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Abstract—Aging effects in digital circuits change the switching charac-
teristics of their transistors, resulting in timing violations that can lead
to functional errors at the system level. In particular, bias temperature
instability (BTI) is a degradation effect that changes the threshold volt-
age of transistors. Its effect is more prevalent as the scaling of transistor
dimensions progresses. In this work, we present a method to enable
defect-centric long-term modeling of BTI degradation that takes into ac-
count the effects of concrete workloads at the processor data path level.
Based on this study, we propose a novel design flow to link the impact
of BTI degradation at the transistor (∆Vth ), processor data path (e.g.,
maximum frequency) and application-functionality levels. This flow may
be used to improve system correctness over the entire device lifetime,
avoiding unsafe working points, or to achieve a graceful degradation of
system characteristics.

Our design flow is applicable to all types of digital circuits, including
high-performance processors. However, in this specific work we focus
on the domain of biosignal processing applications for wireless body
sensor networks (WBSNs), whose pseudo-periodic nature interacts with
the partially recoverable nature of BTI. Our results in this domain show,
for a 32 nm implementation, a variation of up to 54.6 mV in the threshold
voltage of the circuit transistors after one year of continuous operation,
with an impact of 8.4 % in the maximum safe operating frequency. Such
effects are expected to strongly worsen for longer lifetimes and more
scaled technology nodes.

1 INTRODUCTION

I NCREASING the transistor density per chip, thanks to tech-
nology node shrinking over the years, has been the preferred

solution to improve the performance of digital systems while
reducing their energy consumption and production costs. However,
that shrinking has increased the significance of effects such as
process variation and device degradation, which are leading to
increased reliability issues. Among those effects, bias temperature
instability (BTI) is of key interest because of its dominant impact
on timing variability in scaled devices and the complexity of its
physical mechanisms.

In particular, BTI is a degradation effect that changes the
threshold voltage (Vth ) of transistors as charges get trapped at
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the channel/gate-oxide interface [1]: If the gate oxide traps gain
enough energy, they may capture charge carriers, leading to a
reduced amount of carriers in the channel and impacting the
transistor Vth . Increased transistor integrations and clock frequen-
cies lead to higher operation temperatures inside the chip. Since
BTI has a strong dependency on operating temperature [2], its
effects will become more pronounced with future down-scalings
of transistors [3]. These variations in Vth affect the switching
characteristics of the transistor, resulting in timing violations at
the circuit level that can ultimately lead to functional errors at the
system level.

BTI has two components: A recoverable part that disappears
when the transistor is switched off, and a semi-permanent one
that increases the extent of the previous as the circuit ages. The
partially recoverable nature of BTI makes it dependent on the
concrete circuit workload because that changes the duty cycle
(DC) of each transistor in the network, that is, the time that the
transistor is in direct polarization. Additionally, sleeping periods
in systems executing pseudo-periodic applications enable a partial
recovery of the switching characteristics. Therefore, it is necessary
to know the concrete behavior of the applications that will run on
the system to accurately predict the extent of BTI degradations on
the long term and their impact on system-level functionality.

Having complete combinational circuits is also important to
analyze the effects of BTI along signal propagation paths because
it affects in different ways n- and p-type transistors, with cumula-
tive effects that depend on their exact interconnections. Therefore,
we study the impact of BTI at the level of a full processor ALU.

The main contributions of this work are the following:

• We present a framework for long-term extrapolation of
defect-centric BTI modeling that preserves the character-
istic behavior of each transistor for the concrete workload
generated by an application, including sleeping periods.

• We use our framework to conduct a long-term study of the
impact of BTI degradation at the processor data path level
for lifetimes of up to ten years.

• We analyze how the effects of BTI aging at the level of
individual transistors translate into data path level failures
(e.g., timing variations in predicted critical paths that make
a register load a value before the corresponding ALU
output stabilizes). The flow works at a granularity of



2

individual processor instructions and/or operands.
• We analyze how these data path level failures translate into

application-level functional errors (e.g., corrupted signal
samplings or incorrect identification of ECG characteris-
tics). We focus on the domain of wireless body sensor net-
work (WBSN) applications because their typical pseudo-
periodic behavior with significant idle phases is well suited
to the study of partial recovery effects in BTI degradation.
Additionally, these applications have well defined outputs
(e.g., ECG sampling and feature extraction).

This work is organized in two parts. In the first one (Sections 3
and 4), we present an integrated analysis flow that combines
BTI degradation modeling with workload-aware transistor-level
dynamic timing analysis (DTA) to evaluate the extent of BTI
degradation and its impact at the application functional level. This
flow, based on work by Stamoulis et al. [4], uses a workload-aware
defect-centric model [5] to study BTI-induced timing degradation.
As the computational cost of running the model for complex
circuits over long periods is prohibitive, we use an extrapolation
technique to extend the results obtained for each transistor over
a short period to arbitrarily-long periods—considering a real
workload. We analyze the accuracy of our technique by comparing
its predictions with the results obtained running the model for one
year for a reduced number of transistors. The final outcome of
the model is an evaluation of the impact of the BTI degradation
on errors at the application functional level. In the second part
(Section 5), we present the results obtained applying our flow to a
biomedical application running on WBSNs. Finally, in Section 6,
we draw the conclusions of this work.

