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Abstract
Among the proposed formulations for rigid multibody dynamics, the minimal coordinates approach permits to parametrize

he system motion with the minimal amount of degrees of freedom without the need of additional constraints equations. This
eads to a system of ordinary differential equations to describe the motion which enables a straightforward combination of the

odel with control or estimation algorithms. However, an explicit relation between the model full coordinates and a minimal
umber of parameters is not always available or easily obtainable, especially for spatial closed-loop mechanisms. In this
ork, we therefore propose to deploy deep learning to find an approximation of such motion mappings. More specifically, an

utoencoder neural network architecture is exploited for the nonlinear dimensionality reduction from full to minimal coordinates.
novel neural-network training scheme is introduced, which exploits the multibody model dynamics information to optimize

he decoder-function derivatives so that they represent the tangent space and the curvature of the minimal coordinates manifold.
his scheme leads to an effective description of the motion manifold which can be used to express the dynamics in minimal
oordinates. The approach is validated on two reference rigid body mechanisms.
c 2020 Elsevier B.V. All rights reserved.

eywords: Multibody dynamics; Minimal coordinates; Deep learning; Model order reduction

1. Introduction

Over the last years, the importance of numerical simulations has increased in order to reduce the cost of
esign and physical prototypes. In particular, multibody simulations are typically used to describe the system-
evel dynamics of complex mechanisms [1,2]. In literature, different formulations have been proposed to describe

ultibody models. The most common ones for rigid mechanisms can be classified by number and typology of
egrees Of Freedom (DOFs): the ‘Minimal Coordinates (MC)’ [3] and ‘Joint Coordinates (JC)’ [4] make use of a
inimal amount of coordinates, the ‘Cartesian Coordinates (CC)’ [5] involve a combination of angular and position

edundant coordinates, while the ‘Natural Coordinates (NC)’ [1,6] use position-only redundant coordinates.
The choice of a specific formulation typically depends on the purpose of the simulation model. The MC, in

articular, offer the benefit of describing the model with the minimal amount of variables, not requiring additional
onstraints and allowing the use of Ordinary Differential Equations (ODEs) to describe the motion. Such structure
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may be an added benefit to couple the models with control [7] or estimation [8] algorithms, as they are typically
developed for ODE models. Examples of applications exploiting an ODE multibody model are [9] for the control
of rigid mechanisms or [10] for state estimation of flexible systems.

The most straightforward approach to employ a minimal amount of parameters is through the use of the JC
ormulation: in fact, in the case of open-loop mechanisms, a minimal coordinate description is trivially obtained [4].
owever, in other cases, obtaining an analytic mapping between the system coordinates and a minimal amount
f parameters may not be straightforward. For example, closed-loop mechanisms are typically modelled through
edundant coordinates with additional constraints [11] and it may not be possible to establish an explicit relation
etween such system DOFs and some minimal parameters.

In this work, a deep learning [12,13] approach to obtain the mapping from general to minimal coordinates in case
f rigid mechanisms is proposed. Over the past years, several authors have explored the use of machine learning
chemes to accelerate or improve dedicated mechanical analyses [14–16]. More specifically, we propose the use
f a trained AutoEncoder (AE) neural network to approximate the mapping between the minimal and the system
oordinates. An important benefit of the underlying neural network architecture is the applicability for multiple
coupled) minimal coordinates, which is e.g. not case for regular interpolation based schemes to approximate the
inematic map [9]. The aim is to obtain an encoding function that maps the full coordinates to a minimal number
f parameters and a specular decoding function for the inverse transformation. However, contrary to common
achine learning problems, the objective of the optimization is not only merely to minimize the error between

he original and the reconstructed coordinate but also to obtain a sufficiently smooth function with continuous
erivatives. For this purpose, we propose to embed the multibody model information in a recurrent neural-network
cheme in order to minimize the overall simulation error together with the reconstruction error. This allows to train
he decoder derivatives to properly describe the motion manifold with its tangent space and curvature, enabling
n effective projection of the dynamics into the minimal coordinate space. Such optimization together with the
utomatic differentiation of the neural-network function permits an efficient way to reduce the model order on a
onlinear manifold.

It is moreover important to highlight that the data-driven nature of the methodology in this work depends
n reference simulation(s) but it is non-intrusive with respect to the formulation or software used to evaluate
he reference multibody model response. This is contrary to existing methods for general minimal coordinate

odelling in multibody simulation like the Gröbner bases [11,17] which require explicit access to the analytical
onstraint equations, or the global modal parametrization [9,18] which requires a modified quasi-static analysis with
inearization.

The paper is structured as follows: Section 2 refers to the related work and Section 3 recalls the multibody
ormulations used in the procedure. Section 4 introduces the neural network for the proposed model order reduction
hile Section 5 shows two numerical examples. Finally, Section 6 reports some concluding remarks.

. Related work

A review of possible approaches for the constraint enforcement in multibody dynamics is reported by Laulusa
Bauchau [19], while the problems in simulating constrained systems are considered in [20].
In general, for open-loop mechanisms, relative joint coordinates directly provide a practical approach to obtain

minimal-coordinate constraint enforcement. However, this is not the case for closed-loop mechanisms and several
ethodologies have been proposed to circumvent the problem and locate equivalent minimal coordinates. For

nstance, it is possible to apply a model modification to substitute the closed-loop with an open-loop system plus
uperimposed force coupling [21]. Yet, the addition of such virtual springs may cause numerical ill-conditioning.
nother possibility is the numerical conversion from a general to a MC formulation, where the mapping is locally

ecomputed at each configuration during the simulation [22]. However, this procedure might infer a (considerable)
omputational burden during the simulation process. An additional option for MC transformation based on Gröbner
ases was presented by Uchida & McPhee in [11], which is a promising technique to obtain efficient rigid multibody
escriptions. However, this approach requires access to the analytical constraint equations, which is not always
vailable in the frame of commercial multibody software.

