
TLT-2019-02-0048 1

Abstract—The User interface (UI) is a key component of an

interactive software application; therefore, it is important to
provide software developers with basic UI design skills. However,
teaching UI design is challenging, even at a basic level, and there
is little teaching support. In this paper, we investigate the benefits
of the feedback-enriched simulation environment (FENIkS) for
learning fundamental UI design principles toward designing the
functional aspects of a UI. FENIkS is a model-driven educational
environment making use of simulation as learning support by
generating a UI and the underlying application starting from
conceptual domain and presentation models. The generated
application and UI contain feedback elements for the learners.
This feedback shows if the generated prototype is compliant with
certain key design principles and why the principles are
considered to be well applied or not. We conducted an experiment
using bachelor-level courses to observe the effects of FENIkS on
the learning of UI design principles by novice UI designers. The
effectiveness of FENIkS was measured by comparing the results of
students on a test performed without and with the use of FENIkS,
using statistical methods. The findings show an improvement in
student’s learning of UI design principles when using the FENIkS
approach.

Index Terms—Automated feedback, computer science
education, educational technology, user interfaces.

I. INTRODUCTION
OWADAYS, software applications are present in almost
every aspect of our daily life. The user interface (UI) is

considered one of the critical components of software
applications because it enables users to interact with the
software [1]. There is a growing interest in the study of UI
design. Consequently, there is a need for skilled professionals
capable of designing high-quality UIs. However, software
engineering courses focus mostly on the programming, design,
and architecture of the application logic while giving limited
attention to the UI design. Often, software developers seldom
receive further training on UI design; therefore, they should
learn basic UI design principles. Although learning can be
challenging, various UI design characteristics make the
teaching of UI design difficult: task and tool complexity, rapid
technological changes, and the inherent difficulties associated
with teaching complex learning tasks [2].

The four-component instructional design (4C/ID) method for

This research has been sponsored by the VLIR-UOS network program.

(Corresponding author: Jenny Ruiz.)
J. Ruiz is with the Faculty of Informatics and Mathematics, University of

Holguin, 80100, Cuba (e-mail: jruizp@uho.edu.cu).

complex learning tasks [2] emphasizes the importance of
training students based on “whole” and “real-life” tasks.
Although “part-task practice” is essential in developing partial
competences, learners must integrate multiple partial
competences into a global competence to address complex tasks
[2]. Therefore, the students need to be trained using “whole”
tasks based on real-life tasks to ensure the transfer of knowledge
to their future work environment.

Some tools have been developed to offer “part-task practice,”
including worked examples and games. Simulation has the
advantage of being capable of addressing whole complex tasks
and has been used in multiple domains as a teaching tool,
including areas of knowledge like mathematics [3], [4], physics
[5], and engineering [6]–[8]. During the development of
learning tasks, unlike real-life tasks, simulation gives teachers
more control over the complexity of the tasks, the amount of
student support provided, and mitigation of the risks associated
with failed task execution. Simulation is often applied in UI
development by using tools such as mock-ups and wireframes.
However, it rarely addresses “whole” tasks practice, as
prototyping often focuses only on the UI. Furthermore, it lacks
learner’s support in the form of easy-to-use technology or
automated in-tool feedback.

This research aims to improve the teaching of UI design by
developing an educational simulation environment that enables
“whole-task” practice while removing the difficulties
associated with complex UI design tools. It requires collecting
requirements for the learning environment and developing the
environment. The benefits of using the educational simulation
environment for students’ achievement of learning goals are
evaluated by conducting experiments, using an experimental
design that controls unwanted variations while ensuring equal
benefits for all students.

The remainder of this paper is structured as follows: Section
II presents the problem statement, discusses related work, and
outlines the general research approach. Section III gives an
overview of FENIkS and highlights the learning benefits.
Section IV presents the methodology for the experimental
evaluation and describes the method for measuring the effects
of the proposed simulation technique on the learning outcomes
and shows the results. Section V discusses the limitations of the
experimental assessment. Then, Section VI concludes the work.

E. Serral and M. Snoeck are with the Faculty of Business and Economics,
KU Leuven, 3000, Belgium (email: estefania.serralasensio@kuleuven.be;
monique.snoeck@kuleuven.be).

Learning UI Functional Design Principles
through Simulation with Feedback

Jenny Ruiz, Estefanía Serral, and Monique Snoeck, Member, IEEE

N

u0012755
Text Box
Preprint for personal Use. Cite as follows:
J. Ruiz, E. Serral Asensio and M. Snoeck, "Learning UI Functional Design Principles through Simulation with Feedback," in IEEE Transactions on Learning Technologies, doi: 10.1109/TLT.2020.3028596.

TLT-2019-02-0048 2

II. PROBLEM STATEMENT, RELATED WORK, AND PROPOSED
RESEARCH APPROACH

A. Difficulties in Teaching UI Design
Creating a UI is a complex task, and several factors con-

tribute to making UI design difficult to teach, even at a basic
level [9]–[11]:

The inherent complexity of the UI design: The field of UI
design is inherently multidisciplinary; therefore, difficult to
teach [12]. It involves several areas of computer science, such
as computer architecture, operating systems, and computer
graphics. Designers need to analyze the user-application
interactions and model the interactions using various types of
models, including task, user, and UI models. Thus, hands-on
exercises require a considerable amount of knowledge from the
students [13], which makes teaching UI design to students with
low prior knowledge very difficult.

Rapid technology changes: Due to the rapid development of
technology, there are various platforms and devices for which
UIs can be designed. Developing UIs for multiple platforms,
which provide the same functionality, further increases the
difficulties in teaching UI design [14]. Therefore, students
should be able to extrapolate knowledge and solve problems in
new situations without taking into account technological details
[15]. This requirement, however, increases the burden on
teachers as they need to evolve their teaching tools.

The complexity of UI design tools: There are multiple UI
design tools, which students need to learn. However, there is a
potential risk of students focusing on understanding how to use
the tools instead of learning how UIs should be designed.

The three earlier mentioned problems result in general
pedagogical difficulties of teaching complex tasks. Complex
learning tasks are characterized by the need to integrate various
types of knowledge. Moreover, there are multiple valid ways to
accomplishing tasks. These characteristics also apply to UI
design [16], [17]. The integration of knowledge is stimulated by
having students work on “whole” tasks instead of fragmented
tasks. Notably, “active” learning is the better approach to
complex learning [18], and practicing what has been learned
facilitates teaching and is more rewarding for the students [19].
Solving these pedagogical problems is challenging in UI
design. Providing students with feasible “whole tasks” and
practice are made difficult by the inherent complexity of UI
design, further exacerbated by tool complexity and rapid
technological changes. The multiple valid solutions for a single
design problem call for individual feedback, preferably
immediate and explanatory rather than only corrective [20],
resulting in an increased workload for teachers. As explained in
[21], feedback on student performance is a central part of
formative assessment approaches and improves students
learning.

B. Existing Tools and Approaches to Teaching UI Design
1) General tools for teaching UI design

Within the UI design community, various efforts have been
made to address the difficulties in teaching UI design. Notably,
the difficulties associated with the complexity of tools have
been addressed by providing tailored and simplified educational

environments. The difficulties associated with the inherent
complexity of UI design have been addressed by offering
streamlined, simplified partial tasks to the students as opposed
to real-life “whole” tasks. We discuss general tools and
simulation tools to understand the success factors for teaching
UI design.

Barrett [12] proposed a hypertext module that presents
interface design principles and provides examples of good and
bad interfaces, thus, simplifying the task and eliminating the
need for students to interact with UI design tools. The tutorial
includes the explanation of using metaphors, input devices,
output methods, and evaluation issues. The knowledge is
presented through textual descriptions, static and interactive
examples.

The multimedia design advisor tool proposed in [22] is based
on a simplification strategy. Multimedia designers can select
appropriate media types for various information types using the
tool. The tool works as a wizard giving recommendations on
appropriate media based on the information type illustrated
with examples.

Gamification is used in addition to simplification in the
UsabilityGame [23]. The game shows a corporate environment
to the player simulating real situations in the projects of a
fictitious company. The game supports the teaching of the
usability engineering life cycle, requirements analysis,
prototyping, and heuristic evaluation. It shows a list of web
interfaces with a heuristics list, where the student needs to select
which of the heuristics have been applied.

ILIAS is proposed in [24] to address usability issues in an
open-source learning management system. ILIAS users learn
how to improve the use of ILIAS as a learning management
system. The approach provides a taxonomy of UI components
within ILIAS and guidelines for how to use them. It is an
example of task simplification by offering a partial task and
focusing on students’ familiar environment.
2) UI simulation tools

A few approaches support UI design using simulation based
on the generation of prototypes. Prototypes can assist in
addressing more complex and a larger variety of tasks, such as
facilitate communication with the stakeholders, especially with
the end-users [25], thus enabling students’ training in this
aspect of the job. A simulation of interactive behavior with
different adaptive menu algorithms using low-fidelity
prototypes was presented in [26]. The simulation results are
used to explore the possible outcomes of human performance
for various menu generation algorithms. Simulated users are
also used by [27] to test the probability that a user will
experience difficulties when transitioning from one screen to
another.

DynaMo-AID [28] generates a prototype from task and
dialog models. Trætteberg [29] proposed a tool for the
generation of prototypes from UI and domain models. This
approach offers a concrete visual representation of the UI and
enables prototype testing using an executable dialog model. Da
Cruz and Faria [30] proposed an approach for generating a
functional prototype from domain and use case models.
GUILayout++ [31] enables the creation of prototypes with an

TLT-2019-02-0048 3

abstract representation of UIs that can be used for evaluating
the structure of the UI based on the composing areas. An
automated layout approach for UI generation is proposed in
[32]. This approach enables specifying layout parameters that
can be used for rapid prototyping and initial user evaluation.
CIAT-GUI [33] enables the visualization and modification of
intermediate prototypes of the graphical UIs from domain and
task models. Sottet et al. [10] generated prototypes from partial
configurations using interaction flow and domain models.
These tools for UI design simulation facilitate evaluating
possible designs and can be useful teaching tools for this
specific learning goal. However, none of them have been
created for teaching UI design, and therefore they lack ways to
support learners during their learning process. Notably, while
using these tools, designers do not receive any instructional
feedback that helps to learn UI design. The approaches that are
similar to FENIkS are DynaMo-AID [28] and Trætteberg [29],
which enable simulating a UI through the generation of
prototypes from conceptual models. However, in both cases, the
generated prototype is not completely functional, thus not
enabling the training of students on “whole” tasks.
Furthermore, these approaches are applicable in different
contexts. DynaMo-AID addresses context-sensitive UI for
mobile applications, while Trætteberg’s approach addresses the
generation of graphical UIs. Dynamo-AID cannot handle
usability. Trætteberg’s approach improves usability by
integrating UI behavior and real UI components. However,
none of the environments provide instructional feedback to the
designer on how well design principles have been applied, and
they are not designed for novice designers. The goal of FENIkS
is to improve on the “whole task” and feedback aspect
compared to existing simulation tools.