2 BACKGROUND AND RELATED WORK

2.1 BTI degradation

BTI modeling. The exact physical causes of BTI have been the
subject of long discussion. The reaction-diffusion (RD) model
worked well for large transistors, because the random differences
of individual defects average out, which enables the analytical
models to represent accurately the effect of degradation along time
and even at end-of-life (EOL) [6]. However, the down-scaling of
transistors towards and beyond tens of nanometers reduces the
number of defects per transistor responsible for time-dependent
effects, making the stochastic nature of each defect and its impact
on transistor characteristics more relevant [3]. This effect brought
the validity of the RD model under question [7]. The defect-centric
paradigm was introduced to study the contribution to transistor
degradation of each individual defect through their individual
carrier capture and emission time (CET), which can vary from µs
to months [8]. The drawback of the defect-centric models is their
high computational complexity, which limits their applicability to
small sets of transistors or short-term characterizations. A good
overview of both models is presented in [9]. The RD model has
also been extended to cope with stochastic effects in reduced
geometries, leading to the introduction of the double-interface RD
model [10], [11]. However, contrary to the original RD model, it
also suffers from high computational cost when calculating ∆Vth

for AC stress, as it operates on a cycle-by-cycle basis [11].
In this work, we use the defect-centric model developed by

Kaczer et al. [8] to obtain a characterization of all the transistors
in the circuit during an initial period. We then use these results to
extrapolate the impact of BTI degradation on ∆Vth for arbitrarily
long periods with affordable computation times.

(a) Error introduced (grey) after 10 minutes of stress using averaged DC values
(orange) instead of the real instantaneous DC (blue).
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Fig. 1. Effect of DC, workload and resting periods on BTI degradation.

Full circuit coverage. BTI affects in different ways n- and p-
type transistors. In particular, the effect on ∆Vth , although not
symmetrical, is of opposite sign for each type. That means that the
concrete interconnections of transistors in the circuit determine
how n/p transistor degradations interact (compensating or accu-
mulating) along the signal propagation paths. Hence, evaluating
the degradations across the complete net instead of on individual
transistors is essential to observe the real impact on the circuit
critical paths. In contrast with previous works that study individual
transistors or small benchmark circuits, we align ourselves with
studies that tackle the complexity of large circuits representative
of real systems [4], [12].

Workload-aware simulation framework. Along time, there has
been some debate on whether BTI degradation depends on op-
erating frequency [13] or not [6]. However, there is consensus
in the link between the DC of each transistor, which is directly
determined by the workload and the net structure, and the extent
of BTI degradation. Kaczer et al. [2] propose that this link stems
from the dual static/dynamic nature of the BTI effect: Under
constant stress, BTI degradation worsens along time, but it sees
an almost immediate recovery during relaxation periods. In that
way, the dynamic switching of the transistor limits the extent of
the degradation that would be seen under constant (static) stress.
Furthermore, Santen et al. [14] show that instantaneous BTI has a
strong local effect on transistor degradation, dominating the global
trend at short scales. This combination of characteristics, which is
specific to each particular transistor and workload, complicates
modeling the behavior of the transistors using their average DC.
In that line, our experiments confirm (Fig. 1a) that substituting
the instantaneous DC of each transistor in our test circuit for its
average DC introduces errors of up to 40 % after 10 min. This
suggests that the concrete workload, which changes the length of
individual stress and rest periods (not only their ratio), is relevant
to accurately determine BTI-induced degradation along time.

The aforementioned effect can be observed in Fig. 1b, which
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presents the evolution of the ∆Vth of the pull-down transistor of
an inverter gate switching at 5 MHz for various DCs (20 %, 50 %
and 80 %) simulated with the defect-centric model presented in [8].
After 10 µs, an 80 % DC leads to a 1.5 mV higher ∆Vth compared
to a 20 % DC on the same transistor.

Figure 1c shows how the same transistor, subject either to
a fixed workload (red line) or to a periodic one (green line),
both with an equivalent DC over time (50 %), experiences very
different degradations. The periodic workload allows the transistor
to recover partially, but the higher DC during its active periods
produces a higher degradation of the transistor Vth . These two
workloads would have a different impact on the switching behavior
of the transistor.

To enable the processing of real workloads, Rodopoulos et al.
introduce a new signal representation, compact digital waveform
(CDW), which aims to reduce the number of simulation steps
required by atomistic models [15]. Their idea is to coalesce periods
of input stimuli that have similar characteristics and run the model
through them in a single step. However, their framework reuses
identical stress patterns for every transistor, independently of their
position within the netlist.

Following the previous observations, we propose a BTI analy-
sis methodology that takes into account the characteristics of the
real workload of the complete netlist to calculate the stress patterns
of each transistor during its lifetime.

Long-term extrapolation. BTI degradation presents a typical
logarithmic behavior along time with a ramp-up period during
the first few seconds that corresponds to fast capture and release
events [16], [17]. After longer periods (in the order of months
to years), the degradation reaches a saturation point, which corre-
sponds to the filling of the initial traps combined with a slower
filling of the more energetically unfavorable (semi-permanent)
traps. Due to these slower capture events, it becomes necessary
to analyze the degradation over long periods to fully capture
its impact on circuit characteristics, the relative order of critical
paths and the possible appearance of functional errors during
the system lifetime. This behavior can be observed in Figs. ??
and ??. However, defect-centric models struggle to reach long-
term analysis because of their high computational complexity. This
issue is exacerbated when full circuits are taken into account, as
the switching activity (i.e., workload) of every node in the netlist
has to be analyzed to detect possible changes in the critical paths
along the complete period.

Stamoulis et al. introduced workload dependencies into CET-
map based BTI modeling [4]. Their work can be potentially ap-
plied to any workload and circuit type. We build on their expertise
by reusing the analysis flow for complete applications developed
in their work. Among other major improvements to enable the
discovery of functional errors, we introduce the possibility of
accurately evaluating BTI-induced degradation over long periods
of time. In comparison, to reach that goal they simply stretch
the duration of each CDW point proportionally to cover the total
desired period. This trivially enables the analysis over long periods
without changing the computational complexity of the analysis.
However, the fact that BTI degradation can be partially recovered
during relaxation periods means that stretching out low activity
periods may introduce recovery effects that are not observed in the
actual working conditions. For example, with their approach, the
processing of one data sample in periodic biomedical workloads
can be stretched out along one year. Unfortunately, this is not

the equivalent of simulating the system executing the application
during that period, but of reducing the system working frequency
by seven orders of magnitude. Indeed, for a periodic application
that has 30 % of idle time at the end of each processing period,
directly stretching the duration of the CDW points up to one year
would produce an idle period of more than a hundred days at the
end, which does clearly not represent its real working conditions.