A limitation for general applicability of the above approaches is their high intrusiveness with the full multibody
oftware stack. In [9], Brüls et al. propose to address the MC issue by considering a pre-computed range of
onfigurations of the model. An interpolation between these pre-computed points then defines the map from the
3



CMA: 113517

A. Angeli, W. Desmet and F. Naets Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

1
2
3
4
5
6
7

b8
r9
a10
c11

12
l13
d14
i15

16
t17
c18

319

20
o21
(22
M23
s24
a25

26
t27
e28
l29

30
e31
a32
d33
d34
e35
t36

37
c38
o39
140
p41
o42

43
t44

345

46
c47
c48

49
minimal coordinates and the different initial model DOFs. The methodology has been successively extended to
the case of flexible mechanisms in [18,23]. However, also this approach suffers some drawbacks. First of all, a
dedicated solver needs to be set up to evaluate the different reference configurations. Secondly, this approach does
not extend well to general spatial mechanisms with multiple minimal DOFs, as the multi-dimensional interpolation
becomes highly non-trivial. Moreover, care has to be taken to guarantee sufficient continuity in the interpolation to
avoid spurious energy dissipating or generating effects.

On the other hand, the challenge of converting general multibody models to minimal coordinates models may
e seen in the frame of model order reduction, where the aim is to obtain a (close-to) equivalent lower order
epresentation of a higher order system. Such problems have been recently tackled by exploiting neural networks
nd deep learning. For instance, in [24], neural networks and physical information are combined to identify the best
hoice of reduced order model.

Lately a particular neural network architecture, the autoencoder, has showed promising results in manifold
earning and non-linear dimensionality reduction [25,26] and has been successfully applied to the learning of (low-
imensional) dynamical systems [27–29]. Its combination in a Model Order Reduction (MOR) scheme has been
ntroduced in [30] while an application to multibody dynamics has been first proposed in [31].

In this work, we propose to combine the approximating capabilities of the autoencoder neural network with
he available physical structure of a multibody problem in order to reduce a general multibody model to minimal
oordinates and obtain an effective ODE description for rigid multibody systems.

. Rigid multibody dynamics in natural and minimal coordinates

The Minimal Coordinate (MC) description permits to describe a rigid multibody system with a minimal amount
f degrees of freedom without the necessity of additional constraints, thus leading to Ordinary Differential Equations
ODEs). However, in some cases, given a model expressed in a redundant-coordinates formalism, the corresponding

C may not be easily identifiable or the mapping with the full coordinates may not be available. Thus, while the
ystem is defined by redundant coordinates and Differential Algebraic Equations (DAEs), the dynamics resides in
lower-dimension manifold and could be described by the (unknown) MC.
In this work, we exploit neural networks to approximate the function that relates the original coordinates to

he MC. The function derivatives necessary to describe the dynamics on the resulting nonlinear manifold can be
fficiently calculated thanks to automatic differentiation [32], commonly available in all the main neural network
ibraries as, for example, Tensorflow [33].

The methodology requires a consistent distance measure between two different system configurations, in order to
ffectively perform the optimization required to train the neural network. For multibody simulations, this implies that
combination of position and angular coordinates, e.g. a single point plus Euler angles, cannot be used without

efining particular metrics for the angular distances. Instead, position-only DOFs enable a consistent Euclidean
istance measure. While different non-angular parameters may be employed to define the body orientations,
.g. Euler parameters or basis vectors, here it is proposed to use Natural Coordinates (NC) in order to additionally
ake advantage of the constant mass matrix formulation.

It is underlined that the original model may be defined in any general formulation: in fact, any simulated solution
an be post-processed into natural coordinates through a kinematic projection (knowing the original formulation)
r extracting the positions of four non-coplanar points per body. As for the mass matrix, it can be built from the
0 standard inertial parameters per body: mass, centre of gravity position and inertia moment. In this sense, the
rocedure is considered non-invasive with respect to the simulation software, as no direct access to the equations
f motions is required. In the following, the NC are thus considered the starting point of the proposed approach.

In the two next subsections, the MC and NC formulations are respectively reviewed while the third one introduces
he Model Order Reduction (MOR) scheme, given the mapping between the MC and the NC.

.1. Minimal coordinates multibody formulation

Given the number nm of rigid motion modes of a mechanism (in this work we only consider mechanisms with a
onstant nm , so bifurcating systems are not considered), the dynamics can be expressed as function of the minimal
oordinates xm ∈ Rnm through ODEs:

¨ ˙
f m,m(xm, xm) + f g,m(xm, xm) = f e,m(xm) (1)

4
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where f m,m, f g,m ∈ Rnm are, respectively, the acceleration and velocity dependent generalized inertial forces and
f e,m ∈ Rnm represents the vector of external generalized forces. Assuming that this model is not explicitly available,
he proposed work aims to define it starting from a NC formulation once the mapping between the MC and NC is
nown.

