occurrence process as a reason for considering a granular model.

Low claim frequency The occurrence frequency is reduced from an average of
hundred daily claims to only two claims. The third row of Figure 2.13 visualizes
a data set from this scenario. Since on average only two accidents occur per
day, our predictions for the intensities λt in the occurrence process are less
reliable. As seen in Figure 2.14 this leads to large prediction errors for all models.
This uncertainty follows mostly from the Poisson assumption (A1) in the data
generation process. The coefficient of variation σ

µ for a Poisson distribution
with intensity λ is given by 1√

λ
. A lower intensity in the Poisson proccess

corresponds with a larger coefficient of variation and thus more uncertainty in
the data. We conclude that accurate estimation of the number of hidden events
is only possible when the expected number of events is sufficiently large.

Online reporting On January 1, 2003 the insurer introduces an online tool to
report claims, which creates a breakpoint in the reporting process. The granular
model performs well on both evaluation dates, since we estimate different
exposure parameters after the breakpoint. Both evaluation dates correspond
with around one year of post breakpoint data, which is insufficient for applying
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the chain ladder method. Therefore, we calibrate the chain ladder method on all
the available data, which leads to an overestimation of the IBNR counts. This
scenario illustrates the benefits of a granular reserving model, when breakpoints
can be identified in the data.

2.4 Conclusion

We propose a new method to model the number of events that occurred in the
past, but which are not yet registered due to an observation delay. Our approach
provides an elegant and flexible framework for modeling the observation delay
subject to calendar day covariates by introducing the concept of observation
exposure. This framework can be applied for predicting the future cost of
warranties, pricing maintenance contracts and many other applications in
operational research where events are observed with a delay. We illustrate our
method in an extensive insurance case-study. Compared to methods designed
for aggregated data our granular approach has three advantages. First of
all, introducing covariates gives insight into the observation process. Second,
our granular model can predict the expected number of observations for each
future date. This enables the detection of changes in the reporting process in a
fast way. Third, by introducing covariates the predictive performance is less
sensitive to the chosen evaluation date. The simulation study further identifies a
volatile occurrence process and breakpoints in the event observation process as
important arguments for choosing a data driven, granular model as developed
in this chapter.
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2.6 Appendix A: Maximum likelihood estimation of
observation exposure parameters

We model a parameter vector γ which structures the observation exposures.

`(γ;χ) =
τ∑
t=1

τ∑
s=t

Nt,s · log(pt,s)−
τ∑
t=1

NR
t (τ) · log(pR

t (τ)) (2.12)

=
τ∑
t=1

τ∑
s=t

Nt,s · log (FŨ (ϕt(s− t+ 1))− FŨ (ϕt(s− t)))

−
τ∑
t=1

NR
t (τ) · log (FŨ (ϕt(τ − t+ 1))) ,

where

ϕt(d) =
t+d−1∑
v=t

exp(x
′

t,vγ).

No analytical solution exists for the optimal parameters γ and numerical
optimization is required. We use the Newton-Raphson algorithm to maximize
the likelihood (2.12). The Newton-Raphson algorithm updates the parameter
estimates iteratively as follows

γ̂(k+1) = γ̂(k) −H−1(γ̂(k)) · S(γ̂(k)). (2.13)

In this formula S denotes the score vector and H is the Hessian of the
loglikelihood in (2.12), i.e. the vector of first order and the matrix of second
order partial derivatives respectively. Below we derive the expression for the
first and second order derivatives of the loglikelihood when FŨ is a known twice
continuously differentiable distribution function. The components of the score
vector S are

∂`(γ, ξ;χ)
∂γi

=
τ∑
t=1

τ∑
s=t

Nt,s
pt,s

· fŨ (ϕt(s− t+ 1)) · ∂ϕt
∂γi

(s− t+ 1)

−
τ∑
t=1

τ∑
s=t

Nt,s
pt,s

· fŨ (ϕt(s− t)) · ∂ϕt
∂γi

(s− t)

−
τ∑
t=1

NR
t (τ)
pR
t (τ)

· fŨ (ϕt(τ − t+ 1)) · ∂ϕt
∂γi

(τ − t+ 1),
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where fŨ ( · ) denotes the density function of FŨ ( · ) and

pt,s = FŨ (ϕt(s− t+ 1))− FŨ (ϕt(s− t))

pR
t,s(τ) = FŨ (ϕt(τ − t+ 1)) .

The derivatives of the time change operator ϕt with respect to γ are

∂

∂γi
ϕt(s− t+ 1) =

s∑
v=t

xt,v,i · αt,v

where xt,s,i is the covariate value of the i-th parameter for reporting on date s
for a claim that occurred on date t. The Hessian H is given by
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∂`(γ;χ)
∂γi∂γj

=

τ∑
t=1

τ∑
s=t

Nt,s
pt,s

·

[
f
′

Ũ (ϕt(s− t+ 1)) · ∂ϕt
∂γi

(s− t+ 1) · ∂ϕt
∂γj

(s− t+ 1)

− f
′

Ũ (ϕt(s− t)) · ∂ϕt
∂γi

(s− t) · ∂ϕt
∂γj

(s− t)

+ fŨ (ϕt(s− t+ 1)) · ∂ϕt
∂γi∂γj

(s− t+ 1) − fŨ (ϕt(s− t)) · ∂ϕt
∂γi∂γj

(s− t)

]

−
τ∑
t=1

τ∑
s=t

Nt,s
p2
t,s

·

[
fŨ (ϕt(s− t+ 1))2 · ∂ϕt

∂γi
(s− t+ 1) · ∂ϕt

∂γj
(s− t+ 1)

+ fŨ (ϕt(s− t))2 · ∂ϕt
∂γi

(s− t) · ∂ϕt
∂γj

(s− t)

− fŨ (ϕt(s− t+ 1)) · fŨ (ϕt(s− t)) · ∂ϕt
∂γi

(s− t+ 1) · ∂ϕt
∂γj

(s− t)

− fŨ (ϕt(s− t+ 1)) · fŨ (ϕt(s− t)) · ∂ϕt
∂γi

(s− t) · ∂ϕt
∂γj

(s− t+ 1)

]

−
τ∑
t=1

NR
t (τ)
pRt (τ)

·

[
f
′

Ũ (ϕt(τ − t+ 1)) · ∂ϕt
∂γi

(τ − t+ 1) · ∂ϕt
∂γj

(τ − t+ 1)

+ fŨ (ϕt(τ − t+ 1)) · ∂ϕt
∂γi∂γj

(τ − t+ 1)

]

+
τ∑
t=1

NR
t (τ)

pR
t (τ)2 · fŨ (ϕt(τ − t+ 1))2 · ∂ϕt

∂γi
(τ − t+ 1) · ∂ϕt

∂γj
(τ − t+ 1),

where the second order derivatives of ϕt with respect to γ are

∂

∂γi∂γj
ϕt(s− t+ 1) =

s∑
v=t

xt,v,i · xt,v,j · αt,v

The Newton-Raphson algorithm in (2.13) models the observation exposure
parameters γ. Together with the observation parameters, the simulation study
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of Section 2.3.5 estimates the variance parameter σ in the lognormal time-
changed distribution. The Newton-Raphson algorithm in (2.13) can easily
be extended to this case, where the distribution function of FŨ depends on
parameters.

2.7 Appendix B: Simulation procedure

We outline the algorithm that was used to generate data sets from the four
scenarios specified in Section 2.3.5. This algorithm combines a model for the
occurrence of events with a model for the observation delay as described in
Section 2.2. We divide the algorithm in three steps.

Step 1. Occurrence We first generate the number of occurred events. The
number of daily events follows a Poisson distribution

Nt ∼ Poisson(λt),

where the intensity λt is obtained from the occurrence process specification for
the scenarios in Section 2.3.5.

Step 2. Observation We now simulate the observation date for each occurred
event. Combining equation (2.6) and (2.7), we can write the probability that
an event from date t is observed on date s as

pt,s = P

(
Ũ ∈

[
s−1∑
v=t

αt,v,

s∑
v=t

αt,v

))
.

We define the observation date random variable

St = min
s

{
s ∈ N

∣∣∣ s∑
v=t

αt,v > Ũ

}
. (2.14)

This expression transforms the time-changed observation delay random variable
into the associated observation date. Consequently St satisfies P (St = s) = pt,s.
For each event that occurred on date t we generate a realization from the
distribution of Ũ . We obtain the corresponding observation date by replacing
the random variable Ũ in (2.14) by this sampled value.
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Step 3. Truncation With steps 1 and 2 we have simulated an observation
date for each occurred event. We split this data set into observed and hidden
events. We use the data set with observed events to calibrate the model and
to predict the number of hidden events. The hidden events are kept only for
evaluating the prediction accuracy.

2.8 Appendix C: A standard distribution for the
time changed observation delay

Modeling the time-changed observation delay with an exponential distribution
has significant computational benefits. Therefore, this section puts focus on
the use of the exponential distribution as a standard distribution for modeling
the time-changed observation delay Ũ . Since the exponential distribution is
light-tailed it is less suited for long or heavy-tailed delays. We outline a strategy
for addressing this weakness of the exponential distribution.

Our strategy bins the possible observation delays (s−t = 0, 1, . . .) and categorizes
these bins with a delay covariate xdelay

s−t . This covariate is then included in the
observation exposure specification. For each bin we estimate a parameter to
capture its effect on observation exposure. These parameters can strongly
reshape the distribution, hereby overcoming many of the disadvantages of the
exponential distribution. We present a maximum likelihood driven binning
strategy in Appendix 2.8.1 and then Appendix 2.8.2 derives the same bins by
linking our approach to the non-parametric Kaplan-Meier estimator [Kaplan
and Meier, 1958].

2.8.1 Binning observation delay

Our binning strategy maximizes the loglikelihood in (2.8) when the observation
exposures depend only on the time elapsed since the event occurred, i.e.

αt,s = exp(γdelay · xdelay
s−t ) = exp(γs-t),

where we estimate for each delay s− t a separate parameter γs-t. Furthermore
we neglect the last term in (2.8), capturing the effect of the right truncation.
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Under these restrictions, the loglikelihood to optimize is

`(γ;χ) = −
τ∑
t=1

τ−1∑
v=t

(
τ∑

s=v+1
Nt,s

)
· exp(γv-t)

+
τ∑
t=1

τ∑
s=t

Nt,s · log
(
1− exp(− exp(γs-t)

)
We compute the derivatives of `(γ;χ) with respect to the observation exposure
parameter γd for positive delays d ∈ N

∂`(γ;χ)
∂γd = − exp(γd) ·

τ−d−1∑
t=1

τ∑
s=t+d+1

Nt,s + exp(γd)
exp(exp(γd))− 1 ·

τ−d∑
t=1

Nt,t+d.

Both sums in this expression have a logical interpretation. The first sum
(
∑τ−1−d
t=1

∑τ
s=d+t+1 Nt,s) counts the number of observed events with a delay

longer than d days, whereas the second sum (
∑τ−d
t=1 Nt,t+d) counts all events

with a delay of exactly d days. These derivatives are zero when

exp(γd) = − log
(

1− |delay = d|
|delay ≥ d|

)
, (2.15)

where |delay = d| denotes the number of events observed with a delay of d
days and |delay > d| the number of events with a delay of more than d days.

We propose to bin the observation delay by grouping delays for which (2.15) is
approximately constant. Figure 2.15 visualizes this approach for the liability
insurance data set discussed in Section 2.3. This figure shows in red the
estimated delay parameters using approximation (2.15). The top panel shows
the estimates for delays up to 31 days, whereas the parameters for larger delays
(up to 400 days) are shown in the bottom panel. Based on this knowledge
observation delay is grouped in 23 bins, separated by vertical gray bars in
Figure 2.15. We use more bins for short delays, since for these delays (2.15)
differs strongly. Moreover, many accidents have a short observation delay, which
makes these first delays more important. As expected, this binning strategy
identifies an increase in observation probability after exactly one year. In
Section 2.3 we structure these bins in a categorical delay covariate xdelay

s−t and
estimate observation delay in a maximum likelihood framework. In Figure 2.15
the fitted parameters are plotted in blue. These parameters deviate from those
found using approximation (2.15), since other covariate effects were estimated
simultaneously. However, the maximum likelihood estimates are close to the
approximate values which makes this approximation suitable for choosing initial
values in the calibration.
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Figure 2.15: Observation exposure estimates for the delay effect during the
first month after the accident occurrence (top) and longer delays (bottom). In
red, we show estimates obtained for each delay using (2.15). The vertical lines
indicate the chosen bins. Maximum likelihood estimates for the observation
delay parameter corresponding to each bin in the regression structure proposed
in Section 2.3.2 are plotted in blue.

2.8.2 A link with the Kaplan-Meier estimator

We show that under the binning strategy of Appendix 2.8.1 the time changed
model has the same flexibility as the Kaplan-Meier estimator and is as such
suitable for modelling a wide range of portfolios.

The Kaplan-Meier estimator for the survival function of the observation delay
random variable is

̂P (delay > d) =
d∏
i=0

(
1− |delay = i|
|delay ≥ i|

)
, (2.16)

When we model the time-changed observation delay distribution Ũ using
an exponential distribution then the survival probability for an event from
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occurrence day t is

P (delay > d | occ. day = t) = P
(
Ũ ≥ ϕt(d+ 1)

)
(2.17)

= 1− FŨ

(
d+1∑
i=1

αt,t+i−1

)

=
d∏
i=0

exp (−αt,t+i) .

Notice the similarity between this expression and the Kaplan-Meier estimator
in (2.16). When the observation exposure only depends on the time passed
since the occurrence of the event, i.e. αt,t+i := αi, then

P (delay > d) =
d∏
i=0

exp (−αi) ,

where αi is the observation exposure at delay i. This expression no longer
depends on the occurrence date t of the event. The Kaplan-Meier estimator is
retrieved when

αi = − log
(

1− |delay = i|
|delay ≥ i|

)
. (2.18)

Since αi = exp(γi), this is the same estimator we found in (2.15) through
maximum likelihood estimation. This show that by estimating a separate
delay parameter for each delay (d = 0, 1, . . .) we obtain a model with the same
flexibility as the non-parametric Kaplan-Meier estimator.