A different approach is presented in [14], where the authors
propose to calculate the average DC for each transistor and use it
to extrapolate its aging until the desired period. Then, they find the
longest stress period in the workload for that transistor and apply
it after the desired aging, to calculate the highest combined long-
and short-term degradation possible at that time. We compare their
proposal with the effect of simulating a workload along all the
analysis time in Fig. 1b. In the figure, we can see that their method
(green line) matches almost perfectly the actual degradation for
those conditions—a synthetic workload corresponding to the red
line—as reported in their work. However, applying their technique
to our real workloads produces much larger errors (e.g., larger than
10 %). The reason is that typical workloads in WBSN devices
include long sleeping periods (e.g., while waiting for new data
samples) that enable the release of most of the charges, so that the
transistor starts almost from the initial condition in each working
period. To verify our hypothesis, we aged a transistor during one
day using its calculated average DC and afterwards we applied
a complete workload period (2 s). Then, we calculated again the
degradation with our BTI model using the real workload for the
complete aging time. The results are shown in Fig. 1c: Simulating
with the average DC predicts a larger long-term degradation,
which leads to overestimation of the degradation during the final
2 s of interest. The root of this difference lies in the fact that the
actual workload includes two stress periods (the two bands of each
color in Fig. 1c) and a long relaxation period. This long recovery,
which is absent in the simulation with average DC, enables almost
complete relaxation (see inset in Fig. 1c), “pulling down” the
degradation during the active periods. This experiment shows that,
whereas BTI degradation can be approximated using the average
DC for “classic” workloads that consist of continuous processing,
new mechanisms are needed to accurately represent workloads
that include frequent long resting periods, as is typical in WBSN
devices running biomedical applications.

In contrast with previous approaches, in Section 4 we pro-
pose a novel methodology that enables the use of defect-centric
models over multi-year periods. Our method produces an efficient
extrapolation of long-term BTI degradation that takes into account
the concrete characteristics of the workload of each transistor in
the circuit netlist at a dynamic granularity. Instead, we tackle
the challenge of realistically representing periodic application
behaviors during long periods, with a dynamic granularity varying
from µs to ms, depending on system activity, and introduce
optimizations to make the computational complexity of the whole
process affordable as shown in Section 3.

2.2 Evaluation of BTI-induced timing degradations

Stamoulis et al. designed a flow to analyze the impact of BTI
degradation on the critical paths of a circuit [4]. In essence, their
flow consists of the following steps: First, the workload at the
circuit inputs is captured and propagated, through a flattened
circuit structure, to all the transistors. To reduce the computational
cost of computing with the BTI atomistic model over long signal
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Fig. 2. Overview of our workload-aware flow for analysis of the impact of
BTI-aging at the level of system functionality.

traces, they identify regions of the workload with equivalent stress
patterns that the model can process in a single iteration. For this,
they use the decomposition of input stimuli into a CDW presented
in [15]. Importantly, the length of the traces they analyze remains
in the order of a few seconds. Then, they use a defect-centric BTI
model [18] to determine the threshold voltage variation of each
transistor; the obtained ∆Vth are then applied to each transistor in
the netlist. Finally, they use Synopsys NanoTime [19] to perform
static timing analysis (STA) on the circuit and derive the effect of
BTI aging on the delay of each of the circuit combinational paths.

In this work, we extend their proposal as explained in Section 3
to introduce variable-length CDW decomposition, BTI-aging ex-
tension to arbitrary time lengths (even years for circuits with
thousands of transistors), DTA via SPICE-like simulation of the
original and aged circuits, behavioral simulation to obtain an error-
free baseline output, and comparison of results to identify errors
at the functional level.

2.3 Evaluation of functional errors

Beyond extending the framework for analysis of BTI-induced
timing degradations at the circuit level, we also aim at evaluating
their impact on the functionality of the complete system. In that
regard, Chen et al. proposed a methodology to model at the system
level reliability degradations due to BTI effects in microprocessor
architectures [20]. Their proposal is based on analyzing the delays
on the most critical paths found with STA; hence, they give an
estimation of the system lifetime, without providing information
at the functional level, such as the type and amount of faulty
operations generated by the processor pipeline. In contrast, our
work uses DTA to observe and quantify the rate of BTI-induced
functional errors on the circuit outputs over time. With the addition
of a SystemC behavioral simulator, we can also identify which
instructions will produce erroneous outputs. Furthermore, our
framework enables the analysis of the impact of those errors on the
quality of the results delivered by different biomedical applications
running on the system.

