
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Design Time Evaluation for
Side-Channel Attack
Resistant Cryptographic
Implementations

Danilo Šijačić

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

October 2020

Supervisors:
Prof. dr. ir. Ingrid Verbauwhede
Prof. dr. Josep Balasch

Design Time Evaluation for Side-Channel Attack
Resistant Cryptographic Implementations

Danilo ŠIJAČIĆ

Examination committee:
Prof. dr. ir. Jean Berlamont, chair
Prof. dr. ir. Ingrid Verbauwhede, supervisor
Prof. dr. Josep Balasch, supervisor
Prof. dr. ir. Bart Preneel
Prof. dr. ir. Wim Dehaene
Prof. dr. ir. Nele Mentens
Prof. dr. Francesco Regazzoni
(University of Amsterdam and ALaRI USI)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical Engineer-
ing

October 2020

© 2020 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Danilo Šijačić, Kasteelpark Arenberg 10, box 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door
middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm, electronic
or any other means without written permission from the publisher.

Preface

The story of COSIC and me began in the late 2013. I was a naive bachelor
student, clasped by the Ann Arbor winter, looking for a master’s degree
program. In a very fortunate, and equally random, turn of events I met Dr.
Duško Karaklajić who had encouraged me to apply for the PhD position at
COSIC. For this I will always be grateful. Soon after, I did my master’s thesis
work in Leuven, under supervision of Dr. Begül Bilgin and Dr. Bohan Yang, in
the spring of 2015. I graduated in Belgrade later that year. The next thing I
remember was the summer school in Sardinia that kicked off my PhD.

This dissertation synthesizes some of my research into a, hopefully, compelling
narrative. Aside from the exciting work, my years at COSIC were marked by
many extraordinary people. I want to express my gratitude to all of you.

Dear Ingrid, thank you for your guidance throughout these years. I can not
appreciate enough your patience and your effort to keep up with my last minute
changes and submissions that were always mere minutes before the deadlines.
But above all, thank you for giving me the freedom to make every mistake I
possibly could—I would not have learned as much otherwise.

Dear Josep, thank you for always having the time and answers to my many
questions, however reasonable they may have been. Your timely and insightful
nudges always got me back on the track. Without you, few of those deadlines
would have been met.

Dear Jury Members, thank you for attentively reading and evaluating this
dissertation. I hope I managed to materialize your valuable feedback.

Dear Vladimir, I still remember the beers we had after my first visit to COSIC
and my babbling how cool it would be to break the AES. Needless to say, I
have not done much on this account. However, no matter what I did in the
following years, you were there with a kind friendly word, a brilliant remark or
the most rational of criticisms. Thank you for everything!

i

ii PREFACE

Dear Bohan, you were my first office mate and a guide to COSIC. Thank you
for all the wisdom, knowledge and the affinity for scripting you instilled in me.

Dear COSICs, it was a pleasure and a privilege to work with all of you. Some
of you were my office mates and co-authors. With some of you I shared lunch
conversations and Friday Beers, or the joy of teaching EAGLE. Every one
of you enriched my life in your own way, and for that you have my thanks.
Special thanks must go the one special COSIC, namely Péla Noë. Thank you
for untangling administrative messes, for organizing everything—especially the
summer schools—and being there whenever I needed help.

Dear Barracks crew, also known as the Friday crew at “De Metafoor”, you
have my extra special thanks. Your friendship brightened many a cloudy
day—one must be cognizant of the Belgian weather to fully understand this
praise. Between Fridays we worked, travelled and had the best of fun together,
creating memories for which I will always be grateful to all of you. Thank you
for listening to my monologues on ketones, stem cells or any other fascination I
somehow dug up—especially Dušan, Sara and Arthur. Miloše, thank you for
proofreading my texts—the prevailing errors, if any, were introduced afterwards—
and the many conversations we had. Lennert, thank you for the debugging
sessions for our codes and ideas. Thomas, thank you for the never-ending
discussions on becoming healthy, wealthy and wise. And Alan, thank you for
the thought-provoking debates—especially the rare ones you chose to concede.

My dear family and friends, thank you for the countless hours spent talking over
the internet. You were always there when I needed you the most, supporting
and understanding—no matter how far apart we were. Whether you were in
my home Belgrade, Jakovo, Novi Sad, Berlin, Lausanne, Madrid or elsewhere in
the world, thank you for always patiently waiting for my return. I love you all!

Lastly, I want to express my gratitude to the European Commission for funding
this research through the Horizon 2020 research and innovation programme
Marie Skłodowska-Curie ITN ECRYPT-NET (Project Reference 643161).

Danilo Šijačić
Leuven, October 2020

Abstract

Superhuman effort is not worth a
damn unless it achieves results.

Sir Ernest Henry Shackleton

Cryptographic algorithms authenticate and encrypt data to protect communica-
tion between parties. From a mathematical perspective, the implementation
details at sender and receiver are not considered and modeled as a “black box”.
In the black-box security model algorithms are designed to resist cryptanalysis,
constituted by mathematical and statistical methods. Many such algorithms
are publicly available. One prominent example is the Advanced Encryption
Standard (AES).

However, the black-box approach is insufficient against attackers with physical
access to cryptographic devices. In this case, sensitive data can be revealed by
monitoring physical emanations inherent to device operation. Information can
leak through variations in execution times, power consumption, electro-magnetic
radiation and so on. Such physical attacks, called side-channel analysis (SCA),
have become the weakest link in the black-box security model.

In response to SCA, a plethora of countermeasures are proposed in the literature.
The most researched ones induce structural or algorithmic modifications to the
target cryptographic implementation. They fall into two categories: secure
logic styles and masking schemes. They can be implemented using the standard
complementary metal-oxide semiconductor (CMOS) technology and in the latter
case provide formal security models and proofs under sets of mathematical
assumptions. As such they could be easily integrated in modern digital design
flows and are suitable for mass adoption. Nevertheless, electronic design
automation (EDA) tools and models for reliable and efficient SCA security
evaluations prior to manufacturing are lacking. Consequently, it is difficult to
gauge the level of SCA security prior to chip manufacturing.

iii

iv ABSTRACT

This dissertation addresses design time evaluation of SCA security for
cryptographic implementations along three lines.

Firstly, we study the state-of-the-art EDA tools and simulation models used to
facilitate the standard-cell application-specific integrated circuit (ASIC) design
flow and how they can be used for design time evaluation of SCA security. We
design and implement a framework to bridge the gap between digital design
and SCA evaluation, putting together best practices from both communities.
Thus, we integrate SCA evaluation into the standard-cell ASIC design flow
in a wholesome and efficient manner. Lastly, we demonstrate our approach
by evaluating representative cryptographic circuits. In doing so, we detect a
vulnerability in a published peer-reviewed design.

Secondly, we show how to supplement theoretical considerations of masking
countermeasures using detailed physical models incorporated in our framework.
In particular, we demonstrate the resilience of glitch-resistant Boolean masking
schemes against fault sensitivity analysis (FSA). We design an experimental
setup, based on post-layout digital simulation, and argue it is the best-case
scenario for FSA attackers. Under these assumptions, we experimentally verify
that glitch-resistant Boolean masking schemes resist FSA.

Thirdly, we investigate the discrepancies between the analog behavior of CMOS
chips and the independent leakage assumption that underlies all masking
schemes. We design an experimental setup, based on transistor-level simulation,
to capture the impact of layout parasitics on the SCA security of masking
schemes. This setup includes the first model for co-simulation of the power
distribution network and the logic core, in the context of SCA security. Thus,
we provide novel insights into the potential sources of SCA leakage, that escape
the abstract mathematical models of the masking schemes.

This dissertation enriches the knowledge base of SCA-resistant cryptographic
implementations. We develop tools and methods to support the successful
manufacturing of SCA-resistant chips, starting from the first tapeout. As
a result, we enable adoption of SCA-resistant cryptography into real-world
applications.

Beknopte samenvatting

In klassieke cryptografie en gegevensbeveiliging wordt communicatie met andere
partijen beveiligd door middel van versleuteling. De implementatiedetails van
de zender en de ontvanger worden niet beschouwd, ze worden gemodelleerd
als een zogenaamde ”zwarte-doos”. In dit model worden algoritmen ontworpen
om cryptanalytische aanvallen te weerstaan, die berusten op mathematische
en statistische methoden. Deze algoritmen zijn publiek beschikbaar en een
vooraanstaand voorbeeld is de Advanced Encryption Standard (AES).

Het zwarte-doos model is niet bestand tegen aanvallers die fysieke toegang
hebben tot de systemen die de cryptografische bewerkingen uitvoeren. In dat
geval kunnen gevoelige gegevens van cryptografische operaties worden verkregen
via metingen van hun fysische kenmerken. Geheime informatie kan lekken
door variaties in o.a. uitvoeringstijden, stroomverbruik en elektromagnetische
straling. Deze categorie van aanvallen heet nevenkanaal analyse (NKA) en
vormt de zwakste schakel in beveiliging.

Als reactie op NKA werd in de literatuur een reeks tegenmaatregelen
voorgesteld. De meest onderzochte beroepen zich op structurele of algoritmische
aanpassingen van de cryptografische implementatie. Ze vallen onder te
delen in twee categorieën: veilige logische schakelingen en maskerschema’s.
Beide kunnen geïmplementeerd worden met complementaire metaaloxide-
halfgeleidertechnologie (CMOS). Onder een verzameling van wiskundige
veronderstellingen bieden maskerschema’s bovendien formele veiligheidsmodellen
en bewijzen. Dit maakt dat ze eenvoudig te integreren vallen in de moderne
digitale ontwerpprocessen. Desondanks ontbreken electronic design automation
(EDA) tools en modellen voor nevenkanaalevaluaties van elektronische chips
tijdens het ontwerpproces. Bijgevolg is het moeilijk om de veiligheid van een
chip tegen NKA te meten voordat de chip wordt geproduceerd.

Dit proefschrift handelt over de evaluatie van nevenkanaal analyse tegen
cryptografische implementaties in de ontwerpfase in drie delen.

v

vi BEKNOPTE SAMENVATTING

In het eerste deel van het proefschrift bestuderen we de huidige stand van EDA
tools en simulatiemodellen die worden gebruikt om het ontwerpproces voor
applicatie-specifieke geïntegreerde schakelingen (ASIC) te vergemakkelijken
en hoe ze kunnen worden gebruikt voor evaluaties van NKA-beveiliging. We
ontwerpen en implementeren een raamwerk om de kloof te overbruggen tussen
de commerciële EDA-tools voor digitaal ontwerp en nevenkanaal evaluatie.
We beschouwen zowel de front-end als de back-end stadia van het ASIC-
ontwerpproces met standaardcellen. We hebben de beste praktijken van de
EDA en de NKA gemeenschappen op een praktische en efficiënte manier
samengevoegd door de nevenkanaalevaluaties op een methodische manier in de
ASIC-ontwerpstroom met standaardcellen te integreren. Onze aanpak en ons
raamwerk richten zich op de concrete implementatie en evaluatie van a priori
geconstrueerde tegenmaatregelen. We tonen de haalbaarheid en de relevantie
van onze simulaties door representatieve cryptografische circuits te evalueren,
en door een kwetsbaarheid te detecteren in een gepubliceerd ontwerp.

In het tweede deel van het proefschrift tonen we hoe de gedetailleerde fysieke
modellen van ons raamwerk de maskerschema-theorie kunnen aanvullen. In het
bijzonder demonstreren we de bestendigheid van glitch-resistente Booleaanse
maskerschema’s tegen foutgevoeligheidsanalyse. We maken gebruik van het
ruisvrije karakter en de hoge precisie van digitale simulaties om aanvallers te
bevoordelen met metingen die in de praktijk onmogelijk te verkrijgen zijn. Onze
experimenten tonen de bestendigheid tegen foutgevoeligheidsanalyse aan in een
meest optimistisch geval voor een aanvaller en dus een pessimistische geval voor
de tegenmaatregel. We voeren de experimenten uit in het back-end stadium
van het ASIC-ontwerpproces met standaardcellen.

In het derde deel van het proefschrift onderzoeken we de discrepanties tussen
het analoge gedrag van CMOS-chips en de onafhankelijkheidassumptie die de
grondslag vormt voor maskerschema’s. Verschillende recente werken tonen
aan dat ondanks de bewezen veiligheid van Booleaanse maskerschema’s,
gevoelige informatie toch kan lekken door de layout van het ontwerp. We
ontwerpen een experimentele opstelling om de impact van parasitaire effecten
van de layout op de NKA-veiligheid vast te leggen. Naast de gebruikelijke
verdachte koppelcapaciteiten stellen we een model voor co-simulatie van het
stroomdistributienetwerk en de logische kern voor. Zo bieden we nieuwe
inzichten aan in de mogelijke bronnen van NKA-lekken die ontsnappen aan de
abstracte wiskundige modellen van de maskerschema’s.

De bijdragen van dit proefschrift hebben tot doel de kennis rond NKA-resistente
implementaties te versterken. De voorgestelde tools en methoden dienen tot het
verkorten van de ontwerpcycli en het sneller tot de markt brengen van NKA-
resistente chips. Als resultaat maken we een bredere adoptie van NKA-resistente
cryptografie in applicaties mogelijk.

List of Abbreviations

AES Advanced Encryption Standard

AFD Analyzed Frame Data

ASIC Application-Specific Integrated Circuit

CASCADE Computer-Aided Side-Channel Analysis Design Environment

CCS Composite Current Source

CMOS Complementary Metal-Oxide Semiconductor

CMS Consolidated Masking Schemes

CPA Correlation Power Analysis

CPU Central Processing Unit

DFA Differential Fault Analysis

DOM Domain Oriented Masking

DPA Differential Power Analysis

DRC Design Rule Check

ECC Elliptic Curve Cryptography

EDA Electronic Design Automation

EDPC Exhaustive Dynamic Power Capturing

FA Fault Analysis

vii

viii List of Abbreviations

FI Fault Intensity

FO4 Fan-Out of 4

FPGA Field Programmable Gate Array

FS Fault Sensitivity

FSA Fault Sensitivity Analysis

FSDB Fast Signal Data Base

GE Gate Equivalent

GLN Gate-Level Netlist

GPU Graphical Processing Unit

HD Hamming Distance

HDL Hardware Description Language

HW Hamming Weight

iMDPL improved Masked Dual-rail Precharge Logic

IoT Internet of Things

IP Intellectual Property

LEF Library Exchange Format

LIB Liberty Characterization Format

LMDPL LUT-based Masked Dual-rail Precharge Logic

LUT Look-Up Table

MAC Message Authentication Code

MCU Microcontroller Unit

MDPL Masked Dual-rail Precharge Logic

MIA Mutual Information Analysis

MSM Marching Sticks Model

MtD Measurements-to-Disclosure

LIST OF ABBREVIATIONS ix

NLDM Non-Linear Delay Model

PAR Place and Route

PDN Power Distribution Network

PFF Power Frame File

PT Synopsys PrimeTime

RAM Random Access Memory

RFID Radio-Frequency IDentification

RSA Rivest Shamir Adleman

RTL Register Transfer Level

SABL Sense Amplifier Based Logic

SCA Side-Channel Analysis

SCADA Supervisory Control and Data Acquisition

SDC Synopsys Design Constraints

SDF Standard Delay Format

SI Signal Integrity

SNR Signal to Noise Ratio

SoC System on a Chip

SPA Simple Power Analysis

SPEF Standard Parasistic Exchange Format

SPICE Simulation Program with Integrated Circuit Emphasis

TI Threshold Implementations

TVLA Test Vector Leakage Assessment

VCD Value Change Dump

WDDL Wave Dynamic Differential Logic

Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations ix

List of Symbols xi

Contents xi

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Dependability and Device Lifecycle 2

1.2 Security and Cryptography . 5

1.2.1 Grey-Box Security Model 7

1.3 About This Dissertation . 9

2 Background 11

2.1 Standard-Cell ASIC Design Flow 12

xi

xii CONTENTS

2.1.1 Design Stages . 13

2.1.2 Contemporary EDA Tools and Data Formats 17

2.1.3 Standard CMOS Cells and Library Characterization . . 17

2.2 Physical Attacks . 21

2.3 Side-Channel Analysis . 23

2.3.1 Attack Techniques . 25

2.3.2 Countermeasures . 26

2.3.3 Side-Channel Security Metrics 35

2.4 Conclusions . 38

3 SCA-Aware Standard-Cell ASIC Hardware Design Flow 39

3.1 Motivation . 40

3.2 Related Work . 43

3.3 Contributions . 45

3.4 SCA-Aware Extensions to the Standard-Cell ASIC Design Flow 46

3.4.1 The Preferred Side-Channel 46

3.4.2 The Systematic Use of Simulations 47

3.4.3 SCA Evaluation Methods 47

3.4.4 Simulation Models . 48

3.4.5 Simulation Methodology 52

3.5 Computer-Aided Side-Channel Analysis Design Environment
(CASCADE) . 54

3.6 Experimental Validation . 59

3.6.1 A Motivating Example 59

3.6.2 Protected S-Boxes . 67

3.7 Discussion . 74

3.7.1 Utility to the Designer 74

3.7.2 Models and Countermeasures 74

CONTENTS xiii

3.7.3 On the Importance of Design Constraints 76

3.7.4 Performance . 77

3.8 Conclusions . 79

4 Evaluating Glitch-Resistant Masking Schemes Against Fault Sen-
sitivity Analysis 81

4.1 Motivation . 83

4.2 Related Work . 84

4.3 Contributions . 85

4.4 Fault Sensitivity Analysis . 86

4.4.1 Attack phases . 86

4.5 Glitch-Resistant Masking Schemes as a FSA Countermeasure . 88

4.5.1 Propagation Delay of Non-Complete Shares 89

4.6 Experiments . 92

4.6.1 Profiling Phase . 93

4.6.2 Key Recovery Phase . 93

4.6.3 Present S-Box . 95

4.6.4 Keccak S-Box . 97

4.7 Conclusions . 100

4.8 Follow-up Work . 100

5 Investigating the Impact of Layout Parasitics on Masked Circuits 103

5.1 Motivation . 105

5.2 Related Work . 106

5.3 Contributions . 108

5.4 Methodology . 108

5.5 SPICE Model . 109

5.5.1 Target Circuits . 111

xiv CONTENTS

5.5.2 Security Metric . 112

5.6 Experimental Results . 113

5.6.1 Impacts of PDN . 113

5.6.2 Effects of Coupling Capacitances 116

5.7 Discussion . 120

5.7.1 Impacts of the PDN . 120

5.7.2 Impacts of Coupling Capacitances 121

5.8 Conclusions . 122

6 Conclusions and Insights for Future Research 125

6.1 Conclusions . 125

6.2 Future Research Directions . 129

Bibliography 133

A Data Formats 151

List of Figures

1.1 Application-Specific Integrated Circuit (ASIC) hardware lifecycle. 3

1.2 Grey-box security model. 8

2.1 Standard-cell ASIC Design Flow. 14

2.2 CMOS inverter. 19

2.3 CCS Liberty characterization. 21

2.4 The distribution of state transitions. 25

2.5 Side-channel measurement setup. 25

2.6 Side-channel countermeasures. 26

2.7 WDDL AND2 and XOR2 gates. 28

2.8 Wave Dynamic Differential Logic. 28

2.9 Generic structure of a three-share TI scheme. 32

2.10 First-order secure, 3-share TI multiplication. 33

2.11 First-order secure, 2-share TI-like multiplication. 33

2.12 Signal waveforms, 2-share TI-like multiplication by [48]. 34

3.1 SCA Aware ASIC Design Flow. 41

3.2 CCS output current waveforms of a XOR_X1 gate. 50

3.3 CCS power waveform of the XOR2_X1 gate for five transitions. . 50

xv

xvi LIST OF FIGURES

3.4 CASCADE architecture. 55

3.5 CASCADE in relation to a SCA measurement setup. 56

3.6 Standard-cell design stages using CASCADE. 57

3.7 DOM-indep multiplier. 60

3.8 DOM-indep multiplier, MSM power profiles. 60

3.9 DOM-indep multiplier, difference of means (left), difference of
variances (right). 61

3.10 DOM-indep multiplier, when a1 = b1 difference of means (left),
of variances (right). 62

3.11 DOM-indep multiplier, when r = 0 difference of means (left), of
variances (right). 62

3.12 DOM-indep multiplier, power profile (top), difference of means
(middle), first-order t-trace (bottom) using Composite Current
Source (CCS) power models. 63

3.13 DOM-indep multiplier, the first-order (left) and the second-order
(right) t-statistic evolution. 64

3.14 DOM-indep multiplier, when a1 = b1 first-order t-statistic
evolution in the first-cycle (left) and the second-cycle(right),
using PMSM(α = 0). 65