Chapter 3

A hierarchical reserving model
for reported non-life
insurance claims

Abstract

Traditional non-life reserving models largely neglect the vast amount of
information collected over the lifetime of a claim. This information includes
covariates describing the policy (e.g. the value of the insured risk), claim cause
(e.g. hail) as well as the detailed claim’s history (e.g. settlement, payment,
involvement lawyer). We present the hierarchical reserving model as a modular
framework for integrating a claim’s history and claim-specific covariates into
the development process. Hierarchical reserving models decompose the joint
likelihood of the development process over time. Moreover, they are tailored to
the portfolio at hand by adding a layer to the model for each of the registered
events (e.g. settlement, payment). Layers are modelled with classical techniques
(e.g. generalized linear models) or machine learning methods (e.g. gradient
boosting machines) and using claim-specific covariates. As a result of its
flexibility, this framework incorporates many existing reserving models, ranging
from aggregate models designed for runoff triangles to individual models using
claim-specific covariates. This connection allows us to develop a data-driven
strategy for choosing between aggregate and individual reserving in the presence
of covariates; an important decision for reserving practitioners that is largely
left unexplored in scientific literature. We illustrate our method with a case
study on a real life insurance data set. This case study provides new insights in

45



46 A HIERARCHICAL RESERVING MODEL FOR REPORTED NON-LIFE INSURANCE CLAIMS

the covariates driving the development of claims and demonstrates the flexibility
and robustness of the hierarchical reserving model over time.

This chapter is based on Jonas Crevecoeur and Katrien Antonio. A hierarchical
reserving model for non-life insurance claims. 2020a. Available at arXiv:
https://arxiv.org/abs/1910.12692.

3.1 Introduction

Insurers set aside funds, the so-called reserve, for covering claims from past
exposure years. This reserve is often split into a reserve for Incurred, But Not
yet Reported (IBNR) claims and a reserve for Reported, But Not yet Settled
(RBNS) claims. These separate reserves differ in the range of statistical tools
that are available for modelling them. Since the claims that compose the IBNR
reserve are not yet reported, claim-specific and policy(holder) covariates are
unavailable for differentiating the cost per claim. Therefore, IBNR reserving
mostly focuses on accurately estimating the number of unreported claims,
followed by allocating a fixed cost per unreported claim. In RBNS reserving,
the insurer is aware of the number of open claims as well as their characteristics
and development so-far. This opens the possibility for reserving models that
predict the future cost on a per claim basis. This chapter focuses on predicting
the RBNS reserve by modelling the development of reported claims.

Traditionally, the non-life insurance literature has been dominated by analytic
models designed for aggregated data, such as the chain ladder method [Mack,
1993, 1999]. These models compress the historical data on the development
of claims over time in a two dimensional table, the so-called runoff triangle,
by aggregating payments by occurrence and development year. Low data
requirements, implementation simplicity and a straightforward interpretation
of the predicted reserve justify the popularity of these models. However, by
compressing the data valuable insights into the risk characteristics of individual
claims are lost. This makes the reserve less robust against changes in the portfolio
composition and extreme one-time events. In response to this, individual
reserving methods designed for granular data available at the level of individual
claims, have first been proposed in the nineties. Individual reserving remained
largely unexplored for about two decades, with revived interest in recent years
thanks to an increased focus on big data analytics.

We identify three streams in the current literature on individual reserving.
Following Norberg [1993, 1999], a first stream analyzes the events registered
during a claim’s development in continuous time. Lopez et al. [2016, 2019] adapt
regression trees to the right-censoring present in continuous time reserving data.

https://arxiv.org/abs/1910.12692
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Covariates in these trees capture the heterogeneity in the claim size as well
as in the time to settlement of reported claims. In Antonio and Plat [2014]
hazard rates drive the time to events in the development of claims (e.g. a
payment, or settlement) and a lognormal regression model is proposed for the
payment size. Reserving in continuous time requires a time to event model that
allows for multiple payments and multiple types of (recurrent) events. Since
such models are complicated, many individual reserving models are defined
in a more convenient discrete time framework, where the events in a claim’s
lifetime are registered in discrete time periods. A second stream of reserving
methods models the reserve in discrete time by adapting models from insurance
pricing, as such taking advantage of the detailed covariate information available
within insurance companies. Since these covariates only become available
at reporting, such models focus on the reserve for reported, but not settled
(RBNS) claims, while using techniques from aggregated reserving to estimate
the reserve for unreported claims. Larsen [2007] focuses on Generalized Linear
Models (GLMs), Wüthrich [2018] considers regression trees and Wüthrich [2018]
looks at neural networks for reserving. A third stream of papers aggregates
the data into multiple runoff triangles. Martínez Miranda et al. [2012], Wahl
et al. [2019] and Denuit and Trufin [2017, 2018] consider two, three and four
triangles respectively. While the aggregation of the data makes these models
easy to implement, covariate information of individual claims can not be used.
The recent expansion in (individual) reserving methodology has resulted in a
fragmented literature with few comparative studies and no unified approach
with proven robustness and general applicability. The lack of a solid modelling
framework hinders the implementation of individual reserving in insurance
practice. Moreover, providing data driven guidance on the choice between
aggregate and individual reserving is a very important question that is largely
unexplored in the reserving literature.

We aim to fill this gap in the literature by presenting the hierarchical reserving
model as an intuitive framework for RBNS reserving with a focus on applicability
in practice. This framework decomposes the joint likelihood of the development
process of individual claims after reporting in discrete time. Hierarchical
reserving models are tailored to the portfolio at hand by adding layers, which
represent the events (e.g. settlement, positive or negative payments, changes in
the incurred, . . . ) registered over the lifetime of a claim. This modular approach
enables us to restate many existing reserving models, including models based
on data aggregated into a runoff triangle, as special cases of the hierarchical
reserving model. This intuitive model building process allows us to concentrate
on the decisions made during the modelling process, such as model calibration
and evaluation. These aspects of the modelling process have received little
attention in individual reserving literature up to now with many papers following
the model building steps applied in pricing or aggregate reserving. This results
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in a loss of performance as such methods do not consider the individual and
censored structure of the data.

This chapter is organized as follows. Section 3.2 introduces the hierarchical
reserving model, presents best practices for calibrating this model to insurance
data and explains how this model can be used to predict the future reserve.
Section 3.3 investigates the connection between hierarchical reserving models
proposed at individual claim level and certain aggregate reserving models. This
results in a data driven strategy for choosing between aggregate and individual
reserving. Section 3.4 demonstrates this methodology in a case study on a home
insurance data set. This is a novel data set, which has not been used before in
the literature on reserving. An R package accompanies this chapter enabling
researchers and practitioners to directly apply the hierarchical reserving model
to their portfolios.

3.2 A hierarchical reserving model

It is common in insurance pricing to decompose the joint likelihood into a
frequency and severity contribution [Henckaerts et al., 2018]. Frees and Valdez
[2008] extend this idea by splitting the severity contribution per claim type.
In this spirit, we propose a hierarchical reserving model, which decomposes
the joint likelihood of the claim development process over time and registered
events (e.g. settlement, payment).

3.2.1 Notation and statistical model

We record the development of reported claims in discrete time over a period
of τ years. For each reported claim k, rk denotes the reporting year and the
vector xk denotes the claim information available at the end of the reporting
year. This information vector is static and consists of the circumstances of
the claim, policy(holder) covariates and the claim development (e.g. initial
reserve, payments) in the reporting year. In the years after reporting, so-called
update vectors, denoted U j

k, describe the change in the claim development
information in year rk + j−1. The length and components of U j

k depend on the
events (e.g. claim settlement, change in the incurred, involvement of a lawyer)
registered in the portfolio at hand. This chapter defines a modular model
building approach that can be tailored to the chosen structure in U j

k. These
models, called hierarchical reserving models, are based on two fundamental
assumptions
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Hierarchical model assumptions

(A1) All claims settle within d years after reporting;

(A2) The development of a claim is independent of the development of the
other claims in the portfolio.

Although upper limit d on the the settlement delay is not necessarily limited to
the length of the observation window, we implicitly assume d = τ for notational
convenience. Given these assumptions, the set of observed claim updates after
reporting, say RObs, for a portfolio of n claims is

RObs = {U j
k | k = 1, . . . , n, j = 2, . . . , τk},

with τk = min(d, τ − rk + 1) the number of observed development years since
reporting for claim k. The associated likelihood is

L
(
RObs) =

n∏
k=1

f
(
U2
k, . . . ,U

τk
k | xk

)
,

where we use assumption (A2) to write the likelihood as a product of claim-
specific likelihood contributions. Inspired by Frees and Valdez [2008], we
introduce a hierarchical structure in this likelihood by applying the law of
conditional probability twice. First, we include the temporal dimension by
splitting the likelihood in chronological order

L
(
RObs) =

n∏
k=1

τk∏
j=2

f
(
U j
k | U2

k, . . . ,U
j−1
k ,xk

)
.

By conditioning on past events, we acknowledge that the future development
of a claim depends on its development in previous years. Second, we split the
likelihood by the events registered in the vector U j

k

L
(
RObs) =

n∏
k=1

τk∏
j=2

s∏
l=1

f
(
U jk,l | U

(2)
k , . . . ,U j−1

k , U jk,1, . . . , U
j
k,l−1,xk

)
, (3.1)

where s is the length of the update vector U j
k. In the remainder of this chapter,

we refer to these events registered over the lifetime of a claim as the layers of
the hierarchical model. The order of the layers is an important model choice,
since the outcome of a layer becomes a covariate when modelling higher indexed
layers. Since the assumptions (A1-A2) are common in reserving literature, most
discrete time reserving models can be seen as a special case of our hierarchical
reserving framework. Notice that in contrast with the chain ladder method, the
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hierarchical framework includes the full history of the claim and thus allows for
non-Markovian models.

When applying the hierarchical claim development model to a specific portfolio,
we extend assumptions (A1-A2) with an additional assumption, which tailors the
structure of the update vector U j

k to the portfolio at hand. For example, in the
case study covered in Section 3.4, we model U j

k with a three-layer hierarchical
model.

Hierarchical layers

(A3) The update vector U j
k for claim k in development year j has three layers

U j
k = (U jk,1, U

j
k,2, U

j
k,3) = (Cjk, P

j
k , Y

j
k ):r Cjk is the settlement indicator which is one when claim k settles in

development year j and zero otherwise. Conditional on past events,
the settlement indicator follows a Bernoulli distribution with

Cjk |U2
k
,...,Uj−1

k
,xk
∼ Bernoulli

(
p
(
U2
k, . . . ,U

j−1
k ,xk

))
.

r P jk is the payment indicator which is one when there is a payment for
claim k in development year j and zero otherwise. Conditional on
past events, the payment indicator follows a Bernoulli distribution
with

P jk |U2
k
,...,Uj−1

k
,Cj
k
,xk
∼ Bernoulli

(
q
(
U2
k, . . . ,U

j−1
k , Cjk,xk

))
.

r Y jk is the payment size, given that there was a payment in
development year j. Conditional on past events, the payment size is
gamma distributed with mean

E(Y jk | U2
k, . . . ,U

j−1
k , Cjk, P

j
k ,xk, j) = µ(U2

k, . . . ,U
j−1
k , Cjk, P

j
k ,xk)

and variance

σ2(Y jk | U2
k, . . . ,U

j−1
k , Cjk, P

j
k ,xk) = θ·µ(U2

k, . . . ,U
j−1
k , Cjk, P

j
k ,xk).

As such, we structure the development of claims with a simple three-layer
hierarchical model. Conditioning on the settlement status in past years, allows
us to train the model on the development of open claims only, whereas without
settlement indicator, the model would predict new payments for already settled
claims. Moreover, by choosing settlement as the first layer of the hierarchical
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model, settlement becomes a covariate when modelling later layers. The gamma
distribution for the sizes is frequently used in insurance pricing literature when
modelling attritional losses [Henckaerts et al., 2020]. Choosing a strictly positive
distribution assumes that there are no recoveries in the portfolio. In portfolios
in which recoveries are common, additional layers should be added to the
hierarchical model to allow for negative payments.

3.2.2 Hierarchical model calibration

The hierarchical claim development framework makes no assumption with
respect to the statistical modelling technique that is used to model the individual
layers. The case-study in Section 3.4 illustrates the proposed hierarchical
reserving model by calibrating both a Generalized Linear Model (GLM) as well
as a Gradient Boosting Model (GBM) to the layers outlined in (A3). Although
standard procedures are available for calibrating these models, special attention
is required for the variable selection process or (hyper) parameter turning steps.
In reserving the historical, observed data contains mainly records from early
development years, whereas the future predictions are more oriented towards
later years. This imbalance between the training and prediction data set poses
a model risk when covariates exhibit a different effect on the first development
years versus the later development years. In machine learning literature this
phenomenon is known as a covariate shift [Sugiyama et al., 2007b]. Following
Sugiyama et al. [2007a], we correct for a potential covariate shift by maximizing
a weighted likelihood in which weights depend on the development year, i.e.

Lweighted (RObs) =
∏n
k=1

∏τk
j=2 wj

∏s
l=1 f

(
U jk,l | U

(2)
k , . . . ,U

(j−1)
k , U jk,1, . . . , U

j
k,l−1,xk

)
,

(3.2)

where wj is the weight assigned to an observation from development year j.
Following Sugiyama et al. [2007a], we define these weights as the ratio of the
number of records from development year j in the prediction data set to the
number of records from development year j in the training data set. For typical
reserving data sets this ratio is observed and can be computed as

wj =
∑d
i=d−j+2 ni∑d−j+1
i=1 ni

,

where ni is the number of reported claims in reporting year i. These weights
increase in j assigning more weight to observations from later development
years. When selecting covariates or tuning (hyper) parameters, we maximize
(3.2) in a 5-fold cross validation scheme. For this, we calibrate predictive models
per layer l and allocate observations at the level of a claim k and a development
year j (see (3.2)) to different folds.
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3.2.3 Predicting the future development of claims

Algorithm 1 simulates the development of reported claims beyond the
observation window τ . In line with the hierarchical structure of the model,
development years are simulated in chronological order and within a development
year, this simulation algorithm respects the order of the layers. The simulation
order is important, since simulated values from previous development years
and lower indexed layers become inputs for later development years and higher
indexed layers.