3 METHODOLOGY FOR EVALUATION OF BTI
DEGRADATION IMPACT ON FUNCTIONAL ERRORS

We extend the flow presented in [4] as detailed in Fig. 2. First,
we introduce a variable-length decomposition of the workload
into CDW points. Second, we modify the BTI evaluation step to
characterize the effect of workload on each transistor, extrapolate
it to the desired aging and then obtain the ∆Vth during one
application period; this last period represents the working condi-
tions of the application after the desired aging. Third, we perform
DTA via SPICE-like simulation of the complete original and
aged circuits. In comparison with previous works, our annotation
provides individual aging conditions for each transistor in the
netlist and propagates their concrete switching characteristics un-
der workload. The use of DTA with BTI-aging annotation instead
of STA produces an accurate characterization of the workload-
dependent timing properties of each part of the circuit, hence
identifying potential changes on the critical paths along the device
lifetime. Finally, using a new behavioral simulator to obtain an
error-free baseline output, we can compare the results of each
operation and of the complete application to quantify errors at the
functional level and correlate them with circuit operations. The
complete flow consists of eleven steps, as Fig. 2 shows:

1) Storage of the application workload in a value change dump
(VCD) file as a succession of changes in the input signals of the
circuit.
2) Workload decomposition into CDW points using the power
gating signal of the processor as reference. Conversion into
standard VEC file for use with SPICE during DTA.
3) Flattening of the circuit netlist for workload propagation and
SPICE simulation.
4) Propagation of stress activity patterns across the netlist.
5) BTI modeling of defect activity based on CET maps using the
real workload during the studied application period. We use the
method explained in Section 4 to extend the BTI modeling time
to arbitrary lengths while preserving the effects of workload and
stochastic transistor variations. The result of this step is, for each
CDW point in the workload, and for each transistor of the circuit,
the ∆Vth produced by BTI after the desired aging period.
6) Update of the obtained workload-dependent ∆Vth shifts
for each transistor of the flattened SPICE netlist and for each
CDW point. This enables the execution of DTA to evaluate BTI
degradation with workload dependency—in comparison with
STA, which is workload independent.
7) SPICE simulations to evaluate the accumulated effects of BTI
on the timing properties of the circuit (DTA).
8) Comparison of the binary values of the non-aged and the aged
output signals obtained after the simulation for each CDW point
using a transition comparator (“discretizer”). The discretizer takes
into account the effects of data latching by the registers at the
output of the considered circuits. This process establishes a link
between BTI-induced timing degradations and the occurrence
of functional errors when the propagated signal does not arrive
before the next rising edge of the clock.
9) Elaboration of statistics for each CDW point and signal
transition on the rising edge of the clock: slack time, propagation
delay from input to output, time difference between the rising
edge of the clock and the correct value of the signal when a timing
violation occurs, etc. Every mismatch between the non-aged and
the aged output signals on the rising edge of the clock is flagged
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to highlight possible timing violations.
10) Behavioral simulator to compare the outputs of the aged
circuit with the correct ones and evaluate the impact of timing
violations on its functionality. This simulator provides the
“ground-truth” for the outputs that correspond to the operations in
the application workload.
11) The final outcome is a report with the list of corrupted
operations, their timestamps and their input operands.

The following paragraphs detail the most relevant steps of
the flow, whereas Section 4 is entirely devoted to explain the
modifications introduced to the BTI model to achieve long-term
(up to ten years) analysis.

3.1 Variable size CDW decomposition
Typical biosignal processing applications have a pseudo-periodic
workload composed of alternating active and idle periods to
process input samples as they are acquired. Within one active
period, the control and data signals of the processor (e.g., in the
ALU) toggle according to the set of instructions executed and
the values of the data variables; hence, the DC of each transistor
is different for each active period. At a higher level, the DC of
the application, characterized by the ratio between the active and
idle (power-gated) periods, depends also on the sampling and
system operating frequencies. As a consequence, each transistor
undergoes a particular combination of stress/relaxation during an
active period, becoming fully relaxed during the application’s idle
times. Since the BTI effect is partially recoverable, the impact of
these patterns is non-negligible; therefore, considering active and
idle periods instead than just averaging the DC over the complete
execution period is important to model accurately the recovery of
the individual transistors [2].

The decomposition of the workload into a set of CDW
points [4], [15] allows us to trade off between the computational
effort and the accuracy of the BTI model: A higher number of
CDW points increases the accuracy of the BTI-aware analysis at
the cost of longer simulation time. The underlying idea in the
CDW decomposition is that the model can calculate in one step the
effect of BTI over a period of arbitrary length given a constant DC
(and frequency). However, periods with different DCs generate
different degradation (or recovery); hence, the BTI model should
be (consecutively) run once for each one. Compared to previous
works, we employ the power gating signal of the processor to
identify the system idle periods and accurately create the variable-
length CDW points. Each active period (i.e., computation burst) is
uniformly subdivided into several CDW points, whereas a single
point is used to characterize idle periods. In this way, we concen-
trate the effort of the BTI model on the most straining parts of
the workload. As an added benefit, the CDW point decomposition
enables the parallelization of the SPICE simulations during the
evaluation of functional errors.

3.2 Transistor annotation throughout the circuit
In order to accurately analyze the degradation of each transistor,
we propagate the stress activity patterns of the circuit—which can
be characterized in terms of frequency f , DC α and duration
∆t—across all the transistors of the netlist. To that end, we
perform switch-level simulations of the circuit to compute the
signal activities at each transistor, from which the f and α values
are determined [4]. These parameters, which capture the Vgs stress

0              A B C

Analog Signal
Voltage (V)

Signal Binary Value

1

0

Fig. 3. Signal conversion from the analog to the digital domain with
hysteresis. A) high-to-low (‘1’ to ‘0’) transition threshold; B) low-to-high
(‘0’ to ‘1’) transition threshold and C), nominal supply voltage.

voltage of each transistor, are subsequently provided as input for
the BTI modeling stage. The simulations are performed based on
the prior decomposition of the workload into CDW points.

