
Demystifying AI in healthcare
Well conducted and transparently reported trials would be an excellent start
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In academia and society at large, attention on
artificial intelligence (AI) inhealthcare is tremendous.
Althoughmany researchers and commentators claim
that AI improves screening, diagnosis, and
prognostication, those who delve deeper will notice
a scarcity of external validation studies and
randomised controlled trials evaluating the true
impact of AI on healthcare.1 -3 Findings from the few
published randomised controlled trials aremixed. In
one trial, endoscopy assisted by an automatic AI
detection system found more colorectal adenomas
than did unassisted endoscopy.4 In another, an AI
platform for diagnosing childhood cataracts was less
accurate than a senior consultant.5 To gauge the
quality of such evidence, readers need a detailed
account of study methods and results. Systematic
reviews, however, show that studies on AI are often
poorly reported.2 6

Reporting guidelines
New extensions of the SPIRIT (Standard Protocol
Items: Recommendations for Interventional Trials)
(doi:10.1136/bmj.m3210) andCONSORT (Consolidated
Standards of Reporting Trials)
(doi:10.1136/bmj.m3164) reporting guidelines,
published in The BMJ, encourage authors to be
transparent and comprehensive when writing
protocols for trials that evaluate AI interventions,7
and when reporting the results of such trials.8 They
cover important issues specific to AI interventions,
such as specifying the level of expertise required for
researchers interacting with the study’s AI (for
example, to identify a region of interest on an image,
or to translate AI output into clinical decisions). The
operational requirements for integrating AI into the
study’s clinical setting also must be clear, as well as
anyneed to fine tune anAI algorithmusingdata from
the local environment.

We can anticipate a positive effect of these reporting
guidelines on the quality (and perhaps quantity) of
trial reports in this rapidly developing area.
Registering a trial protocol improves transparency
and discourages research practices that might yield
misleading results, such as switching the primary
outcome after the results are known.9 Similarly,
empirical research suggests thatCONSORTguidelines
improved the quality of reporting, but that it remains
suboptimal.10 11 Funders, scientific publishers, and
peer reviewers have an important responsibility to
enforce protocol registration and the adoption of
appropriate guidelines.11

But even a transparently reported study can lead to
misguided conclusions if the trial is poorly designed,
if it targets an inappropriate primary outcome, or if
the AI system is not well embedded in the clinician’s

digital environment andworkflow. Inaddition, owing
to the difficulty and cost of running randomised
controlled trials, it is important to evaluate the
performance of AI algorithms in external validation
studies first.1 -3

One example of a primary outcome that could lead
tounjustified claimsaboutAI’s benefits is thenumber
of detected cases in a trial comparing clinicians’
diagnostic performance with or without AI support.
Such a trial is likely to show that AI helps detect more
cases, even if the AI’s alerts are completely random.
A balanced evaluation must weigh up the increase
in detected cases against the risk of false alerts.

Another example of the potential for misleading
results is a trial of a very accurate AI system that has
poor user adherence as a result of the way it is
embedded in the clinician’s environment. Poor
adherencemight be an important reasonwhy clinical
decision support systems have largely failed to
improve patient health or reduce healthcare costs in
trials.12 13 Factors that have been shown to improve
outcomes associated with clinical decision support
systems include user friendliness, involving
stakeholders in implementation, and using systems
that give actionable recommendations, nudge users
to comply (for example, by asking for a reason to
overrule a recommendation), and target clinicians
and patients simultaneously in a shared decision
making context.12 13

Reporting harm
Similar to the monitoring of drug side effects, AI
errors andother associatedharmsmust bemonitored
and reported—both during trials and later in clinical
practice. The new CONSORT and SPIRIT extensions
encourage transparent reporting of errors, such as
errors in diagnosing rare tumour subtypes or
diagnostic errors in certain population subgroups.

One particularly worrying type of error arises from
underrepresentationofminorities in the trainingdata
for AI systems—such as an application for detecting
melanoma that is trained only onwhite skin. Another
is the replication of social biases suchasdelayed lung
cancer diagnosis in patients of low socioeconomic
status.1415 Bymechanisms suchas these,AI replicates
and could even exacerbate health inequities. This is
particularly harmful when an AI system is wrongly
perceived as objective and free from bias. Using large
and diverse samples that allow subgroup analyses
provides an opportunity to tackle these problems.

Despite theabove considerations,wehaveanexciting
newera to look forward to, inwhich the truepotential
of AI will gradually emerge. Sceptics might become
enthusiasts, enthusiasts might be disappointed. But
whatever happens, well designed trials, registered
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andpublishedprotocols, and transparent reportingwill help ensure
that a nuanced appraisal of all AI interventions is based on robust
evidence instead of fears or aspirations.
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