C. General Research Approach
The review of existing work reveals 1) that existing

educational environments simplify the tasks substantially by
starting from predefined examples of UIs; 2) that simulation
tools are not enabled for “whole-task” training, and lack
educational features such as feedback or recommendations.
Prototyping has proved to be effective in evaluating different
design alternatives [34]. Therefore, UI prototyping could be an
effective way to learn UI design. In addition to the “whole-task”
training, the feedback is important. Providing individual and
immediate feedback is a key factor for skills acquisition [35],
[36]. Previous research has demonstrated that simulation with
integrated feedback positively contributes to the learning
process [37], enabling the learner to “learn by experiencing”
[38] and promoting successful transfer of knowledge to the real-
world environment [39]. Experimental research on teaching UI
design indicates that patterns and guidelines positively impact
the novice designer’s performance [40]; therefore, we propose
to base the feedback on general UI design principles.
Furthermore, difficulties associated with tool complexity
should be resolved, and instructional design guidelines for
complex learning should be observed. Consequently, the
general research approach is 1) define requirements for the
educational support for learning UI design; 2) develop an

educational simulation tool; and 3) test the impact of applying
the tool on the learning of UI design.

The contributions of this research are as follows:
1) We identify the requirements that an educational tool needs

to provide support for teaching the functional aspects of UI
design.

2) We develop an educational environment that satisfies those
requirements, referred to as FENIkS.

3) We perform an empirical study that validates the teaching
support of FENIkS for the functional aspects of UI design.

III. SIMULATION WITH FEEDBACK IN UI DESIGN TEACHING:
FENIKS

In Section III-A, we describe the requirements to support the
teaching of UI design. We describe FENIkS in Sections III-B
and III-C. Section III-B describes the overall approach to
generate a prototype. Section III-C describes how learning
support is integrated into FENIkS. Subsequently, Section III-D
analyzes the extent FENIkS satisfies the requirements described
in Section III-A. A more extensive description of the technical
design of FENIkS is in [41]–[43].

A. Requirements for Teaching Functional UI design
A teaching approach should satisfy the following

requirements to facilitate the learning of the functional aspects
of UI design:

R1: Outcome-oriented guidance. Multiple approaches can be
followed to achieve a good UI; therefore, the focus should be
on assessing the quality of the outcome instead of the quality of
the approach. The quality of a UI design is achieved by
observing good practices and principles that resulted from
studying human behavior with computer systems [44].
Therefore, the educational environment should assist in
observing these good practices of UI design.

R2: Immediate Feedback. In [45], the influence of feedback
is addressed, and the essential components that make it
effective are also defined. Providing individual and immediate
feedback during learning is a key factor for skills acquisition
[35], [38]. Task-level corrective and explanatory feedback
informs learners and teachers how well tasks are performed and
understood (and why) [20], and how close the learners are to
accomplishing desired outcomes [46]. The educational
environment should provide immediate corrective and
explanatory feedback to the learners about their UI design.

R3: “whole-task” practice through the co-design of an
application and its UI. Teaching UI design is complex because
it depends on multiple types of knowledge and competences.
Teachers typically address this using compartmentalization and
fragmentation of a “whole task” into “part tasks” [18], for
example, by teaching only the design of UIs and leaving out
application development. However, in such a fragmented
approach, students do not learn the full implications of the
design decisions they made, particularly how UI design is
closely related to the functionality of the application. Therefore,
integrating UI design and application development can
contribute significantly to the development of better systems
[47] by explicitly establishing the link between the UI and the

TLT-2019-02-0048 4

application logic.
R4: Ease of use. Designing UIs is a difficult process [11],

[48]; therefore, ease of use is a critical factor [49]. The
environment should be simple, understandable, flexible to
interact with, and easy to become skillful at. Ease of use is
important to avoid students focusing on learning the use of a
tool rather than learning UI design.

R5: Learning by experiencing through simulation. UI design
simulation allows trying different possibilities and visualizing
the effects. Consequently, it enables learning from experience
by allowing a student to explore what-if scenarios. Simulation
with real-life cases is beneficial for complex learning [2], [18],
and facilitates the transfer of knowledge to real-life
environments [38], [50].

R4 is needed to address tool complexity, R1, 2, 3, and 5 are
based on instructional design principles for complex learning
[18].

B. Simulation with UI Generation in FENIkS
We extended an existing tool to create the proposed

simulation environment. Particularly, FENIkS is based on
JMermaid, a tool that has been used for more than 10 years for
teaching conceptual modeling using simulation with feedback
[51]. JMermaid was developed based on the concepts of
MERODE, a model driven engineering (MDE) method [52]
that enables specifying an enterprise’s conceptual domain
model that is platform-independent and sufficiently complete to
automatically generate a prototype. The prototype contains
instructional feedback [51], [53], [54], the effectiveness of
which has been proven through several experimental
evaluations [50], [54].

To support the design of a non-default UI, JMermaid was
extended with two additional models and their corresponding
generation of code: an Abstract User Interface (AUI) model and
a Presentation Model (PM), this constituting the FENIkS
approach [41].

The PM consists of three different views, and each is shown
in a different tab in FENIkS: 1) the General aspects view, which
collects the name of the application and other information to be
shown in the title, 2) the Window aspects view, which captures
preferences about how widgets will be shown (see Fig. 1), 3)
the Input aspects view to capture the preferences related to input
functionality of the application, such as how to configure input
fields for attributes or how to show to-be-selected associated
objects [42], [43] (see Fig. 2).

The tool provides default options; thus, designers do not need
to specify values for all the design options. As a result, the
generated code can be obtained at the early stages of the
development process, provided the models are correct (meaning
they need not be complete).

Fig. 3 shows the generation process. The process starts with
the design of the platform-independent conceptual domain
model and the PM. When the designer clicks the “generate”
button, first, a model-to-model (M2M) transformation is
executed to obtain the AUI model, which is also platform
independent and is the expression of a UI in terms of interaction
units without making any reference to the implementation.

Second, model-to-code (M2C) transformations generate the
prototype from the conceptual domain model and the AUI
model.

The transformation steps are transparent to the designer, who

only sees the final result, the application. The designer can
regenerate another prototype by using the UI options stored in
the PM. Changes in the UI options are shown on the UI
accordingly. Furthermore, the application logic can be changed
by updating the domain model.

Fig. 1. Window aspects of the PM in FENIkS.

Fig. 2. Input aspects of the PM in FENIkS.

Fig. 3. Generation process with FENIkS.

TLT-2019-02-0048 5

C. Feedback for Learning UI Design Principles
The design of FENIkS incorporates feedback to support the

learning of UI design principles. FENIkS provides three types
of instructional feedback related to the UI design: 1) immediate
visual feedback using a preview; 2) explanatory feedback
explaining why the UI is generated in a specific way and tracing
the application’s appearance to its origin in the PM, and 3)
corrective feedback telling the learner whether the chosen
design decisions are compliant with design principles.

Immediate visualization: At the bottom of the Windows and
Input aspects views, the tool offers a preview of the to-be-
generated UI that is automatically updated based on the selected
UI options (see Fig. 1 and Fig. 2). The preview feature supports
the learners by visualizing the generated UI and tracing changes
in the model to their effects before generating the prototype.

In the generated prototype, explanatory and corrective
feedback is provided as a “UI Help” feature in the application’s
main window. The designer selects General, Window, or Input
aspects, and an option to see the explanation.

Fig. 4 shows an example of explanatory feedback
corresponding to the Input aspects where the learner is pro-
vided with the feedback for the “Generate components by
attribute type” option. The feedback is divided into three parts:
1) what the stored values are in the PM: 2) what the
consequences are for the generated prototype, and 3) how to
make modifications. From this view, it is possible to view the
PM and the chosen values of the Window aspects.

Furthermore, FENIkS provides corrective feedback about
compliance with two categories of UI design principles. First,
there are four “to actively observe” principles, which
compliance is influenced by the designer’s choices in the
presentation model. Depending on the chosen options in the
presentation model, the principles are well applied or violated
in the generated prototype.

The “to actively observe” principle's are:
• Allow users to use either the keyboard or mouse.
• Provide visual cues.

• Good error messages.
• Prevent errors.

Each of these principles has associated concrete guidelines

for which options have been defined with two types of values:
a positive value that makes the generated prototype compliant
with the guideline and a negative value that implies guideline
violation. The possible values are shown to the learners as UI
design options in the presentation model. The chosen values are
stored and used for the UI generation.

Second, three additional principles are “observed by default”
in FENIkS, by which we mean that the generated prototype
complies with these principles by default. The feedback
explains the reasons why they are well applied:
• Structure the UI.
• Strive for consistency.
• Offer informative feedback.

Using the values for the design options stored in the PM,

FENIkS checks for each principle to be observed if the values
selected by the learner are correct. Then it informs the learner
on which principles the prototype is (partially) compliant with
and which principles it is not to provide automatic feedback on
principle compliance to the learner.

Fig. 5 shows an example of the feedback: besides the names
of the principles, the feedback also explains the rationale behind
the compliancy level and how the “observed by default”
principles are satisfied.

The most important factors of the feedback provided by
FENIkS, based on the framework presented in [55], are
described as follows. Although the purpose of the provided
feedback is corrective, it is also explanatory because it pro-
vides knowledge about the correct response (see Fig. 5). The
feedback is accessible anytime, but the learner can also request
this feedback before generating the prototype. It enables the
designer to make the necessary changes in the PM to be
compliant with all the principles, without needing to generate
the prototype. Nevertheless, the generation is helpful for the
complete visualization of the outcomes of choices in the PM.

All feedback in the tool is formative: It provides learners with
information and guidelines to improve their answers while
performing the learning task. As explained in [45], formative
feedback is useful to students to improve their understanding
level. The feedback is provided at Task-level and addresses
how well tasks (in this case design principles) are understood,
performed, or applied. It focuses on faults in the interpretation
of the principles and the outcome produced. The recipient of the
feedback is an individual learner, and the educational setting is
the university. Learner control is achieved by letting the student
decide when and where to see the feedback in FENIkS or the
prototype (see Fig. 5).