Algorithm 1: Simulating the future development of reported claims
Input: the observed development of reported claims
Output: simulation of the future development of reported claims
foreach claim k do

for development year j in τ + 1− rk . . . d do
for hierarchical layer l in 1 . . . s do

Simulate U jl | U
(2)
k , . . . ,U

(j−1)
k , U jk,1, . . . , U

j
k,l−1,xk

end
end

end

Following this algorithm, the simulated data has the same hierarchical layered
structure as the input data set, which enables us to derive aggregated quantities
for the events registered in the update vector U j

k. For example, given the specific
hierarchical structure in assumption (A3), we obtain estimates for the number
of open claims, the number of payments and the total payment size. Prediction
intervals for these reserving quantities are obtained by running Algorithm 1
many times.

3.2.4 Implementation in R

We have developed a package called hirem [Crevecoeur, 2020] for defining
and calibrating hierarchical reserving models as well as simulating the future
development of claims. In this package, layers can be estimated with generalized
linear models (GLMs) or gradient boosting models (GBMs). The case-study
of Section 3.4 uses the implementation from Southworth [2015] of the gbm
package, which adds the gamma loss function to the original package developed
by Greenwell et al. [2018].
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3.3 Bridging aggregate and individual reserving

Most claim reserving models used in insurance companies are based on data
aggregated into runoff triangles. We start from data registered at the level
of individual claims and illustrate how aggregate reserving models can be
retrieved as special cases of the hierarchical reserving model. Section 3.3.1
investigates the simplified case of a hierarchical model with independent layers.
Section 3.3.2 extends these results and allows a simple, but common dependency
structure between the layers. The results of these sections offer valuable insights
and statistical tools for choosing between aggregate and individual reserving.
Section 3.3.3 demonstrates the universality of our framework by constructing
hierarchical reserving models inspired by recent literature contributions on
aggregate reserving with multiple runoff triangles. The hierarchical reserving
model as a unified framework for RBNS reserving facilitates model comparison
and offers new insights as to how these models could be extended to data
registered at the level of individual claims.

3.3.1 From individual hierarchical reserving models with
independent layers to aggregate reserving models

In contrast with traditional reserving models, the hierarchical reserving model
proposed in Section 3.2.1 analyses the development of claims from development
year two since reporting onwards. For this, our approach collects all information
registered during the reporting year of a claim k in a vector xk. This vector not
only includes claim covariates (e.g. the cause of the accident), but also covariates
structuring the development of the claim in the reporting year (e.g. the amount
paid during the reporting year). In this section, we denote by U1

k the claim
development information that becomes available during the reporting year. Next
to this, xk refers in this section to the remaining static claim covariates that
become available at reporting. Introducing U1

k brings our notation more in line
with traditional reserving practice and enables us to model the development of
claims from development year one onwards.

We construct for each of the layers l in the update vector U j
k a runoff triangle

(Xij
l )1≤i,j≤d with cells

Xij
l =

∑
k:rk=i

U jk,l.

In line with our focus on modelling RBNS claims, we aggregate by reporting year
and development year since reporting instead of the traditional set-up where
aggregation goes per occurrence year and development year since occurrence.
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As such, we model the development of claims since reporting. Although, we
denote the reporting year of claim k by rk, we keep the traditional index i for
the rows, i.e. the reporting years, in the runoff triangle.

Let us now assume that the individual updates depend multiplicatively on the
reporting year and the development year, i.e.

E(U jk,l) = αrk,l · βj,l and
d∑
j=1

βj,l = 1, (3.3)

for each layer l and where αrk,l is the effect of reporting year rk and βj,l is the
effect of development year j. When we aggregate these individual updates into
a runoff triangle, the cell values follow a similar multiplicative relation, i.e.

E(Xij
l ) = E

( ∑
k:rk=i

U jk,l

)
= ni · αi,l · βj,l := α̃i,l · βj,l, (3.4)

where ni, the number of reported claims in reporting year i, is observed. As
a result, we can calibrate individual hierarchical reserving models that only
depend multiplicatively on reporting year and development year using data
aggregated into runoff triangles.

Matching (3.3) with the original hierarchical reserving model specification in
(3.1), we rephrase the expected value for the updates U j

k at the individual level
in full generality as

E(U jk,l) = αrk,l · βj,l · φ
(
U1
k, . . . ,U

j−1
k , U jk,1, . . . , U

j
k,l−1,xk

)
,

where φ(·) represents the effect of all other covariates. When we add a
distributional assumption for U j

k, choosing between an aggregate or individual
reserving model reduces to testing for φ(·) = 1. Since the models with and
without φ(·) are nested, a likelihood ratio test can be used for this.

3.3.2 From individual hierarchical reserving models with
dependent layers to aggregate reserving models

The reserving models constructed in Section 3.3.2 treat each layer independent
of the others. This results in simple aggregated models, where each layer is
estimated from a single runoff triangle, independent from the other layers.
However, in most multi-layer hierarchical structures some dependence between
the layers is inevitable and offering a simple framework to include these
dependencies is one of the main motivations for the hierarchical reserving
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model. This section investigates the special, but common setting of a two-layer
hierarchical model in which layer one is a binary random variable and layer
two is zero whenever layer one equals zero. As an example, think of layer one
as a payment indicator and layer two as the payment size. When there is no
payment, the payment size is zero.

Again focusing on the multiplicative structure of reporting and development
year, we structure the expected values of the layers as

E(U jk,1) = αrk,1 · βj,1 · φ
(
U1
k, . . . ,U

j−1
k ,xk

)

E(U jk,2) =
{
αrk,2 · βj,2 · ψ

(
U1
k, . . . ,U

j−1
k ,xk

)
U jk,1 = 1

0 U jk,1 = 0
,

where
∑d
j=1 βj,l = 1 for l ∈ {1, 2}. When φ(·) and ψ(·) are both equal to one,

the claim development depends only on reporting year and development year in
a multiplicative way. We then retrieve

E(Xij
1 ) = E

( ∑
k:rk=i

U jk,1

)
= ni · αi,1 · βj,1 := α̃i,1 · βj,1

E(Xij
2 | Xij

1 ) = E
( ∑
k:rk=i

U jk,2

)
= Xij

1 · αi,2 · βj,2. (3.5)

When calibrating the model for the second layer, the observed upper triangle of
the first layer acts as an exposure term. When estimating the future reserve,
this exposure term, Xij

1 , should be estimated using the model proposed for
the first layer. If we interpret the first layer as a payment indicator and the
second layer as the payment size then the number of payments becomes the
exposure for the total payment size. Similar to Section 3.3.1, statistical tests
for φ(·) = ψ(·) = 1 offer data driven tools for choosing between individual and
aggregate reserving.

3.3.3 Hierarchical reserving models inspired by aggregate
reserving models proposed for multiple runoff triangles

As a result of the weak assumptions underlying the hierarchical reserving
model, many existing reserving models can be restated as special cases of our
framework. As a unifying framework, the hierarchical reserving model facilitates
model comparison and allows extending the calibration and simulation strategy
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developed in this chapter to other models. In the case of models designed for
aggregate data, the hierarchical reserving framework in addition offers insights
as to how these models could be extended to data registered at the level of
individual claims.

As an illustration of the generality of our framework, we construct hierarchical
reserving models inspired by recent contributions on aggregate reserving using
data structured in multiple triangles. We discuss two examples of such models,
namely the double chain ladder [Martínez Miranda et al., 2012] and the collective
reserving model [Wahl et al., 2019]. As motivated in Section 3.1, we limit our
analysis to the RBNS part of these aggregate models.

Double chain ladder The double chain ladder (DCL) [Martínez Miranda
et al., 2012] extends the chain ladder method to two runoff triangles to obtain
separate estimates for the IBNR and RBNS reserve. Since we only consider the
development of claims after reporting, we focus on the triangle of claim sizes
and construct a one-layer hierarchical model. DCL structures the expected
payment size for a claim k in development year j since reporting, denoted U jk,1,
as

E(U jk,1) = π̃j · µ̃j · γik ,
where ik denotes the occurrence year of the claim and π̃j and µ̃j are the payment
probability in development year j and average payment size in development
year j respectively. The coefficient γik adjusts the size of the payments from
occurrence year ik for inflation. Letting inflation depend on the occurrence
year is natural in DCL, which aggregates runoff triangles by occurrence year
and development year since occurrence. Since runoff triangles based on the
hierarchical reserving model aggregate by reporting year and development year
since reporting, it is in our framework more natural to model inflation per
reporting year. If we change the occurrence year effect γik by a reporting year
effect γrk , the individual updates become

E(U jk,1) = π̃j · µ̃j · γrk .

Aggregating these individual updates, we retrieve

E(Xij
1 ) = E

( ∑
k:rk=i

U jk,1

)
= ni · π̃j · µ̃j · γi.

This is the same model as (3.3), when we rewrite αi = ni · γi and βj = π̃j · µ̃j .

The collective reserving model Extending the earlier work of Verrall et al.
[2010] and Martínez Miranda et al. [2012], the collective reserving model [Wahl
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et al., 2019] structures the claim development after reporting in two layers.
These layers represent the number of payments and the size per payment.
Inspired by Wahl et al. [2019]’s aggregate model, we structure the individual
updates as

E(U jk,1) ∼ Poisson(λj), (number of payments)

E(U jk,2 | U
j
k,1) = µ(ik, rk, j) · U jk,1, (payment size)

where a claim can have multiple payments in the same year, each with an
average size µ(ik, rk, j), which depends on the occurrence year, reporting year
and development year since reporting. When µ(ik, rk, j) = αrk · βj , the model
aggregates to

E(Xij
1 ) = ni · λj ,

E(Xij
2 | Xij

1 ) = Xij
1 · αi · βj ,

where ni denotes the number of claims reported in reporting year i. This
representation is almost identical to (3.5), with the estimated effect of reporting
year i for the number of payments replaced by the observed count ni.

3.4 Case study: European home insurance portfo-
lio

This case study models the RBNS reserve for a European home insurance
portfolio. This insurance reimburses damages to the insured property and its
contents resulting from a wide range of causes including fire damage, water
damage and theft. For reasons of confidentiality we can not disclose the size of
the portfolio and the associated reserve. Therefore, we express the performance
of the investigated reserving methods via a percentage error measure, comparing
the actual and predicted reserve.

3.4.1 Data characteristics

We observe the development of individual claims over a seven year period
from January, 2011 until December, 2017. Figure 3.1 structures individual
payments by the reporting date of the claim (vertical axis) and the number of
days elapsed since reporting (horizontal axis). Every dot represents a single
payment and one claim can have multiple payments. A triangular structure
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appears, since the claim development after December, 2017 is censored. Home
insurance is a short tailed business line, with many payments in the first years
after reporting. The black grid in Figure 3.1 visualizes how individual payments
would be aggregated when constructing a yearly runoff triangle. As shown in
this triangle, extreme weather events cause sudden spikes in the number of
reported claims. This has a large impact on the stability of the runoff triangle in
classical, aggregate reserving. Therefore, insurers most often reserve these claims
separately based on expert opinion. In this chapter we analyze the robustness of
various hierarchical reserving methods by predicting the future reserve with and
without extreme weather events. Table 3.1 provides a detailed description of
the available covariates. We group these covariates into four categories. Policy
covariates identify the policy or policyholder entering the claim. These covariates
are available when pricing the contract. Claim covariates describe the static
characteristics of the claim. These covariates become available in the reporting
year of the claim. Development covariates describe the yearly evolution of the
claim and layer covariates constitute the layers of the hierarchical reserving
model.

2012

2014

2016

2018

0 1000 2000
Payment delay (in days)

R
ep

or
tin

g 
da

te

Extreme weather claims

Other claims

Figure 3.1: Payments structured by reporting date and payment delay in
days. Every dot represents a single payment and one claim can have multiple
payments. A grid indicates how individual payments would be aggregated when
constructing a yearly runoff triangle. Claims resulting from extreme weather
(e.g. a storm) are colored red.