3.15 DOM-indep multiplier, when a1 = b1 first-order t-statistic
evolution in the first-cycle (left) and the second-cycle(right),
using CCS power. 65

3.16 DOM-indep multiplier, when r = 0 the first-order t-statistic
evolution in the first-cycle (left) and the second-cycle(right),
using PMSM(α = 0). 66

3.17 DOM-indep multiplier, when r = 0 the first-order t-statistic
evolution in the first-cycle (left) and the second-cycle (right),
using CCS power. 67

3.18 Architecture of the TI Present S-Box. 68

3.19 TI Present S-Box, the second-order t-trace using PMSM(α=0)

power (left) and CCS power (right). 69

3.20 TI Present S-Box, the first-order t-trace evolution using
PMSM(α=0) power. 69

LIST OF FIGURES xvii

3.21 TI Present S-Box, the first-order t-trace (left), and its evolution
(right) for, using CCS power; false positive evaluation. 70

3.22 TI Present S-Box, the first-order t-trace (left) and its evolution
(right), using CCS power. 71

3.23 I Present S-Box, the first-order t-trace evolution when x3,1 =
x3,2 = x3,3 = x3,4 = 0, using PMSM(α=0) power (left) and CCS
power (right). 71

3.24 WDDL Present S-Layer, the first-order t-trace evolution using
PMSM(α=0) (left) and CCS power (right) at 1 ps. 73

3.25 WDDL Present S-Layer, the first-order t-trace evolution using
PMSM(α=0) (left) and CCS power (right) at 10 ps. 73

4.1 FSA in the ASIC design flow. 82

4.2 Variable data propagation delay. 86

4.3 One share of the AND gate presented in Equation (4.4) 90

4.4 Target circuit. 94

4.5 Present S-Box, correlations for different reset values, unpro-
tected (left), protected (right). 96

4.6 Unprotected Present S-Box, data-dependent propagation delay
td in the function of the input HW. 97

4.7 Present S-Box, FSA recovery for the key value 7; × indicates k̂. 97

4.8 Keccak S-Box, correlations for different reset values, unpro-
tected (left), protected (right). 98

4.9 Unprotected Present S-Box, data-dependent propagation delay
td in the function of the input HW. 99

4.10 Keccak S-Box, FSA recovery for the key value 27; × indicates k̂. 99

4.11 Measuring propagation delays of different shares via FI. 101

4.12 Fixed FI as a distinguisher by Delvaux [38]. 101

5.1 Influence of SCA considerations. 104

5.2 Circuit model for the independent leakage assumption. 106

xviii LIST OF FIGURES

5.3 Power distribution network model. 110

5.4 Shared XOR operation. 111

5.5 Shared AND operation. 112

5.6 Two-share 8-bit XOR2, average supply sag. 114

5.7 Two-share 8-bit XOR2, impact of supply buffers to max(|t|) score.114

5.8 Impact of power distribution network resistors. 115

5.9 Impact of power distribution network capacitors. 115

5.10 Impact of power distribution network inductors. 116

5.11 Impact of parasitic inductors. 116

5.12 Impact of parasitic capacitors on the shared XOR. 117

5.13 Impact of cross-data capacitors on the shared XOR. 118

5.14 The joint impact of coupling capacitors, t-trace. 118

5.15 The joint impact of coupling capacitors, max(|t|). 119

5.16 Impact of cross-data capacitors on the shared AND. 120

6.1 The impact of this thesis. 126

6.2 Modeling for performance (left) and SCA security (left and right).129

6.3 A simple model for SCA security of a shared design. 131

List of Tables

2.1 List of common EDA data formats. 18

2.2 WDDL redundant encoding. 29

3.1 Static power consumption in nW, captured by CCS power models. 52

3.2 Configuration parameters. 55

3.3 List of commercial EDA tools used. 56

3.4 TI Present S-Box, benchmarks for tools, stages and models. 77

3.5 Runtimes for the acquisition and processing of 1million PAR
traces. 78

xix

Chapter 1

Introduction

The Internet of Things (IoT) is the emerging pinnacle of the information
era we live in. It encompasses a myriad of devices, largely different in their
technical capabilities and intended use. IoT devices are made to be capable of
communicating together, revolutionizing the way we experience life. Its roots
date back to the 1970s’ idea of identifying things using bar codes, and the
pervasive computing paradigm put forward in the 1980s. Enabled by the mass
adoption of the Internet in the late 1990s, IoT is leading the civilization into a
world of unfathomable, best described with a question: “What happens when
things start to think?” [54]. The current estimated value of the IoT market
of US $190billion is a small fraction of the 2026 prediction by Bloomberg [21]
surpassing US $1.1 trillion. A similar study [138] shows that the 26.66billion
connected devices in 2019 are going to be nearly tripled until 2025 to 75.44 billion.
Such a staggering growth rate would not be possible without the IoT pervading
into every aspect of societal needs. It presents a natural evolution of Supervisory
Control and Data Acquisition (SCADA) systems widely used for control of
industrial processes. Production and distribution of goods varying from ballpoint
pen tips to nuclear reactors are made more efficient, cheaper and safer by the
swarms of IoT sensors and actuators. Nevertheless, industrial automation is
just a tip of the “IoT-berg”. Vehicle-to-vehicle and vehicle-to-infrastructure
communication is an invaluable aspect of autonomous driving. Home automation
applications, or domotics, can provide anyone with services previously available
only to the fortunate ones to have living-in butlers, maids and security personnel.
Various wearable devices can be used to track our vitals and gain intimate
knowledge of our behavior, biology and health, better than any doctor. When
this is not enough, IoT can reach into our physical selves via sub-dermal
and cranial medical implants. The line between treating humans and things

1

2 INTRODUCTION

grows thinner when Radio-Frequency IDentification (RFID) tags can be used
for identifying small items, shipping containers as well as humans [7]. In
addition to physically attached devices, hand-held devices such as (smart)
mobile phones and tablets seem to be bound to humans via digital umbilical
cords. Constantly fed with media inputs humans became a valuable part of this
internet. Humans are given access to digital commerce, banking, entertainment
and communication. Internet allows sharing both physical (e.g. Airbnb, Uber)
and digital (e.g. Amazon Web Services) assets, for the betterment of business
and pleasure. In exchange, this internet demands their constant involvement,
attention and streams of personal data. To sum up, combining all IoT devices—
ranging from miniscule ones, spread around the globe, to gargantuan cloud
servers and data centers—together with its human users forms an entity better
described as internet of everything. An entity, with an unparalleled leverage
over humanity; baring fictional characters. It stands to reason to keep this
ubiquitous entity benevolent. Doing so requires dependable and secure operation
of all of its electronic devices, throughout their entire lifecycle.

1.1 Dependability and Device Lifecycle

Dependability1 starts with a steady supply of devices to the global market,
sustaining uninterrupted service. Devices need to be manufactured with high
levels of assurance to prevent recalls and consequent service congestions. Last
but not least, for a reliable service devices must adhere to the ever-growing
demand for computational power. Across the spectrum of computational devices
constraints are getting tighter too. High-end devices flourished following Moore’s
law and increased in clock speeds during the past decades. As further transistor
scaling becomes nearly impossible and clock frequencies above 3–4 GHz range
easily lead to thermal meltdowns, alternatives for further growth must be found.
In their Turing Award winner lecture [65], Hennessy and Patterson point out
that designing novel hardware architecture is the best path to take. Although
low-end devices are manufactured in older technologies and use clocks far below
the GHz range, they are subject to stringent monetary and resource utilization
(e.g. area, power and energy) constraints. Therefore, Hennessy and Patterson’s
argument easily extends to the entire electronic landscape and we can expect
the increase in the volume and rate of production.

The majority of modern electronic devices are built as Application-Specific
Integrated Circuit (ASIC) devices. ASICs include but are not limited to: Central
Processing Units (CPUs), Graphical Processing Units (GPUs), Microcontroller
Units (MCUs), Field Programmable Gate Arrays (FPGAs) and dedicated

1This definition of dependability is not to be confused with fault tolerance.

DEPENDABILITY AND DEVICE LIFECYCLE 3

devices. Modern embedded systems often feature a combination of said units
integrated into a single System on a Chip (SoC). We outline the chronological
steps of the ASIC hardware lifecycle in Figure 1.1.

Design Implementation Manufacturing

TestingRevocation Deployment

Programming Cycle

ASIC Hardware Device Life-Cycle

Full-Custom Semi-Custom Standard-Cell

Operation

Figure 1.1: Lifecycle of ASIC devices.

Design and Implementation. The design and implementation steps are
intertwined in a number of ways to ensure short time-to-market and high
level of quality assurance. Electronic Design Automation (EDA) is essential
during each of these steps. EDA tools and methods use different levels of
abstraction, i.e. models, allowing fast prototyping and pre-silicon testing using
simulations. Full-custom ASIC design involves creating each system component
“from scratch”. It yields the optimal circuits, at the cost of design time and
immense level of expertize needed. Standard-Cell ASIC design is based on using
building blocks or cells from pre-made full-custom digital libraries (Section 2.1).
It dominates digital industry for increased reliability and ease of design that
ensure market presence, outweighing the costs and benefits of a full-custom
approach. Semi-custom ASIC design is a compromise between the latter two
approaches. Regardless of the approach, masks for photolithography of the chip,
or layouts, are exported in standardized formats and sent to the manufacturing
facilities for tapeout2.

2Historically, the name originates from shipping physical tapes containing photolithography
masks out to the manufacturing facilities.

4 INTRODUCTION

Manufacturing. Manufacturing consists of silicon wafers fabrication, process-
ing and packaging. Chip layouts can be designed and implemented anywhere in
the world and sent securely over the internet to the manufacturing facilities or
foundries. The majority of foundries are spread around East Asia. Therefore,
despite the global development and deployment, most chips are manufactured
in this locale. As political and economic currents fluctuate, ensuring an
uninterrupted manufacturing and a reliable supply chain is a non-trivial issue.
Common threats include Intellectual Property (IP) theft and the insertion of
hardware Trojans [140].

Testing. Newly manufactured chips need to be functionally tested and
classified based on their performance. Testing is highly automated and
performed directly at the manufacturing facility to save the testing time,
as it impacts the price of production significantly.

Deployment. Chips that pass the testing are passed down the supply chain
to trusted vendors where they can be purchased and deployed for a specific
application. Deployment includes initial programming, configuration and
integration with the desired product, followed by the launch to market.

Operation. An ASIC device can be incorporated into a myriad of products in
the market. Depending on the type of device and its purpose, the operation step
consists of programing cycles. Devices running user software, such as desktop
CPUs and mobile SoCs, run a variety of software applications under one or
more operating systems. They are updated many times during the operation
step. Industrial microcontrollers on the other hand often run a single routine
for many years. FPGA devices can be programmed, i.e. reconfigured using
different bitstreams.

Revocation. Revocation or removal of electronic devices from the field is the
final, often overlooked, step. Consumer-grade devices simply run until failure.
Different industrial-grade devices must guarantee service for a number of years
(e.g. 20 years for automotive, 50 years for aeronautical). As devices contain
increasingly sensitive data, proper policies for handling them after the end of
operation need to be set.

In summary, production steps represent a small fraction of the device lifecycle.
Unlike software that can easily be patched after deployment, bugs in hardware
design persist until revocation. Modern design flows and EDA tools are built
around reliable detection and prevention of hardware bugs that would impede

SECURITY AND CRYPTOGRAPHY 5

the functionality and the performance before they go viral in the market.
However, this is not the case for security vulnerabilities. Recent attacks by
Lipp et al. [89] and Kocher et al. [80] exploit such hardware vulnerabilities in
Intel processors.

1.2 Security and Cryptography

Security is never a standalone product, but an enabling technology. As such, it
is often squeezed out from the profit margins or left as an afterthought under
the pretext of “what could go wrong”. The large influx of pervasive electronic
devices combined with neglect of security imposes risks to physical health and
safety—as shown by Miller and Valasek [98, 99] and Marin et al. [93].

Securing electronic devices during their entire lifecycle encompasses technical
and social measures. Social measures become important after deployment, as
humans can easily be manipulated to circumvent the protection mechanisms
using social engineering3. Technical measures are the backbone and must
be set in place during the design step and present during all subsequent
steps. They center around cryptology, a science conceived shortly preceding the
invention of the written language. Cryptology enables secure communication
and computation in an adversarial environment. For thousands of years it
has almost exclusively been the matter of the secret societies, military and
diplomatic corps. In 1883, Kerckhoffs postulated six principles [73, 74], the
second of which today remains known as “Kerckhoffs’ principle”. Given a keyed
algorithm, i.e. a cipher, security is preserved if and only if the key is kept
secret. All other details including the design rational and cipher functionality
can be made public, without impacting security4. Kerckhoffs’ principle is the
foundation for modern cipher design and the black-box security model. In this
model ciphers are viewed as purely mathematical constructs. Cipher outputs are
sufficiently large and computationally indistinguishable from uniform random
data to adversaries with finite computational power. Cryptography is the
synthetic part of cryptology. Traditionally, cryptographic primitives are used
to protect messages in transit, i.e. communication, and messages at rest, i.e.
storage. Said primitives are commonly divided into three branches:

• symmetric-key primitives: communicating parties are in possession of the
same pre-shared secret key,

3All social aspects of security, ranging from inadequate policies and improper defaults to
industrial espionage, are outside of the scope of this dissertation.

4Algorithms that deviate from this principle cannot be vetted through rigorous public scrutiny.
Hence, such algorithms should be avoided, no matter who the authors are.

6 INTRODUCTION

• public-key primitives: each party possesses a pair of mutually dependent
keys, the party’s private key and a public key known to everyone,

• keyless primitives.

Symmetric-key primitives. Symmetric-key primitives, i.e. ciphers, encrypt
an input message, called plaintext, into a ciphertext using a secret key. The
reversed operation is called decryption. Secret key sizes of 80, 128 and 256 bits
are recommended for short-, moderate- and long-term security, respectively [58].
They include three types of primitives. Block-ciphers operate on words of
constant size, i.e. block size, including the plaintext, the ciphertext and the
internal state. Notable examples include the Advanced Encryption Standard
(AES) [34] and PRESENT [24]. Stream-ciphers use the internal state of fixed
size to create a pseudo-random bit-stream used to encrypt the arbitrary-size
plaintext. A notable example is Chacha20 [37]. Permutation-based primitives
permute a relatively large state acting as an entropy pool, absorbing plaintext
blocks into the state between permutations to create ciphertext blocks. A
notable example is Ascon [40]. Symmetric-key primitives excel at efficiency but
require a secure channel for key exchange.

Public-key primitives. Public-key primitives excel at key management and
establishing secure channels, but lack efficiency. Each party has to generate
and manage its own private key, while the public key can be broadcasted freely
over an insecure environment. Advances in the area of quantum computing
in conjunction with the Shor’s algorithm [135] pose a potential future threat
for the public-key algorithms currently in use. Notable examples of public-
key primitives are the Rivest Shamir Adleman (RSA) [126] cryptosystem and
Elliptic Curve Cryptography (ECC) [100, 79, 96].

Keyless primitives. Keyless primitives involve cryptographic checksums, also
known as hash functions. They are versatile primitives used in combination
with both symmetric- and public-key primitives. Notable hash functions include:
RIPEMD-160 [39], SHA2 [111] and SHA3 [11].

Primitives from different branches of cryptography are used to fulfill security
goals. While we list the fundamental ones, an interested reader can find a more
comprehensive list in [97].

Confidentiality. Data confidentiality or secrecy is the oldest security goal. It
prevents any unintended recipients from reading the contents of a message. It

SECURITY AND CRYPTOGRAPHY 7

serves to protect everything from private information of individuals to industrial
and governmental trade secrets. Confidentiality is commonly achieved using
symmetric-key primitives due to their computational efficiency.

Authenticity. Authenticity of data and entities has to be ensured to prevent
unauthorized players from assuming roles in a system. In case of data its
origin can be authenticated using digital signatures or Message Authentication
Codes (MACs). The former are built using public-key primitives. The latter
are built using different modes of operation of stream or block ciphers e.g.
AES-GCM [95], dedicated authenticated encryption [127] constructs e.g. AEGIS-
128 [150] and AES-OCB [83] or using hash functions e.g. HMAC [10]. Entity
authentication confirms their identity to match one of authorized players in the
system. Similarly to the data authenticity, it can be achieved using MACs and
digital certificates. The latter are digitally signed identifiers issued by certificate
authorities.

Non-repudiation. Non-repudiation is a form of a misbehavior detection
mechanism. It prevents legitimate entities from denying performing their
previous actions. Asymmetric knowledge in public-key cryptosystems achieves
non-repudiation using digital signatures.

1.2.1 Grey-Box Security Model

The black-box security model for computational security suffices when
cryptographic primitives are regarded as purely mathematical constructs
adhering to the Kerckhoffs’ principle. Black-box adversaries can only collect
plaintext-ciphertext pairs and try to make mathematical inferences about the
key. Secure cryptographic primitives require attackers to perform prohibitively
many evaluations of the target primitive before making a successful inference.

For example, the best known attack against AES-256 [23, 139] requires 2254.27

evaluations of the primitive and 240 plaintext-ciphertext pairs. This is considered
an attack as it can recover the key with less evaluations on average than 2255.00

evaluation needed for the exhaustive search5.

However, black-box security quickly falls apart once adversaries attain physical
access to cryptographic devices. In this case they can leverage physical
manifestations that inevitably accompany cryptographic computations to gain
access to the cryptographic keys behind the abstract mathematical constructs.

5For perspective, the number of particles in the known universe is 2267.47.

8 INTRODUCTION

Said attacks are called physical attacks. The black-box security model is
expanded into the grey-box security model to reflect the capabilities of physical
attackers as depicted in Figure 1.2.

Algorithm

Data Inputs Data Outputs

Device

Perturb Measure

Figure 1.2: Grey-box security model.

Grey-box attackers require a trivially small number of input-output data pairs,
compared to black-box attackers. This is enabled by the advantages of physical
access, the ability to perturb and measure device operation in order to collect
additional key-related information.

• Perturbation can be caused through manipulation of supply voltage, clock
signal or operating temperature. More sophisticated attackers can use
lasers and focused ion beam cannons for a finer-grained control. Regardless
of the technical venue attackers take, perturbation causes devices to
produce faulty outputs. Thus-obtained outputs can be exploited using
Fault Analysis (FA) techniques.

• Physical emanations, such as power consumption, electromagnetic
radiation and execution timing, are inherently present and correlated to
device operation and data being processed. Consequently, when measured
they form a communication channel that leaks sensitive information. Side-
Channel Analysis (SCA) techniques exploit information embedded in
these channels.

FA and SCA are powerful attack techniques on their own. However, in practice
perturbations and measurements can be used together to mount even more
devastating combined attacks.

ABOUT THIS DISSERTATION 9

1.3 About This Dissertation

In this dissertation we study design-time, i.e. pre-silicon, evaluations of physical
vulnerabilities. We focus on the earliest—design and implementation—steps of
the ASIC hardware lifecycle, Figure 1.1. We aim to preempt vulnerabilities that
could be exploited during the device Operation step, while enabling fast time
to market. Furthermore, our approach allows designers to catch vulnerabilities
before the lengthy and expensive Manufacturing step, leading to more reliably
secure designs released to the market. In particular, we focus on design-
time evaluations of side-channel vulnerabilities for cryptographic hardware
implemented using the standard-cell ASIC design flow.

The contributions of this dissertation can be placed along three lines of work.
In the first part of this dissertation we focus on a systematic and wholesome
integration of pre-silicon SCA evaluation in the standard-cell ASIC hardware
design flow. In the second part, we move to demonstrate the power of
experimental pre-silicon evaluations in supporting theoretical SCA security
claims. Lastly, in the third part we use low-level hardware models to uncover
physical phenomena escaping mathematical models for SCA security.

The remaining chapters of this dissertation are organized as follows.

Chapter 2. In this chapter we present the necessary background for this
dissertation. We start by introducing the standard-cell ASIC hardware design
flow, the design approach dominating digital design for decades. We detail
abstractions and actions typically involved in different stages of said design
flow. We describe modeling and tooling practices necessary for the success of
standard-cell designs. Next we introduce physical attacks, as a major threat for
secure cryptographic implementations. We briefly outline their classification,
based on the attacker capabilities and socioeconomic resources. We then focus
on SCA, for we deem it highly risky as it is available to a broad range of
potential attackers. We outline state-of-the-art SCA attack methodologies,
countermeasures and methods for accessing SCA security. Boolean masking
schemes are on the forefront of the countermeasure collage, with properties
that promise compliance with standard-cell design. Additionally, we accent
the gap between the areas of standard-cell design and SCA. SCA practices
and theoretical insights are relatively recent. In stark contrast, standard-cell
design and EDA tools are field-tested veterans of many decades of research and
practice in the digital electronics industry.