Fig. 4. Design options explanatory feedback.

TLT-2019-02-0048 6

Similar to DynaMo-AID [28] and Trætteberg’s approach

[29], FENIkS generates a prototype from conceptual domain
models, which help the designer see how the application would
look and function.

D. Requirements Satisfaction
FENIkS satisfies the requirements presented in Section III-A

as follows:
R1: Evaluating the outcome against good practices of UI

design is satisfied using the principles for which FENIkS
incorporates various design options and feedback.

R2: Immediate Feedback is satisfied because students can
ask for feedback any time before and after generating the
prototype.

R3: “Whole-task” practice and integration of knowledge via
the co-design of an application and its UI are satisfied because
it is possible to “co-design” the conceptual domain model and
the UI design models. The integration enables the management
of consistency and links between all the models and easily
switching between adapting the application or adapting the UI.
Students can thus address all aspects of application design.

R4: Ease of use. Once the conceptual and PMs have been
created, the prototype can be generated with only one click.
This produces an “illusion of simplicity,” which makes the tool
easy to use. There is no need to have a perfect or complete set
of models to test the UI and the application code. Furthermore,
the prototype can also be generated at early stages from a
minimal domain model consisting of only one object type. The
default values of the PM can be used, without needing to specify
them. The possibility of generating the prototype from
incomplete models enables checking partial versions of the
prototype faster and contributes to ease of use.

R5: Simulation. There are two types of simulation
incorporated in FENIkS: simulation by generating a fully
working prototype and simulation of UIs using the runtime

preview. An important added value is that this preview has the
same layout as the to-be-generated UI. It also supports
combining several generation options at once, enabling
developers to assess the result of the overall generation process,
instead of on a per-option basis.

IV. EXPERIMENTAL EVALUATION
In this section, we present the experimental study we con-

ducted to assess the effectiveness of FENIkS. Specifically, to
which extent FENIkS is adequate to support the learning of UI
design principles by software engineering students who have no
prior training in UI design. Therefore, such students are
considered novice designers.

A. Measurement Instruments
The effectiveness of FENIkS to support the learning of UI

design principles is measured by student’s test scores on an
assessment of their knowledge about UI design principles.
Furthermore, perceived usefulness and satisfaction are
measured to evaluate the acceptance of the environment by the
students.
1) Knowledge assessment

Students were given a set of UIs of a system where some UI
design principles were well applied, and other principles were
violated to test the knowledge of UI design principles. The
students had to answer a series of questions (Exercises A/B, see
Appendix A) to assess learning outcomes at different cognitive
levels of Bloom’s taxonomy [56]. Next, we explain some
illustrative examples (see the complete test in Appendix A):

Cognitive level “understand”: in Exercise A, questions 3–8,
10, 11, 13, students need to explain why certain items are an
example (or not) of a principle. For instance, question 3
presents several statements where the student has to indicate
which of these is a correct application of the principle
“Structure the UI.”

Cognitive level “apply”: in Exercise A, questions 1, 9, 12,
students need to identify the correct application of a principle.
For instance, question 9 presents different options for errors that
appear in the system. The student has to select the correct
message to comply with the principle “Good error messages”.

Cognitive levels “analyze” and “evaluate”: question 2 in
Exercise A asks the student whether the way the system asks a
user for information is correct and why.

As explained in Section III, FENIkS provides the novice
designer with feedback about several UI design principles.
During the experiment, the students answered questions about
the four “to actively observe” design principles and the three
“observed by default” principles. The student cannot
manipulate the design to violate these principles in FENIkS (see
Section III). Furthermore, questions about three additional
principles for which there is no feedback were also added to
compare the effect of using FENIkS on the learning of the
principles for which it provides support: Visibility, Minimize
user’s memory load, Speak the user language.
2) User acceptance of the learning environment

Previous studies [57] suggested perceived usefulness as an
important factor for contributing to user acceptance for

Fig. 5. Checking the UI principles in the generated prototype.

TLT-2019-02-0048 7

computer-assisted learning environments. In this research, we
used a questionnaire (see Appendix B) composed of 15 items
based on the one proposed by [50]. The items have 7-point
Likert scales, anchored at the endpoints with the terms
“Strongly disagree” for 1 and “Strongly agree” for 7.
Questionnaires make it easier for the students (who feel
somewhat uncomfortable during class discussions) to give
feedback to the researchers [58].

B. Experimental Design and Variables
The experimental variables and hypotheses used in this

experimental study are as follows.
1) Dependent variables

The dependent variable is the learning of UI design
principles, measured through the score on a set of questions. For
each correct answer, 1 point was given, and 0 was given for
each wrong answer. Forty points could be obtained in the
experiment, including 4 points per tested UI design principles
(10 principles tested).
2) Independent variables and treatment

The independent variable used in this study is the use of
feedback-enriched simulation. The goal of the experiment was
to use FENIkS (the treatment) to influence the dependent
variable (the learning of UI design principles). In this study, we
used the feedback in conjunction with the preview capabilities
and further simulation to enable students to link the conceptual
model and the UI options in the generated working prototype.

An important step in running experiments is conducting
pilots. As explained by [59], “for novel tools it can be
particularly important to detect usability problems with a tool’s
UI that could interfere with participants’ ability to succeed in
the tasks.” Therefore, before conducting the experiment, as
shown in Fig. 6, two pilot experiments were conducted. The
first pilot experiment was conducted during the first semester
of the 2015–2016 academic year with 12 novice developers to
evaluate the tool from the perspective of perceived usability by
novice designers by performing an experiment. No participant
had prior knowledge of the tool. We used the Computer System
Usability Questionnaire (CSUQ) [60]. Each participant was
asked to carry out a set of tasks in FENIkS, and then fill the
CSUQ. The scores for all the items ranked above 5 (on a 7-point
scale), indicating a positive evaluation. Developers found
FENIkS very satisfactory in all areas: usefulness, information
quality, and interface quality. FENIkS is positively perceived
overall and provides the functionalities the developers
expected. Details of this pilot experiment are described in [42].

The second pilot experiment was conducted during the
second semester of the 2015–2016 academic year, with 20
students enrolled in the 4th year of the Informatics Engineering
program at the University of Holguin to check the feasibility
and correct setup of the experiment. The pilot experiment
started with teaching the UI design course to the mentioned
group of students through lectures and without using FENIkS
or any other tool. After the lectures, a first test was taken by the
students. Subsequently, the students learned how to use
FENIkS, followed by a second test, equivalent to the first one,
but in this case, students were allowed to use FENIkS as a help

to perform the test. The second pilot experiment led to the
adoption of randomized control crossover design for the final
experiment. We also improved the tests following the pilot
experiment by adding more questions per principle.

C. Experimental Details

The final experiment, which is the focus of this paper, used a
crossover design in which the treatment consisted of creating a
UI using FENIkS. A crossover design was chosen to enable all
students to use FENIkS while serving as their control group.
The crossover design significantly reduces between-subject
variability and permits between and within-group comparison
[61]. Furthermore, it has the advantage of eliminating bias that
may be introduced by the professor during the course delivery
in the two sections (teaching without FENIkS and teaching the
use of FENIkS) and eliminating any attitude bias that might
result if students of either section received only the treatment or
control for the entire course if swapping did not occur [62].

The experiment was performed in the 2016–2017 academic
year with 34 students of the 4th year of the Informatics
Engineering program at the University of Holguín (see
demographic details in Table I).

Fig. 7 shows the experimental setup and how it is embedded in
the course. The learning of UI principles was tested three times.
First, the students received lectures about UI design principles
without using any tool. Subsequently, they participated in a pre-
test to measure their knowledge of UI design principles. Then,
the students learned how to use FENIkS and completed
Exercises A/B on the same day. Students had one hour to
complete each exercise, which was a paper-and-pencil test.
Both exercises aimed to answer questions about specific design
choices in UI design and whether the design choices are in line
with UI design principles. The pre and post-test group

Fig. 6. Sequence of pilots and experiments.

TABLE I
DEMOGRAPHIC DATA

 Amount %

Gender Male 29 85.29%
Female 5 14.71%

Age
distribution

Min age 21
Max age 29
Average age 23.88
St. dev 2.38

TLT-2019-02-0048 8

experiments are based on a quasi-experimental design made up
of two groups of 17 students in each group.

In line with the crossover design, students were randomly
assigned to Group 1 or 2 and the treatment consisted of using
FENIkS. Group 1 did Exercise A without using FENIkS and
then Exercise B with FENIkS, while Group 2 did Exercise A
with FENIkS and Exercise B without FENIkS. We ensured the
exercises are equivalent to minimize differences in scores due
to varying difficulty levels. (See Appendix A for details of the
exercises.) In both exercises, the students were asked four
questions per principle and were also asked to write a short
motivation of the answers for a more accurate scoring of their
competences. The summary is used to identify answers where
students guessed the correct answer. Answers without a
summary or with contradictory summary were scored as a
wrong answer.

We collected the students’ demographic and other
information using questionnaires administered at the end of the
experiment. We included a question on self-reported prior
knowledge to verify the students’ level of expertise in terms of
UI design. Furthermore, a questionnaire on perceived
usefulness and satisfaction was used to measure the acceptance
of the learning environment, perceived usefulness, and
satisfaction.

Crossover design may present some carryover effects.
Carryover effects can be mitigated by extending the time gap
between the treatment (the use of FENIkS) and the no-treatment
experiments with the expectation that the carryover effect
would disappear during the gap. However, as pointed out in
[63], this strategy increases the total duration of the trial.
Conversely, the presence of a carryover effect for Group 2
possibly shows that the students internalize the learning support
provided by the tool. In previous research using a similar
experimental design, the internalization of the support became
apparent because students of Group 2 were using the terms of
the learning tool when performing the exercises without the tool
[64]. It shows an improvement in their ability to reason on
models without tool support.

D. Hypothesis
Using the experimental design detailed above, we can answer

the research question, “Does the use of FENIkS improve the
novice designers’ learning of principles related to functional

aspects of UI design?” by testing the following hypotheses:
H1: Students make fewer errors with FENIkS than without

FENIkS.
H2: When using FENIkS, students make fewer errors in UI

design principles for which FENIkS provides support ("to
actively observe” or “observed by default"), compared to when
not using FENIkS.

Based on this hypothesis, it is expected that:
Students in Group 1 will make fewer errors in exercise B

(solved with FENIkS) than in exercise A (solved without
FENIkS). Specifically, students of Group 1 will make fewer
errors against the “to actively observe” UI design principles in
FENIkS in Exercise B than in Exercise A.