3.3 Dynamic timing analysis
STA provides an approximation of the maximum operating fre-
quency of a circuit. However, its limited accuracy under some
scenarios leads in general to overly conservative results [21]. In
contrast, DTA uses stimuli vectors to drive the activity of the
circuit transistors in analog SPICE simulations, but DTA does not
take into account circuit degradation due to factors such as BTI-
induced effects. Therefore, significant guard bands are introduced
in the maximum frequency to guarantee correct operation of the
circuits [22], [23]. In our flow, we introduce aging-aware SPICE-
based DTA analysis to evaluate the effects of BTI on the timing
properties of the circuit without the need for worst-case guard
bands. The division of the workload into CDW points enables
easy parallelization of the SPICE simulations in multicore servers,
running one CDW point simulation per core.

3.4 Analog signal discretization
To enable the comparison between the outputs of the non-aged and
the aged circuits, we introduce a discretizer module that plays the
role of a register interfaced between two consecutive processor
pipeline stages. The discretizer makes the translation from the
analog to the digital domains during every SPICE simulation, thus
enabling the detection of timing violations that manifest as bit
flips in register values. The module is implemented in Verilog-A
and has no physical effect (e.g., parasitic load). To accurately
determine the transition threshold values for our technology node,
we analyzed a circuit composed of several flip-flops in series,
toggling at a frequency of several GHz. At the input of the first
flip-flop, we applied a slow trapezoidal signal with a very small
slew rate. With this setup, we determined the transition threshold
voltages A (0.399 V) and B (0.455 V) with an accuracy of ±1 mV
(Fig. 3), which is thus adequate in comparison with the normal
variability margins considered in circuit design.

3.5 Behavioral simulator
Timing violations caused by BTI aging at the circuit level do not
necessarily translate into functional errors at the application level
of the system. For example, a timing violation may occur on a
combinational signal that is not part of the result of the current
operation. With these considerations in mind, we have integrated
a behavioral simulator (written in C++) in the flow to evaluate the
impact of timing errors on the quality of the results produced
by the application using high-level metrics such as the signal-
to-noise ratio (SNR). The simulator helps also to uncover which
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operations on which exact functional units over concrete bits are
the most likely culprits for the errors. That knowledge enables
the introduction of high-level measures to control the quality of
the delivered results (such as lowering the operating frequency,
increasing temporarily the supply voltage or alternating between
spare circuits) or the reinforcement of the affected circuits at the
technology or architecture levels. In the case that a high-level
(e.g., C++) behavioral simulator of the system under study is
not available, an RTL model can be employed instead, albeit at
a possible longer execution time.

4 METHODOLOGY EXTENSION FOR LONG-TERM
BTI EVALUATION

The defect-centric model takes into account both the contribution
of each individual trap event through CET maps, and the real work-
load of each transistor. Thus, it enables very precise simulations of
the impact of BTI degradation on the switching characteristics of
each individual transistor. However, its computational complexity
is prohibitive to analyze large circuits over long time scales:
Running the BTI model for a period of one year on just a single
transistor requires around 5.3 days in an Intel Xeon Gold 6154
(3.0 GHz) server. Similar considerations apply as well to the
double-interface RD model with AC stress over long periods.

In this section, we propose a method to overcome the previous
limitation and we assess the accuracy of its predictions by actually
running the model to simulate one year of aging for a selected
set of transistors. In essence, we create a curve that captures the
overall logarithmic trend of the ∆Vth for each specific transistor
(“DC curve”), and then we apply on it an “AC offset” that
represents the exact conditions for one application period, at the
desired point in time. Similar approaches have been employed
before successfully [11], [14]. With this method, we can extend
the BTI simulation to periods of months or even years with a
small loss of accuracy.

4.1 Long-term extrapolation
Our long-term BTI modeling methodology to evaluate the impact
of real (non-averaged) workloads for periods lasting up to several
years within reasonable computing times consists of the following
steps:

1) A workload-dependent BTI simulation is performed with the
defect-centric model on all the transistors for a short aging period
(e.g., 10 minutes). The simulation is executed for each transistor
even if they have the same DC to capture the stochastic nature of
individual trap and release events.
2) The time-dependent evolution of the ∆Vth curve obtained
for each transistor is fitted to (1), thus capturing its logarithmic
evolution along time (t):

∆V fitting
th (t) = a× (log10 (t))b + c (1)
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Fig. 5. Fitting extended to 1 year, with final superimposed offset corre-
sponding to one application period of 2 s.

3) The obtained coefficients a, b and c are used in (2) to extend the
∆Vth curve of the transistor until the desired aging period (e.g.,
1 year):

(2)
∆V extrapol

th (t) =

(
a+

a× t
Φ

)
× (log10 (t))

(b+(b×t)/Ψ)

+

(
c+

c× t
Υ

)

4) Using the calculated ∆Vth for each transistor, a final BTI pass
is performed during a last application period (e.g., 2 s), producing
the concrete Vth shifts for each CDW point in that period.
5) The updated Vth values can be used in a subsequent DTA
phase to evaluate the timing and functionality of the circuit after
the desired aging period.

The fitting coefficients a, b and c of (1) are determined for
each transistor independently based on the initial BTI simulation.
The duration of the initial simulation (e.g., 10 minutes of aging
in our case) must be long enough to capture the overall trend of
the ∆Vth curve—well past the initial “ramp-up” time of the BTI
effect. In our experiments, we produce independent fitting curves
for CDW points with large behavior differences, separating those
following a resting period from those in the middle of an active
period. We introduce three calibration factors, Φ, Ψ and Υ to
improve the quality of the extrapolation. Their values, which have
been determined empirically, are identical for all the transistors of
the circuit. Our methodology enables workload-aware analysis of
BTI aging with a defect-centric model over arbitrarily long periods
while limiting the modeling effort to a constant value—in our case,
10 min and 2 s of application time.