10 INTRODUCTION

Chapter 3. In this chapter we consolidate state-of-the-art models and practices
of the standard-cell ASIC hardware design flow with the state-of-the-art SCA
evaluation methods and metrics to propose a SCA-aware hardware design
flow, capable of detecting physical vulnerabilities starting from the earliest
design stages. We experimentally verify the computational efficiency and
efficacy of models by running design-time evaluations on several representative
cryptographic circuits. We focus on instantaneous power consumption as the
preferred side-channel. However, our methodology can be applied to any other
channel. To further the practical significance of this approach, we design
and implement Computer-Aided Side-Channel Analysis Design Environment
(CASCADE). CASCADE bridges the gap between the commercial EDA tools
and SCA evaluation methods, in a manner that can be easily adopted in a
designer’s toolbox. Lastly, we discuss the design rationale and implementation
details of CASCADE, following with performance benchmarks.

This work was originally published in [155]. An extended version of this work
was published in [153].

Chapter 4. In this chapter we use the EDA tools and models incorporated
in CASCADE to evaluate resistance of glitch-resistant masking schemes
against fault sensitivity analysis. We start from theoretical considerations
and experimentally verify the findings. We also demonstrate the versatility of
CASCADE, extending it to evaluations beyond passive SCA.

This work was originally published in [156].

Chapter 5. In this chapter we investigate the potential causes of the “out
of model” leakage present in digital circuits protected using Boolean masking
schemes. We employ detailed backend simulations using Simulation Program
with Integrated Circuit Emphasis (SPICE) to capture the physical effects that
are abstracted away in the mathematical models used to craft Boolean masking
schemes. We provide valuable insights into the impact of the Power Distribution
Network (PDN) and a plethora of parasitic components inevitably present in
digital circuit layouts. We show the qualitative difference in the impact of
different parasitic components to the SCA security.

This work was originally published in [154].

Chapter 6. In this chapter we conclude the dissertation, summarizing its
contributions. We provide several insights that follow from the obtained results.
Accordingly, we propose several directions for future research.

Chapter 2

Background

Whenever you find yourself on the
side of the majority, it is time to
pause and reflect.

Mark Twain

In this chapter we introduce the standard-cell ASIC design flow and Side-
Channel Analysis (SCA) attacks on cryptographic implementations.

Standard-cell ASIC design flow is extensively documented in the literature [120,
70, 14]. As the most widely used design flow for digital circuits its facilitation
can be grouped together differently, to cater to different optimization targets. In
this chapter we delineate and summarize its aspects relevant for this dissertation.
Without the loss of generality we focus on the design of cryptographic
Intellectual Property (IP) cores. Cryptographic IP cores may include hardware-
accelerated instructions set extensions (e.g. AES-NI), trusted computing cores
(e.g. Sancus [114]) and the entire secure enclaves (e.g. Apple T2 Security Chip).
Any system-level design and integration with other IP blocks are out of scope.
As we are setting the stage for designing SCA attack resistant IP cores, we
emphasize the logic simulation steps across all levels of abstraction.

SCA is a class of physical attacks on cryptographic implementations. In
gist SCA attackers look for a relation between a physical measurement of
the cryptographic implementation (e.g. power consumption) and the data it
is processing in hopes of retrieving the secret information from the device.
In this chapter we introduce physical attacks, classify them and discuss the

11

12 BACKGROUND

state-of-the-art and SCA evaluation techniques.

SCA upsets the well-established digital design practices by requiring a new
design criteria, namely SCA resistance. We conclude this chapter by delineating
the contrast between the systematic and methodical practices of the standard-
cell ASIC design flow and the missing measures for design time SCA evaluation
for cryptographic implementations.

2.1 Standard-Cell ASIC Design Flow

Standard-cell ASIC design flow is based on assembling a priori designed logic
gates into the desired circuit. Said gates, or cells, are organized in collections, or
libraries, for a designated technology node. Each standard-cell has a pre-designed
layout and electrical characteristics. Physical properties of a standard-cell are
abstracted away through cell characterization and replaced with piecewise
linear models. Thus, standard-cell ASIC design flow greatly reduces designers’
effort, as it decouples logic functionality from physical design. It is therefore a
“divide and conquer” approach across increasingly complex abstraction levels.
Standard-cell libraries typically include: combinatorial, sequential and physical
cells. Combinatorial cells include simple gates such as inverters, AND or XOR
gates; and more complex ones such as multiplexers and adder slices. Sequential
cells include latches and flip-flops with different control amenities such as
synchronous or asynchronous reset, write enable signal or a multiplexer for
scan insertion. Physical cells include signal distribution cells such as clock
buffers and filler cells, necessary to ensure uninterrupted well doping. Most
of modern commercial libraries are based on the Complementary Metal-Oxide
Semiconductor (CMOS) logic style and include between 300 and 500 cells. Cells
come in different sizes, allowing different driving strengths for the same logic
functionality.

Gate Equivalent (GE) is the most common metric of circuit complexity for
standard-cell ASIC designs [70]. The number of GE expresses the circuit
complexity normalized to the complexity of the two-input NAND gate with
minimal driving strength from the target library. The complexity of the two-
input NAND gate is measured by either its area or number of transistors (four).
The number of GE is a good preliminary estimate for comparing designs for
the same standard-cell library. Nevertheless, as a normalized metric, GE is not
entirely adequate for comparing designs implemented using different libraries
and technology nodes. An alternative metric, focused on normalizing timing
is Fan-Out of 4 (FO4) [62]. It represents the propagation delay of a cell with

STANDARD-CELL ASIC DESIGN FLOW 13

fan-out equal to four, i.e. with a loading capacitance four times larger than its
input capacitance.

2.1.1 Design Stages

Figure 2.1 depicts the stages of the standard-cell ASIC design flow. Each stage
consists of synthetic, analytic and corrective actions, depicted using rectangles
rounded rectangles and dashed lines, respectively. We note the outputs of
different design stages using ellipses. After an iteration of a synthetic step,
designers must analyze thusly obtained design. Based on the feedback from
the analysis tools, designers proceed to the next synthetic step or perform
corrective actions. Corrections must be made if the design does not satisfy
the functionality and predetermined constraints from the product specification.
Constraints include but are not limited to: timing (e.g. setup and hold times),
area, power consumption and energy per operation. As this often results in
numerous tedious iterations, automation is an invaluable designers’ asset.

Electronic Design Automation (EDA) tools aid synthetic and analytic actions,
while the corrective actions are left for the designers1. The analysis includes
extraction, simulation and formal verification of designs. The level of physical
detail about the design increases as the flow progresses. Design information
becomes more complex, requiring steep increases in the number of analysis steps
and computational power for each step. Moreover, the separation between steps
in practice is rarely as s“clean” as Figure 2.1 depicts. As different design steps
are performed by different designer teams, additional iterations incur scheduling
conflicts that can further delay the design. Delays to market are especially
prominent if a design needs to be reverted to one of the previous stages. While
pre-silicon design stages can cause delays in days or weeks, the highest potential
delays come from manufacturing. Foundries commonly schedule tapeouts every
three to four months and the process itself takes several weeks. Therefore
successful tapeout is paramount for minimizing time-to-market. Pre-silicon
design evaluations are invaluable for this.

Behavioral Modeling (BEH). During this stage a design specification is
replaced by a black-box model. In other words, the design is represented using
a mathematical relation between inputs and outputs. Behavioral modeling
abstracts away all physical and logical structure of the design. Specification,
normally given in C/C++ programming languages or via MATLAB or Python
models, can be used to simulate the design behavior.

1If a corrective action can be automated it becomes a part of synthetic actions.

14 BACKGROUND

Behavioral
Modeling

RTL Design
Using HDL

Logic Synthesis

Library Mapping
and

Optimization

Insertion
of

Test Structures

Placement
and

Optimization

Clock Tree
Synthesis

(CTS)

Routing
and

Optimization

Substitution of
Cell-Layouts

Black-Box
Simulation

IP Core Specification

Cycle-Accurate
Logic

Simulation

BEH

RTL

Preliminary
Area and Power

Estimation

Be
ha

vi
or

al
Le

ve
l

SYN

GLN

St
ru

ctu
ra

l L
ev

el

Pre-Layout
Logic

Simulation

Delay
Calculation

(wires and cells)

Pre-Layout
Timing

Verifiction

Electrical
Rule Check

(ERC)

Tapeout

PAR

Synthetic Step

Analytic Step

Design Flow

Corrective Step

Library Input

Ph
ys

ica
l L

ev
el

Formal
Equivalence

Check

Formal
Equivalence

Check

Design Rule
Check
(DRC)

Physical
Layout

Extraction

Layout vs
Schematic

(LVS)

PHY

Post-Layout
Logic

Simulation

Substitution of
Detailed Circuits

for Cell Icons

Flow Output

Delay
Calculation

(Layout)

Post-Layout
Timing

Verification

Cell and
Interconnect
Extraction

Signal Integrity (SI)
and Design Rule

Check (DRC)

Layout vs
Schematic

(LVS)

Power Grid (PG)
Analysis

Figure 2.1: Standard-cell ASIC Design Flow.

STANDARD-CELL ASIC DESIGN FLOW 15

Register Transfer Level (RTL). Structural model of a design is captured
using a Hardware Description Language (HDL), such as VHDL, Verilog or
System Verilog. A HDL description introduces the clock signal and segments
design behavior into a sequence of transformations separated by clock cycles.
State after each transformation is stored in sequential logic elements that
form registers. Hence, design behavior consists of a series of data transfers
between registers. No information is given on the combinatorial networks
facilitating said transformations. Therefore, an RTL design can be viewed as
a zero-delay network of registers operating in a number of consecutive cycles.
Cycle-accurate, i.e. zero-delay, simulations are used to validate the functionality
of RTL designs. The logical structure introduced in the RTL model divulges the
storage requirements and the mathematical complexity of each combinatorial
transformation. This allows rough estimations of the area and power costs.

Synthesis (SYN) of the Gate-Level Netlist (GLN). The Gate-Level Netlist
(GLN) represents the structure of the design as a network of standard cells. It
is obtained via a two step process: logic synthesis and library mapping. Logic
synthesis converts the abstract inter-register transformations to a combinatorial
network of generic logic gates, e.g. AND, XOR, INV. Abstract registers are replaced
with generic storage cells, e.g. D flip-flop, SR latch, or Random Access Memory
(RAM). The design obtained at this point, SYN, could be simulated using
logic delta-delay, i.e. ∆-delay, simulation whereby each gate is assigned the
same delay. However, this step is commonly skipped as synthesis and library
mapping are commonly bundled together as designers often have a target
library in mind. SYN output is independent of standard-cell libraries and
highly portable. Thus obtained design, is then mapped to concrete cells of
a particular standard cell library, constituting the GLN. Cell models include
piecewise linear models for timing and power behavior and electrical rules,
e.g. the outputs of two cells must not be connected together. Therefore, a
structural view of the design is preserved while allowing physical assertions. As
physical placement and routing is unknown, delays between cells are estimated
based on statistical wire-load models. Namely, for a given standard-cell library
and design size, average wire length per fanout node is determined by the
library manufacturers. Each such wire is replaced using an RC network and an
Elmore delay is calculated. Pre-layout delay calculation therefore allows timing
verification considering statistical worst-case scenarios. Both steps are followed
by logic optimization. Modern EDA tools completely automate both logic
synthesis and library mapping, along with necessary checks. Consequently, a
single designer script often facilitates both steps. EDA tools also fully automate
addition of test structures, e.g. scan chains to the GLN.

16 BACKGROUND

Placement and Routing (PAR.) The physical placement and routing of
designs translates the structural GLN into the physical layout. Firstly, placement
assembles cells on a two-dimensional plain according to the geometric cell-
properties from the library. The clock tree, consisting of clock buffers, is then
inserted to minimize the clock skew between registers. Next, the previously
abstract connections between cells are replaced by metal wires in the process of
routing. EDA tools facilitate said three steps and allow various optimizations.
For example, signals routed along long lines need to be buffered, or cell placement
needs to be rearranged. As this can cause structural design changes, formal
equivalence checks need to be performed. After routing, a plethora of metal
wires distributed across multiple metal layers (over ten metal layers exist in
modern libraries) is placed on top of the silicon wafer. This may cause issues
with Signal Integrity (SI) or violate Design Rule Check (DRC). Issues of Power
Grid (PG) need to be resolved as well, minimizing the voltage drop across power
rails to ensure performance. When everything is set in place, RC parasitics
surrounding cells and interconnect wires are extracted and post-layout delays
are calculated. Thusly obtained delays are used to drive detailed event-drive
logic simulation and timing verification. The Place and Route (PAR) stage
belongs to the physical design level, as there can be many different mappings of
the same GLN to the physical layout. Nevertheless, standard cells are thus far
represented by structural piecewise linear models.

Physical Extraction (PHY). After the the PAR stage, standard-cell abstracts
are replaced with detailed cell layouts2. A transistors-level schematic is then
obtained from the layout and verified against the original structural schematic
to ensure the same functionality. To the best of our knowledge all parasitic
extraction is performed for the purpose of capturing the circuit performance.
Side-channel attacks are not taken into consideration. Standard-cells with
extracted parasitics are then represented using Simulation Program with
Integrated Circuit Emphasis (SPICE) models called phantom-cells. Phantom-
cells obscure the cell-layout to protect the IP of the library manufacturers.
Hence even the computationally extensive SPICE simulation based on phantom-
cells, while paragon of precision for performance, can not guarantee side-channel
security.

2This step is often performed by the party entrusted by the library manufacturer with these
low-level models. This is mostly not the designer.

STANDARD-CELL ASIC DESIGN FLOW 17

2.1.2 Contemporary EDA Tools and Data Formats

The multi-million transistor complexity of modern digital circuits makes the
EDA industry an indispensable asset of digital designers. Many open-source
tools exist but the majority of the market is captured by “the big three” ASIC
EDA tool vendors for design: Cadence®, Mentor Graphics®, and Synopsys®;
listed in alphabetical order. Each of the big three develops tools for various
design steps, initially aiming for vertical integration of design flow under a
single suite or framework. The digital design market converged towards the
“best in class” approach. Designers retain the discretion to compose their own
toolboxes cherry picking from different vendors, resulting in a myriad of possible
variations. Creating an effective and efficient design flow thusly becomes a
separate issue, often an overlooked nightmare in practice [70]. To ensure
coherency among each other, as well as with library manufacturers, digital
designers rely on standardized data formats to interchange design information.
Further interoperability is secured through a common use of Tcl shell as the
control interface across the majority of EDA tools3.

Table 2.1 outlines some of the frequent data formats used in the standard-cell
design flow. In addition, a number of tools supports exports into generic text
files, such as comma separated value (CSV) format.

2.1.3 Standard CMOS Cells and Library Characterization

The CMOS logic style was invented in 1963 by Wanlass and Sah [147]. Starting
with the IBM’s 20µm technology node from 1961, CMOS is the predominant
logic style for digital electronics in modern 7nm technology nodes introduced
by TSMC in 20184. Transistor sizes shrunk over ten thousand times and their
geometries changed from planar MOSFET to FinFET but the efficiency and
robustness of CMOS remains unparalleled. Figure 2.2 shows the transistor-level
schematic (left) of the CMOS inverter gate, the fundamental building block of all
CMOS gates. The idealized waveforms shown in Figure 2.2 (right) demonstrate
the operating principle and advantages of CMOS logic.

Firstly, CMOS cells are very energy efficient. They draw significantly smaller
supply currents from the power supply when idle, compared to currents drawn
when transitioning between logic states. Therefore, each gate contributes
to the power consumption during a short interval of time compared to the
clock period, leading to high energy efficiency and leaving enough time for

3Although EDA tool designers occasionally make small “improvements” of their Tcl interpreters,
resulting in curious bugs.

4Smaller technologies are in development, but are not available in commercial products.

18 BACKGROUND

Table 2.1: List of common EDA data formats.

Ext. Format Typical use
.v Verilog source Design capture or netlist repre-

sentation
.sv System Verilog source Testbench generation or verifica-

tion
.vhd VHDL source Design capture or testbench

generation
.vcd Value Change Dump

(Value Change Dump
(VCD))

Output of logic simulation

.sdf Standard Delay Format
(Standard Delay Format
(SDF))

Delay annotation for cells and
interconnections

.sdc Synopsys Design Con-
straints (Synopsys De-
sign Constraints (SDC))

Exchange of design constraints
among front-end and back-end
tools

.fsdb Fast Signal Data Base
(Fast Signal Data Base
(FSDB))

Synopsys’ proprietary format for
continuous waveform storage

.spef Standard Parasitic Ex-
change File (Standard
Parasistic Exchange For-
mat (SPEF))

IEEE standard for exchange of
parasitic RLC components

.lef Library Exchange For-
mat (Library Exchange
Format (LEF))

Physical cell layout for PAR tools

.lib Liberty Characterization
Format (Liberty Charac-
terization Format (LIB))

Human readable characterized
cell information; timing, power
and noise

.db Compiled binary of the
.lib file

Compiled for logic synthesis and
PAR tools

the heat to dissipate. The former supply current, often referred to as static
or leakage current causes static power consumption. The latter, dynamic,
supply current causes the dynamic power consumption. Although static leakage
currents increase with the technology nodes shrinking, dynamic currents remain
predominant. The power consumption of each CMOS gate is highly correlated
with the logic value of its data inputs as a consequence of this behavior.

STANDARD-CELL ASIC DESIGN FLOW 19

Figure 2.2: CMOS inverter transistor schematic (left), idealized voltage and
current waveforms waveforms (right).

Secondly, the robustness of CMOS gates comes from amplification and level-
restoration effects. As both transistors are connected in the common-source
topology they amplify the input signal. Amplification maps a range of input
values to a high or low output level, allowing digitization in the presence of noise.
An oxide layer separates input from output stages of CMOS gates, preventing
any significant conducting paths between the logic terminals. The voltage
level at the output of CMOS gates is restored by drawing current directly
from the power supply. Combined, said properties make CMOS gates easily
composable. Moreover, the behavior of CMOS gates is greatly determined by
the supply voltage, slope of the input signal (VIN), the loading capacitance at
the output (COUT) and the operating temperature. Consequently, the complex
non-linear behavior of underlying transistors can be modeled very accurately
using a “handful” of linear parameters, allowing powerful models for structural
cell representation. Such parameters are obtained through characterization of
CMOS gates, focusing on timing, power and noise behavior.

Cell characterization is performed by library manufacturers. Firstly, a full-
custom design of each cell is made and transistors-level schematics are obtained
directly from technology parameters. Said technology parameters are closely
guarded trade secrets of foundries providing standard-cell libraries. Therefore,
characterization results are often the only interface between designers and
technology. Algorithm 1 describes the characterization procedure using SPICE
simulations, for a given standard-cell. The characterization procedure is repeated
under different operating conditions, such as temperature and supply voltage.

20 BACKGROUND

This is how different case-corners are obtained for a given library. For example,
the worst-case entails high temperature, commonly 125◦C, and lowered supply
voltage, commonly 80–90% of the nominal value [78, 67, 3].

Algorithm 1 Standard-cell characterization.

1: procedure CellCharacterization(n data inputs, set of p input slopes,
set of q loading capacitances)

2: for input in n data inputs do
3: for state in 2n−1 states of other inputs do
4: for slope in set of p input slopes do
5: for load in set of q loading capacitances do
6: analog response ← InputRise(input, state, slope, load)
7: pwl ← SamplePieceWiseLinear(analog response)
8: PopulateLUT(rise, pwl, input, state, slope, load)
9: analog response ← InputFall(input, state, slope, load)
10: pwl ← SamplePieceWiseLinear(analog response)
11: PopulateLUT(fall, pwl, input, state, slope, load)
12: end for
13: end for
14: end for
15: end for
16: end procedure

For each of the n cell-inputs, a pair of Look-Up Tables (LUTs) is created
for each of the 2n−1 states the remaining data inputs can be in. LUTs are
paired to independently capture circuit response to rising and falling stimuli.
Simulations produce analog (continuous) simulations of the response to the
stimuli. Analog responses are then sampled and represented using a piecewise
linear representation. Thus obtained vectors are stored in the aforementioned,
three-dimensional, LUTs indexed with the input slopes and capacitances of
the output capacitances. Typically, the number of input slopes p and output
capacitances q is set to 7.

Older technologies, between 90–130nm, were well characterized using Non-Linear
Delay Models (NLDMs). NLDM record cell output voltage to characterize
cell behavior. Deep sub-micron nodes, below 90nm, are better characterized
using current drawn from the supply. In particular, Composite Current Source
(CCS) models are considered “best in class” yielding results within 3% from
SPICE [67, 110, 3]. In all cases, models are stored in the Liberty format [22].
Figure 2.3 depicts the CCS characterization of a two-input NAND gate; recording
rising edge of one input while the other input, i.e. the state, is fixed.