Students in Group 2 will make fewer errors in Exercise A
(solved with FENIkS) than in Exercise B (solved without
FENIkS). Specifically, students in Group 2 will make fewer
errors against the “to actively observe” UI design principles in
FENIkS in Exercise A than in Exercise B.

H3: When using FENIkS, students make fewer errors for the
“to actively observe” UI design principles than those that are
only observed by default or without teaching support.

Using the experimental setup, we can compare the results of
the two groups, and it is expected that:

The improvement for the “to actively observe” principles in
FENIkS is greater than for the “observed by default” principles.

The improvement for the “to actively observe” UI principles
in FENIkS is greater than for the principles without teaching
support.

H4: The use of FENIkS has a short-term persisting learning
effect on student’s test scores when it is no longer used.

The setup of the experiment is such that Group 1 will not use
FENIkS for the first exercise. Conversely, Group 2 will not use
FENIkS for the second exercise after completing the first
exercise using FENIkS. Therefore, we will be able to compare
the results of the two groups for Exercise A and Exercise B
without using FENIkS, expecting that students from Group 2
will make fewer errors in Exercise B than students from Group
1 in Exercise A.

H5: FENIkS is suitable for novice UI designers (user
acceptance).

This hypothesis is tested using the questionnaires that
measure the perceived usefulness and satisfaction at the end of
the experiment.

Fig. 7. Experimental setup.

H1+H2

H1+H2

H5H3

H3

Principles
to actively observe

observed by default

without support

H3

H3

TLT-2019-02-0048 9

E. Results of the Evaluation
Table II presents the results of the question on self-reported

prior knowledge.

We measured how many errors the students made after

completing both tests.

1) Analysis of the error rates
Table III shows the pre-test results, which measure the

students’ knowledge of UI design principles (Min score 0, Max
score 10). The average score and distribution of students above
and below average for both groups are similar.

The data of the exercises with and without the treatment were

analyzed using a statistical comparison of error rates with
paired and two-sample t-tests [65]. Assuming a normal
distribution of the differences between the errors before and
after the treatment, we can perform a paired t-test. Appendix D
shows the distribution of the differences in errors.

We tested the normality of the differences in errors using the
Shapiro Wilk normality test [66], which is recommended for
testing the normality of data [67]. The p-value for the entire
group (0.799) is greater than 0.05. Furthermore, the p-value for
Group 1 and 2 is 0.440 and 0.921, respectively. Therefore, the
values appear to be normally distributed based on the results of
the normality test.

Table IV shows the paired t-test to compare mean error rates
(without and with FENIkS) for the entire group, and Groups 1
and 2 separately. We observe a decrease in errors with the use
of FENIkS, as shown in Table IV. Therefore, we accepted
hypothesis H1: Students make fewer errors with FENIkS than
without FENIkS.

Cohen’s d = 0.87 shows that the effect size is large, which is

a significant result. Both the one-tailed and two-tailed p-values
are very low (p < 0.01, 99% confidence interval). The effect
size is large for Group 1 with Cohen’s d = 1.12 and medium for
Group 2 with Cohen’s d = 0.71.

2) Analysis of different kinds of principles

For hypotheses H2 and H3, we need to analyze the
differences between the principles, based on the type of support
provided by the tool. Notably, we compared the average
improvements for “to actively observe” and “observed by
default” principles without teaching support (H2), and the
improvement of “to actively observe” over the “observed by
default” principles (H3). Table V shows the t-test results for
various principles.

Comparing the improvement for principles without teaching

support with the improvement for principles with teaching
support, we observe that the students performed better for
principles with teaching support with significant results in all
the tests except for Group 1 for the “observed by default”
principles. Notably, comparing the ones without teaching
support and the “to actively observe” principles, we observe
that the improvement for the latter principles is more
significant, as shown in Table V. Two-tailed for Group 1 “to
actively observe” vs. principles without teaching support:
0.000*** < 0.001**; two-tail for Group 2 “to actively observe”
vs. principles without teaching support: 0.012* < 0.936. The
results support H2: when using FENIkS, students make fewer
errors in UI design principles with teaching support in FENIkS
than for UI design principles for which FENIkS does not give
feedback.

A paired t-test shows a significant improvement for both
student groups for “to actively observe” principles in FENIkS.
The effect size is large for Group 1 with Cohen’s d = 1.21 and
medium for Group 2 with Cohen’s d = 0.69. For “observed by
default” principles, there is no improvement for Group 1, but
there is an improvement for Group 2. However, the effect size
is small for both groups with Cohen’s d = 0.28 and 0.49 for
Groups 1 and 2, respectively. The results support H3, with the
improvement for the “to actively observe” UI principles higher
than for the “observed by default.” For the principles without
teaching support, Group 1 has a difference, but no difference
for Group 2. The effect size for Group 1 is large, with Cohen’s
d = 0.94; conversely, the effect size for Group 2 is small, with
Cohen’s d = 0.02.

To gain more insight into the support of the hypotheses H2
and H3, we calculated the error rates for each principle. The
comparison of mean error rates between principles with and
without support in FENIkS is presented in Table VII. Generally,

TABLE II
PREVIOUS KNOWLEDGE (SELF-REPORTED) OF UI DESIGN

 The experiment

Previous knowledge
(self-reported)

No knowledge 12.12%
Little knowledge 18.18%
Moderate knowledge 51.52%
Extensive knowledge 18.18%

TABLE III
PRE-EXPERIMENTAL TESTING FOR BASIC KNOWLEDGE

  error Average (<5) Average (≥5)
Group 1 4.41 9 8
Group 2 4.35 10 7

TABLE IV
MEAN ERROR RATES: T-TEST, PAIRED TWO SAMPLE FOR MEANS

  error

without

 error

with

 difference p-value
one-
tailed

p-value
two-
tailed

Entire group 15.94 13.15 −2.79 0.000*** 0.000***
Group 1 16.06 13.12 −2.94 0.000*** 0.000***
Group 2 15.82 13.18 −2.64 0.005** 0.010*

TABLE V
WITHIN-GROUP ANALYSIS: PAIRED T-TEST FOR ERRORS

  error

without
 error

with

difference

p-value
one-tail

p-value
two-tail

Principles
with
teaching
support

“To actively
observe”
principles

Group 1 5.76 3.76 −2 0.000*** 0.000***
Group 2 5.24 3.7 −1.54 0.006** 0.012*

“Observed
by default”
principles

Group 1 4.41 4.88 0.47 0.135 0.271
Group 2 4.71 3.65 −1.06 0.023* 0.046*

Principles
without
teaching
support’

 Group 1 5.88 4.47 −1.41 0.001** 0.001**
Group 2 5.88 5.82 −0.06 0.468 0.936

TLT-2019-02-0048 10

for all the principles, except “structure the UI,” the students
achieved better results when using FENIkS. When not using
FENIkS, the students performed poorly in “minimize the user
memory load” and “speak the user language,” and achieved the
best in “strive for consistency” principle. For the test where the
students used FENIkS, they made the most errors in “structure
the UI” and “minimize user’s memory load” principles.
However, they made the least errors in “allow users to use
either keyboard or mouse” and “provide visual cues,” which
are “to actively observe” principles. When using FENIkS, the
differences in the errors are shown in light green for fewer
errors, dark green for the principles with best results, and orange
for the most errors.

For Group 1, the most significant improvement by using
FENIkS is achieved for “provide visual cues” and “minimize
user’s memory load” principles. For Group 2, the most
significant improvement is achieved in “good error messages”
and “offer informative feedback” principles. Generally, the
most significant improvement by using FENIkS is achieved in
“provide visual cues,” “offer informative feedback,” and “good
error messages” principles in order.

For all the “to actively observe” principles, each group
achieved better results for the “to actively observe” principles
when using FENIkS, and similar were observed for the entire
population.

For the categories “observed by default” principles without
teaching support, no improvement was observed when using
FENIkS except for “offer informative feedback.”

3) Analysis of short-term persisting learning effect

Table V shows a within-group analysis, but a cross-group
analysis is required to measure the persistence of the learning
effects. As shown in Table VI, Group 2 performed slightly
better than Group 1. However, if we test the difference using a
two-sample t-test, we observe that the slight decrease in errors
is insignificant (p-values > 0.1). Therefore, we have no
evidence for H4.

4) User acceptance

We tested H5 using a questionnaire (see Section IV-B) to
measure the perceived usefulness. Cronbach’s alpha was 0.933,
which indicates a high level of internal consistency. The results
from the questionnaire on user acceptance are presented in
Table VIII. The results for each group and the entire population
are similar, as shown in Table VII.

V. DISCUSSION

A. Internal Validity
The experiment did not include a control group because

FENIkS is used in a course where students are graded. There is
a psychological risk in classroom studies: “students may worry
about whether and how their participation or non-participation
in the experiment will affect their grade” [68]. It is also
impossible/unethical to deny half of the group access to a tool
that might improve their learning. As pointed in [58], ensuring
that each student receives the same value from the experiment
helps satisfy an important pedagogical ethic. Therefore, in line
with the ethical considerations, we conducted a quasi-
experiment instead of a classic experiment in this research. The
problems, as mentioned earlier, were mitigated by using a
crossover design with two groups.

To avoid the observer-expectancy effect, probably present in
experiments involving students [59], we ensured the following:
1. we randomly assigned each participant to groups, thus

increasing the internal validity,
2. we followed the same protocol in the same way for every

student in every test we performed, and
3. we used a single-blind study, where the students did not

know which group they were assigned.

TABLE VI
CROSS-GROUP ANALYSIS: TWO-SAMPLE T-TEST ASSUMING EQUAL

VARIANCES FOR “TO ACTIVELY OBSERVE” PRINCIPLES
 error

without

(before–G1)

 error

without

(after–G2)

 difference p-value
one-tail

p-value
two-tail

5.76 5.24 −0.53 0.323 0.647

TABLE VII
MEAN ERROR RATES GROUP BY PRINCIPLE

 Group 1 Group 2 Entire population
Principle  error

 without

 error
with

Diff.  error
without

 error
with

 Diff.  error
without

 error
with

Diff.