CASE STUDY: EUROPEAN HOME INSURANCE PORTFOLIO 59

P
ol

ic
y

co
va

ri
at

es
va

lu
ab

le
s

O
bj
ec
ts

we
re

de
cl
ar
ed

w
ith

a
va
lu
e
ex
ce
ed

in
g
th
e
st
an

da
rd

co
ve
r:

ye
s
or

no
ag

e.
in

su
re

d
T
he

ag
e
of

th
e
po

lic
yh

ol
de

r
pr

of
es

si
on

Pr
of
es
sio

n
of

th
e
po

lic
yh

ol
de

r,
16

ca
te
go
rie

s
se

x
G
en

de
r
of

th
e
po

lic
yh

ol
de

r:
m
al
e
or

fe
m
al
e

co
ns

tr
uc

ti
on

.y
ea

r
T
he

ye
ar

in
w
hi
ch

th
e
bu

ild
in
g
wa

s
co
ns
tr
uc

te
d

pr
op

er
ty

.v
al

ue
T
he

va
lu
e
of

th
e
pr
op

er
ty

in
Eu

ro
C

la
im

co
va

ri
at

es
ac

c.
da

te
D
at
e
on

w
hi
ch

th
e
ac
ci
de

nt
oc
cu

rr
ed

re
p.

da
te

D
at
e
on

w
hi
ch

th
e
cl
ai
m

wa
s
re
po

rt
ed

to
th
e
in
su
re
r

re
p.

de
la

y
D
el
ay

in
da

ys
be

tw
ee
n
th
e
oc
cu
rr
en

ce
an

d
re
po

rt
in
g
of

th
e
cl
ai
m

re
p.

mo
nt

h
C
al
en

da
r
m
on

th
in

w
hi
ch

th
e
cl
ai
m

wa
s
re
po

rt
ed

(J
an

-D
ec
)

co
ve

ra
ge

T
he

m
ai
n
co
ve
ra
ge

ap
pl
ic
ab

le
to

th
e
cl
ai
m
:
th
ef
t,
bu

ild
in
g
or

co
nt
en
ts

ca
tn

at
T
he

ca
us
e
of

th
e
cl
ai
m
,g

ro
up

ed
in

12
ca
te
go
rie

s
ex

tr
em

e.
we

at
he

r
C
la
im

is
th
e
re
su
lt
of

ex
tr
em

e
we

at
he
r
(e
.g
.s

to
rm

):
ye
s
or

no
in

it
ia

l.
re

se
rv

e
Ex

pe
rt

es
tim

at
e
of

th
e
in
iti
al

re
se
rv
e
at

th
e
en

d
of

th
e
re
po

rt
in
g
ye
ar

D
ev

el
op

m
en

t
co

va
ri

at
es

de
v.

ye
ar

T
he

nu
m
be

r
of

ye
ar
s
el
ap

se
d
sin

ce
th
e
re
po

rt
in
g
of

th
e
cl
ai
m

ca
le

nd
ar

.y
ea

r
N
um

be
r
of

ye
ar
s
el
ap

se
d
be

tw
ee
n
th
e
st
ar
t
of

th
e
po

rt
fo
lio

an
d

de
v.

ye
ar

si
ze

.l
as

t.
ye

ar
To

ta
la

m
ou

nt
pa

id
in

th
e
pr
ev
io
us

de
ve
lo
pm

en
t
ye
ar

to
ta

l.
am

ou
nt

.p
ai

d
To

ta
la

m
ou

nt
pa

id
in

al
lp

re
vi
ou

s
de

ve
lo
pm

en
t
ye
ar
s

La
ye

r
co

va
ri

at
es

cl
os

e
T
he

cl
ai
m

cl
os
es

in
th
e
cu

rr
en
t
de

ve
lo
pm

en
t
ye
ar
:
ye
s
or

no
pa

ym
en

t
A

pa
ym

en
t
oc
cu

rs
in

th
e
cu

rr
en
t
de

ve
lo
pm

en
t
ye
ar
:
ye
s
or

no
si

ze
To

ta
la

m
ou

nt
pa

id
in

th
e
cu

rr
en
t
de

ve
lo
pm

en
t
ye
ar

Ta
bl
e
3.
1:

Li
st

of
co
va
ria

te
s
av
ai
la
bl
e
in

th
e
ho

m
e
in
su
ra
nc

e
da

ta
se
t.

A
le
ve
lN

A
(n
ot

av
ai
la
bl
e)

id
en
tifi

es
th
e
re
co
rd
s

w
ith

no
re
gi
st
er
ed

va
lu
e
fo
r
a
co
va
ria

te
.



60 A HIERARCHICAL RESERVING MODEL FOR REPORTED NON-LIFE INSURANCE CLAIMS

In Figure 3.2 a treemap visualizes the available claims grouped into the 12 risk
categories as coded in the covariate catnat. Each claim is represented by a
rectangle, where the size of this rectangle visualizes the amount paid for that
claim by the end of December, 2017. Water and fire damage are the most
important insurance covers in this portfolio. Together these risks generate more
than half of the total claim cost. Fire claims are typically larger than non-fire
claims. Although less than 5% of all claims are related to fire, these claims
represent more than 25% of the total cost. The large difference between the
average size of fire claims versus the average size of non-fire claims, motivates
us to build separate reserving models for fire claims on the one hand and
non-fire claims on the other hand. Estimating separate reserves for risks with a
different development pattern is a common approach in traditional reserving.
Alternatively, we can distinguish fire and non-fire claims by including a covariate
in the hierarchical reserving model. However, this latter approach would result
in an unfair comparison between individual models, which can use this covariate,
and traditional reserving methods for aggregate data, which can not use this
covariate.

Contact

Electricity

Fire

Glass

Hail

Lightning

Other

Storm Theft

Vandalism

Water

Figure 3.2: Treemap of individual claims observed on 31 December, 2017
grouped into the 12 risk categories present in the portfolio as coded in the
covariate catnat. Each claim is represented by a rectangle, where the size of
this rectangle visualizes the amount paid for that claim by the end of December,
2017.
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3.4.2 Hierarchical reserving models for fire and non-fire claims

We analyse the performance of hierarchical reserving models based on GLMs,
GBMs and the chain ladder method on 365 evaluation dates between January
1, 2015 and December 31, 2015. Instead of a single out-of-time evaluation (as
e.g. in Antonio and Plat [2014], Wüthrich [2018]) the moving window evaluation
enables a more thorough assessment of the sensitivity and general applicability
of the model. On each evaluation date τ we train the models on the observed
data (January, 2011 until τ) and compare the out-of-sample reserve estimate
with the actual claim development over the next two development years.

Hierarchical reserving models

Hierarchical GLM The hierarchical GLM follows the three layer structure close,
payment and size defined in assumption (A3) and models each of these layers with
a Generalized Linear Model (GLM). Actuaries are familiar with GLMs, given
the long tradition of using GLMs in insurance pricing and reserving. Therefore,
GLMs are the most likely candidate for supporting the transition from aggregate
to individual reserving in practice. As is common in insurance pricing, we bin
the continuous variables age.insured, construction.year, property.value
and rep.delay. Table 3.2 shows the chosen bins for each covariate. We
do not include the continuous development covariates size.last.year and
total.amount.paid in the hierarchical GLM, since these covariates are highly
correlated with the development year. On the first evaluation date, January 1,
2015, we select the optimal set of covariates for each of the three GLMs (close,
payment and size) using forward selection with 5-fold cross validation, i.e. we
iteratively add the covariate that results in the largest increase in the weighted
likelihood (3.2) over all hold-out folds. In the moving window evaluation, we
do not reselect the covariates on the other 364 evaluation dates, but recalibrate
the parameters on each evaluation date using the most recent data.

Figure 3.3a shows the selected covariates in each GLM as well as a measure of
the importance of each selected covariate. We compute covariate importance
as the increase in the weighted likelihood (3.2) over all hold-out folds when
sequentially adding covariates using forward selection. These increases are
rescaled per GLM and sum to 100. For non-fire claims the set of selected
covariates changes only slightly when we omit extreme weather events. This
is in line with the low importance assigned to the covariate extreme.weather
when these claims are included. The interaction dev.year * rep.month allows
a more accurate determination of a claim’s age, while still reserving in a yearly
framework. This is by far the most important determinant for the settlement
and payment process of non-fire claims. The importance of development year
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Variable Bins

age.insured [0, 39], [40, 49] , [50, 64], 65+, NA
construction.year 1950−, [1950, 1969], [1970, 1984], 1985+, NA
property.value 150 000−, (150 000, 200 000], (200 000, 250 000],

250 000+, NA
rep.delay 5−, [5, 21], 21+

Table 3.2: List of chosen bins for the continuous covariates in the hierarchical
GLM.

as a covariate for individual reserving is a strong validation for aggregate
reserving models, which cannot use other covariates. Surprisingly, dev.year
and dev.year * rep.month have little effect on the size of non-fire claims.
The most important determinants for the payment size are the claim type as
coded in catnat and the initial.reserve set by the expert. The data set
contains less fire claims and as a result fewer covariates are selected in the
corresponding GLMs. Although these GLMs might be less predictive, the few
selected covariates obtain high importance scores, since scores are always scaled
to 100. In particular, valuables has an importance of 100, since it is the only
covariate selected in the GLM for the settlement of fire claims. As with non-fire
claims the initial.reserve is an important predictor for the payment size.

Hierarchical GBM The hierarchical GBM follows the same three layer
structure as the hierarchical GLM, but models each layer with a tree based
Gradient Boosting Model (GBM). GBMs, as introduced by Friedman [2001],
model the data with a sequence of shallow decision trees, in which each tree
improves the fit of the previous trees. The GBM has three major advantages.
First, through a sequence of trees a non-linear effect can be estimated for
continuous covariates, thus removing the need to bin continuous variables.
Second, automatic feature selection is integrated in the calibration process.
Third, simple interaction effects between the covariates are automatically
modelled. As a result of these advantages, the covariates age.insured,
construction.year, property.value, rep.delay and initial.reserve can
be included as continuous covariates. Furthermore, we do not include the
interaction dev.year * rep.month as the model will automatically construct
the relevant interactions. In return, a number of tuning parameters such as
the number of trees and the depth of each tree have to be tuned. We tune
these parameters on January 1, 2015 using the cross validation strategy of
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Figure 3.3: Relative importance of the selected covariates in (a) the hierarchical
GLM and (b) the hierarchical GBM. Relative importance is computed as the
increase in likelihood attributed to a single covariate relative to the total increase
in likelihood caused by all covariates.

Section 3.2.2. Once tuned, these parameters remain fixed throughout the 364
remaining evaluation dates.

Figure 3.3b shows the relative importance of the covariates in the various GBMs.
The importance of a specific covariate is expressed as the total improvement
of the loss function over all splits including that covariate averaged over the
365 evaluation dates and scaled to 100. Since there is no explicit variable
selection, importance is distributed over all covariates, which complicates
the interpretation. For recent claims, rep.month allows for a more granular
expression of the time elapsed since reporting the claim, which is important
when modelling the target variables close, payment and size. initial.reserve
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is the most important covariate when predicting the size of payments. This
shows that claim experts base their reserve estimate on information of the claim
beyond the covariates available in model building. Similarly, the importance of
other covariates shows that the practice of determining an initial reserve can be
further improved by using a statistical model. The claim type catnat, which
was important in the hierarchical GLM, is less important in the GBM.

Chain ladder method We compare the previous individual hierarchical
reserving models with the classical chain ladder method based on yearly
aggregated data. As indicated in Section 3.3.1, the chain ladder method
can be rephrased as a hiearchical reserving model with a single layer, i.e. the
payment size. On each evaluation date, we compute the RBNS reserve by
applying the classical chain ladder method to a runoff triangle of payment sizes
aggregated by reporting and development year. The choice for aggregating by
reporting year results in an estimate for the RBNS reserve, as motivated in
Section 3.3. Confidence bounds for the reserve estimate will be derived from a
normal assumption combined with the standard errors under the Mack model
[Mack, 1999].

Evaluation of the RBNS reserve

On each evaluation date we predict the expected RBNS reserve for the open
claims over the next two years. We measure model performance via the
percentage error of the predicted reserve compared to the actual reserve, that is

percentage error = predicted− actual
actual

· 100%.

Figure 3.4 shows the evolution of the percentage error between January 2015
and December 2015 as obtained with the three hierarchical reserving models.
The percentage error is capped at 100% for improved readability of the figures.
Table 3.3 summarizes the daily errors by calculating the average percentage
error and the average absolute percentage error over the 365 evaluation dates.

The reserve for non-fire claims (Figure 3.4a) combines the outstanding amounts
on many small claims, which provides a sufficiently rich data set for accurately
training the individual hierarchical reserving models. This results in a similar
performance for the hierarchical GLM and GBM. Extreme weather events in
past years, produce outliers in the cells in the runoff triangle. This has a
large impact on the chain ladder method, which fails to provide reasonable
reserve estimates. This is a well known weakness of the chain ladder method
and it is interesting that the individual models do not have this weakness,
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Portfolio hierarchical GLM hierarchical GBM chain ladder
µ(PE) µ(|PE|) µ(PE) µ(|PE|) µ(PE) µ(|PE|)

non-fire claims 0.92 7.32 -1.80 10.23 33.89 51.31

non-fire claims, -9.76 14.90 -14.28 20.18 -18.10 19.07
exclude extreme weather

fire-claims -20.82 26.44 -16.42 26.50 -28.41 29.76

Table 3.3: Evaluation of the average performance of the hierarchical GLM,
hierarchical GBM and chain ladder method over 365 evaluation dates between
January 1, 2015 and December 31, 2015. Average performance is expressed as
the mean percentage error and the mean absolute percentage error.

since they scale the reserve estimate automatically with the number of claims.
Furthermore, Figure 3.3 shows that the covariate extreme.weather is rarely
selected in the hierarchical models, which indicates that the development of
these extreme weather claims does not fundamentally differ from regular claims.
Not having to separate these extreme weather events from the other claims is
a major advantage of individual reserving. When we remove extreme weather
events (Figure 3.4b), performance across all three models becomes relatively
competitive. Both the chain ladder method and the individual hierarchical
models benefit from a data set with a large number of claims. Table 3.3 shows
that performance is slightly better for the individual models, which surprisingly
perform even better when we would not exclude extreme weather events from
the data set. We observe higher prediction errors for all three models when
predicting the reserve for fire claims (Figure 3.4c). The combination of a low
claim frequency and potentially high costs makes the reserve for fire claims
difficult to predict.

3.5 Conclusion

We propose the hierarchical reserving model as a general framework for RBNS
reserving in discrete time. By adding layers and choosing predictive models
this framework can be tailored to any insurance portfolio. At the same time,
our approach enables the development of best practices for calibration (see
Section 3.2.2) and offers statistical tools for comparing hierarchical models.
Model comparison extends to many existing reserving models, which can be
restated as hierarchical reserving models. Moreover, Section 3.3 presents a
connection with aggregate reserving models, allowing a data driven choice
between aggregate and individual reserving. We illustrate our framework on
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Figure 3.4: Percentage error in the prediction of the RBNS reserve on evaluation
dates between January 1, 2015 and December 31, 2015 under the hierarchical
GLM, hierarchical GBM and the chain ladder method. Errors are limited to
100%. (a) shows the reserve for non-fire claims, (b) the reserve for non-fire
claims, when extreme weather events are excluded and (c) the reserve for fire
claims.

a detailed case study with a home insurance data set. The flexibility of the
framework is demonstrated by calibrating the same three layer structure with
generalized linear models and gradient boosting models. As a best practice,
we minimize the effect of day-to-day volatility when comparing our reserving
models, by evaluating the performance over 365 evaluation days. The individual
hierarchical models consistently outperform the classical chain ladder method
on aggregated data and have the additional benefit that extreme weather events
do not have to be removed prior to reserving.
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Chapter 4

Bridging the gap between
pricing and reserving with an
occurrence and development
model for non-life insurance
claims

Abstract

Due to the presence of reporting and settlement delay, historical claim data sets
in non-life insurance are typically incomplete. As a result observed claim counts
and claim severities are right censored. Therefore, non-life insurance pricing is
currently approached via a two-step procedure. First, insurers compute best
estimates for claim frequency and severity at the level of individual policies
based on the incomplete, historical claim data. Second, pricing actuaries build
predictive models to estimate technical, pure premiums for new policies by
treating these best estimates as actual observed outcomes, hereby neglecting
the uncertainty present in them. We propose an alternative one-step approach
for non-life pricing by analysing the incomplete information registered during
the development of claims. The granularity of our model allows it to be applied
to both pricing and reserving, hence bridging two key actuarial tasks that have
traditionally been discussed in silos. We illustrate our proposed model on a
reinsurance portfolio, where large uncertainties in the best estimates result from

69
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long reporting and settlement delays, low claim frequencies and extreme claim
sizes.