3.2. Natural coordinates multibody formulation

The natural coordinates formulation [1] proposes the use of 12 redundant position-only DOFs per body (4 non-
oplanar points) which permit to define a configuration independent mass matrix. For a system composed of nn NC

DOFs and nc constraints (consisting both of joints constraints and constraints between the redundant coordinates),
the dynamics can be expressed as:

Mn ẍn +

(
∂ f c(xn)

∂xn

)T

λc = f e,n (2)

f c(xn) = 0 (3)

here xn ∈ Rnn is the vector of natural coordinates of the system, Mn ∈ Rnn×nn is the constant mass matrix,
f e,n ∈ Rnn is the vector of external forces, λc ∈ Rnc is the vector of Lagrange multipliers, f c ∈ Rnc is the
constraint vector function. Different force terms, e.g. reaction forces dependent on the Lagrange multipliers, are not
considered in this work.

In the proposed approach, we will automatically infer the mapping between the minimal and natural coordinates
from a set or reference simulations. The data of these reference simulations are collected as:

Xn = {. . . , xi, j
n , . . .},FE,n = {. . . , f i, j

e,n, . . .}, T = {. . . ,∆t j , . . .}

where xi, j
n and f i, j

e,n respectively indicate the xn , f e,n time-ordered sample i = 1, . . . , nt, j of simulation j =

1, . . . , ns with time step ∆t j . It is important to highlight that this time-ordering is key for the following procedure,
in contrast to common data-driven model order reduction schemes where any collection of configuration snapshots
is used. The sets Xn , FE,n ∈ Rnn×nt, j ×ns and T ∈ Rns are stored together with the matrix Mn . In the following,
the superscript j is dropped in order to simplify the notation, assuming we are referring to one of the training
simulations.

In general, it is not necessary to perform the training simulations using a NC formulation for the approach
proposed in this work. Any choice of coordinate description (available in commercial software) can be used to
perform the actual simulations. The equivalent NC for setting up Xn can be obtained in post-processing of the
training simulations by evaluating (any) four points on each body. This makes the presented approach particularly
appealing from a practical perspective as it can operate non-intrusively with respect to the reference simulation
scheme.

3.3. Minimal coordinate multibody dynamics through nonlinear model order reduction

In general, under the mentioned assumption of constant nm (i.e. systems without singularities), we can define
the following nonlinear mappings between the MC xm and the NC xn:

h ↦→m(xn) = xm (4)
h ↦→n(xm) = xn (5)

The map h ↦→n(xm) = xn defines a nonlinear transformation which can be exploited to perform a model order
reduction of a model expressed in NC. If these mappings are known, it is possible to the express the dynamics as a
function of the MC which permits the implicit satisfaction of the constraints. Expressing the velocity in the tangent
space of the manifold allows to define the system kinetic energy K as a function of the minimal coordinates:

ẋn =
∂h ↦→n

∂xm
ẋm, (6)

K =
1

ẋT
m

(
∂h ↦→m

)T

Mn
∂h ↦→m ẋm . (7)
2 ∂xm ∂xm

5
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Through Hamilton’s principle, this leads to the following inertial forces:

d
dt

(
∂K
∂ ẋm

)
+

∂K
∂xm

= f m,m + f g,m, (8)

f m,m =

(
∂h ↦→m

∂xm

)T

Mn
∂h ↦→m

∂xm
ẍm

= Mm ẍm, (9)

f g,m =

(
∂h ↦→m

∂xm

)T

Mn
∂2h ↦→m

∂xm∂xm

[
ẋm ẋT

m

]
= Gm

[
ẋm ẋT

m

]
, (10)

here Mm ∈ Rnm×nm and Gm ∈ Rnm×nm×nm are respectively defined as the MC mass matrix and the MC gyroscopic
tensor.1

Finally, projecting the external forces:

f e,m =

(
∂h ↦→m

∂xm

)T

f e,n (11)

llows to express the dynamics of the MC model as:

Mm(xm) ẍm + Gm(xm)
[
ẋm ẋT

m

]
= f e,m(xm) (12)

As this is a set of ODEs, a relatively versatile selection of time-integration schemes is possible, in contrast to
general constraint-based multibody formulations where a stiff solver is required to handle the DAEs. In particular,
in this work we propose to use finite differences for the time integration, as presented in Algorithm 1, but different
integration schemes are possible. At each time step, the transformation h ↦→n(xm) can project the MC xm back into
the NC x̂n for post-processing purposes.

Given the general MC dynamic simulation framework introduced above, the question remains how the non-linear
mappings h ↦→m and h ↦→n can be constructed. In the next section, we propose to approximate these mappings using
deep neural networks, by training them on a set of reference simulations for which the response is expressed in
NC.

4. Deep learning of minimal coordinate manifold mapping

In this section, the function-approximation capabilities of neural networks are exploited to find the mappings
between the natural coordinates and the minimal coordinates to enable an effective low order multibody dynamics
description.

In Section 4.1, basic neural network architectures are briefly reviewed, and in Section 4.2 the application for
model order reduction to minimal coordinates for multibody systems is presented.

4.1. Neural network architecture overview

For the purpose of generating the mapping between minimal and natural coordinates, we briefly review three
key concepts: deep neural networks, recurrent neural networks, and autoencoders.

1 The notation of f g,m ∈ Rnm and Gm ∈ Rnm×nm×nm , where the double partial derivative of a vector is assumed to return a 3-dimensional
ensor and the matrix multiplication with a tensor is intended with respect to its two inner dimensions as indicated by the Einstein summation
onvention over the Greek-subscripts dimensions, is:

f g,m =

nm∑
k=1

(
∂h ↦→m

∂xm

)T

Mn
∂2h ↦→m

∂xm∂xm,k
ẋm ẋm,k = Gmα,β,γ

ẋmβ
ẋmγ

=

(
∂h ↦→m

∂xm

)T

Mn
∂2h ↦→m

∂xm∂xm

[
ẋm ẋT

m
]

= Gm
[
ẋm ẋT

m
]
.