To actively observe
Prevent errors 1.41 1.00 −0.41 1.53 1.41 −0.12 1.47 1.21 −0.26
Good error messages 1.41 1.24 −0.17 1.47 0.71 −0.76 1.44 0.97 −0.47
Provide visual cues 1.94 0.88 −1.06 1.00 0.88 −0.12 1.47 0.88 −0.59
Allow users to use either keyboard or mouse 1.00 0.65 −0.35 1.24 0.71 −0.53 1.12 0.68 −0.44
Observed by default - with feedback
Structure the UI 1.82 2.00 +0.18 1.65 2.24 +.59 1.74 2.12 +0.38
Offer informative feedback 1.59 1.59 0.00 1.88 0.59 −1.29 1.74 1.09 −0.65
Strive for consistency 0.94 1.29 +0.35 1.18 0.82 −0.36 1.06 1.06 0.00
Without teaching support
Visibility 1.59 1.18 −0.41 1.88 1.88 0.00 1.74 1.53 −0.21
Minimize user’s memory load 2.65 1.29 −1.00 1.71 2.35 +0.64 2.18 1.82 −0.36
Speak the user language 1.71 2.00 +0.29 2.29 1.59 −0.70 2.00 1.79 −0.21

TLT-2019-02-0048 11

To avoid a maturation effect, the students did not receive

feedback on the first test’s solutions because the students’ prior
knowledge could impact the test results. Although students
reported moderate prior knowledge and a few extensive
knowledge, the initial test reveals that all students perform at
the expected UI design expertise level.

Furthermore, the measurement of knowledge could also be a
source of errors. In the pilot experiment, we observed that
instead of an improvement, there was a decrease in some
students’ test scores. This decrease could be attributed to the
few questions per principle, and also because the questions
were true or false, students sometimes guess the answers
without understanding the underlying principles. In the final
experiment, we solved the problem by having at least one
question per principle and asking them to write a short
motivation of their answers. It enabled us to detect guessed
answers for true/false questions, making the results of the final
experiment more reliable.

B. External Validity
The validity of the results is limited to the course described

in this research, and generalization beyond this course requires
caution. Nevertheless, the experiment’s external validity
improved by making the subject population similar to the target
population [58]; in this study, novice designers are the target
population. The small sample size is a limitation for the pilot
study. It was mitigated by replicating the experiment with a
larger group of students. We performed a power analysis on our
experimental design parameters, defined to detect a large effect
size of at least Cohen’s d = 0.80. During the second experiment,
the sample size was adequate to identify significant
improvement, with a large effect size in the performed tests in
general and a statistical power of 0.87 for each group of 17

students and 0.99 for the entire group made up of 34 students.

C. General Observations
We evaluated the results of the question on self-reported prior

knowledge using information about previous UI design
knowledge collected from the participants during the
experiment. Comparing this information with the curriculum
used by the students, we observed that none of the students had
taken a prior course on UI design, even those that reported
medium to extensive knowledge. Therefore, we question the
reliability of measuring previous knowledge by self-reporting
and accept the evaluation performed in the experiment, which
provides a more accurate measurement of the student’s
expertise in UI design.

Only H4 about the persistence of the learning effect could not
be proved, which may be due to the short duration of the
experiment. A study extending to several weeks could reveal
different results with the expectation that the positive effects
would persist if the treatment is applied several times
consecutively.

Furthermore, the experiment results show better performance
in the “to actively observe” and “observed by default” principles
than for principles without teaching support. This could be
explained by the feedback provided, which states why a
principle is considered well applied or not helping the students
understand the principles. Achieving better results in “to
actively observe” principles than in other principles indicates
that the possibility of making various choices during design,
interacting with a simulation of the UI, and seeing the outcomes
of the choices made is a better approach than only showing the
feedback to the student.

The principle “structure the UI” had only one associated
guideline in FENIkS. For the other of the principles, there were

TABLE VIII
QUESTIONNAIRE ON PERCEIVED USEFULNESS: ITEMS AND SCORES; RANGE 1 (LOWEST) TO 7 (HIGHEST)

 Question statement
Mean Std. dev. Mode

Both G1 G2 Both G1 G2 Both G1 G2

1 Using the prototype improves my understanding of UI principles. 5.79 5.81 5.76 1.15 1.24 1.06 7 7 6
2 Using the prototype makes me understand UI principles much faster. 5.70 5.50 5.88 1.09 1.06 1.08 6 6 7

3 Using the prototype improves my understanding of the relations
between the conceptual model and the generated prototype components. 5.64 5.63 5.65 1.04 1.11 0.97 6 5 6

4 Using the prototype makes me understand the relations between the
conceptual model and the generated prototype components much faster. 5.21 5.00 5.41 1.25 1.32 1.14 6 5 6

5 Using the prototype improves my interpretation of usability results from
the generated prototype. 5.09 5.00 5.18 1.24 1.46 0.98 5 3 5

6 Using the prototype makes me interpret usability results from the
generated prototype much faster. 5.18 5.19 5.18 1.31 1.47 1.15 5 4 5

7 Previewing the UI facilitated the creation of the Presentation model. 5.09 5.56 4.65 1.33 1.12 1.37 5 5 3

8 Previewing the UI showed me the effects of the chosen options on the
final UI, before UI generation. 5.48 5.94 5.06 1.33 1.20 1.30 7 7 4

9 Previewing the UI helped me to decide better about design options. 5.30 5.44 5.18 1.22 1.06 1.34 5 6 5

10 Previewing the UI allowed me to visualize what the generated UI will
look like and assessing the result. 5.21 5.44 5.00 1.34 1.37 1.28 6 6 4

11 Previewing the UI facilitated performing a “what-if” analysis. 5.15 5.13 5.18 1.35 1.27 1.42 6 6 4

12 If I had the choice or opportunity, I would use this tool to learn UI
design principles. 5.48 5.31 5.65 1.18 1.10 1.23 6 6 7

13 If I had to vote, I would vote in favor of using prototyping in the
classroom. 5.33 5.13 5.53 1.22 1.17 1.24 6 4 7

14 I am enthusiastic about using prototyping in this kind of course. 5.33 5.38 5.29 1.22 1.22 1.23 6 6 5
15 Using the prototype was a positive experience. 6.06 5.69 6.41 1.18 1.16 1.09 7 6 7

TLT-2019-02-0048 12

at least two associated guidelines. The limited number of
associated guidelines is a possible explanation of why the
students achieved the worst results for this principle.

VI. CONCLUSION
This paper presents and assesses FENIkS, an educational

environment that combines simulation and feedback in an MDE
approach to support the learning of functional UI design
principles. To our knowledge, FENIkS is the first and only
educational environment that supports the simulation of UIs by
generating a functional prototype with feedback. FENIkS
preview feature helps learners improve their design skills by
quickly visualizing the outcome of various design decisions;
therefore, they “learn by experience.” The UI feedback features
in the generated prototype help learners validate the generated
UI in a fast and easy way. Furthermore, the impact of various
design decisions made in the PM can be compared in the final
prototype by experimenting with a concrete form of an
enterprise information system. Experimental results indicate
that FENIkS improved the understanding of novice designers’
UI design principles, resulting in significantly improved
learning outcomes. Furthermore, most students found FENIkS
helpful in understanding UI design principles.

Besides contributing to the teaching of UI design, the results
of this research are also applicable to instructional design.
Notably, students performed better with FENIkS for the ”to
actively observe” principles than for others. It reveals that
actively making choices during design and interacting with a
simulation of the UI to see the effect of the choices made is a
better approach than only showing explanations of well-
designed UIs to the student. From an instructional design
perspective, this indicates that students learn more from errors
than from explanations of correct solutions. On the one hand,
some research showed that worked examples could be more
effective than erroneous examples for teaching problem-
solving. On the other hand, simulation enables students to
“experience” rather than “observe” the errors. Therefore,
feedback and simulation help students because they can make
changes to the options related to the principles and see the effect
while interacting with the simulation of the UI and in the
feedback (“to actively observe”).

These results motivate the further development of feedback-
enriched simulation tools for supporting the learning of UI and
application design. Further work could cover other aspects of
the design process. FENIkS could be further extended to
specify a user model, which would enable the consideration of
a user’s skills and characteristics. The use of a user model
would allow enhancing the support for learning UI design in a
way that novice learners can check the outcomes of different
design choices based on the user’s skills and characteristics.
Furthermore, we plan to generate UI for other contexts of use.
Presently, FENIkS only addresses the development of
enterprise information systems in one context of use. However,
since this approach relies on MDE, and incorporates an AUI
model, future versions of the tool can adapt the generation of
the interactive software system to other contexts of use.
Generating the prototype for different contexts of use will

enable comparing and giving feedback based on the design
output in different UIs.

ACKNOWLEDGMENT
The authors would like to thank Enago (www.enago.com) for

the English language review.

REFERENCES
[1] P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive model-driven user

interface development systems,” ACM Comput. Surv., vol. 47, no. 1, pp.
1−33, May 2014, doi: 10.1145/2597999.

[2] P. A. Kirschner and J. J. G. Van Merrienboer, Ten steps to complex
learning, 3rd ed. New York, NY, USA: Routledge, 2018.

[3] H. Magrez, K. Salmi, and A. Ziyyat, “Interactive simulations for teaching
and learning differential equations,” in Proc. Int. Conf. Inf. Technol
Organizations Development (IT4OD), Feb. 2016, pp. 1-5, doi:
10.1109/IT4OD.2016.7479266.

[4] B. K. S. Khoo, “A computerized constructionist approach to simulation
and modeling pedagogy,” Int. J. Manag. Inf. Syst., vol. 18, no. 2, pp.
87−98, Mar. 2014, doi: 10.1109/IT4OD.2016.7479266.

[5] R. Lindgren, M. Tscholl, S. Wang, and E. Johnson, “Enhancing learning
and engagement through embodied interaction within a mixed reality
simulation,” Comput. Educ., vol. 95, pp. 174−187, Apr. 2016, doi:
10.1016/j.compedu.2016.01.001.

[6] S. Kardan and C. Conati, “Providing adaptive support in an interactive
simulation for learning: an experimental evaluation,” in Proc. 33rd Annu.
ACM Conf. Hum. Factors Comput. Syst. (CHI '15), Apr. 2015, pp 3671–
3680, doi: 10.1145/2702123.2702424.

[7] X. Wei, D. Weng, Y. Liu, and Y. Wang, “Teaching based on augmented
reality for a technical creative design course,” Comput. Educ., vol. 81, pp.
221−234, Feb. 2015, doi: 10.1016/j.compedu.2014.10.017.

[8] C. De Raffaele, S. Smith and O. Gemikonakli, "The aptness of Tangible
User Interfaces for explaining abstract computer network principles," in
Proc. 2016 IEEE Frontiers in Education Conference (FIE), Erie, PA,
USA, 2016, pp. 1-8, doi: 10.1109/FIE.2016.7757573.

[9] F. Beuvens and J. Vanderdonckt, “Designing graphical user interfaces
integrating gestures,” in Proc. 30th ACM Int. Conf. Design Comm.
(SIGDOC '12), Oct. 3–5, 2012, pp. 313−322.