Similarly, timing, power and noise tables are formed and stored into library

PHYSICAL ATTACKS 21

Figure 2.3: Liberty characterization of theAND gate supply current. Simulation
setup is on the left. Visualization of the library LUT creation is on the right.
Different LUT is created for each state and each transition (rising and falling)
combination.

files. For a given design and constraints, these curves are used to estimate
timing, power and signal integrity, respectively. Therefore, modern standard-cell
libraries contain a plentitude of information about the current waveforms. The
main concerns of digital designers are meeting performance criteria (timing
closure) and estimation of average and peak power consumption. Average power
is important to determine cooling requirements and energy consumption, while
the peak consumption determines the power electronics circuitry.

2.2 Physical Attacks

Physical attacks surfaced in the academic literature in the late nineties. They
allow adversaries to circumvent cryptography by exposing key material from
the target device, as demonstrated by [128]. The grey-box attacker model is
devised to capture the capabilities of physical attackers. The threat of grey-box
attackers greatly depends on their social and monetary resources. Accordingly,
physical attackers can be classified as per guidelines introduced by IBM [2].

Class I: Clever Outsiders. Intelligent individuals trying to find and exploit
existing weaknesses. They are constrained by their personal budget and publicly
available information about the target.

Class II: Knowledgeable Insider. Individuals with in-depth technical knowl-
edge of the target. Often (former) employees of the organization producing
the target. They have partial or complete access to sophisticated and often

22 BACKGROUND

target-specific tools and documentation. Nevertheless they face temporal and
personal budget constraints.

Class III: Funded Organization. It is difficult to upper-bound the threat of
these adversaries, as they can range from privately funded syndicates to nation
state agencies. They employ many Class II attackers and supply them with
state of the art professional tools. They aim to exploit existing and to craft
new vulnerabilities for their goals.

Furthermore, physical attacks can be broadly classified based on the activeness
and invasiveness. Of course, in practice there exists a spectrum of attacks that
borrow and combine methods from different classes of attacks. Such attacks are
referred to as hybrid or combined attacks. Standards such as the NIST 140-3 [1]
address the multifaceted problem that is security of cryptographic modules.
Considerations such as tamper evidence, resistance and response are made to
minimize the danger of physical attacks.

Activeness. An active attack consists of two steps: perturb and conclude.
Naturally, fault injection attacks belong to this category. Active attacks often
require more costly equipment to carry out precisely. Also, a higher level
of expertize if usually required as injecting faults, i.e. perturbing the device
operation, can be destructive. A non-active, or passive attack consists of two
steps as well: measure and infer. Naturally, side-channel attacks belong to this
category. The measured physical emanation data are processed and statistical
inferences are made on said data to extract the key. The price of side-channel
attack setups and the level of expertize varies greatly between targets. Targets
running at high clock frequencies, at the order of GHz, require very sensitive,
expensive, equipment and knowledgeable handling to attack.

Invasiveness. A non-invasive attack requires no mechanical modification of
the target devices, including its casing, circuit board and packaging. They are
entirely carried out using existing interfaces. As such their power is somewhat
limited, but they are virtually impossible to detect. They typically require
low-cost equipment, but may require high level of expertize to mount. Therefore,
non-invasive attacks can be carried out by all three classes of physical attackers.
A semi-invasive attack allows attackers to open device casings and to remove
them from their circuit boards. Thereby, semi-invasive attackers may gain
access to additional interfaces, e.g. probing onboard busses between the Central
Processing Unit (CPU) and onboard storage. They can also remove onboard
decoupling capacitors to obtain better side-channel measurements, or tamper
with the board power supply and external clock to inject faults. Note that, here

SIDE-CHANNEL ANALYSIS 23

we assume that the target of an attack is a wholesome electronic contraption,
device or product. Should the target be defined as the chip itself, the latter
two examples would be considered non-invasive. A semi-invasive attack gives
attackers a wider attack surface, but demand an increase in the quality of
setups and level of expertize. Nevertheless, it is difficult to cover the evidence
of physical tampering especially because some of the modifications introduced
can be destructive. Lastly, fully invasive attacks give the attacker complete
power over every aspect of the device. In addition to the advantages of semi-
invasive attackers, invasive attackers have access to the insides of the target
chip packaging. This allows them to probe CPU busses and caches, or even to
make physical modifications to the chip metal layers using Focused Ion Beam
(FIB) cannons. The price of the equipment and the interdisciplinary knowledge
required to carry out these attacks make them exclusively available to Class III
attackers.

2.3 Side-Channel Analysis

Unlike conventional cryptanalysis techniques that stem from mathematics, SCA
leverages information that leaks through inherent physical channels. These
physical magnitudes carry within information about the values and operations
internally processed by a circuit, including cryptographic keys. SCA attacks
are passive attacks, while they can be either non-invasive or semi-invasive. A
degree of invasiveness can help the measurement acquisition and is not an issue
as adversaries are often legitimate owners of the target devices. Unprotected
implementations can trivially be attacked using simple setups consisting of a
shunt resistor and a low-end oscilloscope. Therefore, SCA is recognized as a
major threat to cryptographic implementations. The most prominent exploitable
physical side channels include execution timing [81], power consumption [82],
and electromagnetic emissions [52, 119]. More exotic side-channels include
acoustic [53] and photonic [131] emanations. More recent hybrid schemes
such as actively triggered passive Fault Sensitivity Analysis (FSA) [88] allow
attackers to constitute new side-channels by injecting faults into the device.
So far mentioned side-channels can be used to attack both hardware and
software implementation of cryptographic algorithms. Powerful novel side-
channels [89, 80] emerged, tailored to attack high-end software platforms that
rely on cache memories and speculative execution. Nevertheless, the principles
of SCA techniques are invariant of the underlying physical channel that leaks the
information. They leverage the correlation of the recorded physical magnitude
with the performed operations and intermediate data being processed. We focus
on the power consumption, as the most widely used side channel. To be precise,
we deal with the instantaneous power consumption waveform, recorded during

24 BACKGROUND

the target device operation. Such waveform corresponding to a single execution
of the target algorithm (e.g. AES) is called a power trace or simply a trace. At
each point of the trace, the instantaneous power consumption can be modeled
as a linear combination of three components as shown in Equation (2.1):

Ptotal = Pdynamic + Pstatic + Pnoise . (2.1)

Here, Pdynamic represents the power consumed during state transitions, i.e. when
the logic gates are toggling. In the older technology nodes Pdynamic accounted
for the majority of the power consumed. In comparison, the Pstatic consumed
when the gates are in the steady state was negligible. Thus it was often
considered constant [91] and of no use for the SCA attacker. However, with the
technology scaling below 100 nm, static power consumption becomes significant
and dependent on the circuit state. Moradi [105] demonstrated the practical
implications of leakage currents to SCA security on Field Programmable Gate
Arrays (FPGAs), followed by the work of Pozo et al. [118]. In the more recent
works, Moos et al. [103, 104] demonstrate a SCA attack using Pstatic. In the
context of SCA on software targets, data-dependent Pdynamic and Pstatic (on
newer platforms) are broken down as Pdynamic +Pstatic = Poperation +Pdata, as
each operation is performed by a different piece of hardware in the arithmetic-
logic unit [91].

The noise component Pnoise represents the inevitable noise introduced by the
target device and the measurement setup. Independent electrical noise sources
include thermal noise, random telegraph noise and flicker noise. Thermal noise is
a white noise that follows a nearly Gaussian distribution and is the predominant
noise source of the three. Additionally, algorithmic noise introduced by the
transitions of the circuit state follows a binomial distribution. Assume an n-bit
state of the cryptographic implementation, where each bit flips with probability
p ≈ 0.5. Probability P (k) of k bits flipping, is given in Equation (2.2).

P (k) =

(
n

k

)
pk(1− p)n−k ≈

(
n

k

)
pn . (2.2)

For n = 128 we compare the binomial distribution B(n = 128, p = 0.5) with a
normal distribution N (σ2 = 32, µ = 64) in Figure 2.4. The two distributions
are nearly identical. Even if this were not the case, Lyapunov’s variant of the
central limit theorem [49] states that adding independent distributions, even
if they are different, results in the normal distribution. Mangard et al. [91]
experimentally show that the measured Pnoise, i.e. with all noise sources added
together, indeed follows a normal distribution.

SIDE-CHANNEL ANALYSIS 25

0 25 50 75 100 125
Number of bit flips

0.00

0.02

0.04

0.06

p

N (σ2 = 32, µ = 64) B(n = 128, p = 0.5)

Figure 2.4: The distribution of state transitions.

2.3.1 Attack Techniques

The seminal Simple Power Analysis (SPA) and Differential Power Analysis
(DPA) [82] attacks were soon followed by techniques such as Correlation
Power Analysis (CPA) [27], and Mutual Information Analysis (MIA) [57].
These attacks have been used to break security features of commercial devices
[43, 115, 8, 128]. The starting point of each attack is trace acquisition. The
principal components of a trace acquisition setup are presented in Figure 2.5 [91].
Additional components such as filters and amplifiers can be used to enhance
the quality of acquired traces.

Power supply Measurement probe Oscillosope

Personal computerTarget devicePower supply

1

1
1 4

4

2 6
3

5

Figure 2.5: Typical side-channel measurement setup [91]. The numbers indicate
the order in which components interact to obtain a trace.

Attackers start by supplying a stable power supply and clock signal to the
target device, preparing it it for operation and trace acquisition (1). Next,
attackers configure and arm the oscilloscope (2) via a personal computer,
followed by issuing the start command to the target device (3). The measuring

26 BACKGROUND

probe records the instantaneous power consumption waveform and transfers
it to the oscilloscope (4). Once the personal computer receives the output of
the cryptographic operation (5) it reads the recorded power trace from the
oscilloscope (6). For each new trace steps 2–6 need to be repeated. Traces can
be accumulated, or processed on-the-fly, adhering to one of the SCA techniques.

2.3.2 Countermeasures

Side-channel countermeasures aim to make traces independent of the execution
of the underlying cryptographic algorithms. They can be classified based on two
active principles, namely masking and hiding. Both types of countermeasures
aim to reduce the Signal to Noise Ratio (SNR) for the SCA attackers.
Figure 2.6 [91] depicts this classification as:

• masking countermeasure aim to make traces independent of the
intermediate values of the cryptographic algorithm—they introduce
randomized algorithmic noise, Prnd = P rnddynamic + P rndstatic; while

• hiding countermeasures aim to make traces independent of the processing
of intermediate values—they reduce the data-dependent variations in
Pdynamic + Pstatic or increase the Pnoise.

Intermediate	values	of	the	cryptographic	algorithm

Intermediate	values	processed	by	the	cryptographic	device

Instantaneous	power	consumption	of	the	cryptograpic	device

Masking	countermeasures

Hiding	countermeasures

Figure 2.6: Classification of side-channel countermeasures [91].

Side-channel countermeasures can be applied to both hardware and software
implementations. In this dissertation we focus on the protection of ASIC
hardware implementations, leaving any software-related discussions out of
scope. Countermeasures can be deployed across different levels of abstraction.
For example, at system level, the number of key uses can be limited before
rekeying. This limits the amount of traces attackers can obtain for a single
key, at the cost of a more elaborate key management scheme or terminating

SIDE-CHANNEL ANALYSIS 27

the device operation. Alternatively, key regeneration can be a feature of the
system [42]. In both cases, it is difficult to make guarantees without making
assumptions about the devices and protocols in the system. On the other
hand, low-level countermeasures tackle the leaky physical channels directly, by
adding dedicated physical structures. For example, a pair of capacitors and a
diode bridge5 can decouple computation from the external power supply [134].
These countermeasures may incur resource overhead, as well as overheads
in design time and level of expertize needed. Other countermeasures can
include causing trace misalignment using jittery clock or dedicated noise sources.
Using such low-level functionalities to secure digital logic would require a more
vertically integrated design flow to implement and evaluate SCA security reliably.
Consequently, a series of different mid-level countermeasures are popular in the
literature. They abstract the low-level, physical, behavior of the cryptographic
devices while staying in the domain of digital design. This approach resonates
with the well-established practices of the standard-cell ASIC design flow. We
discuss some of the popular mid-level countermeasures below.

Hiding countermeasures

The correlation between the instantaneous power consumption of the CMOS
logic style and the processed data makes it highly vulnerable to SCA. Several
novel logic styles have emerged, with the idea of securing cryptographic
implementations by making the instantaneous power consumption constant. As
the underlying cryptographic algorithm remains unchanged, secure logic styles
typically incur no latency penalty. At first authors of secure logic styles, such as
Sense Amplifier Based Logic (SABL) [141], resorted to designing custom logic
cells. This approach gained limited traction as manufacturability of custom cells
would impede the mass adoption. Secure logic styles based on standard-cell
libraries, such as improved Masked Dual-rail Precharge Logic (iMDPL) [116],
LUT-based Masked Dual-rail Precharge Logic (LMDPL) [84] and Wave Dynamic
Differential Logic (WDDL) [142] alleviate the manufacturability issue.

Wave Dynamic Differential Logic (WDDL)

Introduced by Tiri and Verbauwhede [142], WDDL is a differential logic style
based on standard CMOS cells. Differential rails host complementary logic
according to De Morgan’s law, as per Equation (2.3):

c = a · b ⇐⇒ c = a+ b . (2.3)
5Designing power electronics circuitry differs greatly from digital design.

28 BACKGROUND

For example, Figure 2.7 depicts two WDDL gates. Assuming an all-zero initial
value, i.e. x0 = x0 = y0 = y0 = 0, such constructions ensure two properties:

• each logic gate in a WDDL gate toggles state at most once,

• the total number of toggles in a WDDL gate is independent of the input
values.

Thus, WDDL logic style ensures a constant power consumption of the
combinatorial logic, independent of the processed data.

Figure 2.7: WDDL AND2 gate (left) and XOR2 gate (right).

Side-channel security of WDDL gates is predicated on a reliable way of setting
all combinatorial inputs to zero, i.e. x0 = x0 = y0 = y0 = 0 in our example.
Figure 2.8 depicts control signals, logic and registers required to do so.

Figure 2.8: WDDL precharge generation and the dynamic dual rail flip-flops.

WDDL logic operates in two phases, namely precharge and evaluation. If a
two-cycle master-slave register is used precharge signal PC needs to be applied
only to the inputs to the WDDL-secured core. This will in turn create a wave of
all-zero values and data values that propagate through all register stages; hence
the name. Alternatively, a regular register layer could be used with precharge
generation logic after each register layer. However this results in a global PC
signal drawing a significant peak current that may harm the signal integrity.
Therefore we favor the approach depicted in Figure 2.8.

SIDE-CHANNEL ANALYSIS 29

In addition to the SCA resistance, WDDL provides redundant data coding
scheme, presented in Table 2.2. Therefore, it allows fault-detection at no
additional cost.

Table 2.2: WDDL redundant encoding.

x x Encoded value

0 0 Precharge
0 1 Logic 0
1 0 Logic 1
1 1 Invalid/Alarm

WDDL is fully compliant with the standard-cell ASIC design flow, including
custom routing techniques needed to balance the differential rails [145].
Technology node scaling however, increases the impacts of the manufacturing
process variation. Thus the symmetry, required for the security of such
differential styles, is upset. The manufacturability of secure logic styles is
again hindered, leaving it up to digital designers to ensure security against
SCA. Fortunately, recent advances in secure logic styles design enable easily
manufacturable low-latency secure implementations [129].

Masking countermeasures.

Masking was introduced by Chari et al. [28] and Goubin et al. [60], as an
algorithmic countermeasure against SCA. It is based on randomization of
the intermediary values of sensitive variables processed during cryptographic
computation. By doing so, masking schemes decorrelate the processing of
sensitive variables from physical emanations. Masking schemes target security
against SCA at the algorithmic level, abstracting physical properties of the
underlying hardware with a number of assumptions. This makes masking
schemes suitable for implementation on a variety of platforms, including
standard-cell ASIC design flow.

Early proposed schemes such as the masked AND gate of Trichina [146] and
the masking scheme of Ishai, Sahai and Wagner (ISW) [68] made succinct
sets of assumptions about the underlying hardware. Said assumptions did
not capture the finite propagation delays of digital circuits, thus failing to
account for glitches. A glitch is a hazardous logic transition that occurs due
to finite propagation delays in standard CMOS circuits. We say that a digital
logic gate glitches if its output switches more than once per clock cycle. As
these additional transitions are data-dependent they leak information about the

30 BACKGROUND

sensitive intermediaries of the cryptographic computation, thus breaking the
SCA security.

Threshold Implementations (TI) introduced by Nikova et al. [112, 113] account
for the impact of glitches. Follow up research gave rise to a myriad of boolean
masking schemes, improving on efficiency and security [16, 35, 17, 18, 4, 26].
Other notable Boolean masking schemes include Domain Oriented Masking
(DOM) by Gross et al. [61] and Consolidated Masking Schemes (CMS) by
Reparaz et al. [123]. The provable security of masking schemes is further
supported by theoretical advances [123, 36] that consolidate and unify masking
schemes under theoretical frameworks. Although assumptions vary slightly
among different schemes, most of them are easily attainable at the structural
level of abstraction that dominates the standard-cell ASIC design flow. The
latter two properties of masking schemes are driving their prevalence in the
research field of SCA countermeasures.

Masking security models and dth order security

Several security models, sub-models of the gray-box model, are used to formalize
the relation between the adversarial power and the level of SCA resistance [68,
9, 48, 125]. Such models allow a mathematical framework for reasoning about
the SCA security of digital hardware. Without going into the details of different
SCA security models, we rely on the notion of dth-order SCA security as
originally introduced by Chari et al. [28]. In practice, an attacker targeting a
masked implementation always tries to uncover the unshared values of sensitive
variables. To do so, the attacker makes d observations of the preferred side
channel. Said observations can be of the same point in the trace (univariate
attacks) or a set of different points of the trace can be targeted (multivariate
attacks). In either case, if d observations do not suffice for an attacker to
retrieve the unshared value, we say that the implementation is dth order secure.
Implementations crafted for dth-order security can always be broken in the
next, (d+ 1)th-order. Nevertheless, each security order increase rises the level
of randomized algorithmic noise introduced in the measurements. As the law of
large numbers dictates, the number of measurements (traces) needed to suppress
a noise level grows exponentially with the increase of the noise level [91]. In
other words, attacking in the next order requires collecting an exponentially
larger number of traces. Therefore, dth order security formalized using different
models [68, 9, 48, 125, 36] is consequential for achieving practical security. In
practice, achieving dth order security for an m-bit sensitive variable x ∈ {0, 1}m
requires sharing x into n > d+ 1 shares. The fundamental assumption of all
masking schemes is that shares operate, thus leak information, independently.

SIDE-CHANNEL ANALYSIS 31

Henceforth, we focus on Boolean masking schemes. Algorithm 2 describes the
initial sharing procedure using Boolean masking, ⊕ denotes the XOR operation.

Algorithm 2 Sharing x ∈ {0, 1}m into n shares using Boolean masking.

Input: variable x ∈ {0, 1}m, number of shares n
Output: n shares xi ∈ {0, 1}m, where 1 6 i 6 n and x =

⊕n
i=1 xi

1: for i = 1 to n− 1 do
2: ri ←$ {0, 1}m
3: xi ← x⊕ ri
4: end for
5: xn ← x

Threshold implementations.

Given a Boolean vector function f : x 7→ y, where x ∈ {0, 1}mi and y ∈ {0, 1}mo ,
such that y = f(x), the computation of f(x) can be shared into n shares
f1(x1), f2(x2), . . . fn(xn), where x1, x2, . . . xn are obtained using Algorithm 2.
Such sharing is a TI [112, 113] if it fulfills three properties: correctness,
uniformity and non-completeness [112]. TI schemes are provably secure under
the share independence assumption. For a TI to be correct Equation (2.4) must
hold. In other words, for each unshared input x, unsharing the shared outputs
yi must give the desired output y.

y =
⊕
i

yi =
⊕
I

fi(xi) = f(x) . (2.4)

For a TI to be uniform Equation (2.5) must hold. In other words, all values of
shared inputs xi and shared outputs yi must be equiprobable.

∀a ∈ {0, 1}mi ,∀xi, P r(xi = a) =

1

2mi
,

∀b ∈ {0, 1}mo ,∀yi, P r(yi = b) =
1

2mo
.