4.2 Validation

We carried out a study to validate the proposed methodology for
long-term transistor-level BTI modeling using the 8 most active
and 8 least active transistors of the ALU16 circuit, plus 8 more ran-
domly selected. As a workload, we considered a set of 3000 CDW
points covering 2 s of execution time, which corresponds to one
ECG window (1000 samples captured at 500 Hz). This set of CDW
points was repeated up to the desired time (i.e., to simulate an
application repeating the same cycle continuously). This produces
a more representative workload than simply stretching the duration
of each CDW point while reducing the length of the stimuli traces.
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First, we applied our extrapolation technique to extend a
10 min simulation up to one year. Then, we applied the full defect-
centric BTI model during the same complete period to obtain an
accurate reference of the BTI-induced aging (this step required
5.3 days per transistor, but it is not necessary for normal use
of our methodology). Figure 5 shows the quality of the fitting
and extrapolation for one of the selected NMOS transistors. The
zoom over the last 2 seconds following 1 year of aging shows
the instantaneous Vth values for the transistor after each CDW
point calculated with our technique (pink points) and with the
full model (blue points). By superimposing the series of points
obtained with each method, we can observe that our technique
introduces a deviation of up to 0.15 mV, which represents 0.41 %
of the maximum ∆Vth . Similar results are obtained for the
other transistors in this validation study, which present a maxi-
mum absolute deviation < 1 mV. These deviations are in practice
negligible—especially taking into account the stochastic nature
of defect-centric BTI modeling. Given the large gain achieved in
execution time in comparison to applying the full BTI modeling
to the entire multi-year period, while still keeping an accurate
workload representation that enables analysis of instantaneous BTI
effects, our approach fully solves the accuracy-execution time
trade-off problem. Therefore, we conclude that our technique is
suitable to conduct the needed long-term experiments for BTI-
induced degradation exploration in the following section.

5 EXPERIMENTAL SETUP AND RESULTS

5.1 Experimental setup
In this section, we explain the details of the hardware platform and
the software application used in our experiments.

5.1.1 Biomedical application
To analyze the effects of BTI-induced degradation at different
levels in a WBSN platform, we selected 3L-MMD [24], a complex
single-threaded real-time biosignal processing application that
executes pseudo-periodic tasks within fixed time boundaries under
a tight energy budget. The pseudo-periodic nature of this workload
is an interesting characteristic for our study: In contrast to standard
test benches, it fosters the partial recovery of BTI effects after each
active period, which may lead to reduced Vth degradations.

3L-MMD is a cardiac monitoring application that performs
three-lead ECG delineation using multi-scale morphological
derivatives (MMD) [25]. The first step of the application is a
three-lead morphological filtering (MF) algorithm that removes
artifacts (created by muscle activity, AC supply interferences and
breathing-induced base drift) from an ECG acquisition [26]. The
second step merges the filtered streams through a root-mean-
square (RMS) combination. Finally, the third step performs the
delineation of the ECG fiducial points. We considered an execution
window of 1000 samples acquired at 500 Hz over 2 s. The activity
traces were generated with a cycle-accurate SystemC simulator
that implements the TamaRISC processor [27] and divided into
3000 CDW points.

To evaluate BTI-induced degradation on the application output,
the ECG fiducial points are classified as correct, misplaced or
missing. An ECG fiducial point is considered as correct when it
is present in the heartbeat in the right sequence and within the
correct time ranges. Present points with correct timing, but out
of sequence, are considered as misplaced. Finally, points that are
absent or out of the allowed time range are classified as missing.

TABLE 1
Benchmark circuits from a 16-bit pipeline execution stage. Maximum
operating frequency as determined with STA (at slack time = 0 ps).

Circuit Description Gates Tran- Freq. Period
sistors (MHz) (ps)

Adder16 16-bit adder w/ carry 65 724 1645 608
Mult16 16-bit comb. mult. 1276 13 270 562 1778
MAC8 8-bit comb. mult. +

16-bit adder
1368 14 046 555 1803

ALU16 16-bit Arithmetic
and Logic Unit

1672 16 704 552 1811

In addition, we introduce two more metrics to evaluate partial
degradations of the application output. First, the average time
deviation (with respect to the error-free execution) of the ECG
fiducial points that are classified as correct. Second, the percentage
root-mean-square difference (PRD) is used to assess the diagnostic
quality of compressed ECG records. We use the classification
presented in [28] (very good: 0 % to 2 %; good: 2 % to 9 %;
poor: > 9 %) to evaluate the maximum frequency that allows the
system to produce biomedical results with medical significance.

5.1.2 WBSN hardware platform
Based on the chosen application, we extracted the ALU compo-
nent from the execution stage of the pipeline of an ultra-low power
WBSN [29]. The selected complete circuit, ALU16, performs
signed and unsigned integer arithmetic and logic operations widely
used in digital processing of biomedical signals. Therefore, it
combines circuits for addition/subtraction, 16 × 16 → 32 bit
multiplication, multiply-accumulate, and additional logic opera-
tions in a 16-bit data path (biosignal samples are usually encoded
on 16 bits [25], [30]). To enable more detailed analyses, we also
study individually some of the most relevant components of the
ALU: Adder16, Mult16 and MAC8, as listed in Table 1.1

Each circuit was synthesized with Synopsys Design Compiler
with a constraint for minimum area, and using a 32 nm high-
Vth and slow-slow (SS) process corner technology library. The
parameters of the transistors were defined by the 32 nm predictive
technology model (PTM), including a default Vth of −450 mV for
PMOS transistors and 508.8 mV for NMOS transistors. As initial
reference, Table 1 shows the maximum frequency determined
through STA with Synopsys NanoTime for each benchmark circuit.
For the BTI aging studies, we assume an internal temperature of
353 K and nominal supply voltage (1.05 V).