[10] J.-S. Sottet, A. Vagner, and A. G. Frey, “Model Transformation
Configuration and Variability Management for User Interface Design,” in
Model-Driven Engineering and Software Development, P. Desfray, J.
Filipe, S. Hammoudi, and L. Ferreira Pires, Eds., 2015, pp. 390−404, doi:
10.1007/978-3-319-27869-8_23

[11] T. Sboui and M. B. Ayed, “Generative Software Development Techniques
of User Interface: Survey and Open Issues,” Int. J. Comput. Sci. Inf.
Secur., vol. 14, no. 7, pp. 824−842, Jul. 2016.

[12] M. L. Barrett, “A hypertext module for teaching user interface design,”
SIGCSE Bull., vol. 25, no. 1, pp. 107−111, Mar. 1993, doi:
10.1145/169073.169359.

[13] A. Holzinger, “Usability engineering methods for software developers,”
Commun. ACM, vol. 48, no. 1, pp. 71−74, Jan. 2005, doi:
10.1145/1039539.1039541.

[14] G. Botterweck, “A model-driven approach to the engineering of multiple
user interfaces,” Models in software engineering, T. Kühne, Ed., 2007,
pp. 106−115, doi: 10.1007/978-3-540-69489-2_14

[15] K.-S. Song, “Teaching software engineering through real-life projects to
bridge school and industry,” SIGCSE Bull., vol. 28, no. 4, pp. 59−64, Dec.
1996, doi: 10.1145/242649.242667.

[16] B. K. S. Khoo, “User interface design pedagogy: a constructionist
approach,” in Learning Tools and Teaching Approaches through ICT
Advancements., L. A. Tomei, Ed., Hershey, PA, USA: IGI Global, pp.
252−261, 2013, DOI: 10.4018/978-1-4666-2017-9.ch022.

[17] J. W. van Aalst, C. van der Mast, and T. T. Carey, “An Interactive
Multimedia Tutorial For User Interface Design,” Comput. Educ., vol. 25,
no. 4, pp. 227−233, Dec. 1995, doi: 10.1016/0360-1315(95)00076-3.

[18] J. J. G. Van Merriënboer, R. E. Clark, and M. B. M. De Croock,
“Blueprints for complex learning: the 4C/ID-model,” Educ. Technol. Res.
Dev., vol. 50, no. 2, pp. 39−61, Jun. 2002, doi: 10.1007/BF02504993.

[19] N. Fenton, “Viewpoint article: conducting and presenting empirical
software engineering,” Empir. Softw. Eng., vol. 6, pp. 195−200, Sep.
2001, doi: 10.1023/A:1011449731678.

TLT-2019-02-0048 13

[20] J. Hattie and H. Timperley, “The power of feedback,” Rev. Educ. Res.,
vol. 77, no. 1, pp. 81−112, Mar. 2007, doi: 10.3102/003465430298487.

[21] P. Black and D. Wiliam, "Inside the black box: raising standards through
classroom assessment,” Phi Delta Kappan, vol. 92, no. 1, pp. 81−90, Sep.
2010, doi: 10.1177/003172171009200119

[22] A. G. Sutcliffe, S. Kurniawan, and J.-E. Shin, “A method and advisor tool
for multimedia user interface design,” Int. J. Hum. Comput. Stud., vol. 64,
no. 4, pp. 375−392, Apr. 2006, doi: 10.1016/j.ijhcs.2005.08.016.

[23] F. B. V. Benitti and L. Sommariva, “Evaluation of a game used to teach
usability to undergraduate students in computer science,” J. Usability
Stud., vol. 11, no. 1, pp. 21−39, Nov. 2015.

[24] A. Lisowska Masson, D. Lalanne, and T. Amstutz, “A usability
refactoring process for large-scale open source projects: the ILIAS case
study,” in Proc.2017 CHI Conf. Extended Abstr. Human Factors Comp.
Syst., May 2017, pp 1135–1143, doi: 10.1145/3027063.3053345

[25] W. O. Galitz, The essential guide to user interface design: an introduction
to GUI design principles and techniques. New York, NY, USA: John
Wiley & Sons, 2007.

[26] B. Emond and R. L. West, “Using cognitive modelling simulations for
user interface design decisions,” in Proc. 17th Int. Conf. Innovations in
Appl. Artif. Intell., Ottawa, Canada, 2004, pp. 305−314.

[27] P. K. A. Wollner, P. M. Langdon, and P. J. Clarkson, “Integrating a
cognitive modelling framework into the design process of touchscreen
user interfaces,” in Design, User Experience, and Usability: Users and
Interactions, A. Marcus, Ed., Heidelberg, Germany: Springer, 2015, pp.
473−484.

[28] T. Clerckx, K. Luyten, and K. Coninx, “DynaMo-AID: A design process
and a runtime architecture for dynamic model-based user interface
development,” in Engineering Human Computer Interaction and
Interactive Systems, R. Bastide, P. Palanque, and J. Roth, Eds.,
Heidelberg, Germany: Springer, 2005, pp. 77−95.

[29] H. Trætteberg, “A hybrid tool for user interface modeling and
prototyping,” in Computer-Aided Design of User Interfaces, V. G.
Calvary, C. Pribeanu, G. Santucci, and J. Vanderdonckt,Eds., Heidelberg,
Germany: Springer, 2007, pp. 215−230.

[30] A. M. R. da Cruz and J.P. Faria, “Automatic generation of user interface
models and prototypes from domain and use case models,” in Proc. 6th
Int. Conf. Qual. Inf. Commun. Technol. (QUATIC 2007), Lisbon, 2007,
pp. 208-212, doi: 10.1109/QUATIC.2007.19

[31] F. Montero and V. López Jaquero, “GUILayout++: supporting prototype
creation and quality evaluation for abstract user interface generation,” in
Proc. 1st. USer Interface eXtensible Markup Lang. Workshop (UsiXML-
EICS 2010). Berlin, Germany, June 20, 2010, pp 39-44

[32] D. Raneburger, R. Popp, and J. Vanderdonckt, “An automated layout
approach for model-driven wimp-ui generation,” in Proc. 4th ACM
SIGCHI Symp.Eng. Interact. Comput. Syst. (EICS '12), Copenhagen,
Denmark, 2012, pp. 91−100.

[33] A. I. Molina, W. J. Giraldo, J. Gallardo, M. A. Redondo, M. Ortega, and
G. García, “CIAT-GUI: a mde-compliant environment for developing
graphical user interfaces of information systems,” Adv. Eng. Softw., vol.
52, pp. 10−29, Oct. 2012, doi: 10.1016/j.advengsoft.2012.06.002.

[34] B. Khoo and J. Preece, “An interactive case scenario for teaching user
interface design,” in AMCIS 1999 Proc., 1999, [Online]. Available:
https://aisel.aisnet.org/amcis1999/321.

[35] D. Boud and E. Molloy, “Rethinking models of feedback for learning: the
challenge of design,” Assess. Eval. High Educ., vol. 38, no. 6, pp.
698−712, Mar. 2013, doi: 10.1080/02602938.2012.691462.

[36] J. Albors-Garrigos and J. C. R. Carrasco, “New learning paradigms: open
course versus traditional strategies. the current paradox of learning and
developing creative ideas,” in Social media tools and platforms in
learning environments, B. White, I. King, and P. Tsang, Eds., Berlin,
Germany: Springer-Verlag, 2011, pp. 53−79.

[37] J. Barjis, A. Gupta, R. Sharda, T. Bouzdine-Chameeva, P. D. D. Lee, and
A. Verbraeck, “(GbL #3) Innovative teaching using simulation and virtual
environments,” Interdiscip. J. Inf. Knowl. Manag., vol. 7, pp. 237−255,
2012, doi: 10.28945/1750.

[38] A. Kluge, “Experiential learning methods, simulation complexity and
their effects on different target groups,” J. Educ. Comput. Res., vol. 36,
no. 3, pp. 323−349, Apr. 2007, doi: 10.2190/B48U-7186-2786-5429.

[39] D. A. Damassa and T. D. Sitko, “Simulation technologies in higher
education: uses, trends, and implications,” ECAR Res. Bull., vol. 3, Feb.
2010.

[40] K. Koukouletsos, B. Khazaei, A. Dearden, and M. Ozcan, “Teaching
usability principles with patterns and guidelines,” in Creativity and HCI:

From Experience to Design in Education, P. Kotzé, W. Wong, J. Jorge,
A. Dix, and P. A. Silva, Eds., Boston, USA: Springer, 2009, pp. 159−174,
doi: 10.1007/978-0-387-89022-7_11.

[41] J. Ruiz, E. Serral, and M. Snoeck, “A fully implemented didactic tool for
the teaching of interactive software systems,” in Proc. 6th Int. Conf.
Model-Driven Eng. Soft. Dev., S. Hammoudi, L. Ferreira Pires, and B.
Seli, Eds., Jan. 2018, pp. 95−105.

[42] J. Ruiz, E. Serral, and M. Snoeck, “UI-GEAR: User Interface Generation
prEview capable to Adapt in Real-time,” in Proc. 5th Int. Conf. Model-
Driven Eng. Soft. Dev., L. Ferreira Pires, S. Hammoudi, and B. Seli,
Setubal, Eds., Feb. 2017, pp. 277−284.

[43] J. Ruiz, G. Sedrakyan, and M. Snoeck, “Generating user interface from
conceptual, presentation and user models with jmermaid in a learning
approach,” in Proc. 16th Int. Conf. Human Comput. Interaction
(Interacción '15), New York, USA, 2015, pp. 1–8. doi:
10.1145/2829875.2829893

[44] T. Mandel, The elements of user interface design, vol. 20. New York, NY,
USA: Wiley, 1997.

[45] J. Hattie and S. Clarke, Visible learning: feedback. New York, NY, USA:
Routledge, 2018.

[46] P. L. Smith and T. J. Ragan, Instructional design, 3rd ed. Hoboken, NJ,
USA: Wiley, 2004.

[47] G. Meixner, F. Paternò, and J. Vanderdonckt, “Past, present, and future of
model-based user interface development,” i-com, vol. 10, no. 3, pp. 2−11,
Nov. 2011, doi: 10.1524/icom.2011.0026.

[48] K. D. Nguyen and M. A. Rahman, “Identifying interface design patterns
by studying intrinsic designs,” in Proc. 3th Int. Conf. Comput. Science.,
Comput. Eng. Educ. Technol. (CSCEET2016), Lodz, Poland, 2016, pp.
13−24.