6
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Algorithm 1 time-domain integration

1: Recall:

xi=1
n , xi=2

n , ∆t, Mn

2: Define:

f e,n

3: Assign:

xi=1
m = h ↦→m(xi=1

n ), xi=2
m = h ↦→m(xi=2

n )

x̂i=1
n = h ↦→n(xi=1

m ), x̂i=2
n = h ↦→n(xi=2

m )

4: for i = 2 : nt − 1 do

ẋi
m ≈ ẋ

i− 1
2

m =
xi

m − xi−1
m

∆t

M i
m =

(
∂h ↦→n

∂xi
m

)T

Mn
∂h ↦→n

∂xi
m

Gi
m =

(
∂h ↦→n

∂xi
m

)T

Mn
∂2h ↦→n

∂xi
m∂xi

m

f i
e,m =

(
∂h ↦→n

∂xi
m

)T

f i
e,n

xi+1
m = xi

m + ∆t ẋ
i− 1

2
m + ∆t2 (M i

m

)−1
(

f i
e,m − Gi

m

[
ẋi

m ẋiT

m

])
x̂i+1

n = h ↦→n(xi+1
m )

5: end for

In general, a (feedforward) neural network layer, conceptually shown in Fig. 1, can be described as:

xo = ha(W xi + b) (13)

where xi ∈ Rni is the input vector to the layer, ha ∈ Rno is the element-wise activation function evaluated on a
vector, P = {W ∈ Rno×ni , b ∈ Rno} are the parameters to be identified in order to minimize a certain loss function,
and xo ∈ Rno represents the output of the layer. The so-called activation function introduces the nonlinear behaviour
of the network and a good choice of this function will depend on the application [13].

Typical activation functions are the Rectified Linear Unit (ReLU) and the sigmoid, respectively:

hReLU (xl) = max(0, xl) (14)

hsig(xl) =
1

1 + e−xl
(15)

where xl ∈ R is one of the no elements of the layer, which after the nonlinear transformation will form the output
ector xo as in Eq. (13).

After its introduction, ReLU has replaced the sigmoid as the standard choice for feedforward networks thanks
o its computational efficiency and fast convergence. However, in this work we will employ sigmoid functions. In
act, as we will need to perform derivation with respect to the states of the neural network functions in order to
enerate the contributions for Algorithm 1, it is key to have continuous derivatives with respect to these states. This
s not possible with the ReLU function, as for most applications only derivatives with respect to the parameters P
re required, but not with respect to the states. On the other hand, the sigmoid guarantees smooth (second-order)
erivatives, according to:

∂hsig(xl)
= hsig(xl)

(
1 − hsig(xl)

)
(16)
∂xl

7
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Fig. 1. A neural network layer. On the left, the weighted (by a row of the weight matrix W ) elements of the input xi are summed together
with the corresponding element of the bias b and “activate” the function ha to obtain an element of the output xo; moving toward the right,
the procedure is repeated for each row of W , obtaining the full output vector. The dashed circles represent the “trainable” parameters.

Fig. 2. A recurrent neural network, where each output xi
o is influenced by the input xi

i and the previous-step output xi−1
o .

In literature, different twice-differentiable functions are available [13] and may be used, specially for particular
ases as, for instance, the sine function to approximate periodic coordinates [34].

In order to increase the neural network approximation capabilities, it is possible to concatenate several layers
btaining a “deep neural network” with the output of a layer used as input of the next one, for the nl layers:

xo,k = ha,k(W k xo,k−1 + bk), xo,k ∈ Rnk , k = 1 . . . , nl (17)

here xo,0 = xi ∈ Rni and xo,nl = xo ∈ Rno are, respectively, the initial input and the final output of
the neural network. Their relation can be summarized by the entire neural-network function hl with parameters
Pl = {W k, bk | k = 1, . . . , nl}:

xo = hl (xi ,Pl) (18)

A specific extension of this framework aimed to process sequence data is represented by recurrent neural
networks. The relation between two consecutive states is expressed through additional trainable parameters. For
example, in a single-layer network, at step i the current output depends also on the previous one as:

xi
o = ha(W 1 xi

i + b1) + ha(W 2 xi−1
o + b2) (19)

As reported in the schematic in Fig. 2, the structure can be extended to deep neural networks and, in general,
can be represented by a recurrent neural network function h p with parameters Pp:

xi
o = h p(xi

i , xi−1
o ,Pp) (20)

Finally, autoencoders (AE) are particular neural networks with a symmetrical structure: the encoder, represented
by the function he and its parameters Pe, transforms the high order input xi ∈ Rni into the low order hidden
state x ∈ Rnr . Then, the decoder with the specular function h and parameters P aims to reconstruct the output
r d d

8



CMA: 113517

A. Angeli, W. Desmet and F. Naets Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15

16

17

18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
Fig. 3. The schematic of the undercomplete autoencoder, where the input xi is reduced to xr by the encoder he and backprojected to the
output x̃i by the decoder hd . In order to have x̃i ≈ xi , xr has to be a meaningful reduced parametrization.

xo = x̃i ∈ Rni as close as possible to the input xi :

xr = he(xi ,Pe) (21)

xi ≈ x̃i = hd (xr (xi ,Pe),Pd) (22)

where he and hd can be single-layer (perceptron) or deep neural networks. Different typologies of AE exist: if
ni = nr the networks may learn the identity function he = hd = I and trivially copy the input, so different
regularizations are added in order to obtain an useful parametrization xr . In particular, the undercomplete AE,
showed in Fig. 3, has nr < ni as regularization and aims to learn a reduced parametrization xr . The AE can be
considered as a non-linear extension [25,26] of Principal Component Analysis (PCA) [35], which makes it naturally
suitable for order reduction purposes.