5.1.3 Experimental methodology
During our experiments, we use three different analysis meth-
ods. First, STA, which is aging and workload-agnostic, using
Synopsys NanoTime. Then, SPICE-based (Synopsys CustomSim)
DTA, which is workload-aware, but without considering any aging.
Finally, DTA with accumulated and ongoing BTI-induced aging.
Table 2 summarizes the characteristics of each analysis method.

For the aging-aware DTA analysis, we first perform our long-
term extrapolation to calculate the ∆Vth at the start of the period
of interest: We execute the BTI model for 10 min, fit the obtained

1. In order to optimize the design area and to obtain a consistent comparison,
the MAC unit in the full ALU16 unit reuses the 16-bit multiplier with an input
operand size of 8 bits and considering only 16 bits from its output.
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TABLE 2
Comparison of the analysis methods used in our experiments.

Technique Workload Accumulated aging Ongoing aging

STA No No No
DTA Yes (SPICE) No No
DTA+BTI Yes (SPICE) Yes (BTI + (1), (2)) Yes (e.g., 2 s)

TABLE 3
Maximum transistor ∆Vth measured for the ALU16 after 2 s of circuit

operation with varying accumulated BTI aging.

Aging PMOS NMOS
max |∆Vth | max |∆Vth |
(mV) (%) (mV) (%)

t= 0 s 37.1 8.1 36.3 7.3
t= 1 year 54.6 12.1 48.1 9.5
t= 10 years 58.3 13.0 51.4 10.1

curve using (1), and then calculate the long-term extrapolation
using (2). This process is repeated for every transistor to capture
the stochastic nature of individual trap and release events. Then,
we run the BTI model for 2 additional seconds, recording the
∆Vth at the end of each CDW point. Finally, we use these ∆Vth

values to conduct the SPICE simulations over the complete circuit.
Our method exploits long-term extrapolation to account for

the previously accumulated aging while considering the charac-
teristics of each transistor but, in contrast with previous long-
term analysis methods, resumes a fully detailed BTI modeling
to calculate the effect of aging under a real workload and circuit
structure at the desired time. Therefore, it enables the detection of
timing failures and, with the help of the simulator, pointing exactly
to the processor operation that will likely produce that failure.

5.2 Results
In this section, we evaluate the effects of BTI-induced degradation
at the circuit and application functionality levels.

5.2.1 BTI impact on maximum frequency
Table 3 shows the maximum Vth degradations found after eval-
uating BTI aging for all the transistors in the ALU16 circuit. In
particular, the absolute maximum ∆Vth obtained after 10 years
of aging is 58.3 mV (13 %) for a PMOS transistor and 51.4 mV
(10.1 %) for an NMOS transistor. These values are consistent with
the predictions from prior literature [31].

With our flow, we can transform the ∆Vth into switching time
degradations. Figure 6 shows how the Vth degradations affect the
slack time of the different benchmark circuits after one execution
period (2 s), using STA and glsdta with no aging, and DTA with
BTI aging at the start of the device lifetime (i.e., t = 0 s). In general,
the graphs show that using STA alone would limit severely the
maximum operating frequency considered safe: in the case of the
complete ALU16, the maximum frequency determined with STA
is almost a 40 % lower than with DTA with aging. Furthermore, the
comparison between the curve for Adder16 and the rest shows also
that—at least for small circuits—DTA can neither be easily used
on its own because the maximum frequency determined with this
technique alone, although generally conservative, may, depending
on the concrete characteristics of the workload and circuit under
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Fig. 6. Slack time at different working frequencies for each benchmark
circuit, measured after 2 s of operation. The X axis (slack time = 0 ps)
marks the maximum safe frequency determined with each technique.
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quency determined with each timing analysis technique and aging time.
a) Graph over the full frequency span. b) Zoom over the region where
slack time = 0 ps for the DTA analyses.

test, move the system into unsafe working conditions. A plausible
explanation for this observation is that small circuits can work at
higher frequencies; hence, small variations in Vth have a bigger
absolute impact on frequency than in the case of big circuits,
which already require longer periods.

A second observation is that the maximum operating frequency
determined for MAC8 is higher than for Mult16, despite the
MAC operation being apparently more complex. The reason is
that MAC8 performs an 8 × 8 → 16 bit multiplication, and
thus features shorter critical paths than Mult16 (which performs a
16× 16→ 32 bit multiplication). The lighter workload of MAC8
also produces lower BTI aging. In the case of ALU16, this effect
is masked because both operators share part of their structure and
hence are partially subject to similar degradations.

Figure 7 provides a closer look into the BTI-induced degrada-
tions that affect the complete ALU16 circuit after 2 seconds of
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Fig. 8. Heat maps: degradation of the ALU16 output signals (Carry_Out, Result_Out) when increasing the operating frequency, measured after 2
seconds of circuit operation with varying accumulated BTI aging. Aging causes the first erroneous bits to appear at lower frequencies.

circuit operation with increasing accumulated aging: 0 seconds,
1 year and 10 years. As expected, most of the timing degradation
happens during the first months of the circuit’s operating life,
corresponding to the filling of the short and mid-term traps. This
progressive saturation leads to a reduction of 85 MHz in operating
frequency (8.8 %) after 1 year, and up to 97 MHz of reduction
(10 %) after 10 years, compared to the maximum frequency
obtained with DTA without BTI aging (964 MHz).

These results show that, in the considered experiments, BTI
aging has an impact of approximately 10 % (∼100 MHz) on the
maximum operating frequency. These results reflect the fact that
with the considered biosignal processing workload, the processor
spends long periods in sleep mode. Since most of the transistors
have enough time to recover (releasing trapped charges) from the
stress accumulated during the active periods, only the pseudo-
permanent part of the BTI aging is conserved between execution
periods. Nevertheless, this performance degradation must be taken
into account during the design of the biomedical device, particu-
larly because the impact of BTI is expected to increase with future
reductions in transistor size [3], [32]. Alternatively, the tighter
determination of safe operating conditions of our framework with
respect to STA can enable the selection of lower supply voltages
for the same latency target, with the corresponding savings in
energy consumption.