(2.5)

The former two properties are common to all Boolean masking schemes. They
impose relations between the input and output values of sharing, without
any concern of the internal structure of each share fi. TI introduces non-
completeness, more precisely d-th order non-completeness, to handle the
unwanted effects caused by hardware artifacts such as glitches. It states

32 BACKGROUND

that each combination of up to d shares fi must be independent of at least one
input share xi. In other words, when observing any d shares, an attacker can
never retrieve all information about the shared secret x. Therefore, as long
as the fundamental assumption of share independence holds, implementation
details of individual shares can be fully abstracted thanks to non-completeness.
A generic example of a TI scheme for n = 3 is depicted in Figure 2.9.

Figure 2.9: Generic structure of a three-share TI scheme.

Masking linear operations is trivial, as it amounts to the initial sharing
Algorithm 2. Masking non-linear operations quickly becomes complicated.
Figures 2.10 and 2.11 depict sharing of the two-input AND gate z = a · b, using
first-order-secure TI sharing by Bilgin et al. [19] and a first-order-secure sharing
by Faust et al. [48], respectively. The numbers on each of the gates denote
belonging to a particular share.

The circuit in Figure 2.10 splits the inputs a and b into three shares, a1, a2, a3
and b1, b2, b3, respectively. It computes the shared outputs z1, z2 and z3 in
a single clock cycle. The circuit in Figure 2.11 splits the inputs a and b into
two shares, a1, a2 and b1, b2, respectively. It is significantly smaller than the
previous one. However, it requires two register layers to compute the shared
outputs z1, z2. Both circuits require one bit of randomness r per evaluation to
satisfy the uniformity property. Clearly, a smaller area and a shorter critical
path can be gained at the price of the increased clock cycle latency. In general,
uniform random bits r can be added to satisfy uniformity, and flip-flops can be
added to stop the propagation of signals from other shares that would break
non-completeness. The morale is that many tradeoffs can be made, and a
thorough body of research exists addressing them [16, 35, 17, 18, 4, 26, 48, 19].

Therefore, TI—as well as the other (Boolean) masking schemes—are a valuable
technique for securing standard-cell ASIC hardware devices.

Interestingly, the circuit in Figure 2.11 from [48] is equivalent to the DOM-indep
multiplier by Gross et al. [61] with the addition of the two output registers

SIDE-CHANNEL ANALYSIS 33

1

1

1

2

2

2

3

3

3

a2b2
a2
b3
a3
b2

1

1

r

z11

2

a3
b3
a1
b3
a3
b1

2

r a1

2 2

r b1

2 2 z2

a1
b1
a1
b2
a2
b1

3

3

3 3

r a1 b1r

3
z3

r

3 3

Figure 2.10: First-order secure, 3-share TI multiplication by [19].

a1b1

a1b2

a2b1

a2
b2

r

1

1 1 1
11 z1

2 z22
222

2

x1

x2

y1

y2

Figure 2.11: First-order secure, 2-share TI-like multiplication by [48].

needed to ensure the composable non-completeness. While TI presents a “top-
down” approach to masking, dealing with high-level Boolean vector functions
as a whole (e.g. S-Boxes), DOM embraces the non-completeness property and
deploys it at the gate-level, calling shares “domains”.

A closer look at first-order security.

Circuits in Figure 2.10 and Figure 2.11 are first-order secure masked circuits.
Therefore they can be freely composed without negative security implications

34 BACKGROUND

nor additional assumptions. The former is purely combinatorial, hence as long
as the shares are separated its first-order security is invariant to logic synthesis.
However, the register placement is crucial for the first-order security of the
latter. We use the timing diagram in Figure 2.12 to illustrate this.

Figure 2.12: Signal waveforms, 2-share TI-like multiplication by [48].

The inputs can be driven either by flip-flops or combinatorial gates, e.g. trivially
shared XOR gate. Consequently, glitches may cause the input bits to glitch;
denoted using the label “G”.

Firstly, without the first flip-flop layer storing x1 and x2 the circuit would be
equivalent to the Trichina AND gate [146], secure only in the zero-delay model.
The signal y1 = a1 · b1⊕ a1 · b2⊕ r would reveal information about the unshared
b, despite the masking. Once the r = ρ settles, information about the unshared
input b may leak through multiple glitches. Once x1 is registered, r = ρ bit
masks the cross-share product term b2 and thus protects the compression in
the second clock cycle. Analogously, without the x2-register y2 would leak a.

Secondly, as mentioned, without the second flip-flop layer the circuit from
Figure 2.11 reduces to the DOM-indep multiplier [61]. The DOM-indep
multiplier assumes that all input bits are shared independently. Any dependence
of a1,2 and b1,2 would directly affect y1,2, propagating the bias along a purely
combinatorial path. Consequently, y1 and y2 needs to be registered to prevent
the composability issues, as pointed out by Faust et al. [48].

Therefore, multi-cycle masked designs must be synthesized with great care.
The separation of purely combinatorial shares is trivial to achieve. However,
optimization algorithms, such as retiming [85] can relocate or entirely remove
register layers in order to improve performance. Such algorithms are at the

SIDE-CHANNEL ANALYSIS 35

heart of commercial EDA tools. Consequently, SCA evaluation must be
performed after every quality-of-results-improving design step. Despite such
design difficulties, to the best of our knowledge the first-order secure Boolean
masking schemes remain secure when implemented (in academia) on the real
hardware. However, designing and implementing them is a laborious and time-
consuming process that requires high level of expertize. Additionally, recent
work of De Cnudde et al. [30] raises concerns. Namely, authors show that the
level of side-channel resistance of the same gate-level design varies depending
on the physical placement and routing. This implies the existence of potentially
harmful physical effects overlooked by the mathematical masking theory, in
particular the independent leakage assumption.

2.3.3 Side-Channel Security Metrics

Attack-based evaluation.

Initially, attack techniques were used to determine the quality of a side-channel
resistant implementation. Batteries of known attacks would be launched against
the target implementation. Prominent attacks include DPA, CPA and MIA. The
Measurements-to-Disclosure (MtD), or the number of traces before the key is
revealed, was the prevalent evaluation method. Nevertheless, such testing suffers
from several pitfalls. Firstly, such tests are very time consuming as numerous
attack techniques must be considered and each requires a high number of traces
for a reasonably protected implementation. Secondly, as attack techniques
aim to extract the cryptographic keys from the wholesome implementations,
it is difficult to facilitate such tests in the early design stages. And thirdly,
known attacks typically depend on a specific leakage model. The MIA is an
exception, being an information-theoretic method, but it is still computationally
demanding. Therefore, using MtD as a security metric is bound to the leakage
models and specific attack techniques used. Should novel attacks or leakage
models be introduced, MtD obtained through attack-based testing can yield no
security guarantees against the attackers’ improved arsenal.

Leakage-detection based evaluation.

An attractive alternative to attack-based evaluations was introduced by
Goodwill et al. [59]. In addition to naming said approach Test Vector Leakage
Assessment (TVLA), Cooper et al. [32] discuss numerous practical details,
inducing the approach a de facto standard for SCA testing. TVLA has since
been addressed from the computational [132], performance [124] and practical

36 BACKGROUND

“know-how” [136] aspects. It is a generic statistical method based on the Welch’s
two-tailed t-test. Given two sets of cardinality N1, N2, with mean values
µ1, µ2, standard deviations σ1, σ2, the first-order t-statistic is computed as per
Equation (2.6):

t =
µ1 − µ2√

(σ1)2

N1
+ (σ2)2

N2

. (2.6)

The first-order t-statistic quantifies the probability of distinguishing the means of
the two sets. Therefore, |t| values larger then a certain threshold are associated
with a level of confidence that the two sets are distinguishable. In practice,
values |t| > 4.5 correspond to the two sets being distinguishable with probability
p > 0.99999, i.e. over 99.999%.

The t-statistic in Equation (2.6) is the first-order t-statistic for the mean is the
first-order statistical moment. Schneider and Moradi [132] delineate how to
compute higher-order t-test statistics. Notable higher-order moments t-statistics
are: standard deviation (2nd-order), skewness (3rd-order) and kurtosis (4th-
order).

The TVLA procedure can be summarized in the following steps:

1. Choose a sensitive m-bit variable x ∈ {0, 1}m and decide on a partitioning
function P : {0, 1}m 7→ {0, 1}.

2. Generate two sets of data inputs D1 and D2, such that |Di| = N/2 and
∀d ∈ Di,P(d) = i, where i ∈ {0, 1}.

3. Randomly interleave data inputs from D1 and D2, feed them to the target
device and record n-sample long traces.

4. Partition traces into two sets T1 and T2, corresponding to data inputs
from D1 and D2, respectively.

5. Compute the t-statistic, attempting to distinguish the two sets of traces
T1 and T2.

For a large N , storing traces may require hundreds of gigabytes of storage space.
To avoid storage issues, steps 3–5 can be performed on-the-fly, as explained
in [132]. In addition to the efficient computation strategies put forward by
Reparaz et al. [124], leakage-detection requires fewer traces to detect the leakage
than to exploit it [59, 32]. Therefore, leakage detection is inherently more
efficient than the attack-based evaluations.

SIDE-CHANNEL ANALYSIS 37

Depending on the partitioning P a specific or a non-specific TVLA can be
performed. A specific TVLA is similar to attack techniques as it focuses on the
value of a specific intermediate. Inputs need to be crafted for each partitioning
of the target variable. For example testing an 8-bit AES S-Box requires 256
specific partitioning schemes P , one for each 8-bit value. Therefore it results in
a large number of tests. An alternative is to perform the non-specific TVLA.
The non-specific partitioning is also called the fixed-versus-random test , as one
set of traces is generated using a single value of the partitioning variable, while
the other is based on all other, randomly selected values. The non-specific tests
converge more slowly, but always provide full coverage [122].

Lastly, depending on the manner in which the samples for the t-statistic are
selected univariate or multivariate TVLA can be performed. The univariate
TVLA assumes that the t-statistic is computed for each sample independently.
Alternatively, the sample points of each trace can be combined to create
“multivariate traces”. Performing univariate TVLA on thus obtained traces is
called multivariate TVLA.

Now let us briefly discuss the relation between the statistical moment order, the
d-th order security and the number of physical probes. Assuming a non-invasive
attacker, it is likely that only one physical probe measuring the supply current
is used. However, given enough measurements each statistical moment of the
distribution can be considered a separate observation of the side-channel, i.e.
another probe. Consequently, higher-order TVLA is routinely used to evaluate
the higher-order security of masked implementations(e.g. Bilgin et al. [16]).

More recently, Moradi et al. [108] introduce another statistical test for side-
channel leakage detection based on the χ2-statistic. Unlike the t-statistic that
observes each statistical moment as if it were independent, the χ2-statistic tests
the independence of the two distributions including all the moments combined.
Consequently, the χ2-statistic can detect leakage spread across multiple higher-
order moments and in the low-noise environments more efficiently, i.e. with
fewer traces. As such the χ2-statistic tests are a valuable complement to the
t-statistic-based testing, valuable for the third-, or higher-order evaluations.

As seen above, the TVLA evaluation is independent of leakage models, attack
techniques and even of the target architecture, as it only determines whether
two sets of traces have distinguishable statistical moments. TVLA can quickly
detect flawed implementations, as the number of traces required to detect
leakage is often orders of magnitude smaller than the number of traces required
to exploit the leakage [32]. However, given the leakage detected using TVLA it
is difficult to assert whether said leakage can be exploited in practice. Potential
pitfalls of TVLA-based evaluations are delineated by Standaert [136], but if
used properly TVLA remains the predominant evaluation method. Lastly, for

38 BACKGROUND

the TVLA desired negative results (no leakage) to be reasonably dependable a
sufficient number of traces must be collected. Looking at the academic literature,
dependable number of traces may range from several millions to hundreds of
millions, or even a billion by Sasdrich et al. [129].

2.4 Conclusions

In this chapter we first introduced the standard-cell ASIC design flow that
dominates the modern digital design. We explained its stages and the iterative
manner in which they are traversed. Each design stage represents the target
design in a different, increasingly complex, level of abstraction. From the
manufacturability and timely deployment perspectives, standard-cell ASIC
design flow is largely automated using, hence dependent on, EDA tools and
standard-cell library models.

Next we introduce physical attacks, as a great threat to modern cryptographic
implementations. We delineate how physical attackers are classified based on
their actions and the amount of socioeconomic resources at their disposal. Out
of the plethora of possible attacks, we focus on the passive, non-invasive, or
semi-invasive side-channel attacks. Side-channel attacks deserve this focus as
they present a high risk, being available to a wide-range of attackers using
low-end equipment.

Furthermore, we described the practical principles of mounting side-channel
attacks on existing devices, along with the countermeasures used to prevent
them. We focus on countermeasures that can be deployed by a standard-cell
ASIC designer during the implementation stages of the device lifecycle. Thus we
introduce hiding countermeasures in form of secure logic styles compliant with
standard-cell CMOS libraries, and masking countermeasures. Masking schemes
claim provable side-channel security under rudimentary assumptions about the
underlying hardware. These assumptions are compliant with the structural view
of standard-cells and are therefore appealing for wide-spread adaptation—as
long as the models for the underlying hardware remain valid. Lastly, we explain
the state of the art techniques for assessing the level of side-channel security.

As it can be seen from this chapter, there exists a clearcut line between the
areas of digital design and side-channel security. Seeing how cryptography and
data security were mostly software concerns for the better part of digital EDA
industry lifetime, this gap is not surprising. Nevertheless, the gap must be
bridged in order to keep up with the omnipresent collage of digital devices that
needs to be secured.

Chapter 3

SCA-Aware Standard-Cell
ASIC Hardware Design Flow

А у руке Мандушића Вука,
свака пушка биће убојита!

Петар Петровић Његош

Content Source

This chapter is largely based on material published in:

D. Šijačić, J. Balasch, B. Yang, S. Ghosh and I. Verbauwhede,
“Towards efficient and automated side-channel evaluations at design
time”, PROOFS 2018, Amsterdam, The Netherlands, September 13,
2018 (2018), L. Batina, U. Kühne, and N. Mentens, Eds., vol. 7 of
Kalpa Publications in Computing, EasyChair, pp. 16–31.

D. Šijačić, J. Balasch, B. Yang, S. Ghosh and I. Verbauwhede,
“Towards efficient and automated side-channel evaluations at design
time”, Journal of Cryptographic Engineering, Volume 10, Issue 3,
Published June 22, 2020.

Contribution: Principal author.

39

40 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

In this chapter we present how the pre-silicon SCA evaluations can be
incorporated directly on top of the standard-cell ASIC design flow. Figure 3.1
depicts how this SCA-aware flow corresponds to the traditional one. We keep
the notation from Figure 2.1 for the design steps that we consider in this chapter.
The remainder of the traditional steps is represented using grey color. More
importantly, we use the red shade to denote where we introduce additional
side-channel analytic steps in parallel to the logic simulation. Clearly the
approach is fully compatible with the existing flow. We argue each of the
introduced steps in great detail and experimentally verify the rationale.

In order to show the feasibility, and the practicality of this approach we design
and implement Computer-Aided Side-Channel Analysis Design Environment
(CASCADE). CASCADE is an efficient, flexible and easily extensible framework
that adds the design-time side-channel evaluations vertically, spanning front-,
and back-end stages of the standard-cell ASIC design flow. It is based on
commercial EDA tools, providing ease of integration with the existing designer’s
toolboxes.

3.1 Motivation

As discussed in Chapter 1, SCA is acknowledged as a major threat to
cryptographic implementations. In turn, a plethora of SCA countermeasures has
emerged in the literature. Nevertheless, the implementation of countermeasures
is a non-trivial task that requires a high level of expertize. As a result, in addition
to the overhead in the required circuit complexity, power consumption and
performance penalties, incorporating SCA countermeasures in a product incurs
additional costs of highly specialized experts. Moreover, many countermeasures
require the use of dedicated logic styles or special libraries, further increasing
production costs and time-to-market. But worst of all, it is difficult to determine
the efficacy of countermeasures prior to chip manufacturing. SCA vulnerabilities
disclosed at post-silicon stages can cause major set backs, potentially requiring
a complete redesign.

In this context, hardware simulations rise as an attractive alternative to evaluate
the SCA security at design time. Simulation techniques for typical hardware
design constraints are long-studied and well integrated into EDA tools. Models
used by the EDA tools capture physical manifestations of the intended silicon,
giving a simple and composable representation of the individual logic gates. As
a result, they can provide remarkably accurate circuit complexity (i.e. area),
delay, and power estimates even in the earliest design stages. The plentitude
of physical information contained in the EDA models makes them potentially

MOTIVATION 41

Pre-Layout
Logic

Simulation

Post-Layout
Logic

Simulation

Behavioral
Modeling

RTL Design
Using HDL

Logic Synthesis

Library Mapping
and

Optimization

Insertion
of

Test Structures

Placement
and

Optimization

Clock Tree
Synthesis

(CTS)

Routing
and

Optimization

Substitution of
Cell-Layouts

Black-Box
Simulation

IP Core Specification

BEH

RTL

Preliminary
Area and Power

Estimation

Be
ha

vi
or

al
Le

ve
l

SYN

GLN

St
ru

ctu
ra

l L
ev

el

Delay
Calculation

(wires and cells)

Pre-Layout
Timing

Verifiction

Electrical
Rule Check

(ERC)

Tapeout

PAR

Synthetic Step

Analytic Step

Design Flow

Corrective Step

Library Input

Ph
ys

ica
l L

ev
el

Formal
Equivalence

Check

Formal
Equivalence

Check

Design Rule
Check
(DRC)

Physical
Layout

Extraction

Layout vs
Schematic

(LVS)

PHY

Substitution of
Detailed Circuits

for Cell Icons

Flow Output

Delay
Calculation

(Layout)

Post-Layout
Timing

Verification

Cell and
Interconnect
Extraction

Signal Integrity (SI)
and Design Rule

Check (DRC)

Layout vs
Schematic

(LVS)

Power Grid (PG)
Analysis

SCA Aware Steps

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Delta-Delay
Generic Logic

Simulation

Delta-Delay
Generic Logic

Simulation

Figure 3.1: SCA Aware steps in the standard-cell ASIC design flow.

42 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

viable for capturing side-channel information leakage in the early pre-layout
stages. Nevertheless, said models are devised to represent the behavior relevant
for the designs to operate correctly within the given specification, not to be
SCA secure. For example, digital designers predominantly deal with average
and peak power consumption during device operation. The former dictates
battery life and cooling requirements, while the latter determines the rating of
the power supply and the power distribution network. On the contrary, SCA
security depends on the instantaneous waveform of the physical side-channel
emitted for each data input. Therefore, dedicated models for simulating SCA
evaluation are lacking.

In addition to the elaborate and efficient models, standard-cell ASIC design
flow dominates the market for its generality and efficiency. Namely, design
stages are invariant of the intended design functionality. In turn, design stages
can be largely automated and incorporated into the EDA tools that would
provide feedback at each design stage. For a designer implementing a side-
channel secure cryptographic core no such tools exist. Moreover, cryptographic
implementations vary greatly depending on the properties of the selected
countermeasure. Dedicated tools can be developed for checking properties
of each countermeasure, increasing the complexity and dependency of the
development stack. Instead, generic evaluation tools would be more inline
with the standard-cell design flow. Furthermore, unlike the monotonous
operating cycle of non-cryptographic cores, side-channel secure cryptographic
implementations need to withstand a variety of known and unknown attacks.
Therefore, SCA evaluation methods embedded in the standard-cell ASIC design
flow need to be generic and the evaluation needs to be automated to adhere to
the flow.

Last but not least, there exists a rich body of work in the design of
countermeasures based on standard-cell libraries. Such countermeasures, with
the Boolean masking schemes at the forefront, have matured in the last decade
and we deem them ready for mass adoption in the colorful collage of the IoT
devices and beyond. Therefore, we believe it is worth investigating how the
existing models and EDA tools can be used in conjunction with the SCA
evaluation methods to provide efficient and reliable pre-silicon evaluations of
the side-channel security. Bridging the gap between the two areas would yield
synergetic benefits to both the digital design practitioners and the communities
designing countermeasures. Thus the former would be able to deploy more
reliably secure devices in shorter time to market, while the latter would have
better understanding how the theoretical assumptions bare the impacts of the
physical world. Consequently, we find this merger to be the necessary condition
for deployment of the side-channel secure devices en mass.