Moreover, autoencoders can be extended to “recurrent autoencoders”, where the i th hidden state xi
r is influenced

by the previous-step value xi−1
r . In the general case, such dependence on the previous step is expressed through

additional trainable parameters as in Eq. (19). However, in this work it is proposed to couple a recurrent
undercomplete autoencoder with the knowledge about the underlying multibody model. This allows to optimize
also the derivatives of the decoder function as required by the model order reduction procedure to properly describe
the dynamics in the reduced space. The procedure is showed in the next section.

4.2. Neural networks for model order reduction from natural to minimal coordinates in multibody simulation

Given a system defined or post-processed into position-only DOFs such as NC, three scenarios are possible:

1. The number of MC nm is not known. This atypical situation for multibody systems falls into the category of
manifold learning which is beyond the scope of this work. In literature, different methods have been proposed
to estimate the dimension of a manifold [36,37] which can be used to find the number of MC and permit to
relate to the second scenario, but we do not discuss this further in the current work.

2. The number of MC nm is known but it is not possible to a-priori define them. Thus, the MC must be
defined together with the mapping between such unknown MC and the NC. This case may be classified
as unsupervised learning (neither MC or the mapping is known) and requires a full AE approach. This case
is addressed in Section 4.2.1.

3. The MC are known or it is possible to choose some known parameters as MC. However, the analytic mapping
between these MC and the NC is unknown or impractical to obtain. This case can be seen as a subcategory of
the first scenario. In fact, knowing the MC and the direct mapping, the (supervised learning) problem consists
in determining its inverse and does not require a full AE approach. This case is addressed in Section 4.2.2.

It is important to highlight that all approaches presented rely on the definition of a good loss function which allows
to train the neural network parameters. It is for this reason that we proposed to employ a set of natural coordinates
for the training data in Section 3. Mixed coordinate types, where both positional and rotational DOFs are combined
do not allow to obtain a consistent Euclidean distance for the loss function. By contrast, the Euclidean distance for
the NC is well defined.

The scheme for the model order reduction procedure is summarized in Algorithm 2.
9
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Algorithm 2 model order reduction.

1: Run reference simulation(s) and collect NC data Xn,FE,n, T , Mn [cf. Section 3.2]
2: if nm is unknown then
3: Estimate nm [36,37]
4: else if xm is known then
5: he(xn) = h ↦→m(xn) [cf. Section 4.2.2]
6: end if
7: Train recurrent AE and find xm, he, hd [cf. Section 4.2.1]
8: Run reduced-order simulation [cf. Algorithm 1]

4.2.1. Recurrent autoencoder for minimal coordinates mapping
If the MC number nm is available or has been estimated, an undercomplete AE neural network is used to

approximate the mapping between the (unknown) MC and the NC:

xm = h ↦→m(xn) ≈ x̃m = he(xn,Pe) (23)
xn = h ↦→n(xm) ≈ x̃n = hd (x̃m(Pe),Pd) (24)

ith the AE hidden dimension as nr = nm . In a straightforward approach the parameters {Pe,Pd} can be optimized
o minimize the Euclidean distance between the training data and the reconstruction, averaged over the nt training
amples as loss function Lrec:

Lrec(xn,Pe,Pd ) =
1
nt

nt∑
i=1

(
x̃i

n(xi
n,Pe,Pd ) − xi

n

)2
(25)

However, this straightforward loss function Lrec definition suffers a critical drawback as it only accounts for the
odel kinematics while it neglects the time evolution or information about the function derivatives. These derivatives

re however essential in Algorithm 1 to describe the manifold of the MC dynamics. Even slight overfitting on this
urely kinematic data would lead to inaccurate or even unstable simulations.

Therefore, we propose to embed the known underlying multibody model of Section 3.3 in a recurrent AE
rchitecture, as shown in Fig. 4, in order to minimize the squared simulation error and train also the decoder-function
erivatives. This leads to a new loss function Lsim :

Lsim(xn,Pd ) =
1

nt − 2

nt −1∑
i=2

(
x̂i+1

n (xi−1
n , xi

n,Pd ) − xi+1
n

)2
(26)

here x̂i+1
n represents the predicted simulation value at the next time step, as in Algorithm 1:

x̂i+1
n = hd

(
x̃i

m + ∆t ˙̃xi
m + ∆t2

(
M̃

i
m

)−1 (
f̃

i
e,m − G̃

i
m

[
˙̃xi

m
˙̃xiT

m

]))
(27)

with:

x̃i−1
m (xi−1

n ) = he(xi−1
n ) (28)

x̃i
m(xi

n) = he(xi
n) (29)

˙̃xi
m =

x̃i
m − x̃i−1

m

∆t
(30)

M̃
i
m(Pd ) =

(
∂hd

∂ x̃i
m

)T

Mn
∂hd

∂ x̃i
m

(31)

G̃
i
m(Pd ) =

(
∂hd

∂ x̃i
m

)T

Mn
∂2hd

∂ x̃i
m∂ x̃i

m

(32)

f̃
i
e,m(Pd ) =

(
∂hd

i

)T

f i
e,n (33)
∂ x̃m

10
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Fig. 4. The proposed recurrent autoencoder, where the encoder he and the decoder hd respectively reduce and backproject the original
coordinates, while the mbd block includes the multibody model reduced through (the derivatives of) hd and permits to advance the reduced
imulation in time. The trapezoids and the rectangle are the functions with the parameters to be optimized, the circles are the states and the
otted circles are the reference for the optimization.