[49] J. Dehinbo, “Establishing and applying criteria for evaluating the ease of
use of dynamic platforms for teaching web application development,” Inf.
Syst. Educ. J., vol. 9, no. 5, pp. 86−96, Oct. 2011.

[50] G. Sedrakyan, M. Snoeck, and S. Poelmans, “Assessing the effectiveness
of feedback enabled simulation in teaching conceptual modeling,”
Comput. Educ., vol. 78, pp. 367−382, Sep. 2014, doi:
10.1016/j.compedu.2014.06.014.

[51] G. Sedrakyan and M. Snoeck, “A PIM-to-code requirements engineering
framework,” in Proc. 1st Int. Conf. Model-Driven Eng. Soft. Dev.,
Barcelona, Spain, Feb. 2013, pp. 277−284.

[52] M. Snoeck, Enterprise Information Systems Engineering: The MERODE
Approach, Heidelberg, Germany: Springer, 2014.

[53] G. Sedrakyan, M. Snoeck, and J. De Weerdt, “Process mining analysis of
conceptual modeling behavior of novices-empirical study using
JMermaid modeling and experimental logging environment,” Comput.
Hum. Behav., vol. 41, pp. 486−503, Dec. 2014, doi:
10.1016/j.chb.2014.09.054.

[54] G. Sedrakyan and M. Snoeck, “Feedback-enabled MDA-prototyping
effects on modeling knowledge,” in Enterprise, Business-Process and
Information Systems Modeling, S. Nurcan et al., Eds., 2013, pp. 411−425,
doi: 10.1007/978-3-642-38484-4_29

[55] E. Serral, J. Ruiz, J. Elen, and M. Snoeck, “Conceptualizing the domain
of automated feedback for learners,” in Proc. 22nd Ibero-American Conf.
Soft. Eng., La Habana, Cuba, 2019, pp. 223−236.

[56] B. S. Bloom and Committee of College and University Examiners,
Taxonomy of educational objectives, Vol. 2, London, UK: Longmans,
Green & Co Ltd, 1964.

[57] S. Poelmans and P. Wessa, “A constructivist approach in an e-learning
environment for statistics: a students’ evaluation,” Interact. Learn.
Environ., vol. 23, no. 3, pp. 385−401, May 2015, doi:
10.1080/10494820.2013.766890.

[58] J. C. Carver, L. Jaccheri, S. Morasca, and F. Shull, “A checklist for
integrating student empirical studies with research and teaching goals,”
Empir, Softw. Eng., vol. 15, pp. 35−59, 2010, doi: 10.1007/s10664-009-
9109-9.

[59] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to
controlled experiments of software engineering tools with human
participants,” Empir, Softw. Eng., vol. 20, pp. 110−141, 2015, doi:
10.1007/s10664-013-9279-3.

[60] J. R. Lewis “IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use,” Int. J. Hum.-Comput.
Int., vol. 7, no. 1, pp. 57−78, Jan. 1995, doi:
10.1080/10447319509526110.

[61] C. M. Stoney and L. L. Johnson, “Design of clinical trials and studies,”
Principles and Practice of Clinical Research, 4th ed., J. Gallin, F.

TLT-2019-02-0048 14

Ognibene, L. L. Jackson, Eds., Cambridge, UK: Academic Press, 2017,
pp. 249−268.

[62] J. C. Chen, D. C. Whittinghill, and J.A. Kadlowec, “Using Rapid
Feedback To Enhance Student Learning And Satisfaction,” in Proc. 36th
Annu. Conf. Frontiers in Educ., San Diego, CA, 2006, pp. 13−18, doi:
10.1109/FIE.2006.322306.

[63] M. Bose and A. Dey, “Developments in crossover designs,” Indian
Statistical Institute, New Delhi, India. Accessed: Sep. 2, 2020. [Online].
Available: https://www.semanticscholar.org/paper/Developments-in-
Crossover-Designs-Bose-
Dey/0a85e92e6464b58a8a17eb1f2956edf5e9702066. 2013.

[64] G. Sedrakyan, S. Poelmans, and M. Snoeck, “Assessing the influence of
feedback-inclusive rapid prototyping on understanding the semantics of
parallel uml statecharts by novice modellers,” Inf. Softw. Technol., vol.
82, pp. 159−172, Feb. 2017, doi: 10.1016/j.infsof.2016.11.001.

[65] R. Shier, “Statistics: 1.1 Paired T-tests,” Math. Learn. Support Cent.,
[Online]. Available:
http://www.statstutor.ac.uk/resources/uploaded/paired-t-test.pdf.

[66] N. M. Razali and Y. B. Wah, “Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests,” J. Stat. Model
Anal., vol. 2, no. 1, pp. 21−33, Jan. 2011.

[67] H. C. Thode, Testing for normality. New York, NY, USA: Taylor &
Francis, 2002.

[68] J. E. Sieber, “Protecting research subjects, employees and researchers:
implications for software engineering,” Empir. Softw. Eng., vol. 6, pp.
329−341, Dec. 2001, doi: 10.1023/A:1011978700481.

Jenny Ruiz was born in Holguin, Cuba in
1981. She received the B.S. and M.S.
degrees in informatics engineering and
applied mathematics and informatics for
management from the University of
Holguin, Cuba, in 2004 and 2007 and the
Ph.D. degree in business economics from
the KU Leuven, Belgium, in 2018.

From 2010 to 2018, she was Assistant
Professor with the Informatics Engineering Department, of the
Faculty of Informatics and Mathematics, University of Holguin.
Since 2018 she has been Full Professor with the same

department. Her research interests include User Interface
design, model-driven engineering and software engineering.

Estefanía Serral obtained her PhD in
computer science in 2011 from the
Technical University of Valencia, Spain.
She is currently Assistant Professor at KU
Leuven (Belgium). Previously, she was
Assistant Professor at TU/e, The
Netherlands. From 2012 to 2014, she led
the Semantic Knowledge Representation
and Integration research group at the CDL-

Lab at the TU Vienna (Austria). Until 2012, she worked in the
ProS Research Center at the Technical University of Valencia
(Spain), where she designed a novel method for developing
ubiquitous systems using model-driven development and
semantic technologies. Prof. Serral has many publications in
high-ranking conferences and journals, such as CAiSE, ER,
UIC, PMC, ESWA, SOSYM, MTAP, etc. She is currently
doing research in topics such as Internet of Things, ubiquitous
business processes, and context-adaptive systems.

Monique Snoeck (M’87) received the
PhD. degree in computer science in 1995
from KU Leuven, Belgium. She is
currently Full Professor at KU Leuven,
Head of the Research Center on
Information Systems Engineering, and
Visiting Professor at UNamur. She has
published over 200 papers in highly
ranked journals and conferences. Her

interests include conceptual modeling, enterprise architecture,
model-driven engineering and technology enhanced learning.

TLT-2019-02-0048

1

APPENDIX A EXERCISES

A. Exercise A
This model presents a system to manage the information about
people and their bank accounts. With that system, you can cre-
ate a person, a bank account type, a bank account associated to
a person, modify the bank account, block it or close it. You
can also end (change to a final state) all of the objects.

The following screenshots correspond to the generated system.
1. Main window of the application. You are in Bank Account
tab

2. Main window of the application. You are in the Client tab.

3. Window to create a person. You clicked on Create button.

4. Window to create a person. You entered the name of a per-
son.

5. Window to create a person. You clicked on the birthday
widget.

6. Window to create a Bank Account. You clicked on Create
button.

Answer the following questions:
1. Select the correct answer. How can you make the applica-
tion easier and quicker to use for experienced users? Why?
(one is correct).

- By providing shortcuts for the frequent actions a user
can make.

- By minimizing the visual cues for known options.

2. In the system, the user needs to enter his/her identification
number (see screenshot 4). Is the way it is asked to enter the
identification number correct? Why?
3. Select the correct answer. The principle "structure the user
interface" is applied in screenshot 5 by (one is correct):

- Classifying/Grouping the methods the user can per-
form for the Bank Account.

- Hiding some attributes of the client and allowing see-
ing them with the View details button.

- None of the previous.
Explain your answer.

TLT-2019-02-0048

2

4. Which of the following are examples of feedback:
- The sound of the keyboard when typing.
- The name of the link you can click.
- The progress bar.
- The position of mouse.

5. In screenshot 5, the identification number of the client is
asked for and a few fields lower, the date of birth is asked for.
This is an example of the violation of:

- Offer informative feedback.
- Prevent errors.
- Strive for consistency.
- Minimize user´s memory load.

Explain your answer.
6. Select the correct answer. Having a title for each window is
an example of the principle (one is correct):

- Organization.
- Structure the user interface.
- Visibility.
- Provide visual cues.

7. In a system, the user needs to enter his/her matric number.
Select the best way to show that to the user:

- Enter your Matric Number (XXX12345): ________
- Enter your Matric Number: ______

8. Which of the following does not reduce the user's memory
load? (one is correct)__

- Define intuitive shortcuts.
- Disclose information in a progressive fashion.
- Provide an online tutorial.
- Stablishing meaningful defaults.

9. A user specified a telephone number incorrectly on a data
entry screen. Select the correct error message:

- Invalid number.
- Sorry, you entered too few digits. You need to enter

a 10 digit number. Please try again.
10. Select the correct answer. When you write your name it is
shown in the text box name, as in the screenshot 4. This is an
example of the application of which of the following princi-
ples (one is correct):

- Organization.
- Feedback.
- Visibility.
- Provide visual cues.

Explain your answer.
11. Select the correct answer. "Making visible all and only the
information the user needs to complete a task at hand" is an
example of the following principle (one is correct):

- Offer informative feedback.
- Prevent errors.
- Visibility.
- Minimize user´s memory load.

12. One of the data items to be entered in screenshot 5 is the
birthday of the client. Is it correct the way it is asked? Explain
your answer.
13. Indicate whether the following statements are true or false:

Nr Statement True Or
False?

1 For the users it is important that the user interface pro-
vides them with handy shortcuts for important tasks.

2 When the components of an interface are generated as in
the screenshots, it is not possible to prevent errors.

3 When several options are presented, their organization
must be logical.

4 When the user interface has the widgets grouped in sec-
tions the consistency is lost.

5 The "Visibility" principle is applied in the presented sys-
tem because the system uses the same font in all the in-
terfaces.

6 Allowing users entering the words True or False for the
Boolean value of the field "Married" helps users to pre-
vent errors.