RELATED WORK 43

3.2 Related Work

The issue of using simulations in the context of the design-time SCA evaluation
has been previously addressed in the literature. In fact, detailed analog
Simulation Program with Integrated Circuit Emphasis (SPICE) simulations
are predominantly used to evaluate the side-channel security of the secure logic
styles. SPICE is invaluable for design and evaluation of the secure logic styles
based on full-custom cells. Regazzoni et al. [121] introduce MOS Current Mode
Logic and use SPICE simulations to design and evaluate a side-channel secure
instruction set extensions protected using this secure logic style. Similarly,
Tiri and Verbauwhede [141] design and evaluate Sense Amplifier Based Logic
(SABL). Furthermore, Kamel et al. [71] thoroughly examine the practical
implications of evaluating side-channel security using SPICE simulations. They
target an AES S-Box protected using Dynamic and Differential Swing-Limited
Logic [63]. Similarly, standard-cell-based secure logic style designers rely on
SPICE simulation. Tiri and Verbauwhede [142, 143] introduce the Wave
Dynamic Differential Logic (WDDL) and evaluate a protected AES core using
SPICE. Bhasin et al. [13] do the same for a WDDL protected Present engine.
While invaluable for small-scale observations, the computational requirements of
SPICE simulations grow exponentially as the transistor count increases. Taking
into account large number of measurements needed for a proper SCA evaluation,
simulating entire designs in SPICE can take weeks if not months. Instead,
Kirschbaum and Popp [76] resort to logic simulations to evaluate an 8-bit
controller in Masked Dual-rail Precharge Logic (MDPL). Logic simulations can
provide quick but rough information leakage estimates at early stages, relying
on simple Hamming Weight (HW) and Hamming Distance (HD) models. It is
understood from these works that different trade-offs between the simulation
accuracy versus time influence the security assessment. Quite naturally, these
models become more accurate as the flow approaches the actual layout, i.e. as
more details on the target circuit are available. Nevertheless in all these cases
authors use but one method, at an arbitrarily chosen stage in the design flow.

Furthermore, dedicated tools and design stages were introduced for specific
countermeasures. Tiri and Verbauwhede [144, 145] tailor extensions to the
standard-cell design flow to allow balanced placement and routing necessary for
achieving symmetry of WDDL differential rails. Arribas et al. [5, 6] develop
tools dedicated to checking properties of Threshold Implementations (TI). More
recently Knichel et al. [77] introduce a tool for verifying compliance to security
notions for different Boolean masking schemes. The latter two approaches,
while efficient, rely on the abstract mathematical models. Mangard et al. [92]
show how leakage of masked Complementary Metal-Oxide Semiconductor
(CMOS) gates can not be adequately captured using cycle-accurate simulations.

44 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

Moradi et al. [109] discuss power models for SCA evaluation, but do not discuss
the application nor scalability. Fujimoto et al. [51] introduce a model, similar
to the ones used to capture the influence for power supply and substrate noise,
to speed-up SPICE simulation. Yet, such models are still no match for the
efficiency of gate-level models. Nevertheless all these works address a single stage
of the design flow and are often applicable to a single type of countermeasures.

More recently, several frameworks for pre-silicon evaluations have emerged. He et
al. [64] create a framework with custom methods and tools to evaluate the SCA
security at the register transfer level. Other frameworks such as [66] proposed
by Huss et al. incorporate targeted insertions of ad hoc countermeasures in an
attempt to mitigate the detected leakage. Frameworks go as far as evaluating
software implementations on ARM Cortex-M0 controllers without the physical
device present, Mc Cann et al. [94]. However, there are no complete approaches
in compliance with the tools and practices of the standard-cell ASIC design
flow.

The additional, complementary, approaches include information theoretic and
formal methods, along with the FPGA prototyping. Macé et al. [90] consider
information theoretic evaluations as a complementary method to simulation.
The formal verification methods such as [12, 20] are emerging as valuable
alternatives that do not require collections of measurements. Nevertheless, they
operate on rather high levels of abstraction, overlooking many properties of
hardware, and are closely tied to certain types of countermeasures.

FPGA prototyping is a very straightforward method, unparalleled in that
it yields of actual silicon evaluations. Hence, evaluations include physical
effects due to noise, thermal drift, measuring setup, etc. It is especially
advantageous for masking techniques, as they claim independence from the
implementation of individual shares. A limitation of this approach is however
that FPGA implementations can only be computational equivalents of ASICs.
The fundamentally different structure of the FPGA configurable logic blocks
and the ASIC gates can therefore make such evaluations incomplete. Moreover,
the specifics of the FPGA structure and the physical layout are proprietary to
its vendor. This hinders the identification and fixing of the issues identified
in a security analysis. An example is given by De Cnudde et al. [30], who
investigate the impact of coupling effects on protected designs implemented on
FPGA platforms.

CONTRIBUTIONS 45

3.3 Contributions

Although the topic of SCA evaluations based on simulations has been
investigated in earlier works, to the best of our knowledge it has not yet
been made an integral part of the design process. In this chapter we address
this matter in a wholesome and methodical manner, spanning the entire design
flow—from behavioral to layout stages. We tackle the practical aspects of
the implementation and the evaluation of cryptographic circuits. We also
provide performance and scalability figures to show the practical viability of
this approach. Our goal is to enable a methodology that allows circuit designers
to assess the security of their implementations at different stages, similar to
what is currently done for other design targets, e.g. timing constraints. The
contributions of this chapter are placed along the following lines:

1. We discuss the rationale behind the integration with the standard-cell
ASIC design flow.

2. We dissect the physical gate-level models used by the EDA industry up
close and examine how they can be used for SCA evaluation.

3. We apply our approach to a set of representative cryptographic circuits,
with known SCA security properties in order to validate its functionality.
We strengthen our arguments by demonstrating a flaw in a recently
proposed masked design of an AES S-Box.

4. We design and implement a flexible and extensible framework to support
practical design-time SCA evaluation. We build on decades of experience
by relying on commercial EDA tools, instead of designing our own
simulators. We enrich this set of tools with optimized parsers and analysis
tools written in C. Our framework strings them together according to
categorized sets of parameters, to allow a high degree of automation of
design and SCA evaluation.

5. Lastly, we benchmark our approach and discuss the practical details,
feasibility and the utility to the designers.

The rest of this chapter is organized as follows. In Section 3.4 we discuss the
rationale behind the added design steps dedicated to the SCA. In Section 3.5 we
present a framework that implements the approach from Section 3.4. We detail
the design of tools and data formats necessary for tackling practical issues. In
Section 3.6 we give experimental results of evaluating several representative
cryptographic circuits, using different models. In Section 3.7 we discuss and
benchmark our approach and its implementation embodied by our framework.
Lastly, we present our conclusions in Section 3.8.

46 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

3.4 SCA-Aware Extensions to the Standard-Cell
ASIC Design Flow

In our view, the practical viability of SCA evaluations at design time is bound
by three aspects. Evaluations must:

1. be available as early in the design flow as possible,

2. be fast and scalable in terms of circuit sizes and

3. guarantee a reasonable level of confidence in the security of the end device.

We focus on the first two aspects in this chapter. Studying the latter key aspect
requires dedicated tapeouts and comparisons against chip measurements for a
number of different scenarios.

3.4.1 The Preferred Side-Channel

We focus on the instantaneous power consumption waveform as the target
side-channel. More precisely, the waveform of the supply current drawn by the
cryptographic core. As the power supply voltage is approximately constant, i.e.
Equation (3.1), the two can be used interchangeably for this purpose.

P (t) = I(t) ∗ VDD . (3.1)

There are multiple advantages to observing this side-channel at design time.
Firstly, as CMOS circuits draw a significant dynamic current only when
switching, data-driven logic simulations—present throughout the standard-
cell ASIC design flow—can be used to represent it. Moreover, observing the
supply current discloses the timing of the computation with a higher resolution
than the clock cycle count. Secondly, the current is localized in the gates and the
interconnects. By contrast, simulating the electromagnetic emissions requires
spatial distribution of the circuit components and is more computationally
demanding. Therefore, it can not be applied in the pre-layout stages. Thirdly,
more exotic emanations such as acoustic [53] and photonic [131] are more
dependent on the printed-circuit board and the manufacturing technology. As
such they can not be applied at the early design stages.

Therefore, we choose the instantaneous power consumption as the preferred
side-channel in the remainder of this chapter.

SCA-AWARE EXTENSIONS TO THE STANDARD-CELL ASIC DESIGN FLOW 47

3.4.2 The Systematic Use of Simulations

We argue that the systematic use of simulations along the EDA flow can greatly
decrease efforts of designers, while yielding more reliably secure designs prior
to manufacturing. At design time it is easy to focus on the critical hardware
blocks (e.g. S-Boxes), prior to evaluation of the entire designs. The absence
of noise and the high simulation precision allows us intimate observation of
the target circuit, unattainable using measuring equipment. Simulations also
provide fully aligned traces, removing the need for the costly pre-processing.
We can treat the effects of controllers, data path and all physical circuitry (e.g.
clock buffers) using the same physical models and tools, without any additional
manual input. Moreover, traditional design constraints, i.e. timing (setup and
hold violations) and average power consumption, are already being evaluated in
this manner.

In contrast, the models for side-channel security are completely lacking. It may
be possible to use the existing models (for timing or power), but it is unclear
whether they will give upper or lower bounds or indicate trends on SCA security.
Therefore we investigate this in this chapter.

Furthermore, unlike the FPGA evaluations, we directly model the physical
structure of the target ASIC circuit. In other words, logic implemented using
FPGA Look-Up Tables (LUTs) has the same output as the one implemented
using standard ASIC cells, but the transient behavior (e.g. glitches) varies.
Compared to the inherently serial nature of data acquisition from a chip,
simulating multiple power traces in parallel is trivial.

Lastly, we stress that models, as simplifications of physical phenomena, can
never fully capture reality. Hence, simulations are only as accurate as the
models they use, and they can not account for artifacts of the manufacturing
process. Therefore, we do not propose design time evaluations as a replacement
to post-silicon measurements, but as a design technique aimed at shortening
the time-to-market and more reliably secure designs from the first tapeout.

3.4.3 SCA Evaluation Methods

Simulated side-channel traces obtained at each design stage need to be evaluated.
Since we aim to quickly assess an arbitrary piece of design, we prefer generic
methods, independent of the underlying countermeasure, over batteries of
attacks. One possible approach is to use information-theoretic metrics such as
the one proposed by Standaert et al. [137]. While certainly useful and possible

48 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

to integrate in our setting, estimating probability distributions may be too
computationally and memory intensive.

Instead, we focus on the SCA evaluation by means of leakage detection methods
described in Section 2.3.3. In particular we focus on the Test Vector Leakage
Assessment (TVLA) methodology [59, 32], as we mostly evaluate the first- and
second-order secure designs. However, χ2-based testing can easily be added for
the higher-order designs.

The evaluation of the designs in their final stages, i.e. an entire AES core as
opposed to a single S-Box, can be additionally fortified by applying some of
the attack techniques. Nevertheless, at multiple fast iterations of the leakage
detection is beneficial for the debugging purposes.

3.4.4 Simulation Models

Analog SPICE simulation, albeit the pinnacle of electronic modeling in terms
of accuracy, features exponential increases in run times with the transistor
count increase. We do support SPICE in our framework, as they are useful as
a reference for smaller validation circuits. For practical reasons we focus on
timing and power models that have the potential to scale efficiently. In the
remainder of this section we delineate the models used by the EDA and SCA
communities. Note that for all of the models discussed in the remainder of this
chapter, the approximation shown in Equation (3.1) holds exactly.

Models from the SCA community.

The secure logic style community predominantly relies on detailed SPICE
simulations to evaluate their designs. In addition to computational inefficiency,
Tiri and Verbauwhede [143] raise concerns regarding the effects different parasitic
extraction methods in the backend stages of the design. We address the issues
of parasitic components in Chapter 5.

On the contrary, the masking community relies on minimal assumptions when
modeling the underlying hardware. Early works, such as [146], retain their
security only in the zero-delay model, i.e. they can be broken due to the effects
of glitches caused by the propagation delay in the standard CMOS circuitry.

Modern masking schemes prevail in the presence of glitches, e.g. due to the
non-completeness property of threshold implementations. Splitting sensitive
values in multiple shares and performing independent computations ensures
that no glitch, in whichever share it may occur, leaks information about the

SCA-AWARE EXTENSIONS TO THE STANDARD-CELL ASIC DESIGN FLOW 49

unshared secret values. Consequently, the modeling of the circuit timing under
these assumptions is considered to be of less concern. This allows for the use
of generic, library independent, ∆-delay models where each gate is assigned a
fixed delay.

Leakage models often employed by the SCA community are based on the HW
and the HD of the processed data. Both are based on the predominance of
dynamic power consumption in the standard CMOS logic. The HD model maps
every toggle with a Dirac-like pulse of unitary amplitude. Multiple toggles that
happen at the exact same time are simply added together. The HW model
maps the number of logic ones to the amplitude of the Dirac-like pulse, without
considering previous states. It is particularly useful for evaluating software
implementations, where periodically pre-charged buses are the main source of
leakage.

Models from the EDA community.

Timing parameters determine performance constraints, e.g. setup and hold
times. Hence, the models for the timing simulation (closure) are at the heart of
the EDA tools. Standard-cell libraries contain detailed information on how to
extract timing parameters for the Gate-Level Netlist (GLN) and the Place and
Route (PAR) stages. In the GLN stage, interconnect delays are extracted from
statistical wire load models embedded in the standard-cell libraries. In the PAR
stage, delays are extracted from the actual physical layout. Therefore at the
PAR stage the impact of concrete parasitic elements is taken into account. These
are detailed models for timing and power consumption, in the Open-Source
Liberty [22] format, compatible across the EDA vendors.

We focus on the Composite Current Source (CCS) models [67], as the “best
in class” for technologies below 90nm. Figure 3.2 depicts the entries of the
four LUTs that characterize the output current of the XOR2_X1 gate from
NanGate 45 nm standard-cell library [78]. The gate has two input pins, A and
B. Output current waveforms depend on the pin initiating the transition as
well as its direction, i.e. rising or falling. As the underlying Boolean function is
commutative, this asymmetry can not be detected without observing physical
properties of the cell. As such, CCS models are an industry standard used for
“golden” sign-off estimations.

Figure 3.3 depicts the CCS power consumption waveform of the XOR_X1 gate
for five transitions. Transitions are separated using vertical dotted lines. We
use Synopsys PrimeTime (PT) with the PX add-on, and henceforth refer to
these simulations as PTX.

50 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

0 500 1000 1500 2000

t[ps]

−100

−75

−50

−25

0

25
I[
µ

A
]

output current rise(A)

output current rise(B)

output current fall(A)

output current fall(B)

Figure 3.2: CCS output current waveforms of a XOR_X1 gate.

1000 2000 3000 4000 5000

t[ps]

0.00

0.01

0.02

0.03

P
[µ

W
]

4 · CL 1 · CL

Figure 3.3: CCS power waveform of the XOR2_X1 gate for five transitions.

In both cases XOR_X1 is driven using DFF_X1. The solid line is obtained when
the loading capacity of the output pin is set to the capacity of the DFF_X1/D
pin CL. The dashed line is obtained by increasing this capacity four times.
When evaluating small isolated circuits using PTX it is important to set proper

SCA-AWARE EXTENSIONS TO THE STANDARD-CELL ASIC DESIGN FLOW 51

design constraints. These representations contain more information than the
unitary pulses normally used in the SCA community. However, the information
is much less detailed than what CCS models can capture, Figure 3.2. The
output waveforms are clearly designed with the average power consumption in
mind.

Consolidating timing and power models.

We use the parametrized ∆-delay model to bridge the gap between SCA and
EDA worlds. This model is useful to provide assessments before a specific
library is introduced. Equation (3.2) states the general form of the parametrized
∆-delay model.

∆ = δ(1 + Fθ) . (3.2)

Here, δ is the fixed propagation delay, F is the fanout and θ is the scaling factor.
By choosing δ = 0 the model is reduced to ∆ = 0, i.e. the zero-delay model.
By choosing δ > 0 and θ = 0 the model is equivalent to the fixed ∆ > 0 delay
model. Lastly, for δ > 0 and 0.05 6 θ 6 0.20 we define the fanout dependent
delay ∆F . We choose the range for θ based on empirical observations of several
modern libraries and use these values in our experiments.

We expand the HD model into the Marching Sticks Model (MSM), named for
its graphical interpretation. MSM power for a standard-cell gate is described by
Equation (3.3). MSM power of a standard-cell design is a sum of contributions
of all gates. The parameter −1.0 6 α 6 1.0 addresses the asymmetry of the
rising and falling edges. When α = 0, MSM power model is symmetrical and
identical to the HD model. MSM evaluations need to be computed from logic
simulations orthogonally to the underlying timing model.

PMSM =

1 , output transition 1→ 0 ,

1− α , output transition 0→ 1 ,

0 , in steady state .

(3.3)

We can relate MSM to CCS power models in the same manner as the ∆-delay
models relate to the timing ones. The quality and performance of the SCA
evaluation using MSM versus CCS power models at different design stages
needs to be determined. Note that the MSM estimations are adjunct to the
logical simulations. They are a precursor for the event-driven instantaneous

52 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

power consumption estimations using CCS power models. Hence, they are the
common case in terms of performance and scalability.

Lastly, MSM model accounts only for the dynamic power consumption. As static
power consumption poses a threat to sub 100nm technologies [103], this must
be addressed in the context of design-time evaluations. MSM is valid, albeit
simple, power model for all standard CMOS gates always consume more power
during transitions than in the steady state. Therefore, a strong correlation
exists between the logic state transition and the dynamic power consumption.
Static power consumption depends on the logic values too. Table 3.1 shows
the static power consumption of three different cells from the NanGate 45nm
library [78], for the slow process corner. Clearly, little correlation exists between
the input state and the static power consumption. It is much more dependent
on the way the cell is designed internally. The correlation further decreases
when more complex cells are considered. Therefore, we see no good way of
making a generic, library-independent model for assessing the static power
consumption. Luckily, as soon as a standard-cell library is selected, CCS models
offer detailed information about the static power consumption.

Table 3.1: Static power consumption in nW, captured by CCS power models.

Input state AND2_X1 XOR2_X1 OR2_X1

00 10.17 19.55 20.78
01 17.20 33.33 15.92
10 12.42 24.31 16.59
11 20.82 22.54 17.64

3.4.5 Simulation Methodology

Our methodology is closely coupled with every stage in the traditional standard-
cell design flow. While these stages are alike to the functional simulations for
timing closure, the rationale behind them is completely different. In traditional
design flow designers care about the values in the steady state, i.e. after
all transitions have settled, and when does the steady state occur, i.e. the
critical-path delay. We rather focus on the transitions, observing changes in the
instantaneous power consumption caused by an input change. Since we make no
assumptions about the functionality of the target circuit—other than it being
a digital circuit—this allows us to apply this approach to any standard-cell
design. Consequently, we can analyze implementations of masking schemes,
standard-cell secure logic styles or any other block of digital hardware in the
same manner. In addition to the increased level of physical detail available

SCA-AWARE EXTENSIONS TO THE STANDARD-CELL ASIC DESIGN FLOW 53

at the later design steps, evaluation must be repeated after each synthetic
design step to ensure that the EDA tool did not introduce a vulnerability. An
example of such vulnerability could be the violation of the non-completeness of
the threshold implementations due to the re-timing algorithm optimizing the
register locations for performance reasons.

Capturing all transitions of a circuit with n input bits requires simulating
22n − 2n non-trivial transitions. We call this simulation sequence Exhaustive
Dynamic Power Capturing (EDPC). We use Algorithm 3 to ensure the traversal
of all non-trivial transitions without repetition. The exponential complexity
of the EDPC makes it infeasible for circuits with the large number of input
bits. Our tests indicate that the EDPC is feasible for circuits with 16 input bits
or less. This is suitable for rigorous evaluations of smaller, but SCA critical,
blocks such as the cryptographic S-Boxes. In case of the larger designs, we
generate the input vectors in a pseudo-random fashion. This is analogous to
the acquisition in the laboratory settings.

Algorithm 3 EDPC Sequence Generation.

1: function EDPC(nbits)
2: init← 1, jump← 1, node← 0, space← 2nbits

3: for i ∈ [0, 22·nbits − 2nbits) do
4: yield node . EDPC sequence value.
5: node← (node+ jump) mod space
6: jump← (1 + jump) mod space
7: if node = 0 then
8: init← (init+ 1) mod space
9: jump← init
10: end if
11: if jump = 0 then
12: jump← 1
13: end if
14: end for
15: end function

Test benches must be carefully crafted to account for the activity of all nodes
truthfully. Hierarchical designs may cause the port nets of the individual sub-
modules to be annotated multiple times. To avoid counting the contribution
of these nodes multiple times two paths can be taken. First, the hierarchical
netlist can be flattened after the synthesis. Second, the logic simulator can
be instructed to optimize away the redundancy. In QuestaSim this can be
facilitated using -voptargs="+acc=prn+<testbenchModuleName>" argument
of the vsim command.