This single-step prediction can be easily coupled with standard machine learning optimizations such as stochastic
radient descent [13], which iterates the optimization on a subset, called mini-batch, of the data in order to speed up
he optimization and avoid to compute the gradient with respect to all the samples. In fact, the training algorithm can
e fed with mini-batches of (groups of) three consecutive reference points xi−1

n , xi
n, xi+1

n ; while common recurrent
eural networks may require to be fed with all the nt samples of the time evolution, leading to slow convergence,
ossible vanishing/exploding gradients [13] or the necessity to reshape the network architecture to perform the time
imulation [38].

The derivatives of the decoder function with respect to the states are necessary for these operations. In this work,
e exploit the automatic differentiation capabilities of common machine learning toolboxes in order to evaluate these
erivatives efficiently. In this particular loss function, a twice differentiable activation function is necessary, like the
igmoid function of Eq. (15).

For the actual training of the AE we therefore propose to use a loss function that combines both the reconstruction
oss from Eq. (25) and dynamic simulation loss from Eq. (26):

argmin
Pe,Pd

(Lrec(xn,Pe,Pd ) + Lsim(xn,Pd )) (34)

s it will be demonstrated in Section 5, this choice of loss allows to effectively circumvent issues related to the poor
roperties of the derivatives of the decoder functions and lead to a reliable mapping from MC to NC to perform
imulations.

Alternatively, a loss function based on velocity and acceleration information is discussed in Appendix.

.2.2. Recurrent neural network for minimal coordinates mapping
The case in which the MC are known or it is possible to select some specific DOFs (e.g. a subset of the original

C or a known transformation) results in an available h ↦→m mapping. We can therefore consider the encoder function
xactly known as defined by the user:

xm = h ↦→m(xn) = he(xn). (35)

n many cases this will for example be a simple selection of some of the NC as MC, such that the encoder becomes
simple linear selection matrix:

xm = V ↦→m xn, (36)

here V ↦→m ∈ Rnm×nn is a sparse selection matrix.
The problem described in the previous section is then simplified to determine only the decoder neural network:

xn = h ↦→n(xm) ≈ x̃n = hd(xm,Pd ) (37)

hus, the loss function to be minimized is:

argmin
(
L∗

rec(xn,Pd ) + L∗

sim(xn,Pd )
)

(38)

Pd

11
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where:

L∗

rec(xn,Pd ) =
1
nt

nt∑
i=1

(
x̃i

n(xi
n,Pd ) − xi

n

)2
(39)

L∗

sim(xn,Pd ) =
1

nt − 2

nt −1∑
i=2

(
x̂i+1

n (xi−1
n , xi

n,Pd ) − xi+1
n

)2
(40)

ith:

xi−1
m (xi−1

n ) = h ↦→m(xi−1
n ) (41)

xi
m(xi

n) = h ↦→m(xi
n) (42)

˙̃xi
m =

xi
m − xi−1

m

∆t
(43)

M̃
i
m(Pd ) =

(
∂hd

∂ x̃i
m

)T

Mn
∂hd

∂ x̃i
m

(44)

G̃
i
m(Pd ) =

(
∂hd

∂ x̃i
m

)T

Mn
∂2hd

∂ x̃i
m∂ x̃i

m

(45)

f̃
i
e,m(Pd ) =

(
∂hd

∂ x̃i
m

)T

f i
e,n (46)

. Validation

In this section we demonstrate the proposed approach for converting rigid multibody models into reduced order
inimal coordinate models on two numerical examples. In the first case in Section 5.1, it is assumed that only

he number of MC is known and the procedure presented in Section 4.2.1 is applied. In the second example in
ection 5.2, the choice of MC is known and the procedure explained in Section 4.2.2 is followed. As previously

ndicated, only mechanisms without singularities are analysed in this work.
The reference multibody simulations are performed in a general purpose multibody simulation toolbox in

atlab [39] using a natural coordinates formulation. For each example, three simulations consisting of 10 000
amples (∆t = 0.001 s, t = 10 s) are performed with different input forces: the first is used for the neural network
raining (95% of data for training, 5% for cross validation and early stopping [13]).

The remaining two datasets are used for validation. In fact, we aim to assess the generalization capabilities of
he trained network with respect to novel inputs, as in case of control or estimation schemes the exact run-time
xcitation may be unknown. In particular, the first application shows the case of inputs with different amplitudes
hile the second application shows shape-varying inputs.
Furthermore, the fact that, thanks to the physical information embedding, the training requires the use of a single

imulation (and in general as little data as possible) is considered an additional benefit.
The presented optimization and MC modelling approach are implemented in Tensorflow [33]. The neural network

s built with sigmoid activation functions as in Eq. (15) to guarantee differentiability and its parameters are optimized
sing the Adam algorithm [40], a variant of stochastic gradient descent. 10 000 epochs (i.e. training iterations) are
arried out, requiring less than 40 minutes for the optimization (per application example), with all the computations
erformed on a consumer laptop.

As indicated, the main advantage of the procedure is the obtained ODE structure, while the computation time is
ot the focus of this work. However, in the future, the procedure may possibly target real-time applications given
hat, from purely qualitative assessments, the simulation time is reduced from several minutes for the original models
o few seconds for the reduced models.