This chapter is based on Jonas Crevecoeur and Katrien Antonio. Bridging the
gap between pricing and reserving with an occurrence and development model
for non-life insurance claims. 2020b. Working paper.

4.1 Introduction

The insurance industry is characterized by an inverted production cycle in which
the premium for a new policy is determined before observing the associated loss.
Estimating these losses is the task of pricing actuaries. In non-life insurance,
the total loss L on a new policy is often estimated with a frequency-severity
decomposition [Denuit et al., 2007, Frees and Valdez, 2008], which models the
expected loss as the product of the expected number of claims E(N) (frequency)
and the expected cost per claim E(Y ) (severity), i.e.

E(L) = E(N) · E(Y ).

Typically, independence is assumed between the frequency and severity
component of the loss. Personalized, risk-based premiums are obtained by
analysing the risk characteristics of individuals while building predictive models
for claim frequency and severity. Pricing requires a data set with claim counts
at the level of individual polices and claim sizes at the level of individual claims.
However, an aspect completely ignored by pricing literature is that claim counts
and claim sizes are rarely observed due to reporting and settlement delays in the
claim development process. This is particularly relevant in long-tailed business
lines (e.g. workers’ compensation and reinsurance) where claim settlement can
take several years.

Figure 4.1 visualizes the development process of a single claim. This process
starts with the occurrence of an accident, which is reported to the insurer after
some delay. If the claim is eligible for compensation under the insurance policy,
a number of payments follow. Finally, the claim settles and we observe its
total cost. Depending on the insurer and line of business other relevant events
(e.g. the involvement of a lawyer) will be recorded during the lifetime of a claim.
For settled claims, we observe the full development process and thus the total
claim size. However, the development process is only partially observed for
reported, but not yet settled claims. For claims that occurred in the past, but
are not yet reported the development process is completely missing from the
database maintained by the insurance company.
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Time

Occurrence Reporting Settlement

Settlement delayReporting delay

Figure 4.1: Development process of a single claim

Due to the delays present in the claim development process, we observe the
number of reported claims instead of the number of actually occurred claims,
which also includes claims that are not (yet) reported. Similarly, the observed
claim sizes for open claims underestimate actual losses, since future payments
are missing. As a result of the incomplete claim history, pricing is in practice a
two step approach. First, claim counts and sizes are estimated per policy and
per claim, respectively, based on the available claim history, i.e.

N̂ = E(N | Fτ ) and Ŷ = E(Y | Fτ ),

where Fτ denotes the information available at the observation date τ . In a
second step, these estimates, so called best-estimates, are treated as actual
observations when the pricing actuary constructs predictive models for claim
frequency and severity.

Best estimates as constructed in the first step of this pricing procedure, can
be obtained in several ways. In the most common approach, claim handlers
estimate the future claim cost based on their expert opinion. Combined with
the amount already paid, this estimate constitute the expert’s best estimate of
the total claim size, which is also called the incurred. Alternatively, methods
from non-life reserving can be adapted to estimate the total, ultimate cost of
individual claims. The literature on non-life reserving unravels along two axes:
aggregate and individual reserving models. Aggregate reserving models (e.g. the
chain ladder method [Mack, 1993, 1999]) ignore individual claim characteristics
and model a single claim development process for all claims that occur within an
accident year. We obtain best estimates for pricing by applying this development
process to individual, reported claims. Constructing best estimates based on
an aggregate reserving model has two important disadvantages. First, most
aggregate reserving models do not distinguish between open and settled claims.
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In this case, consistency with the reserving model requires pricing actuaries to
replace claim sizes for both open and settled claims by best estimates. Second,
ignoring risk characteristics when constructing best estimates reduces the effect
of these characteristics when modelling claim severity. Following Norberg
[1993, 1999] individual reserving models have emerged, which construct best
estimates at the level of individual claims. In the recently developed literature
on individual reserving, we see most potential in a stream of individual reserving
models in discrete time adopting techniques from pricing literature. Larsen
[2007], Wüthrich [2018], Crevecoeur and Antonio [2020a] and Łukasz Delong
et al. [2020] focus on Generalized Linear Models (GLMs), regression trees,
gradient boosting models and neural networks, respectively. Claim covariates
in these models result in best estimates tailored to individual claims.

Pricing literature mainly focuses on the second step of the pricing procedure,
where a statistical model is fitted to the best estimates. Although actual
observations and best estimates follow different statistical distributions, the
frequency-severity decomposition still holds, i.e.

E(L) = E(N) · E(Y ) = E
(
E(N | Fτ )

)
· E
(
E(Y | Fτ )

)
,

as a result of the tower rule for conditional expectations. This property is
essential for traditional pricing, since it enables an unbiased estimation of
the loss based on best estimates. However, many other properties of the loss
(e.g. the variance) are not preserved when treating best estimates as actual
observations. In particular, as a result of Jensen’s inequality [Jensen, 1906],
severity is underestimated for policies covering losses above a deductible d, i.e.

E((Y − d)+) ≥ E (((E(Y | Fτ )− d)+) .

This is especially relevant in excess-of-loss reinsurance pricing, where deductibles
are high and long settlement delays result in many open claims. Moreover, when
pricing based on best estimates, risk characteristics selected when modelling
frequency and severity should be interpreted as effects on the best estimate
rather than effects on the actual observations. Parameters capturing these effects
are likely affected by the method used for constructing these best estimates.

We propose a novel, one-step approach for non-life insurance pricing by analysing
the potentially incomplete information registered during the development of
claims. This approach resolves the inconsistencies between actual observations
and best estimates in traditional pricing. Moreover, by modelling the occurrence
and development process of claims, our proposed model can be used for both
non-life pricing and non-life reserving, hereby bridging two key actuarial tasks
of a non-life actuary. We demonstrate our methodology with a case-study on
pricing and reserving based on a reinsurance data set. This is one of the first
works applying techniques from individual reserving on a reinsurance portfolio.
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The reinsurance industry is characterized by low claim frequencies and high
claim severities [Albrecher et al., 2017], which demands special attention when
building predictive models for the development of individual claims.

This chapter is organized as follows. Section 4.2 introduces a model for the
occurrence and development of non-life insurance claims. Section 4.3 illustrates
how this model can be used for pricing and reserving non-life policies. Section 4.4
demonstrates this methodology in a case-study on a reinsurance data set.
Section 4.5 concludes this chapter.

4.2 An occurrence and development model for non-
life claims

We present a discrete time occurrence and development model (ODM) at the
level of individual policies and claims, respectively. Our ODM consists of two
parts. Section 4.2.1 analyses the occurrence and reporting of claims, while
Section 4.2.2 analyses the development of claims after reporting. Together these
two parts model the full claim history.

4.2.1 Occurrence and reporting of non-life claims

We consider a portfolio with historical data on n policies, each with a coverage
period contained within a single calendar year. In case the historical data
set contains policies covering multiple calendar years, these policies will be
split by calendar year and treated as separate policies. Let Ni denote the
claim frequency of policy i, i.e. the total number of claims that occur during
the coverage period for policy i. Due to a possible delay in reporting (see
Figure 4.1), these counts Ni are not directly observable. Instead we observe
counts Ni,j , which register the number of claims from policy i that are reported
in the j-th year after occurrence, i.e. year occ(i) + j − 1, where occ(i) is the
occurrence year covered by policy i. At the observation date τ , we observe the
counts Ni,j with occ(i) + j − 1 ≤ τ , whereas the claims counted in Ni,j with
occ(i) + j − 1 > τ are not yet reported. We propose a model for predicting
these unreported counts Ni,j . Following Jewell [1990] and Norberg [1993], our
model is based on the following assumptions:

(F1) Claims are reported with a maximal delay of d years. This maximal delay
d is at most the length of the observation window τ of the portfolio, i.e.
d ≤ τ .
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(F2) Claim counts Ni are independent and follow a Poisson distribution with
intensity λi(xi), which depends on policy covariates xi.

(F3) Conditional on the total number of claims Ni, the reported counts Ni,j
are multinomially distributed with reporting probabilities pi,j(xi), which
depend on policy covariates xi.

Assumption (F1) limits the reporting delay and allows us to retrieve the total
claim frequency on policy i as

Ni =
d∑
j=1

Ni,j .

Assumption (F2) follows the insurance pricing literature by modelling claim
frequency with a Poisson distribution. Assumption (F3) is very general, but
requires each claim to be reported independent of the other claims in the
portfolio. The independence assumptions in (F2-F3) are similar to those
in classical insurance pricing, but might be violated in case of high impact
events, e.g. extreme weather, where claims occur in clusters. We choose these
assumptions, nevertheless, since they are essential for modelling occurrence and
reporting at the level of individual policies. As a result of the thinning property
for Poisson distributions, assumption (F2-F3) implies

Nij ∼ Poisson(λi(xi) · pi,j(xi)).
The set of observed claims consists of {Nij | i = 1, . . . , n, j = 1, . . . , τi}, where
τi := max(d, τ − occ(i) + 1) is the number of observed reporting years for policy
i. The associated log-likelihood is

L(λ,p) =
n∑
i=1

τi∑
j=1
−λi(xi)·pij(xi)+Nij ·log(λi(xi))+Nij ·log(pij(xi))−log(Nij !).

(4.1)
We extend the work of Verbelen et al. [2019] for optimizing this likelihood
with respect to chosen structures for λ and p. Our main contribution relates
to specifying this likelihood at the level of individual policies and the chosen
structure for the reporting process driven by p. Verbelen et al. [2019] argue that
the joint estimation of λ and p in (4.1) is complicated due to the presence of the
interaction term λi(xi) ·pij(xi). Using an EM-algorithm [Dempster et al., 1977],
which treats the observations {Nij | i ≤ n, τi < j ≤ d} as hidden observations,
the authors decouple the occurrence, λi(xi), and reporting, pij(xi), parameters
in (4.1). Following Verbelen et al. [2019], we predict in the E-step the hidden
observations as

Ñij(xi) =
{
Nij j ≤ τi
λi(xi) · pij(xi) τi < j ≤ d ,
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and maximize in the M-step the completed log-likelihood

Lc(λ,p) =
n∑
i=1
−λi(xi) + Ñi · log(λi(xi)) +

d∑
j=1

Ñi,j · log(pi,j(xi))− log(Ñi,j !),

where Ñi =
∑d
j=1 Ñi,j . The likelihood in (4.1) now splits in an occurrence and

reporting contribution. For the occurrence process, we maximize

Locc
c (λ) =

n∑
i=1
−λi(xi) + Ñi · log(λi(xi)).

This likelihood is proportional to the Poisson likelihood optimized in insurance
pricing when modelling claim frequency. The partially observed claim counts
Ni, however, are replaced by counts Ñi, which adjust the data for unreported
claims. For the reporting process, we maximize

Lrep
c (p) =

n∑
i=1

d∑
j=1

Ñij · log(pij(xi)), subject to
d∑
j=1

pij(xi) = 1,∀i. (4.2)

The estimation of a distribution for the reporting probabilities pij in this
multinomial likelihood is complicated by the sum-to-one restriction on the
reporting probabilities for each policy i. For this reason, we reparametrize the
d probabilities (pij)j=1...,d into d− 1 probabilities (qij)j=1...,d−1 as follows

pij =


∏d−1
κ=1 qi,κ j = 1

(1− qi,j−1) ·∏d−1
κ=j qi,κ 1 < j < d

(1− qi,d−1) j = d

. (4.3)

The one-to-one correspondence between the probabilities pi,j and qi,j allows
us to switch from the p probabilities, which are restricted by the sum-to-one
condition, to the unrestricted q probabilities. Combining (4.3) with (4.2), the
likelihood for the reporting process becomes

Lrep
c (q) =

n∑
i=1

d−1∑
κ=1

 κ∑
j=1

Ñi,j

·log(qi,κ(xi))+
n∑
i=1

d−1∑
j=1

Ñi,j+1·log(qi,j(xi)). (4.4)

This likelihood is a sum of binomial likelihood contributions and can be optimized
with standard statistical modelling techniques.

In pricing, the occurrence process is used when estimating the expected claim
frequency of specific insurance policies. This occurrence process is adjusted for
the presence of not yet reported claims. In reserving, the estimated occurrence
and reporting processes allow us to estimate the number of unreported claims
and their associated reporting delays.



76 BRIDGING THE GAP BETWEEN NON-LIFE PRICING AND RESERVING

4.2.2 A hierarchical model for the development of reported
non-life claims

Insurers track many dynamic claim characteristics (e.g. amount paid, settlement
status, involvement of a lawyer) over the lifetime of a claim. Extending Chapter 3,
we construct a hierarchical model to predict the joint evolution of these claim
characteristics. Our approach differentiates between the initial state of the claim
characteristics as observed in the reporting year of the claim and the updates in
later years. We let the vector Ik structure the initial claim characteristics for
claim k at the end of the reporting year, denoted rep(k). In later years, update
vectors U j

k structure the evolution of claim k in the j-th year since reporting,
i.e. year rep(k) + j − 1. The choice of the claim characteristics captured by
the vectors Ik and U j

k depends on the portfolio at hand. The case-study in
Section 4.4 illustrates a possible set up in which the joint evolution of the
settlement status, amount paid and incurred are tracked over the lifetime of a
claim. From now on we refer to these chosen characteristics as the layers of our
model. Let the vector Xk store the observed development of claim k, i.e.