54 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

3.5 Computer-Aided Side-Channel Analysis Design
Environment (CASCADE)

The goal of CASCADE is to incorporate the design-time SCA evaluations
into the standard-cell design flow. We aim to combine the knowledge of
both the EDA and the SCA community to develop a tool easily applicable in
practice. CASCADE is built around the commercial EDA tools and associated
data formats. We adhere to the standard-cell design flow by using the EDA
simulators to obtain instantaneous power consumption estimates, starting at
the earliest stages of the design. In order to embed the SCA evaluations in
all of the standard-cell design stages, we design and implement additional
software components that bridge the gap between the EDA tools and the SCA
evaluations at design time. This requires tackling several challenges:

• There exists a gap in the current timing and power models used in the
standard EDA applications and the SCA evaluations. The timing models
are primarily targeted for performance, while the power is primarily a
concern for heat dissipation and battery life. In contrast, it is not known
how these models can be used for SCA evaluations concerned with the
instantaneous power consumption.

• There is a gap in the handling and interpretation of the simulations
outputs. SCA evaluations often require processing of millions data-
dependent simulations. Therefore, enabling mechanisms to efficiently
generate and cope with the sheer volumes of data is of critical significance
for practical applications.

• Given the history of the EDA development, and the favorable “best in
class” approach, it is important to keep CASCADE flexible, extensible and
away from the vertical-integration approach. As the SCA evaluations need
to be performed along the full-stack of the front-, and the back-end design
stages interoperability must be ensured through adherence to existing
data formats and the development of new ones in a transparent manner.

CASCADE bridges these gaps and allows automated and efficient SCA
evaluation during all stages of the standard-cell design flow. While it is
easily extensible, its principal architecture is depicted in Figure 3.4.

CASCADE is available via a Command Line Interface (CLI). The Session
Manager (SM) is the central part of the framework. Every time a new session is
started, a set of Parameters is configured and stored within the SM. Categories
of the parameters are shown in Table 3.2.

COMPUTER-AIDED SIDE-CHANNEL ANALYSIS DESIGN ENVIRONMENT (CASCADE) 55

>_

LM

SM

1 2 3 4 5

Handlers

LS LT PS LSIM PSIM SSIM

...beh.LSIM
run.LS2

run.LT23

run.PS234

syn.LSIM12

gln.LSIM123

par.LSIM1234

CLI

Parameters

Generators

TG DG SG

Parsers

LP PP SP

5Analyzers

TVLA DoM ...

5

tb.v1 syn.sdf2*.pff*.afd

X Python tool

X C tool Parameter set iUser I/O

>_ Command line interface

iTextual file

Binary filex

x

xi Parametrized file

Figure 3.4: High level architecture of CASCADE.

The SM centrally manages all configuration parameters. There are other ways
of achieving such centralization, e.g. using CMake or similar software. However,
SM does not only evaluate the parameters, but often involves sanity checks and
conversions to formats catered to target tools. We opt for this centralization to
ensure coherency between tools, thus avoiding time-loss due to the error prone
manual handling. The Library Manager (LM) parses and handles standard-cell
library files. When working with a single library, LM data can be easily hardcoded
in the CASCADE configuration. The remaining components are: Handlers,
Generators, Parsers and Analyzers. CASCADE components relate to the
typical side-channel measurement setup shown in Figure 2.5 as per Figure 3.5.

Table 3.2: Configuration parameters.

Category Examples

1© Simulation precision, duration
2© Design constraints critical path
3© Resources library resources
4© Physical constraints placement constraints
5© Power model parameters

56 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

Generators Simulation Handlers Parsers

Analyzers
Design Under TestGenerators

1

1
1 4

4

2 6
5

3
Session Manager

Figure 3.5: CASCADE in relation to a SCA measurement setup.

Handlers.

Handlers wrap the commercial EDA and the custom CASCADE tools alike,
abstracting their functionality, vendor, and software version. Each handler can
be modified, and the new ones can be created, independently from the rest
of the framework. This makes CASCADE easily adaptable to any changes in
the underlying tools or the flow itself. Handlers facilitate a synthetic or an
analytic step in a streamlined and automated manner. They produce TCL
scripts (e.g. gln.LSIM for the logic simulation at the GLN stage) used to drive
the underlying tools. Depending on the point in the flow, TCL scripts are
associated with different categories of parameters. Any change in the session
parameters is automatically propagated along the entire flow. The set of the
commercial EDA tools we currently use is given in Table 3.3.

Table 3.3: List of commercial EDA tools used.

Acronym Function Tool

LS Logic synthesis Synopsys Design Compiler
LT Library translation Synopsys Design Compiler
PS Physical synthesis Cadence Innovus

LSIM Logic simulation MentorGraphics QuestaSim
PSIM Physical simulation Synopsys PrimeTime, PX
SSIM SPICE simulation Synopsys HSPICE

The traversal of the design stages is depicted in Figure 3.6. We start from the
Register Transfer Level (RTL) code of the design. The behavioral modeling
can be also simulated in the flow, but as it is a black box representation of
the mathematical algorithm it is more efficient to simulate it in software. The
logic functionality is synthesized (SYN) using the generic logic gates. This
functionality is then mapped to library cells of a concrete library to form a
gate-level netlist (GLN). The placed-and-routed (PAR) design stage comes
before the physical extraction and the tapeout. CASCADE enables the SCA

COMPUTER-AIDED SIDE-CHANNEL ANALYSIS DESIGN ENVIRONMENT (CASCADE) 57

evaluation at the every stage of the design flow, providing feedback to the
designers. Similarly to the timing closure, proceeding to the next stage is
allowed once the security requirements are fulfilled for the current stage. We
perform these simulations using models described in Section 3.4.4.

RTL

Figure 3.6: Standard-cell design stages using CASCADE.

Generators

Generators aid the automation by synthesizing scripts and data files in
conformance with the session manager.

Test bench generator (TG) produces test benches based on the Hardware
Description Language (HDL) code of the design (e.g. tb.v) and parameters
obtained from the SM. TG parses the Verilog netlist, wires the design and
facilitates the control signals for data input and capturing (e.g. trigger signal
that indicates when to record power consumption). All status and control signals
used to configure and run a particular design should be handled manually. The
testbenches for different configurations can be easily added. Input data is
read from a binary file, resulting in otherwise unchanged structure for each
testbench. Depending on the desired test TG generates different data vectors (e.g.
user-supplied functional tests, (pseudo-)random inputs or the EDPC sequence.)
In the case of pipelined designs, such as Boolean masking schemes, to observe
the worst case we keep the inputs stable until data has finished propagation
through all pipeline stages. Feeding subsequent data would introduce noise as
the pipeline would be computing on multiple statistically independent inputs at
the same time.

Delay Generator (DG) is used to annotate generic netlists at the SYN design
stage (c.f. ∆-delay in Section 3.4.4). Delay annotations are stored in the
Standard Delay Format (SDF), compliant with modern EDA tools. SPICE
Generator (SG) includes a translator from Verilog to SPICE netlists, as well as
an analog version of the test bench generator.

58 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

Parsers

Similarly to data acquisition tools used in measurement setups, we design
optimized Parsers to process and store data in a SCA-friendly manner. We
design and implement them in in C. Regardless of the type of data we parse,
Logic Parsers (LP), Power Parsers (PP) and SPICE Parsers (SP) output a Power
Frame File (PFF). PFF is a custom binary format designed for storage and fast
processing of the simulated instantaneous power consumption traces. As SCA
evaluations require orders of magnitude more traces to be recorded than the
traditional digital design, we believe that storage savings from binary encoding
compared to human-readable formats often used for the EDA tools, can be
immense. For the detailed PFF specification see Appendix A. We refer to the
part of the simulation that corresponds to one power trace as a simulation frame.
Each frame starts with data associated with the frame transitions followed
by time-value pairs of discrete digital events. A number of data vector can
be associated to each of the frames. We use input, output and target data
vectors. CASCADE configuration allows binding these three vectors to arbitrary
nodes. The latter allows us to leverage the native simulators to perform any
post-processing, e.g. unsharing the sensitive variable. Frame-associated data
also supports the functional validation of the design and the SCA processing,
e.g. frames can be partitioned on the fly. The associated data vectors may as
well be stored in separate files, as they require orders of magnitude less memory
than the corresponding trace-data. Therefore there is no need in handling them
on the fly. Nevertheless by attaching them to each frame we achieve a level of
integration that minimizes human error during evaluation. Additionally, we
can acquire logic values of all intermediary nodes and use if for debugging and
verification purposes.

Analyzers

Lastly, we use the Analyzers to process PFF files. We design and implement
them in in C. Each analyzer implements a specific SCA evaluation technique,
e.g. TVLA, or an attack, e.g. Correlation Power Analysis (CPA). Focusing on
the TVLA, we follow the roadmap put forward by Schneider and Moradi [132].
We abstain from applying the faster leakage assessment of Reparaz et al. [124]
because of the prohibitive storage costs. We discuss this topic further in
Section 3.7. The analysis consists of three steps that are performed on the fly
for each frame:

1. A continuous power waveform is reconstructed from the frame data, PFF
header information and desired parameters.

EXPERIMENTAL VALIDATION 59

2. Context of the analyzer is updated using this waveform, according to the
associated data.

3. The context is evaluated and the output is written to an Analyzed Frame
Data (AFD) file, a custom binary designed for providing visual feedback
to the designers.

For the detailed AFD specification see Appendix A. The latter step is mandatory
after the final frame, but can be done periodically to observe the evolution of
the chosen SCA metric. AFD files can preserve the analyzer context, so that
on-the-fly evaluation can be continued at will. This allows a simple way to split
an evaluation into multiple batches of traces.

3.6 Experimental Validation

In this section, we validate CASCADE by applying it to representative
cryptographic circuits. The security properties of these circuits are well
established, and therefore allow us to check the capabilities of our framework.

We show how CASCADE can be applied to both masked designs instantiated
to provide first-order security, i.e. devised to resist power analysis attacks that
exploit information leakages in the first-order moment, as well as standard-cell-
based secure logic styles. Evaluation in higher-order requires simply changing
the analyzer used. Lastly, we benchmark CASCADE using several circuits of
different input spaces and area to test the scalability of CASCADE. We perform
all experiments using a 45 nm standard-cell library from NanGate [78].

3.6.1 A Motivating Example

We use the first-order Domain Oriented Masking (DOM)-indep multiplier,
a masked AND gate from [61] depicted in the Figure 3.7 as the motivating
example. In this simple circuit, input and output variables are split into 2 shares
such that a = a1⊕ a2, b = b1⊕ b2 and z = z1⊕ z2 = a · b. The design consumes
one random bit r per evaluation. Figure 3.8 shows power profiles (averaged
instantaneous power consumption) obtained using the symmetrical PMSM(α=0)

power model, defined in Equation (3.3), combined with the different timing
models. We show the principal timing diagram for this circuit in Figure 2.12
and discuss its operation and security properties in Section 2.3.2.

Given the five input data bits, the EDPC consists of 22·5 − 25 = 992 input
transitions. As the entire distribution of power traces is exhausted and there is

60 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

a1b1

a1b2

a2b1

a2
b2

r

1

1 1 1
1

2
222

2

x1

x2

y1

y2

Figure 3.7: DOM-indep multiplier.

0 300 600 900

t [ps]

0

1

2

3

4

P
M

S
M

(α
=

0
)

∆(0.0 ns, 0.0)

∆(0.1 ns, 0.0)

∆(0.1 ns, 0.1)

CCSGLN

CCSPAR

Figure 3.8: DOM-indep multiplier, MSM power profiles.

no noise, we can simply look at the difference of the distribution moments, and
decide whether they are distinguishable with the 100% confidence. Figure 3.9
shows the difference of means (left) and of variances (right), partitioned based on
the unshared output value z = z1⊕z2. The two sets are indistinguishable in the
first-order moment, as the circuit is first-order secure, and vice versa. However,
the difference of variances testifies to the vulnerability in the second-order, for
both the ∆-delay and CCS timing models.

In order to validate how different timing models detect information leakage,
we induce two flaws in the design. First, we break the input independence
assumption, by setting a1 = b1. In practice, input dependency can occur during
composition and outputs have to be registered to mitigate this as per Faust et

EXPERIMENTAL VALIDATION 61

0 300 600 900

t [ps]

−0.1

0.0

0.1

P
M

S
M

(α
=

0
)

0 300 600 900

t [ps]

0

1

2

3

∆(0.0 ns, 0.0)

∆(0.1 ns, 0.0)

∆(0.1 ns, 0.1)

CCSGLN

CCSPAR

Figure 3.9: DOM-indep multiplier, difference of means (left), difference of
variances (right).

al. [48]. In terms of threshold implementations, this is equivalent to breaking
the input uniformity. Figure 3.10 shows the difference of means (left) and of
variances (right), partitioned based on the unshared output value z = z1 ⊕ z2
when a1 = b1. In addition to the second-order moment, the means of the two
distributions differ. Note that the simple ∆-delay models can not differentiate
the two distributions in the second clock cycle.

Next, we fix the bit r = 0, effectively disabling the masking. Figure 3.11 shows
the difference of means (left) and of variances (right), partitioned based on the
unshared output value z = z1⊕z2 when r = 0. This time the first-order moments
are distinguishable only in the second clock-cycle. The indistinguishable first-
order moments in the first-cycle are expected, as the remasking is used to secure
the compression step after the register.

For all the models employed, second-order evaluations detect leakage, using
even the simplest zero-delay model. However, for both flaws we introduce CCS
models exhibit different behavior than the ∆-delay models. CCS timing models
show four distinct points in which the first-order moments differ. These points
of distinction are determined by the asymmetries of the compression XOR gates.
Even for the fixed output load, zi timing depends on the transition direction
(rising or falling) and the ai · bi product value. As such timing differences affect
the data-dependent distribution of glitches, they must be considered when
evaluating Boolean masking schemes that claim glitch-resistance. Therefore,
design-time evaluations benefit from CCS timing models. For the earlier, library-

62 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

0 300 600 900

t [ps]

0

1

2

P
M

S
M

(α
=

0
)

0 300 600 900

t [ps]

∆(0.0 ns, 0.0)

∆(0.1 ns, 0.0)

∆(0.1 ns, 0.1)

CCSGLN

CCSPAR

Figure 3.10: DOM-indep multiplier, when a1 = b1 difference of means (left), of
variances (right).

0 300 600 900

t [ps]

−0.1

0.0

0.1

P
M

S
M

(α
=

0
)

0 300 600 900

t [ps]

0

1

2

3

∆(0.0 ns, 0.0)

∆(0.1 ns, 0.0)

∆(0.1 ns, 0.1)

CCSGLN

CCSPAR

Figure 3.11: DOM-indep multiplier, when r = 0 difference of means (left), of
variances (right).

independent, evaluations asymmetry can be introduced in the ∆-delay models
for the glitch-resistant masking scheme evaluation. It suffices to mention that
any standard-cell-based secure logic style, that relies on the symmetry, benefits
from evaluations using CCS models.

EXPERIMENTAL VALIDATION 63

So far we present only the non-normalized differential traces, as we exhaust
all transitions. Input sizes of practical circuits prohibits such analysis, and
therefore normalized t-traces have to be used. Moreover, all-zero non-normalized
differential traces can be obtained using the PMSM(α=0) power model equivalent
to the Hamming distance power, i.e. by simulating the toggle distribution. If
an asymmetry is introduced, either using PMSM(α6=0) or detailed CCS power
models, i.e. by simulating the physical behavior, the non-zero values—different
from the floating point calculation errors—will occur in the non-normalized
differential traces without endangering the side-channel security. Thus, it is
beneficial to normalize the differential traces to obtain a confidence interval.
Figure 3.12 shows the power profile and security evaluation using CCS power
models to demonstrate this.

0

100

P
[µ

W
]

CCSGLN CCSPAR

0

1

2

P
[µ

W
]

0 300 600 900

t [ps]

−2.5

0.0

2.5

t

Figure 3.12: DOM-indep multiplier, power profile (top), difference of means
(middle), first-order t-trace (bottom) using CCS power models.

The non-zero values in the differential trace occur only in the second clock cycles.
Also, in the first clock cycle gates start right after the starting clock edge, while
the switching is delayed by about 300 ps in the second one. The reason for this

64 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

is that the XOR gates in the second clock cycle are driven by a flip-flop, while
inputs to the first cycle are supplied directly from the simulation. Normally, we
would constrain the drive of the input bits to emulate drive of a flip-flop. We
remove this constraint to show how it affects the physical simulation.

To make sure that the non-zero t-score in Figure 3.12 (bottom) is not a
consequence of the limited number of traces, we show the evolution of the
t-statistic in Figure 3.13 (left). The downwards trend testifies to the relevance
of the result, as expected for the secure implementation of this circuit. In
contrast, Figure 3.13 (right) shows the lack of the second-order security.

0 250 500 750
Number of traces

1

2

3

4

m
a
x

(|t
|)

CCSGLN CCSPAR

0 250 500 750
Number of traces

5

10

15

20

25

Figure 3.13: DOM-indep multiplier, the first-order (left) and the second-order
(right) t-statistic evolution.

Lastly, we plot the t-statistic evolutions for the two flaws we introduce. We
show results using both the PMSM(α = 0) and the CCS power. We observe the
t-statistics separately in each cycle for a more detailed discussion.

Figure 3.14 shows the t-statistic evolution in both clock cycles using the
PMSM(α = 0) power model. To set a1 = b1 we select a subset of 496 traces for
which this holds. Despite the t-statistic staying below the |t| = 4.5 range, the
sharp upwards trend testifies to the composability issue discussed in [48]. All
t-values reach the 99.9% confidence to reject the null hypothesis. In the second
cycle, the non-zero difference of means leads to a flat t-statistic trend and a low
confidence that the two sets can be discerned.

Figure 3.15 shows the t-statistic evolution in both clock cycles using the CCS
power models. Despite the equally small number of traces, increased level of

EXPERIMENTAL VALIDATION 65

0 200 400
Number of traces

0

2

4

m
a
x

(|t
|)

∆(0.0 ns, 0.0)

∆(0.1 ns, 0.0)

∆(0.1 ns, 0.1)

CCSGLN

CCSPAR

0 200 400
Number of traces

Figure 3.14: DOM-indepmultiplier, when a1 = b1 first-order t-statistic evolution
in the first-cycle (left) and the second-cycle(right), using PMSM(α = 0).

physical detail increases the confidence well beyond the 99.999% margin typical
for the TVLA.

0 200 400
Number of traces

4

6

8

10

m
a
x

(|t
|)

CCSGLN CCSPAR

0 200 400
Number of traces

Figure 3.15: DOM-indepmultiplier, when a1 = b1 first-order t-statistic evolution
in the first-cycle (left) and the second-cycle(right), using CCS power.

Figure 3.16 shows the t-statistic evolution when the random bit is reset. This
scenario results in a subset of 496 traces. In the first clock cycle, the t-statistic

66 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

quickly evolves to zero-confidence—inline with the security properties of the
circuit and the difference of means shown in Figure 3.9. However, when r = 0
t-statistic in the second clock cycle sharply increases beyond the |t| > 4.5
interval for the evaluation using CCS timing.

0 200 400
Number of traces

0.0

2.5

5.0

7.5

m
a
x

(|t
|)

∆(0.0 ns, 0.0)

∆(0.1 ns, 0.0)

∆(0.1 ns, 0.1)

CCSGLN

CCSPAR

0 200 400
Number of traces

Figure 3.16: DOM-indep multiplier, when r = 0 the first-order t-statistic
evolution in the first-cycle (left) and the second-cycle(right), using PMSM(α = 0).

Figure 3.17 shows the t-statistic evolution in both clock cycles using the CCS
power models. Both trends confirm the security properties of the DOM-indep
multiplier, and are inline with the PMSM(α = 0) power model with CCS timing.

Therefore, our framework evaluates the side-channel security of this masked
design successfully and in accordance with the known security properties of the
circuit [48]. We show how the increased level of physical detail, available in the
later stages of the standard-cell ASIC design flow, can be leveraged to detect
the security flaws with increased confidence. Nevertheless, some flaws in the
implementation can be detected even using the simple ∆-delay models and the
PMSM(α=0) power.

Additional benefits of hardware simulation.