7 Prompts for data or command entry should be displayed
in a standard location.

8 The error message shown in screenshot 4 is a good error
message.

9 When a list of options is shown, the options should be
always organized alphabetically.

10 In order to be consistent, the user interface should only
use the keyboard or the mouse.

11 A general principle of user interface design is to use as
much as possible detailed explanation when an error oc-
curs.

12 "Visibility" principle is applied in the presented system
because the system provides a distinction between the
zones to input data and the zones where data is shown.

13 Showing one part of the information of the user inter-
face in one language and the other in other language
helps different users to better understand the application.

14 You are changing the way user accesses the methods:
You should use menus for the creating methods and but-
tons for the modifying methods.

15 The "Visibility" principle is applied in the presented sys-
tem because the system shows information in clear ta-
bles.

16 The error message shown in screenshot 3 is a good error
message.

For the statements 13, 14, 15 and 16 explain your answers.

B. Exercise B
This model presents a system to manage the information of
students and the subjects they are enrolled for. With this sys-
tem you can create a student, a subject, enroll a student to a
subject, modify the enrollment, postpone it and suspend it.
You can also end (change to a final state) all of the objects.

The following screenshots correspond to the generated system.
1. Main window of the application. You are in the Student tab

2. Main window of the application. You are in StudentEnroll-
ment tab

TLT-2019-02-0048

3

3. Window to create a student. You clicked on me_cr_student
item of the Creating methods menu.

4. Window to create a student. You clicked on the age widget.

5. Window to create a Student. You clicked on me_cr_student
button.

Answer the following questions:
1. In the system the user needs to enter his/her phone number.
Is the way it is asked in screenshot 5 correct? Why?
2. Select the correct answer. The generated system presents
methods classified in creating, modifying and ending methods.
This is an example of the application of the principle (one is
correct):

- Organization.
- Structure the user interface.
- Consistency.
- Visibility.

Explain your answer.
3. Which of the following are examples of feedback:

- The list of pages you can visit.
- Changing the color of already visited links.

- The confirmation message when you enter an infor-
mation item.

- The window's title.
For the second item explain your answer.
4. In screenshot 5 the systems asks for entering the date of
birth and also the age of the student. This is an example of the
violation of:

- Offer informative feedback.
- Prevent errors.
- Strive for consistency.
- Minimize user´s memory load.

Explain your answer.
5. Select all the correct answers. The design principle "Strive
for consistency" implies that:

- Each application should have its own distinctive look
and feel.

- Input mechanisms remain the same throughout the
application.

- Navigational methods are context sensitive.
- Visual information is organized according to a design

standard.
6. Select the correct answer. The principle "structure the user
interface" can be applied by (one is correct):

- Showing appropriated images corresponding to the
text that is shown in the interface.

- Organizing items in hierarchical lists.
7. When creating a new student, select the attributes that need
visual cues:

- Date of birth.
- Age.
- Phone number.
- Address.

Provide an example.
8. Select the correct answer. When you enter a new student the
name is shown in a row of a table, as in the screenshot 1. This
is an example of the application of the principle (one is cor-
rect):

- Organization.
- Feedback.
- Visibility.
- Provide visual cues.

Explain your answer.
9. One of the data items to be entered is the age of the student
in screenshot 5. Is the way it is asked correct? Explain your
answer.
10. Actions that are accessed in similar way, related controls
that are grouped together, and messages that uses a uniform
structure are examples of which UI design principle?

- Permit easy reversal of actions.
- Design dialogs to yield closure.
- Offer informative feedback.

11. You are designing a research submarine for underwater
science and exploration. You are told that your users will all
have PhDs in marine biology. Is it appropriate to use terminol-
ogy/metaphors from this field? Explain your answer.
12. Indicate whether the following statements are true or false:
Nr Statement True Or

False?
1 The system should allow experienced users by passing a se-

ries of menu selections and making an equivalent command
entry or using keyboard shortcuts.

TLT-2019-02-0048

4

2 The error message shown in screenshot 3 is a good error
message.

3 It is better to give the users the largest number of choices.
4 When the components of an interface are generated as in the

screenshots, it is easier to prevent errors.

5 Allowing the users using either the mouse or the keyboard in
the system is an example of inconsistency.

6 Providing clear visual distinction of data fields and their la-
bels is a violation of consistency.

7 The error message shown in screenshot 5 is a good error
message.

8 When showing abbreviations to the users it is better to make
them as short as possible.

9 Showing appropriated images associated to the text in the in-
terface helps the visibility of the system.

10 When introducing a name for a file, the field should be pre-
populated with the old name.

11 Using technical vocabulary in a system makes it difficult to
understand the system.

12 Novice users should never be allowed using the keyboard for
error prevention reasons.

13 Command zone and message zone should be represented in
the same way.

14 Allowing users to select the value for the field "Last year"
helps users to prevent errors.

15 Showing the menus and window titles with the name of the
methods in the system (rather than an alias) help users to un-
derstand how the system is built. See screenshots 2 and 3.

16 The presented screenshots show a system that is not con-
sistent.

For the statements 12, 13, 14, 15 and 16 explain your answers.

APPENDIX B QUESTIONNAIRE TO MEASURE PERCEIVED
USEFULNESS
1= strongly disagree; 2 = disagree; 3 = disagree somewhat; 4=
neutral; 5 = agree somewhat; 6 = agree; 7 = strongly agree
Question Evaluation
Using the prototype improves my under-
standing of User Interface principles.

O1 O2 O3 O4 O5 O6 O7

Using the prototype makes me understand
User Interface principles much faster.

O1 O2 O3 O4 O5 O6 O7

Using the prototype improves my under-
standing of the relations between the con-
ceptual model and the generated
prototype components.

O1 O2 O3 O4 O5 O6 O7

Using the prototype makes me understand
the relations between the conceptual
model and the generated prototype com-
ponents much faster.

O1 O2 O3 O4 O5 O6 O7

Using the prototype improves my inter-
pretation of usability results from the gen-
erated prototype.

O1 O2 O3 O4 O5 O6 O7

Using the prototype makes me interpret
usability results from the generated proto-
type much faster.

O1 O2 O3 O4 O5 O6 O7

Previewing the UI facilitated the creation
of the Presentation model

O1 O2 O3 O4 O5 O6 O7

Previewing the UI showed me the effects
of the chosen options on the final UI, be-
fore UI generation

O1 O2 O3 O4 O5 O6 O7

Previewing the UI helped me to decide
better about design options

O1 O2 O3 O4 O5 O6 O7

Previewing the UI allowed me to visual-
ize how the generated UI will look like
and assessing the result

O1 O2 O3 O4 O5 O6 O7

Previewing the UI facilitated performing
a “what-if” analysis

O1 O2 O3 O4 O5 O6 O7

If had the choice, or opportunity I would
use this tool to learn User Interface design
principles.

O1 O2 O3 O4 O5 O6 O7

If I had to vote, I would vote in favor of
using prototyping in the classroom

O1 O2 O3 O4 O5 O6 O7

I am enthusiastic about using the proto-
typing in this kind of courses

O1 O2 O3 O4 O5 O6 O7

Using the prototype was a positive experi-
ence

O1 O2 O3 O4 O5 O6 O7

APPENDIX C CONTEXT INFORMATION
Previous knowledge (in terms of having User Interface design
and/or programming course(s) before)
Previous knowledge on User Interface design in previous
degree

O1 O2 O3 O 4

Previous knowledge on programming in previous degree O1 O2 O3 O 4
Previous knowledge on software testing in previous de-
gree

O1 O2 O3 O 4

1: no knowledge/experience at all;
2: little knowledge (a few hours course);
3: moderate knowledge (intermediate level course);
4: extensive knowledge (advanced course(s))

Years of programming experience (if applicable):______

I could use a new software application well …

… even if I had never used an application like
it before.

O1 O2 O3 O4 O5 O6

… if I had just the built-in-help facility or
manual for assistance.

O1 O2 O3 O4 O5 O6

… if I had first seen someone else using it be-
fore trying it myself.

O1 O2 O3 O4 O5 O6

… using only the internet for assistance. O1 O2 O3 O4 O5 O6
1: not at all confident 4: rather yes
2: probably not 5: likely yes
3: rather not 6: totally confident: yes

On Average, I use computers (laptop, desktop, tablet) per day:
□ less than one hour
□ one to two hours
□ three to five hours
□ to eight hours
□ eight or more hours

APPENDIX D DISTRIBUTION OF THE DIFFERENCES OF ERRORS.
TABLE IX

DISTRIBUTION OF ERRORS BEFORE AND AFTER TREATMENT
 Group 1 Group 2
Student  error

without
 error

with
 difference  error

without
 error

with
 difference

1 15 8 -7 12 12 0
2 20 18 -2 16 6 -10
3 9 4 -5 11 10 -1
4 31 28 -3 11 8 -3
5 11 9 -2 11 5 -6
6 23 20 -3 16 12 -4
7 17 13 -4 9 10 1
8 27 20 -7 10 9 -1
9 24 20 -4 19 20 1
10 15 16 1 20 19 -1
11 21 19 -2 24 24 0
12 9 6 -3 16 21 5
13 8 8 0 13 9 -4
14 4 6 2 18 14 -4
15 8 7 -1 22 14 -8
16 19 12 -7 23 20 -3
17 12 9 -3 18 11 -7

	I. Introduction
	II. Problem Statement, Related Work, and Proposed Research Approach
	A. Difficulties in Teaching UI Design
	B. Existing Tools and Approaches to Teaching UI Design
	1) General tools for teaching UI design
	2) UI simulation tools

	C. General Research Approach

	III. Simulation with Feedback in UI Design Teaching: FENIkS
	A. Requirements for Teaching Functional UI design
	B. Simulation with UI Generation in FENIkS
	C. Feedback for Learning UI Design Principles
	D. Requirements Satisfaction

	IV. Experimental Evaluation
	A. Measurement Instruments
	1) Knowledge assessment
	2) User acceptance of the learning environment

	B. Experimental Design and Variables
	1) Dependent variables
	2) Independent variables and treatment

	C. Experimental Details
	D. Hypothesis
	E. Results of the Evaluation
	1) Analysis of the error rates
	2) Analysis of different kinds of principles
	3) Analysis of short-term persisting learning effect
	4) User acceptance

	V. Discussion
	A. Internal Validity
	B. External Validity
	C. General Observations

	VI. Conclusion
	Acknowledgment
	References
	Appendices_CorrectTLTTemplate.pdf
	Appendix A Exercises
	A. Exercise A
	B. Exercise B

	Appendix B Questionnaire to measure perceived usefulness
	Appendix C Context information
	Appendix D Distribution of the differences of errors.