Xk := {Ik, U2
k , . . . , U

τk
k },

with τk = τ −rep(k) + 1 the number of observed years since reporting for claim
k. Our approach models the full claim evolution recorded in Xk based on a
single assumption.

(S1) The development of a claim is independent of the development of the
other claims in the portfolio.

This independence assumption is essential for modelling the development at the
level of individual claims. As a result of (S1) we can write the likelihood for a
portfolio with m reported claims as

L =
m∏
k=1

f(Ik,U2
k, . . . ,U

τk
k | xk),

where f(Ik,U2
k, . . . ,U

τk
k | xk) is the joint likelihood of the observed development

process of claim k and xk denotes the static claim covariates for claim k. Our
hierarchical approach decomposes this joint likelihood over time as well as over
the layers of Ik and U j

k by applying the law of conditional probability twice.
First, the likelihood is split in chronological order

L =
m∏
k=1

f(Ik | xk) ·
τk∏
j=2

f(U j
k | Ik,U2

k, . . . ,U
j−1
k ,xk).
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By conditioning on past events, we allow our model to use the historical
development of a claim (e.g. total amount paid, reserve, settlement status in
previous years) when predicting the development in future years. Second, we
decompose the likelihood over the layers of Ik and U j

k

L =
m∏
k=1

v∏
l=1

f(Ik,l | Ik,l, . . . , Ik,l−1,xk)×

m∏
k=1

τk∏
j=2

w∏
l=1

f(U jk,l | Ik,U2
k, . . . ,U

j−1
k , U jk,1, . . . , U

j
k,l−1,xk).

where v and w denote the length of the initial vector Ik and update vector U j
k

respectively. Through conditioning on previous layers, we allow for dependencies
in the development of the claim characteristics within a year. We model
this decomposed likelihood by specifying a statistical model for the likelihood
contribution related to each layer leading to a total of v + w statistical models.

We use the proposed hierarchical model to estimate the claim severity of
individual policies in pricing. In reserving, this model allows us to estimate the
future cost of reported as well as not yet reported claims.

4.3 Pricing and reserving with the occurrence and
development model

Our ODM provides insights in the occurrence and development of individual
claims. In pricing, we use these insights to predict the future loss for new
policies. In reserving, our ODM estimates the reporting and future development
of claims that occurred in the past.

4.3.1 Non-life pricing with the occurrence and development
model

Following the frequency-severity decomposition we estimate the pure premium
πi for policy i as the product of the expected claim frequency, E(Ni), and the
expected claim severity, E(Yi), i.e.

πi = E(Ni) · E(Yi).

By following this decomposition we assume independence between claim
frequency and severity. Claim frequency estimates follow immediately from the
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claim count model proposed in Section 4.2.1. In contrast with traditional claim
frequency models, our approach adjusts the estimated claim frequency for the
presence of unreported claims.

We consider two approaches for modelling claim severity based on our ODM.
The first approach simulates new claims for a given policy from ground up,
whereas the second approach simulates the future development of open claims.

Simulating new claims This approach uses our fitted ODM to simulate a
large number of new claims for policy i, which are then averaged to obtain
an estimate of its expected severity. Algorithm 2 outlines the procedure for
simulating a new claim from a policy with characteristics x.

Algorithm 2: Simulating the severity of a new claim
Input: policy with characteristics x
Output: simulation of the claim severity

Simulate rep.delay given x.
Simulate I given x, rep.delay.
Set s = 1.
if not.settled(I) then

do
Simulate U s+1 given x, rep.delay, I,U2, . . . ,U s.
Set s = s+ 1.

while not.settled(I,U2, . . . ,U s)
end
Evaluate Y = Y (I,U2, . . . ,U s).

It is essential that the amount paid or the incurred is tracked within I and U j ,
such that the claim severity at settlement can be computed as a function of
the simulated development process. By simulating a large number of claims
for a given policy we obtain an empirical distribution for its severity from
which we compute the expected severity. Besides total claim severity, this
approach estimates the future cash flows on a policy, which is important for
matching durations in asset-liability management and facilitates discounting
when computing net present values. In this strategy, claim severity follows
directly from our estimated ODM. However, many layers in the hierarchical
development model of Section 4.2.2 may result in a less transparent severity
estimate, which limits the applicability of this approach for regulatory and
commercial purposes.



PRICING AND RESERVING WITH THE OCCURRENCE AND DEVELOPMENT MODEL 79

Simulating future paths for open claims This alternative approach for
severity modelling complements the observed development of claims up to
the present moment with a large number of simulated future paths, say npath,
for each open claim. For each claim k and path p we compute the total claim
size Yk,p to obtain a distribution for the total claim size per open claim. In a
second step, we fit a severity distribution by assigning a weight of one to actual
observations from closed claims and a weight of 1

npath
to all simulated paths from

open claims, i.e. we maximize the following log-likelihood

LODM(fY ) =
m∑
k=1

δk · log(fY (Yk)) + (1− δk) · 1
npath

·
npath∑
p=1

log(fY (Yk,p)), (4.5)

where fY is the proposed parametric severity distribution and δk is one when
claim k settles before the evaluation date τ and zero otherwise. This likelihood
includes all possible paths for open claims, whereas traditional severity models
average these paths to obtain a best estimate and would maximize

Ltrad(fY ) =
m∑
k=1

δk · log(fY (Yk)) + (1− δk) · log
(
fY

(npath∑
p=1

1
npath

· Yk,p
))

.

By focusing on reported claims, this approach for severity modelling stays close
to traditional pricing practice, while resolving the contradiction between best
estimates and actual observations in traditional pricing.

4.3.2 Non-life reserving with the occurrence and development
model

Reserving models estimate the aggregated future cost for all claims from a past
exposure period. We divide the total claims reserve in a reserve for incurred,
but not (yet) reported claims, i.e. the IBNR reserve, and a reserve for reported,
but not (yet) settled claims, i.e. the RBNS reserve. The total reserve, denoted
R, is the sum of these two reserve contributions, i.e.

R = RIBNR +RRBNS.

We compute the IBNR reserve by aggregating the expected severity from
unreported claims, i.e.

E(RIBNR) =
n∑
i=1

d∑
j=τi+1

E(Ni,j) · E(Yi | rep.delay = j).

Similar to the frequency-severity decomposition in pricing, this formula assumes
independence between the number of claims and the claim severity. Estimates
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for the number of reported claims per year, Ni,j , follow immediately from the
occurrence and reporting processes proposed in Section 4.2.1. Claim severity is
estimated with the techniques outlined in Section 4.3.1 for pricing.

For the RBNS reserve, we compute the future cost for all reported, but not
yet settled claims. Following Chapter 3, we simulate future paths for the
development of all open claims and estimate the RBNS reserve by aggregating
the future costs from these simulated paths.

4.4 Case-study on pricing and reserving large motor
claims

We illustrate our method on a Belgian motor third party liability (MTPL)
reinsurance data set registering the detailed development of 4277 large motor
insurance claims between 2000 and 2017. These claims originate from 21
underlying MTPL insurance portfolios, which act as the clients from the
reinsurance perspective. We label these portfolios A, B, . . . , U. This case-study
analyses the claims from these portfolios for pricing and reserving excess-of-loss
reinsurance contracts. In this type of contract, the reinsurer reimburses the costs
for individual claims exceeding a deductible D and up to a limit L [Albrecher
et al., 2017].

For large claims, insurers carefully track the evolution of the expert’s judgement
of its expected total cost, the so-called incurred, which is the sum of the amount
already paid and the expected future payments. For the purpose of pricing
excess-of-loss reinsurance contracts, insurers are obliged to report a claim to
the reinsurer once its incurred exceeds a predefined threshold, the so-called
reporting priority. The reporting priority is determined upfront and depends
on both the underlying portfolio and the occurrence year. Usually reporting
priorities are set significantly below the deductible D of the excess-of-loss
contract, hereby providing the reinsurer with data on sufficiently many claims
to estimate the cost above the deductible. Figure 4.2 visualizes the thresholds
(priority, deductible and limit) for our excess-of-loss contract. In this example,
claim 1 is reported to the reinsurer in year 2 when the incurred first exceeds the
reporting priority. Even when the incurred of claim 2 falls below the priority in
year 4, the reinsurer keeps receiving yearly updates on this claim. At settlement,
the amount incurred and paid are equal and the reinsurer covers the losses
between the deductible and the limit (region III), while the insurer covers the
remaining losses (regions I, II and IV).

For evaluating model performance, we split the data and train our model on
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Figure 4.2: Illustration of the different thresholds in an excess-of-loss contract.
Claims are reported when the incurred first exceeds the reporting priority. At
settlement, the loss between the deductible and the limit is covered by the
reinsurer.

the years 2000-2014. The remaining years 2015-2017 constitute the out-of-time
test data set. Before fitting our ODM we apply three modifications to the data.
First, we remove negative payments. Since the data set contains only a small
number of negative payments (< 2% of the total amount paid), we believe that
the potential gain in model accuracy by incorporating negative payments does
not outweigh the increase in model complexity and uncertainty when doing so.
Second, we smooth the data by removing changes in the incurred and amount
paid of less than 100 euro. Finally, we deflate the data to the level of 2014 using
the inflation curve provided by the reinsurer. After modelling the payment
patterns, we reinflate these payments to the corresponding payment years when
calculating prices and reserves.

4.4.1 Occurrence and reporting of large claims

We slightly adapt Section 4.2.1 to our reinsurance setting. We denote by
policy a reinsurance contract on an insurance portfolio covering a single
underwriting year and index these policies by i. In our data set, a claim from
policy i is reported when the incurred amount exceeds the reporting priority,
denoted priority(i). These priorities are policy-specific, which complicates
the comparison of occurrence intensities and reporting delays across policies
with different priorities. Therefore, we choose a new, common priority P and
let NP

ij denote the number of claims from policy i for which the incurred first
exceeds the priority P in year occ(i) + j − 1. The total number of claims from
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policy i that exceed the priority P at least once is

NP
i :=

d∑
j=1

NP
ij .

Since long reporting delays are common in reinsurance, we set the maximal
delay d equal to 15, i.e. the length of the observation window of our data set.
Choosing a common reporting priority P naturally restricts the available data
for fitting our model to policies for which we observe all claims exceeding P ,
i.e. priority(i) ≤ P . Only for these policies, we observe the reported claim
counts NP

ij . Since we want to investigate the effect of choosing the priority
P on the computed price, we model the occurrence intensity and reporting
delay at three common priorities, 750 000, 1 000 000 and 1 250 000. From the 21
portfolios in our data set, we observe at these priorities claims from 9, 15 and
15 portfolios, respectively.

Following Section 4.2.1, we model the occurrence process with a Poisson
distribution with intensity

λi = ei · λportfolio(i),

where ei is the exposure expressed as the number of vehicles insured by policy
i and λportfolio(i) is the portfolio-specific effect on the claim intensity. We
model the reporting probabilities pi,j via their one-to-one connection to the
probabilities qi,j introduced in (4.3). The q probabilities are estimated by
maximizing likelihood (4.4) via a binomial GLM with logit link function and

qi,j = 1− exp(− exp(γj + γportfolio(i))),

where γj is the effect of the reporting year and γportfolio(i) captures reporting
delay variations across portfolios.

Figure 4.3 visualizes the estimated occurrence intensity and reporting delay
distribution above P = 750 000 for the 9 portfolios available at this priority.
Figure 4.3a shows the occurrence intensity per 100 000 insured vehicles in
the underlying portfolio. We clearly distinguish two regimes in the occurrence
intensity: low occurrence intensities (2.17−2.51 large claims per 100 000 vehicles)
in portfolio A, H, K and O and high occurrence intensities (3.18− 3.54 large
claims per 100 000 vehicles) in portfolio B, I, J, M and S. This split in two
regimes could indicate a different share of large vehicles (e.g. buses and trucks)
insured in these portfolios.

Figure 4.3b shows the estimated reporting delay distribution per portfolio. The
incurred amount, as the sum of the amount paid so far and the insurer’s expert
estimate of the outstanding claim amount, is volatile in the first years after
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Figure 4.3: (a) Estimated number of claims exceeding the priority of 750 000 per
100 000 insured vehicles in 9 portfolios and (b) fitted reporting delay distribution
for the reporting of claims exceeding the priority of 750 000 by insurer

the occurrence of claims, when it is not yet determined which insurer(s) should
reimburse the claim. As a result, long reporting delays between the occurrence
of a claim and its incurred exceeding the priority for the first time are common.
Moreover, since each insurer has its own reserving policy, we find considerable
differences in reporting delay across portfolios.

The insights revealed in Figure 4.3 are important for reinsurers when pricing
contracts on these portfolios. Reinsurers can consider sharing these insights
with their policyholders, i.e. the insurers. This would allow insurers to compare
the reporting delay for their portfolio to the rest of the market and motivate
insurers with long reporting delays to improve their reserving strategy for large
claims.

4.4.2 A hierarchical model for the development of large claims
after reporting

For each reported claim, our data set tracks the evolution of the settlement
status, the amount paid and the amount incurred per year. Since these events
in a claim’s development process are clearly dependent (e.g. no payments for
settled claims, low settlement probability when the reserve (incurred - paid)
is large), we use the hierarchical model of Section 4.2.2 to model the joint
evolution of these claim characteristics.

We choose a reporting priority, P = 750 000, and interpret Ik as the status of
claim k when its incurred first exceeds 750 000. The top panel of Figure 4.4a
visualizes our 3-layer hierarchical model for Ik. At reporting, the incurred
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exceeds the reporting priority of 750 000. Layer 1 models the excess incurred,
i.e. the difference between the initial incurred and this reporting priority. The
outcome of this first layer is an input when modelling payments. Layer 2 models
whether a part of the incurred has already been paid at reporting. In this
case, layer 3 models the amount paid at reporting as a percentage of the total
incurred. We do not model the settlement status in the year of reporting, since
in our data set large claims never settle immediately at reporting.