5.2.2 BTI impact at the functional level
Our framework can identify the operations that produce erroneous
results through a bit-level analysis on the output signals, i.e. by
using DTA with and without BTI aging. In this way, we can
evaluate how timing violations affect the quality of the results
delivered by the application and their medical significance. Fig-

ure 8 shows how errors accumulate on the output signals of the
ALU16 with increasing operating frequencies, during 2 seconds
of circuit operation without and with BTI aging (0 seconds, 1 year
and 10 years). The important area of the heat maps is the frontier
where the first erroneous bit appears: Once a bit is erroneous,
the bits with higher weights should be considered as undefined.
Therefore, for 10 years of aging, the first errors start to appear
(in Resultout(31)) at f ≈ 870 MHz. Interestingly, at least for
this specific circuit, aging does not change drastically the general
shape of the graphs, simply offsetting their features. Similar results
are observed for other operations in the ALU16 circuit.

Notwithstanding the previous results, some applications ex-
hibit an inherent resilience against computation errors. Addition-
ally, each timing violation does not necessarily imply an error in
the application output, since it may affect signals that are unused
in the current combination of operations. Thus, knowing the char-
acteristics of the concrete applications executed on the platform
may help to establish more favorable working conditions for the
system with the goal of achieving higher frequency or reducing
energy consumption. For example, in 3L-MMD, only the 16 LSBs
of the results produced by the multiplier are used. Therefore,
the application results degrade only when the adder Carryout

or the 16 LSBs of the multiplier output (Resultout) are affected
by functional errors, which start to happen at f ≈ 1100 MHz
(for Resultout(15)). Figure 9 shows that the quality of the
delineation is indeed unaffected up to that frequency. Moreover,
many high-level biomedical applications, such as epilepsy and
obstructive apnea detection, require only the accurate delineation
of the QRS complex from each heartbeat. In those cases, the
system can operate with a PRD< 9 % at a frequency of up
to 1172 MHz (112 % over the frequency determined with STA),
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Fig. 9. Quality assessment of the output generated by the MMD delin-
eation application after 10 years of BTI aging.

possibly enabling longer power-gated periods. This possibility
is uncovered by the long-term, circuit-level and workload-aware
dynamic timing analysis of our flow.

5.2.3 Flow execution time
The most computationally expensive steps of the flow are the
switch-level simulations for workload propagation (step 4 in
Fig. 2), the ∆Vth computation with the BTI model (step 5) and
the transistor-level SPICE simulations for DTA (step 7). Producing
the results for the ALU16 circuit required in the order of 150 hours
in our multicore severs. The proposed long-term BTI evaluation
methodology achieved significant time savings. In particular, for
just one single transistor, the 1 year ∆Vth evaluation based on the
exhaustive BTI model requires approximately 5.3 days, while with
our proposed methodology the long-term BTI evaluation of all the
16 k transistors that compose the ALU16 takes only 7.4 hours.
This represents a reduction in the execution time of the BTI
model of four orders of magnitude, proving that our methodology
could be applied to complex multiprocessor netlists while keeping
acceptable simulation time.

6 CONCLUSIONS

In this paper we have presented a complete workload-dependent
BTI-aware analysis flow to identify and quantify functional errors
on digital synchronous processor architectures along the complete
device lifetime. Our flow introduces long-term extrapolation to
account for the previously accumulated aging while considering
the characteristics of each transistor but, in contrast with previous
long-term analysis methods, it resumes a fully detailed BTI
modeling to calculate the effect of aging under a real workload
and circuit structure at the desired time. Thus, the dramatic
reduction in simulation time achieved by our approach, which still
keeps an accurate workload representation that enables analysis
of instantaneous BTI effects, fully solves the accuracy-execution
time trade-off problem, opening the door to the analysis of full
multiprocessor netlists.

Our experiments with the execution stage of a processor
pipeline expose a variation of up to 54.6 mV (12.1 %) in the
threshold voltage of the circuit transistors after one year of con-
tinuous operation, with an impact of 8.8 % on the maximum safe
operating frequency. Additionally, to fully capture the partially-
compensating interactions of the Vth shifts that BTI induces on
NMOS and PMOS transistors, we have also explored the effects
of BTI on complete processor data path level circuits. These
experiments show that, whereas STA generally results in overly
pessimistic maximum frequency determination, DTA alone can
lead to unsafe working points if long-term circuit aging is not
taken into account.

Our framework builds the link between BTI-induced Vth

variations, timing failures and functional errors, identifying the
concrete processor operations and input operands that will likely
produce those errors. In this way, we have shown how a BTI
model that works at the level of individual NMOS or PMOS
transistors can be exploited at increasing levels of abstraction.
First, it can be used at the circuit level (identifying the interactions
along transistor chains). Second, it can be used at the functional
unit level (exploring the relationship between maximum operating
frequency and the correctness of operator results). Third, it can
also be used at the system level (impact on the quality of the
delivered results and their medical significance).

We have applied this new technique to the domain of biosignal
processing applications for WBSNs because their pseudo-periodic
nature interacts with the partially recoverable nature of BTI. The
knowledge obtained can be used to steer a graceful degradation
of WBSN functionality, or to provide reliability guarantees by
reducing frequency or increasing energy consumption if necessary.
Alternatively, a careful study of the quality degradation in the ap-
plication output that can be tolerated versus the expected error rate
at a given working frequency enables the design of approximate
computing devices that trade off exactness with energy efficiency.
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