.1. Macpherson suspension mechanism

The first application case is a MacPherson suspension, shown in Fig. 5. The kinematic model is composed of
ix bodies: a lower control arm is linked to the chassis by two spherical joints and to the steering knuckle by a
12
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Fig. 5. The MacPherson suspension model. On the left, the system with the enumerated bodies (listed in Table 1), the external input as
(blue) arrow and the joints as polygons — the (red) circles represent the spherical joints, the (magenta) triangle represents the prismatic
joint, the (cyan) pentagon represents a Cardan joint and the (olive) squares represent rigid joints. On the right, the model in two different
configurations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
The enumerated list of bodies for the MacPherson suspension model with the respective mass m
and inertia moments J .

Body m [kg] Jxx [kg m2] Jyy [kg m2] Jzz [kg m2]

Control arm (1) 3.573 0.069 0.037 0.102
Tie rod (2) 1.10 0.011 0.00003 0.011
Upper damper (3) 0.75 0.009 0.009 0.00005
Lower damper (4) 2.85 0.032 0.032 0.002
Knuckle (5) 5.65 0.041 0.051 0.035
Spindle (6) 0.2 0.0006 0.001 0.0006

spherical joint; the knuckle is linked to the tie-rod by a spherical joint and to the strut by a prismatic joint; finally
the wheel spindle is rigidly attached to the knuckle. A list of the bodies with their inertial properties is reported
in Table 1. The system is excited on the wheel spindle through three time-varying vertical forces with different
amplitudes, as shown in Fig. 6.

The model is initially available in NC and, given the suspension application the number of MC is known as
m = 1. However, we do not predefine a mapping from the NC to the MC. Thus, a parametrization for the unknown
C and the related mappings are identified according to the procedure proposed in Section 4.2.1.
The simulation with the medium amplitude excitation “sim1” is used to train the autoencoder. The comparison

etween this training simulation and the proposed methodology for the positions of the body centres of gravity
s showed in Fig. 8. A close-up of the vertical motion of the wheel-attachment together with its relative error is
howed in Fig. 7. These figures both demonstrate good accuracy for the training case, as it can be expected. Fig. 7
hows that over time the error with respect to the training simulation increase. This drift is to be expected as small
eviation on the MC inertia will amount to an increasing model difference.

The MC model is then used for the two non-trained excitation cases: the case with the force of lower amplitude
sim2” is shown in Fig. 9, while the case with the force of higher amplitude “sim3” is shown in Fig. 10. It can
e noticed that the proposed neural-network based MC description generalizes well as long as the model response
emains inside the trained motion range, as is the case in Fig. 9. However, if the resulting motion falls outside of
he displacement range of the training dataset, e.g. as a result of higher excitation in Fig. 10, the proposed scheme
ecomes unreliable as the neural network does not allow to extrapolate accurately.

It is thus important to include in the training dataset a proper representation of the foreseen motion range, in
rder to properly optimize the neural network parameters.

.2. Two-bar actuator mechanism

The second example is a two-bar actuator mechanism which can move in the xy plane. It consists of two bars
inked together by a revolute joint and each bar has at the base a sliding joint with the y-axis as the allowed direction
f motion. The model is shown in Fig. 11 with the list of the bodies and their inertias reported in Table 2.
13
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Fig. 6. The external forces applied to the wheel-attachment along the z axis, in the three different simulations. Only the simulation data
resulting from the external forces sim1 are used for the neural network training.

Fig. 7. Motion along the z axis of the wheel-attachment in ‘Natural Coordinates (NC)’ xn and ‘Autoencoder Coordinates (AC)’ x̂n . Above,
comparison of the simulation; below, the corresponding relative error.

Fig. 8. Comparison of the simulation in ‘Natural Coordinates (NC)’ xn and ‘Autoencoder Coordinates (AC)’ x̂n ; each column of plots
represents the centre-of-gravity coordinates of one of the bodies.
14
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Fig. 9. Comparison of the simulation for the position of the wheel-attachment centre of gravity in ‘Natural Coordinates (NC)’ xn and
‘Autoencoder Coordinates (AC)’ x̂n , for a non-trained force. As it can be noticed, the method generalizes well.

Fig. 10. Comparison of the simulation for the position of the wheel-attachment centre of gravity in ‘Natural Coordinates (NC)’ xn and
‘Autoencoder Coordinates (AC)’ x̂n with a force leading to out-of-trained-motion range. The non-negligible out-of-range motion causes the

E simulation to fail due to the incapacity of extrapolating such values.

Fig. 11. The multibody model of the two-bars mechanism. On the left, the system with the enumerated bodies (listed in Table 2), the external
inputs as (blue) arrows and the joints as polygons — the (red) circle represents the revolute joint and the (magenta) triangles represent the
sliding joints. On the right, the model in two different configurations. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

In this case, the y translation of the two-bar base points are used to control the system and are used as minimal
coordinates. However, it is assumed that the analytic mapping to the NC coordinates is not explicitly available. Thus,
it is obtained with the procedure described in Section 4.2.2. Three different types of excitation forces are applied,
as shown in Fig. 12: a time-varying force “sim1”, a lower sinusoidal force “sim2” and the first force scaled to
15
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Table 2
The enumerated list of bodies for the two-bars mechanism with the respective mass m and inertia
moments J .

Body m [kg] Jxx [kg m2] Jyy [kg m2] Jzz [kg m2]

Short bar (1) 2.9 0.1208 0.1208 0
Long bar (2) 1.3 0.2167 0.2167 0

Fig. 12. The external forces applied to the two-bars base points along the y axis, in the three different simulations. Only the simulation
data resulting from the external forces sim1 are used for the neural network training.