Figure 4.4b visualizes our 8-layer hierarchical model for the updates U j
k in the

years after reporting. First, layer 1 models the settlement status of a claim.
Settlement status is an input when modelling payments. Layer 2 models the
presence of a payment and layer 3 models the size of a payment conditional on
the presence of a payment. Note that we only take payments above 100 into
account. Following a payment, we deterministically decrease the reserve by the
payment size. When the claim settles, the incurred is set equal to the total
amount paid. This is a deterministic operation and no modelling is required.
However, when a claim does not settle, layers 4 to 8 model reserve changes.
These five layers let our model capture the reserve dropping to zero, increases
in the reserve and decreases in the reserve expressed as percentages of the
outstanding reserve in previous years.

We present a simple and automizable procedure for fitting a statistical model
to each of the 11 (3+8) layers of the hierarchical model. We model each of the
layers with a tree-based Gradient Boosting Model (GBM), which fits the data
via a chain of shallow decision trees where each tree improves the fit of the
previous trees. Three properties make GBMs interesting for automatization.
First, automatic binning of continuous covariates allows for capturing non-
linear effects. Second, interaction effects are automatically detected when using
shallow trees with multiple splits. Third, covariate selection is integrated in
the calibration process. For each GBM, we tune five hyperparameters using
five-fold cross validation on our training data set.

Table 4.1 specifies the distributional assumption per layer. We distinguish three
types of outcome variables: binary outcomes, percentages and numeric outcomes
not bounded to the interval (0, 1). We model binary outcomes (e.g. settlement)
with a binomial GBM with logit link function, i.e. we minimize the loss

L(f) =
∑
i

yi · f(xi)− log(1 + f(xi)),

where yi are the observed outcomes and xi denotes the available covariates for
the i-th observation. Percentage outcomes (e.g. pct_paid) are first transformed
to the domain (−∞,∞) using a logit transform and then modelled using a
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Figure 4.4: Flowchart illustrating the various layers in the claim development
model and their connections. Dotted lines indicate that the outcome of one
layer serves as an input for a later layer. Solid lines indicate that a layer is
modelled conditional on the outcome of a previous layer. The numbers indicate
the order in which the layers are modelled.

Gaussian GBM, i.e. we minimize the loss

L(f) =
∑
i

(logit(yi)− f(xi))2.

The variance σ2 of the Gaussian distribution is estimated as the mean squared
error of the residuals, i.e.

σ̂2 = 1
n
·
∑
i

(logit(yi)− f̂(xi))2,

where n is the number of observations. Other numeric outcomes are left-
truncated at 100 due to the smoothing applied to the data. Moreover, these
outcomes are heavily right skewed given our reinsurance context. Therefore,
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component distribution transform link

Initial claim status
excess_incurred trunc.Gaussian (.)0.117 .
payment binomial . logit
pct_paid Gaussian logit .

Updates
settlement binomial .
payment binomial . logit
increase_paid trunc.Gaussian (.)0.155 .
change_reserve binomial . logit
reserve_is_zero binomial . logit
change_reserve_pos binomial . logit
increase_reserve trunc.Gaussian (.)0.105 .
pct_decrease_reserve Gaussian logit .

Table 4.1: Distributional specification for the model components in the
hierarchical claim development model visualized in Figure 4.4.

we first normalize these outcomes by applying a power transform, i.e. replace
the random variable X by Xp for some power p, and then estimate a truncated
Gaussian GBM for the normalized outcomes, i.e. we minimize the loss

L(f, σ, p) =
∑
i

log(σ)+(ypi − f(xi))2

2σ2 +log(Φ(100p | f(xi), σ))−log(p)−p·log(yi),

(4.6)
where p is the exponent in the power transform and Φ(· | µ, σ) is the cdf of
the Gaussian distribution with mean µ and standard deviation σ. As a result
of the flexibility of the GBM, this loss function is not lower bounded when
we simultaneously optimize for f(·), σ and p. We opt for a two step approach.
First, we minimize (4.6) with respect to σ and p and a constant f(·). Figure 4.5
shows QQ-plots of the normalized outcome variables after the first step with
respect to the truncated Gaussian distribution. Second, we re-estimate f(·) and
σ using a truncated Gaussian GBM, while keeping the power p fixed.

Figure 4.6 shows for each fitted GBM the relative importance of the included
covariates, where we define variable importance as the decrease in the loss
function of the GBM over all tree splits including the covariate under
consideration. portfolio is an important covariate for almost all layers, which
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Figure 4.5: Truncated normal qq-plot of the outcome variables
excess_incurred (a), increase_paid (b) and reserve_increase (c) after
applying a power transformation.

indicates that there are clear differences in how insurers handle their large
claims. Most noteworthy is the effect of the insurer on the layer change
reserve. In some portfolios experts re-evaluate their large claims almost every
year, whereas other insurers rarely update their large claims. Both reserve
(incurred - paid) and ratio paid incurred ( paid

incurred ) describe a relationship
between the incurred and amount paid. Together these covariates are for many
layers the most important determinant for the evolution of claims. In traditional,
aggregated reserving models, claim development depends only on the number
of years elapsed since reporting, i.e. the development year. Surprisingly,
this covariate becomes irrelevant when other claim characteristics such as the
reserve are available.

We select some important covariates in the hierarchical model and investigate in
Figure 4.7 their marginal effect on the outcome variable with partial dependence
plots. The incurred is smaller for claims reported after a long delay (4.7a), but
the fraction of the incurred that has already been paid is larger for these claims
(4.7b). This is intuitive, since the insurer has observed and made payments for
these claims over multiple years before adjusting the incurred to a level above
the reporting priority. As expected, Figure 4.7c shows that claims settle faster
when the reserve is near zero. Slightly surprising, a payment in the previous
development year, irrespective of the payment size, increases the payment
probability in the current year (4.7d). This could indicate the presence of
claims with recurrent payments. Figure 4.7e shows the effect of portfolio on the
probability of making a reserve adjustment. Some portfolios revise their large
claims almost yearly, whereas update probabilities are much lower for smaller
portfolios. Increases in the reserve are more likely when less than half of the
incurred has been paid (4.7f).
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Figure 4.7: Selection of partial dependence plots in the hierarchical claim
development model. The vertical axis has been transformed to an interpretable
scale.
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4.4.3 Pricing an excess-of-loss reinsurance contract

We price an excess-of-loss reinsurance contract covering losses from claims
exceeding a deductible D = 2 500 000 up to a limit L = 5 000 000. Following
the frequency-severity decomposition the pure premium π is

πP = E(NP ) · E(((Y P ∧ L)−D)+),

NP and Y P are the frequency and severity, respectively, of claims reported
above a priority P and (Y P ∧L) denotes the minimum of Y P and L. Premiums
are obtained by estimating the expected claim frequency and claim severity of
new policies with the formulas of Section 4.3.1 based on the ODM defined in
Section 4.2 and calibrated in Section 4.4.1 and 4.4.2.

We have calibrated the claim frequency as

Ni ∼ Poisson(ei · λportfolio(i)).

We obtain an estimate Ni∗ for a new policy i∗ from an existing portfolio by
multiplying the exposure ei∗ , expressed as the number of vehicles, for this
policy with the portfolio specific intensity λportfolio(i∗). For better comparison
of prices across portfolios, we compute in this chapter premiums per insured
vehicle, i.e. with ei∗ = 1.

Section 4.3.1 proposes two strategies for simulating the claim severity
distribution. The first strategy simulates a large number of paths for a new claim
from ground up, whereas the second strategy simulates the future development
of open claims. We illustrate both simulation strategies for modelling the
severity distribution of a new policy from portfolio A that occurred in 2015 and
was reported at a reporting priority of 750 000.

Simulating paths for a new claim We simulate 20 000 paths for the
development of a new claim from policy A that occurred in 2015. Figure 4.8
visualizes the evolution of the amount paid and incurred calculated over these
20 000 paths. Solid lines indicate the average amount paid and incurred, whereas
dashed lines show the 95% confidence intervals for these amounts. At reporting
the incurred exceeds 750 000 for all simulated paths. However, soon after
reporting the lower bound for the incurred drops to zero as some of these paths
will settle without payment. This represents the case where the claim is not
eligible for compensation within the portfolio. This is a common scenario for
large motor insurance claims, where often many parties and hence insurers
are involved in an accident and it is initially not always clear which insurer
should reimburse the claim. After 15 years have elapsed since reporting, i.e. the
observation window of our training data set, many simulated paths have not yet
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settled. In Figure 4.8 this is seen by the large difference between the amount
paid and amount incurred after 15 years. Supported by the low importance of
the covariate number of elapsed years since reporting (Figure 4.6), we
extrapolate our hierarchical model and simulate the development up to 60 years
after the reporting of the claim. After 60 years almost all paths have settled and
the amount paid has converged towards the amount incurred. The distribution
of the amount paid after 60 years is our simulated severity distribution for a
new claim from policy A that occurs in 2015 and is reported with a priority of
750 000.

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0 20 40 60
years elapsed since reporting

Amount incurred

Amount paid

Portfolio: A, occurrence year: 2015, reporting priority: 750000

Simulated path of an MTPL claim with characteristics:

Figure 4.8: Simulated evolution of the amount incurred and amount paid for a
new claim from portfolio A that occurs in year 2015 and is reported at a priority
of 750 000. Solid lines show the average amount paid and incurred, while dashed
lines indicate the 95% confidence intervals for these amounts.

Simulating future paths for open claims Alternatively, we simulate 200 paths
for the future development of each open claim. Figure 4.9 shows simulated 80%
confidence intervals for the amount paid at settlement for the 401 observed
claims from portfolio A. For open claims these confidence bounds are calculated
based on the simulated paths in which the amount incurred breaches the
priority of 750 000 over the lifetime of the claim. Compared to Figure 4.8, we
choose smaller confidence intervals (80% instead of 95%), since outcomes for
individual claims are heavy tailed and we only use 200 simulations per claim
when constructing these intervals. Only 33 of these 401 claims have settled in
our training data set. Claims are sorted by median severity, which is indicated
with a solid black line. Distributions per claim are heavily right skewed with
the median near the lower end of the confidence interval. A severity distribution
can be estimated based on observed claims and simulated future paths by
maximizing the likelihood in (4.5). In this case-study, we put focus on the
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simulations by the ODM and use the empirical cumulative distribution function
(ECDF) as a non-parametric estimator for claim severity. In the construction
of the ECDF we assign a weight of 1

200 to each simulated path and a weight of
1 to each settled claim. Appendix 4.7 investigates the application of EVT to
replace the tail of this ECDF with an extreme value distribution.

Figure 4.9: 80% confidence intervals for 401 observed claims from portfolio A
based on 200 simulations per open claim. Only paths that exceed the incurred
of 750 000 are retained. Observed claims are sorted by median loss, which is
indicated with a solid black line.

Comparing simulated severity distributions Figure 4.10 compares the
simulated claim severity distribution based on simulated paths from ground up
(blue) and simulated future paths for observed claims (red). Since we are pricing
an excess-of-loss contract with a limit of 5 000 000, we improve the readability of
this figure by showing the distribution for losses below 5 000 000. For portfolio
A both simulation strategies result in nearly identical severity distributions.
Repeating the same approach for portfolio B, we retrieve a more heavy tailed
severity distribution when simulating future paths for observed claims. Portfolio
B contains several of the largest claims in our data set. Comparing data across
all insurers, the hierarchical claim development model recognizes these extreme
claims as outliers, which results in a more moderate severity distribution when
simulating new claims from ground up. Figure 4.10 compares the claim severity
distributions proposed in this chapter with the empirical cdf based on best
estimates (green), where for each open claim the best estimate is calculated by
averaging claim severity over the 200 simulated paths. This distribution has
the same mean, but a lower variance than the distribution based on simulated
paths for observed claims. As a result of Jensen’s inequality, the empirical cdf
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underestimates the actual claim severity for excess-of-loss contracts, i.e.

E((Y − d)+)
Jensen
≥ E (((E(Y | Fτ )− d)+) .
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Figure 4.10: Simulated severity distribution of MTPL claims from portfolio
A and B with a reporting priority of 750 000. For each portfolio, we show the
severity distribution based on 20 000 from group up simulated new claims (blue),
observed claims complemented with 200 simulated paths per open claim (red)
and observed claims with open claims replaced by best estimates (green).

Pricing an excess-of-loss policy Figure 4.11 shows the estimated loss per
insured vehicle for an excess-of-loss policy with severity estimated based on
(a) simulating 20 000 new claims from ground up and (b) observed claims
complemented with 200 simulated paths per open claim. In theory, the choice of
priority should not influence the price. In practice differences in the estimated
pure premium arise since the priority determines the available historical claims
when modelling the ODM. We investigate the sensitivity of the pure premium
with respect to the priority by modelling frequency with a priority of 750 000,
1 000 000 and 1 250 000. For most portfolios, the price remains relatively constant
when changing priorities, but larger variations are observed for some small
portfolios (e.g. portfolio S). These variations mainly result from our claim
frequency model for which the priority determines the available claims when
training the model. Since we detect two regimes in the occurrence intensity in
Figure 4.3a, our frequency model could be made more robust by estimating a
single occurrence intensity parameter per regime. Estimated prices when (a)
simulating new claims and (b) simulating paths for open claims are comparable.
Price differences are often the result of realised extreme claims, which more
heavily influence the estimated cost based on observed claims.
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Figure 4.11: Estimated cost per insured vehicle for an excess-of-loss policy
with deductible 2 500 000 and limit 5 000 000. Claim severity is estimated based
on (a) simulating 20 000 new claims from ground up and (b) observed claims
complemented with 200 simulated paths per open claim. Prices are computed
at reporting priorities: 750 000, 1 000 000 and 1 250 000.

4.4.4 Reserving for reinsurance

Reserving actuaries estimate the aggregated, future costs for claims from past
exposure years. In reinsurance, these costs depend on the structure of the
contract sold. We estimate the reserve under two contracts. The first contract
(see Figure 4.12 below) covers all losses for claims for which the incurred at
least once exceeds the reporting priority of 750 000. Although this contract is
not sold in practice, we investigate it, since it mimics the classical insurance
setting as close as possible given our data. For accurately reserving this contract,
it is important that our ODM captures the average development pattern of
claims over time well. The second contract (see Figure 4.14 below) covers losses
between 2 500 000 and 5 000 000, i.e. the policy that we priced in Section 4.4.3.
This contract focuses on the performance of our ODM for large claims. For
convenience, we assume that these contracts were sold for occurrence years
2000-2015 and the nine portfolios with a reporting priority below 750 000 in our
data set.

Reserving is straightforward and reuses the techniques developed for pricing
in Section 4.4.3. For the IBNR reserve, we predict the number of unreported
claims per calendar year from our occurrence and reporting model and their
severity by simulating new claims from ground up. These simulations account
for the effect of long reporting delays for IBNR claims on the claim development
process (Figure 4.7a and 4.7b). For the RBNS reserve, we simulate the future
development of open claims.



94 BRIDGING THE GAP BETWEEN NON-LIFE PRICING AND RESERVING

0

300

600

900

1200

2000 2020 2040 2060
calendar year

to
ta

l a
m

ou
nt

 (
in

 m
ill

io
n 

eu
ro

s)

(a) reserve

0

100

200

300

2000 2020 2040 2060

(b) IBNR reserve

0

250

500

750

2000 2020 2040 2060
calendar year

(c) RBNS reserve

incurred (predicted) paid (predicted) incurred (observed) paid (observed)

Figure 4.12: Evolution of the total amount incurred and paid for claims that
occurred between 2000 and 2014 and that exceed the reporting priority of
750 000 during their lifetime. The (a) total reserve is split into the (b) IBNR
and (c) RBNS reserve. Simulated 95% confidence intervals are shown for these
amounts, with solid lines indicating expected values. Points indicate for calendar
years 2015-2017 the actual out-of-time observations.

Covering all losses for reported claims Figure 4.12 shows the estimated
evolution of the total amount incurred and paid for claims that occurred between
2000 and 2014 and that exceed the reporting priority of 750 000 during their
lifetime. For calendar years 2015-2017, we compare the estimated evolution
with actual observations from the out-of-time data set. Figures 4.12b and
4.12c split the total reserve into the IBNR and RBNS reserve. For the RBNS
reserve, the total amount incurred decreases slightly over time. This indicates
that claim experts overestimate the expected cost of large claims when setting
incurred amounts. For the total reserve, we estimate a sharp increase of the
incurred in the first calendar years following 2014 as new claims get reported.
Figure 4.12b shows that our model overestimates the increase in the incurred,
which is due to an overestimation of the number of unreported claims (not
shown). In Belgium, judges use indicative tables based on mortality and interest
rates to determine the compensation for bodily injury claims. In 2012, interest
rates for these tables were updated from 2% to 1%, which led claim experts to
sharply increase the incurred amounts in 2013 and 2014. This initially led to an
increase in the number of reported claims, as suddenly more claims exceeded
the reporting priority, followed by a decrease in reported claim counts in later
years. Since these external effects can not be predicted by data driven models,
expert judgement will always remain important for reinsurance. Our model
estimates that the total amount paid continues to slowly increase towards the
total incurred.

Long delays in our reinsurance data set compel us to use most of the observed
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Figure 4.13: Panels show, for different observation windows, the evolution of the
total amount incurred and paid until 2017 for claims that have occurred within
the observation window. 95% confidence intervals are shown for these amounts,
with solid lines indicating expected values for years outside the observation
window. Points show the actual amount incurred and paid extracted from the
data until 2017.

calendar years (2000-2014) for training our model, leaving only three years
(2015-2017) for an out-of-time evaluation. For longer reserve evaluations, we
choose an earlier observation date τ and use our fitted ODM and the observed
claim history at time τ to predict the future evolution of the amount incurred
and paid for claims that occurred before τ . This is, however, no out-of-time
evaluation, since we still train our ODM on the years 2000-2014. Figure 4.13
shows these evaluations of the total reserve (IBNR + RBNS) for τ ranging from
2003 to 2014. Overall, the estimated evolution of the amount incurred and paid
roughly follows the evolution recorded in our data set. The interest rate in the
indicative table changed in 2002 (4% to 3%), 2008 (3% to 2%) and 2012 (2% to
1%), these changes cause sudden sudden shocks in the amount incurred for all
claims which are not captured by our model.

Covering losses from an excess-of-loss contract We focus on the reserve
of the excess-of-loss contract priced in Section 4.4.3 covering losses between
2 500 000 and 5 000 000. Figure 4.14 shows the estimated evolution of the amount
incurred and paid within the layer of our excess-of-loss contract. Although we
have recorded only few payments within the layer yet, we can accurately infer
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the payment pattern from the general dynamics estimated in the hierarchical
model of Section 4.4.2. This illustrates the importance of calibrating models
at a lower reporting priority in reinsurance, such that sufficient data regarding
the development of large claims is available. Where the incurred for reported
claims, i.e. the RBNS reserve, remained more or less constant when reserving
from ground up (Figure 4.12c), we observe an initial increase followed by a
decrease for the total incurred within the layer of our excess-of-loss contract
(Figure 4.14c). This behaviour can be explained by applying Jensen’s law twice.
The incurred is the insurer’s best estimate of the total claim size given the
current information, i.e. E(Y | Fτ ). Initially, when it is unlikely that a claim
will exceed the limit of 5 000 000, the contract behaves as a deductible. This is
a convex loss function, such that

E((E(Y | Fτ )− 2 500 000)+)
Jensen
≤ E(E((Y − 2 500 000)+ | Fτ ))

= E((Y − 2 500 000)+).

As more information becomes available, the difference between both sides in
this inequality decreases. Since the right hand side (rhs) is time independent,
the lhs increases over time, i.e. the expected amount incurred within the layer
of our contract increases. Once claim experts become confident that a claim
will breach the deductible, the contract starts to behave more like a limited loss.
This is a concave loss function with

E(E(Y | Fτ ) ∧ 5 000 000)
Jensen
≥ E(E(Y ∧ 5 000 000 | Fτ )) = E(Y ∧ 5 000 000).

Following the same reasoning, the expected incurred within the layer decreases
for these claims. As a result of the overestimation of the number of reported
claims, our ODM overestimates the IBNR reserve in Figure 4.14b.

4.5 Conclusion

We propose an occurrence and development model (ODM) for analysing the
detailed claim information registered in non-life insurance portfolios. Our ODM
can be used for non-life pricing as well as non-life reserving, hereby bridging
two key actuarial tasks. For pricing, we present a one-step approach, which
resolves the contradictions between observations and best estimates in traditional
pricing literature. For reserving, we model the cost of unreported claims
constituting the IBNR reserve at the level of individual policies and the future
payments constituting the RBNS reserve at the level of individual claims. An
extensive case-study illustrates our methodology on a motor reinsurance portfolio.
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Constructing best estimates for open claims is complicated in reinsurance, where
reporting and settlement delays are long and claim development is uncertain.
This is a situation in which our ODM, which does not rely on best estimates for
pricing, clearly outshines traditional methodology. Using Jensen’s inequality we
prove that the empirical distribution based on best estimates underestimates the
variance of the claim severity distribution. This is best illustrated in Figure 4.10,
where the claim severity distribution modelled by our ODM has a significantly
larger variance than the empirical claim severity distribution based on best
estimates. For reserving, we present an individual reserving model using paid
and incurred data. Despite large uncertainties governing the development of
reinsurance claims, our model is able to accurately predict the joint evolution
of the paid and incurred amounts.
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4.7 Appendix A: Estimating an extreme value
distribution for claim severity using stochastic
input data

Section 4.3.1 proposes two approaches for modelling claim severity. This
appendix focuses on the second approach in which we first replace each open
claim by a simulated distribution and then fit a claim severity distribution
by maximizing log-likelihood (4.5). Section 4.4.3 demonstrates this approach
on a reinsurance data set and fits an empirical cdf to the simulated paths for
open claims. We now extend the severity model of Section 4.4.3 by estimating
an extreme value distribution to the simulated paths exceeding a predefined
threshold T . We limit our analysis to the Pareto distribution with density

fY (y | α) = αTα

yα+1 for y > T

which depends on a single parameter α. Filtering likelihood (4.5) for severities
exceeding T , we maximize

L(α | y, T ) =
∑
k

δk1yk>T · (log(α) + α log(T )− (α+ 1) log(yk)) +

∑
k

(1− δk) 1
n

n∑
p=1

1yk,p>T · (log(α) + α log(T )− (α+ 1) log(yk,p)) ,

where δk is one when claim k has settled and zero otherwise and n denotes the
number of simulations for each open claim. The maximum likelihood estimator
for 1

α is

α̂−1(T ) =
∑
k δk log(yk)1yk>T + (1− δk) 1

n

∑n
p=1 log(yk,p)1yk,p>T∑

k δk1yk>T + (1− δk) 1
n

∑n
p=1 1yk,p>T

. (4.7)

We call this estimate for α−1 the weighted Hill estimator, since it reduces to the
classical Hill estimator [Hill, 1975] when the input data is deterministic, i.e. all
claims are settled. Figure 4.15 shows α̂−1(T ) as a function of the threshold T
for the nine portfolios priced in Section 4.4.3. The weighted Hill plot becomes
horizontal for large thresholds T , which corresponds to a Pareto tail. Since all
portfolios correspond to motor insurance, we find similar values for 1

α around
(0.20, 0.35) in the tail of the hill plot. In practice, the similarity between
motor insurance claims across portfolios would prompt reinsurers to merge
these portfolios and estimate a single extreme value distribution for their motor
insurance claims.
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Figure 4.15: Weighted Hill plots for claim severity. Each panel corresponds to
one of the portfolios priced in Section 4.4.3.

In Figure 4.16, we further examine the hypothesis of a Pareto tail by constructing
a Pareto QQ-plot for each of these nine portfolios and for losses exceeding
5 000 000, i.e. exp(15.42). In general these QQ-plots support the assumption of
a Pareto tail. For portfolio B and I we identify some regions with a different
tail behaviour, which should be examined more carefully before implementation
in practice.
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Chapter 5

Outlook

The reserve is typically the largest element on an insurance balance sheet. New
regulations, i.e. IFRS 17 and Solvencey II, motivate insurers nowadays to gain
more insight into their reserves. Combined with an increase of computational
power, this has in recent years sparked a boom in research on individual
reserving. Despite this surge in interest, it still takes substantial effort by
insurers to implement individual reserving methods in practice. The research
in this PhD thesis results from an intense collaboration with several insurers
to develop new methods that could facilitate the implementation of individual
reserving in practice. This chapter concludes this work by listing some further
directions for research expanding on this work.

5.1 Further developments in modelling the occur-
rence and reporting of claims

Chapter 2 illustrates that due to delayed reporting the number of unreported
claims increases during the weekend and on holidays. Following these findings,
we develop a new model for the number of unreported claims using daily data
and with a focus on incorporating calendar day effects (e.g. weekend, holiday)
in the reporting process. A simulation study compares this approach with a
traditional model based on aggregated data and concludes that using granular,
daily data has significant advantages for portfolios with volatile occurrence
process (e.g. as a result of extreme weather events). A scenario with low daily
claim counts is challenging for both aggregate and granular models.

101
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In Chapter 4 we return to yearly data and model the claim occurrence process
at the level of individual policyholders. We apply this approach to a small
reinsurance portfolio, where differences in claim frequency between policyholders,
i.e. insurers, can be large.

A straightforward extension of this work would be to combine both approaches
and model the occurrence and reporting process for individual policyholders
using daily data. Such an approach could assist insurers in determining which
policyholders or claims are now typically reported with a delay. Insurers could
use these insights when reviewing their reporting processes in an attempt to
reduce reporting delay. The developed methodology can also be applied to other
areas (e.g. warranty contracts, epidemiology) where events are observed after a
delay. Currently in the COVID-19 pandemic, the effect of reporting delay on
the number of reported cases has received considerable media attention. Similar
to the data in our insurance portfolios, less infections are reported during the
weekend and holidays as the result of a weekend effect.

5.2 Further developments in modelling the devel-
opment of reported claims

Chapter 3 and Chapter 4 present the hierarchical reserving model as a novel
and intuitive approach for jointly modelling all events registered during the
development of a claim. This approach focuses strongly on implementability in
practice. To further facilitate this, a part of our code was released in the form
of an R package.

In this work we primarily focused on accurately predicting the expected reserve.
Less attention has been given to prediction uncertainty and case-studies indicate
that the current confidence bounds tend to be too narrow. This appears to
be a general trend in individual reserving, which demands further research.
A potential reason for this underestimation could be found in the typical
independence assumptions in individual reserving, which assume that each
claim develops independently of all others. In practice this independence
assumption is often violated. In particular, we expect the development process
to be dependent for claims resulting from the same extreme weather event
or for several claims from the same policyholder. In the latter case, methods
from credibility theory could be investigated to include dependency between
the different claims from a policyholder. Another domain for further research
relates to the development of data driven tools for selecting the components in
the hierarchical reserving model. The hierarchical reserving model could also
contribute to other fields where observations can be expressed as incomplete
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time series and the objective is to predict the evolution of these time series
multiple steps into the future in the presence of time varying covariates. This is
for example the case in patient data, when we are interested in following the
evolution of symptoms in a single patient over multiple years.

5.3 Further developments in insurance pricing

Non-life insurance pricing typically follows a two-step approach. First, censored
claim counts and claim severities are replaced by best estimates. Second, a
frequency and severity model is fitted to these best estimates. In Chapter 4
we develop a one step approach for insurance pricing, which directly uses
the censored observations as inputs. Moreover, this approach unifies pricing
and reserving methodology, hereby opening a new area of research in non-life
insurance.

In Chapter 4 we demonstrate our method on a small reinsurance data set. A
logical next step would be to apply this method to an insurance portfolio and
to compare the resulting prices with prices found using traditional techniques.
We see two phenomena that could result in an underestimation of variable
importance in traditional two-step pricing approaches. First, policyholder
covariates are often not included in the first step to remove the censoring
from the data. Using a non-parametric model for this first step would smooth
potential covariate effects. Second, by replacing open claims by best estimates
the uncertainty present in the data is underestimated. Given these phenomena,
our one-step approach could provide new insights into risk classification. This
approach has most potential in severity modelling for which more observations
are censored and for which traditional techniques often identify few relevant
covariates.
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