Fig. 13. Comparison of the simulation for the position of the bar centres of gravity in ‘Natural Coordinates (NC)’ xn and ‘Autoencoder
Coordinates (AC)’ x̂n .

lightly increase its amplitude “sim3”. The response for “sim1” is used to train the neural network. The comparison
between the reference NC model and the proposed methodology for the centre of gravity positions of the two bars
is shown in Fig. 13. Again, we see correspondence with respect to the training simulation.

In order to demonstrate the importance of including the dynamics in the loss function for the neural network
training, Fig. 14 shows the response if only Lrec from Eq. (25) is employed for the neural network training. It shows
the comparison of the centres of gravity for the two bars between the first reference simulation (NC) and:
16
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Fig. 14. Centres of gravity motion for the reference simulation xn (NC), the reconstructed coordinates from the MC simulation x̂n with
training only on reconstruction loss (AC) and the kinematically reconstructed coordinates x̃n through the autoencoder application on the
reference response (KC).

Fig. 15. Comparison of the simulation for the position of the bar centres of gravity in ‘Natural Coordinates (NC)’ xn and ‘Autoencoder
Coordinates (AC)’ x̂n in case of (lower) non-trained forces.

• the reconstructed coordinates from the minimal coordinates simulation, with training only on the reconstruction
error (AC) – thus optimizing the neural network according to Eq. (25) and performing the simulation according
to Algorithm 1 – to show that such dynamics prediction would fail;

• the reconstructed coordinates from a pure kinematic transformation through the encoder and decoder functions
from the same optimization as above (KC) – thus x̃n = hd (he(xn)) – to show that the training was successful
but such mapping learned from the reconstruction loss cannot be used for model order reduction and dynamics
predictions.

From this figure we clearly see that the reconstructive properties of the decoder are very accurate in the response
f KC, and hence we can conclude that the decoder parameter training was well performed. However, the simulation
esponse obtained with this decoder in minimal coordinates shows strong divergence from the training simulation.
his demonstrates the high importance of the proposed loss function which also accounts for the dynamics.

Finally the procedure, using the proposed full loss function, is applied to the two non-trained simulations and
he results are shown in Figs. 15 and 16. As no severe extrapolation occurs from the trained configurations, we
gain observe good accuracy for the proposed approach with a slightly increasing error over time.
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Fig. 16. Comparison of the simulation for the position of the bar centres of gravity in ‘Natural Coordinates (NC)’ xn and ‘Autoencoder
Coordinates (AC)’ x̂n in case of (marginally higher) non-trained forces.

6. Conclusion

The current work proposes a nonlinear model order reduction scheme which enables the reduction of a redundant
coordinate rigid multibody model into a minimal coordinate model. In order to enable this reduction, an autoencoder
framework is proposed. This approach has as main benefit that it can be employed non-intrusively with respect to
the simulation software on existing rigid multibody models as it does not require direct access to the underlying
model equations, and more in particular the constraint equations. The resulting model is a set of ordinary differential
equations, rather than the common differential algebraic equations encountered in multibody simulation.

The autoencoder is employed to set up a continuous (nonlinear) mapping between a set of natural coordinates
of the system and a set of minimal coordinates. A key point in setting up this map is to ensure sufficiently
smooth derivatives with respect to the states in order to employ this map for projecting the dynamic equations
in a Lagrangian framework. A dedicated loss function is proposed which allows to effectively take the dynamics
into account at a feasible computational cost. This improved loss function is shown to be key for deploying the
obtained neural networks in a dynamic simulation.

Two case studies are presented which demonstrate the good accuracy obtained with the presented approach as
long as the range of motion lies within the training range. It is also demonstrated that the presented approach
generalizes poorly outside of the training range and a sufficiently excited training simulation is therefore required.
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Appendix. Loss function

In the work, it is proposed to perform the optimization in Eq. (34):

argmin (Lrec(xn,Pe,Pd ) + Lsim(xn,Pd ))

Pe,Pd
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It is worth mentioning that a similar result may have been obtained optimizing the reconstructed NC velocity
nd acceleration:

Lvel(xn, ẋn,Pe,Pd ) =
1
nt

nt∑
i=1

(
˙̃xi

n(xi
n, ẋi

n,Pe,Pd ) − ẋi
n

)2
(A.1)

Lacc(xn, ẋn, ẍn,Pe,Pd ) =
1
nt

nt∑
i=1

(
¨̃xi

n(xi
n, ẋi

n, ẍi
n,Pe,Pd ) − ẍi

n

)2
(A.2)

ith:

˙̃xn =
∂hd

∂ x̃m

˙̃xm (A.3)

¨̃xn =
∂hd

∂ x̃m

¨̃xm +
∂2hd

∂ x̃m∂ x̃m
( ˙̃xm ˙̃xT

m) (A.4)

˙̃xm =
∂he

∂xn
ẋn (A.5)

¨̃xm =
∂he

∂xn
ẍn +

∂2he

∂xn∂xn
(ẋn ẋT

n ) (A.6)

eading to the optimization problem:

argmin
Pe,Pd

(Lrec + λvel Lvel + λacc Lacc) (A.7)

here the dependencies as in Eqs. (25), (A.1), (A.2) have been omitted for brevity and λvel , λacc ∈ R are
yperparameters to weight the different position, velocity and acceleration scales.

In addition to the knowledge of the reference velocity and acceleration information, it can be noticed that such
ptimization requires the tuning of the two hyperparameters and calculating the derivatives of both the encoder and
ecoder functions, leading to higher computational cost and training time.

On the other hand, Eq. (34) does not require encoder-function derivatives or scaling hyperparameters, since it
nvolves only position data. For such reasons, it was preferred.
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