The precision and the discrete nature of models allow for another advantage
of the simulated approach. Given a set of input vectors, for each gate Gi it
is possible to annotate ni discrete moments ti1, ti2, . . . , tini relative to the clock
edge at which the gate switches, in every trace. In very small circuits with
∆-delay models these moments will likely overlap. As the circuit grows and

EXPERIMENTAL VALIDATION 67

0 200 400
Number of traces

0

2

4

6
m
a
x

(|t
|)

CCSGLN CCSPAR

0 200 400
Number of traces

Figure 3.17: DOM-indep multiplier, when r = 0 the first-order t-statistic
evolution in the first-cycle (left) and the second-cycle (right), using CCS power.

more detailed models are used ti1, t
i
2, . . . , t

i
ni starts to vary for each Gi. For

example, ∆-delay can be replaced with ∆ + δi such that δ << ∆, to allow for
a more unique set of ti1, ti2, . . . , tini per gate. Consequently, leakage detected
in an interval t0 6 t < t1 can be traced back to a subset of gates, possibly of
cardinality one, in the design. By doing so, the sources of leakage are localized
to the logical cones of the said subset of gates. This can be of great help during
implementation debugging and it can be achieved using commercial EDA tools
and a bit of scripting.

3.6.2 Protected S-Boxes

We now move to show how our approach and the CASCADE framework
scale in terms of circuit sizes, number of traces and the security evaluation
capabilities. To do so, we evaluate several protected S-Boxes protected using
different standard-cell-based countermeasures. The S-Boxes are often the most
SCA-vulnerable parts of the cryptographic algorithms due to their non-linearity,
and as such they have to be rigorously evaluated starting from the earliest
design stages.

68 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

TI Present S-Box

We target the first-order secure masked implementation of the Present S-Box
by Poschmann et al. [117], depicted in Figure 3.18. The design is decomposed
into two quadratic S-Boxes F and G. They are split into three shares per
variable in accordance with the TI principles. The total number of input-
and output-bits is 12, resulting in 22·12 − 212, i.e. approximately 16million,
transitions long EDPC sequence.

Figure 3.18: Architecture of the TI Present S-Box.

As the circuit is designed to provide the first-order security, we first evaluate
the second-order leakage. The results, depicted in Figure 3.19, are inline with
the theory for all the timing and power models we consider. Figure 3.19
(left) shows the second-order PMSM(α=0) power t-traces for several timing
models. The second-order leakage is even more prominently detected using
the PTX simulations based on the CCS timing and power models, as depicted
in Figure 3.19 (right). For both the PMSM(α=0) and CCS power models the
second-order is present in both cycles, as both decomposed stages are first-order
secure TI.

Figure 3.20 shows the evolution of the first-order t-statistic using PMSM(α=0)

power with different timing models. As in the motivational example,
traversing the entire EDPC sequence t-statistic evolves towards zero as the
two distributions of the PMSM(α=0) power samples get fully populated. Using
PMSM(α6=0) results in the similar Lastly, note that the initial t-values outside
the confidence interval are a statistical artifact due to the low number of traces
processed. Hence, it is more important to observe the trend of the t-trace
evolution, not a single evaluation with the small number of traces.

Figure 3.21 shows the first-order evaluation using CCS power models in PTX
simulation. At the pre-layout GLN stage, there is no significant information
leakage. However, t-value does not evolve to zero as all traces are exhausted.

EXPERIMENTAL VALIDATION 69

0 1000 2000

t[ps]

−50

−25

0

25

50
t

CCSPAR CCSGLN ∆(0, 0)

0 1000 2000

t[ps]

−100

0

100

t

Figure 3.19: TI Present S-Box, the second-order t-trace using PMSM(α=0)

power (left) and CCS power (right).

Compared to the PMSM(α=0), physical asymmetries captured by the CCS models
map identical toggles to different values. Consequently, the PTX simulation
can yield non-zero values in the t-trace for a secure glitch-resistant masking

0 4 8 12

Number of traces [220]

0

5

10

m
a
x

(|t
|)

∆(0, 0)

∆(0.2 ns, 0)

∆(0.2 ns, 0.1)

CCSGLN

CCSPAR

Figure 3.20: TI Present S-Box, the first-order t-trace evolution using
PMSM(α=0) power.

70 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

scheme. Our initial evaluation at the PAR stage, indicated first-order leakage.

0 1000 2000

t[ps]

−20

−10

0

t
CCSGLN CCSPAR

0 4 8 12

Number of traces [220]

0

5

10

15

20

m
a
x

(|t
|)

Figure 3.21: TI Present S-Box, the first-order t-trace (left), and its evolution
(right) for, using CCS power; false positive evaluation.

Both G and F are first-order secure Boolean functions, as per [117].
Consequently, the TI Present S-Box should exhibit the first-order security in
both clock cycles. We first test their individual security, running a separate
experiment for each of the two functions. Then we simulate the EDPC sequence
for both G and F, using PMSM(α=0) and CCS power models with CCS timing.
In all cases, G and F are first-order secure. We then inspect the design files more
closely. Upon inspection of the Synopsys Design Constraints (SDC) file, we
find several negative time constraints applied to the register bits and the clock.
Other design files unchanged1, we remove these constraints and repeat the
experiments to resolve this false-positive leakage assesment. Figure 3.22 shows
the correct results of the first-order evaluation using CCS power models. This
example shows the importance of properly constraining designs. We address
this matter further in Section 3.7.

Lastly, we evaluate a known vulnerability using different models. Figure 3.23
(left) shows the first-order t-trace evolution using PMSM(α=0) when x3,1 =
x3,2 = x3,3 = x3,4 = 0, i.e. one mask is turned off. Leakage is correctly detected
even with the simplest ∆ = 0 model, roughly after processing 250 thousand
traces. Other timing models, require as little as ten thousand traces. Results
obtained when using the PTX simulation are shown in Figure 3.23 (right). In

1Also, the version of the PrimeTime changed to 2019.03.

EXPERIMENTAL VALIDATION 71

0 1000 2000

t[ps]

−4

−2

0

2

4
t

CCSGLN CCSPAR

0 4 8 12

Number of traces [220]

2

3

4

m
a
x

(|t
|)

Figure 3.22: TI Present S-Box, the first-order t-trace (left) and its evolution
(right), using CCS power.

this case, the first-order leakage is visible after processing the first two thousand
traces.

0 75 150 225

Number of traces [103]

0

25

50

75

m
a
x

(|t
|)

∆(0, 0)

∆(0.2 ns, 0)

∆(0.2 ns, 0.1)

CCSGLN

CCSPAR

0 75 150 225
0

10

20

30

m
a
x

(|t
|)

Figure 3.23: I Present S-Box, the first-order t-trace evolution when x3,1 =
x3,2 = x3,3 = x3,4 = 0, using PMSM(α=0) power (left) and CCS power (right).

72 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

Masked Boyar-Peralta AES S-Box.

Ghoshal and De Cnudde [56] proposed a first-order secure implementation of
the Boyar-Peralta (BP) AES S-Box, designed to consume no randomness. In a
later work, Wegener and Moradi [148] showed that this design exhibits leakage
due to a non-uniformity problem. Their experiments were carried using an
FPGA setup and processing 10million measurements. We validate the same
vulnerability can be captured using CASCADE. In particular, our experiments
indicate the presence of significant leakage starting from 400 thousand traces
using PMSM(α=0) with the CCS timing models of the GLN. Such evaluation can
be performed in 30 minutes, including the manual work, using a single desktop
workstation.

WDDL Present S-layer.

We now move to evaluate a WDDL implementation of the Present S-Layer,
consisting of 16 S-Boxes in parallel. We use the same 45nm library from
NanGate [78] as before. As the Present P-Layer consists of routing wires
only, we effectively evaluate a round-based implementation of Present. Since
WDDL relies on balancing the differential rails, we observe multiple S-Boxes in
parallel to capture the asymmetries introduced by the placement and routing
better. Given the infeasibility of exhausting all 22·64 − 264 EDPC transitions,
in this experiment we perform a classical fixed-versus-random TVLA using
10million traces. We partition based on the input value of one S-Box while
the inputs of the remaining S-Boxes are random, hence generating algorithmic
noise. Pre-charge circuitry and the data-splitting into the differential rails is
done in the test bench, so the circuit has ideally aligned inputs.

Perfectly symmetrical ∆δ=0,θ=0 and ∆δ>0,θ=0 models yield an all-zero
differential traces in the first- and the second-order TVLA as long as the
logic structure is implemented correctly. As each pair of complementary gates
has the same fanout, ∆δ>0,θ>0 models neither show leakage up to 10million
traces.

However, the first-order leakage appears very quickly when the asymmetrical
CCS timing and power models are used. Figure 3.24 shows the t-trace evolution
for the first 100 thousand traces. As we do not use the balanced routing
strategy put forward by Tiri and Verbauwhede [145], this result is expected.
Interestingly, the crude PMSM(α=0) power model discerns the two distribution
with significantly higher confidence than the detailed CCS power models. We
address this matter further in Section 3.7.

EXPERIMENTAL VALIDATION 73

0 25 50 75

Number of traces [103]

0

200

400

600

800
m
a
x

(|t
|)

CCSGLN CCSPAR

0 25 50 75

Number of traces [103]

0

20

40

60

80

m
a
x

(|t
|)

Figure 3.24: WDDL Present S-Layer, the first-order t-trace evolution using
PMSM(α=0) (left) and CCS power (right) at 1 ps.

We repeat the experiment using a 10 ps simulation precision, and plot the results
in Figure 3.25. The leakage is detected, although PMSM(α=0) simulations show
lower confidence.

0 25 50 75

Number of traces [103]

0

50

100

150

200

250

m
a
x

(|t
|)

CCSGLN CCSPAR

0 25 50 75

Number of traces [103]

0

20

40

60

80
m
a
x

(|t
|)

Figure 3.25: WDDL Present S-Layer, the first-order t-trace evolution using
PMSM(α=0) (left) and CCS power (right) at 10 ps.

74 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

3.7 Discussion

In this section we discuss the design-time SCA evaluations using CASCADE.
We start by arguing its utility for the digital designers. We then address several
practical considerations important for the more reliable application. Lastly,
we argue performance and the scalability of the approach, showing several
benchmarks.

3.7.1 Utility to the Designer

CASCADE is designed in compliance with the commercial EDA tools and
standard data formats. Therefore, it can be easily integrated in a designer’s
toolbox with little to no training overhead. It allows efficient early SCA
evaluations of critical building blocks. Thus, vulnerabilities can be stopped
from propagating to the post-layout and manufacturing stages of the design.
Designers may pinpoint bugs and flaws, and proceed to fix them before moving
on to the next stages. CASCADE can be used regardless of the target
countermeasure, as long as the design is implemented using standard-cell
libraries. All data and control paths along with any other auxiliary gates
are treated uniformly and automatically, without the need for additional
modeling. The previously mentioned analysis of the masked Boyar-Peralta
S-Box implementation is a small example of CASCADE’s practical utility. As a
largely automated framework it can be used effectively, avoiding problems with
measurement setups and saving time.

3.7.2 Models and Countermeasures

We demonstrate how to evaluate representatives of the two leading standard-
cell based countermeasures using increasingly detailed models. Even the
simplest zero-delay simulation can be used to uncover some of the vulnerabilities.
Therefore it is possible to start the side-channel evaluation from the earliest
design stages. We now discuss the advantages and potential shortcomings of
the evaluations.

Glitch-resistant Boolean masking schemes.

Glitch-resistant Boolean masking schemes provide security by adding redundant
logic that generates algorithmic noise independent of the processed secret. As

DISCUSSION 75

long as their assumptions hold they can offer mathematical proofs of side-
channel security. Here we distinguish two types of assumptions. The “logic”
assumptions dictate the properties of the Boolean functions, e.g. uniformity
or non-completeness of the threshold implementations. The one “physical”
assumption dictates that each share must leak information independently.
While the assumptions hold, Boolean masking schemes are impervious to
glitches. However, if one of the assumptions is violated, it is beneficial to use the
timing and power models that instigate the highest glitching activity. By doing
so, the potential vulnerability is captured with the smallest number of traces.
More importantly, if too simple of a model is used, glitching of some parts
of the circuit remains not captured by the simulation, e.g. the output XOR
gate in the motivational example, even for the exhaustive coverage. Therefore,
the high level of hardware asymmetries and the high simulation precision are
advantageous. We present the results simulated at the 1 ps precision. However,
using the 10ps step we observe no loss in the quality of results. Further
reduction to the 100ps still yields consistent evaluations, only using a larger
number of traces. Therefore, we find the gate-level simulation yield efficient
and reliable pre-layout side-channel security evaluation of Boolean masking
schemes—as long as the physical independent leakage assumption holds.

However, for the complete evaluation the independent leakage assumption
must be considered too. More recent works [30, 86, 154] indicate that several
layout and measurement factors can deteriorate the side-channel security of
glitch-resistant Boolean masking schemes by affecting the independent leakage
assumption. All the gate-level models used in this chapter assume a constant,
ideal and independent power supply for each gate; recall Equation (3.1). We
address this issue in more detail in Chapter 5. For now we conclude that
gate-level simulators, as long as they are used properly, provide an optimistic
prediction of the side-channel security.

Standard-cell-based secure logic styles.

Standard-cell-based logic styles such as WDDL provide security based on the
physical symmetries. Similarly, like in the secure-logic styles simpler models can
be used to detect flaws in the logic structure, i.e. whether the implemented logic
is WDDL-compliant. However, the difficulty of implementing and evaluating
WDDL designs lies in the backend. Notably, WDDL can provide a much
higher level of security than the one we demonstrate, as we do not perform
the balanced routing intended by the original authors. In any case, the
evaluation of WDDL circuits depends on how accurately can the asymmetries
be observed. Interestingly, the simpler PMSM(α=0) power model produces a
much starker difference between the two TVLA sets, compared to the detailed

76 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

CCS power. We believe the PMSM(α=0) combined with the 1ps precision
give an overly pessimistic evaluation. We demonstrate this by lowering the
simulation precision to 10ps. This decreases the t-statistic threefold, while
barely changing the evaluation using CCS power. Furthermore adding random
jitter between 0 and 10ps to the PMSM(α=0) traces reduces t-statistic by two
orders of magnitude. We believe that his jitter very difficult to achieve using
measurement equipment. As WDDL does not rely on the algorithmic noise, and
the gate-level simulators provide unrealistically stable and precise measurements,
we believe the predictions to be pessimistic.

On the other hand, the gate-level simulations do not model physical phenomena,
such as the variations in the manufacturing process that make every chip unique.
Said variations are known to harm the SCA security of standard-cell-based secure
logic styles. Similarly to the design-time evaluations of the Boolean masking
schemes, additional layout phenomena certainly increase the gap between the
measurements of an ASIC target and the simulated traces. However, this gap
exists for all models as well as for the FPGA-based prototyping.

3.7.3 On the Importance of Design Constraints

In Section 3.6.2 we use a false positive assessment (i.e. the tools indicates
leakage, where there is no vulnerability) to demonstrate the importance of
design constraints. Namely, as delay calculation and power estimation in
the commercial EDA tools are not designed for SCA evaluations they allow
different settings that make little difference to the performance and average
power of the designs. In this particular example, possibly through manual error,
we synthesize a trivial single-buffer “clock tree”. The physical synthesis tool
infers negative timing constraints, that affect the traditional design parameters
marginally. However, as SCA methods excel at detecting small data-dependent
variations, this is enough to cause a faulty assessment.

Another important aspect are the default settings that simplify the evaluation
in the early stages. For example, high_fanout_net_threshold determines the
maximal fanout for which it performs the delay calculation. Global signals, such
as clock and reset, as well as the multiplexer-control signals in wide data-paths,
can have unrealistically high fanouts. Consequently the tools introduce a data-
dependent non-linearity to optimize their performance. Again, this does not
impact the traditional design goals significantly, but can create false leakage.

DISCUSSION 77

3.7.4 Performance

With 350 GE in size, the masked TI Present S-Box is a small, but critical,
design block. Its sufficiently long EDPC sequence makes the simulation efforts
non-trivial and convenient for comparing performance given a fixed circuit.
Table 3.4 summarizes runtimes of different CASCADE modules when processing
212·2 − 212 traces using a single thread of an Intel i7-7700 desktop workstation

Table 3.4: TI Present S-Box, benchmarks for tools, stages and models.

Stage Models Simulation Parsing 1st-ord. 2nd-ord.

SYN PMSM(α=0), ∆1
δ=0,θ=0 4.85 1.65 0.03 0.05

SYN PMSM(α=0), ∆δ>0,θ=0 7.15 1.98 0.92 4.13
SYN PMSM(α=0), ∆δ>0,θ>0 7.30 2.13 0.97 4.16
GLN PMSM(α=0), CCS time 11.38 2.14 1.05 4.23
GLN CCS power and time 57.75 5.15 1.53 4.85
PAR PMSM(α=0), CCS time 9.25 2.17 1.07 4.28
PAR CCS power and time 60.07 5.66 1.64 4.87

Runtimes are given in minutes.
1 Clock period is 10 ps, as opposed to 1500 ps in other cases.

In our experiments, the simulation clock is set to 1500ps resulting in 3000
samples per trace. The exception is made for ∆ = 0 simulations, where we use
the 10 ps clock. The simulation times are dictated by the total number of events.
More complex models cause more different propagation delays, resulting in more
glitches and different toggling times. This trend holds for both logic simulation,
LSIM, and power simulation PSIM, with one exception. MSM simulation at
PAR stage using CCS timing models produces more events (approximately
1.3 billion) compared to its GLN counterpart (approximately 1.2 billion). Also,
PAR and GLN netlists differ in only a single (clock buffer) gate inserted during
physical synthesis. Without looking at the implementation of the simulator, we
can not give a certain reason for this discrepancy. One possible reason might
be the way the extracted SDF data is presented. At the GLN stage, statistical
wire load models are written to SDF as interconnect delays. At the PAR stage,
wire delays are extracted from the layout and back annotated to the cell delays.
Hence this subtle difference may lead to fewer instructions during simulation,
causing faster runtime in the PAR stage. Runtimes of parsers and analyzers
depend on the number of samples and the number of events they have to process.
The former dependency is easily observable in the ∆ = 0 example. The latter is
observable in the increasing runtimes with the increased complexity of models.

The CCS timing is characterized using the 1ps precision. Therefore, all

78 SCA-AWARE STANDARD-CELL ASIC HARDWARE DESIGN FLOW

Table 3.5: Runtimes for the acquisition and processing of 1million PAR traces.

Target circuit Pres. S-Box Pres. S-Layer BPAESS-Box AES-128

Area [kGE] 0.35 2.98 5.45 127.18
Period [ps] 3000 3600 25000 30000
Logic simul. [h] 0.01 0.15 0.39 25.81
Logic parse [h] <0.01 0.17 0.33 2.58
Power simul. [h] 0.06 0.31 1.13 52.61
Power parse [h] <0.01 0.05 0.07 1.17
1st-order eval. [h] <0.01 0.02 0.05 0.14
2nd-order eval. [h] <0.01 0.04 0.16 0.25

calculations within the simulator are performed with that precision internally.
Lowering the simulation precision, e.g. to 10ps, does not yield significant
performance increases. However, this causes fewer data output by the simulator
and lowers the storage costs as well as the runtimes of parsers and analyzers.

We perform both the first- and second-order TVLA on-the-fly using the approach
of Schneider and Moradi [132]. Fast computation strategy put forward by
Reparaz et al. [124] uses kernel-based estimations of the t-statistic. Instead
of the floating point arithmetic needed for adding each trace on-the-fly, this
approach counts the occurrence of sample values in the form of histograms. It is
very effective when working with modern oscilloscopes as they provide between
8 and 12 bits of resolution. Consequently, they require storing between 22·8

and 22·12 histograms, per sample, per set, to fully represent the measurement;
assuming 32-bit counter values. Simulations produce the single precision floating
point traces. Applying this approach would require storing 22·32 histograms
instead. Simulated results can be quantized down to the 8-, or 12-bit range to
allow the latter approach. Nevertheless, we believe the speedup is not worth
the loss of precision.

To test the scalability of CASCADE, we apply it to a fully unrolled
implementation of AES-128. We use a placed and routed design of 127.18 kGE
with extracted layout parasitics. Table 3.5 shows the average runtimes for
simulating, parsing, and analyzing 1million traces at the PAR stage. We do so
for the unrolled AES-128, along with the other circuits evaluated in this work.

Note that the logic simulation and logic parsing are necessary for the PMSM
power estimation. The logic simulation is the precursor for the power simulation
using PT.

With the increase of circuit complexity, i.e. area, the cost of simulations becomes
predominant. Simulations are done using sophisticated CCS models with a

CONCLUSIONS 79

precision of 1ps, at the post-layout stage that includes extracted parasitic
elements. With this level of detail they are akin to the "golden sign-off"
simulations for the timing closure. The size of the unrolled AES-128 exceeds
security-dedicated area budgets of many embedded devices. Still, single thread
operation on a relatively modest desktop workstation can perform the PMSM(α=0)

evaluation in less than 30 hours. Additional 55 five hours is needed for the
detailed CCS power evaluation. Additionally, simulation can be split into
batches and run in parallel with negligible overhead. As all tools involved have
a low RAM footprint, modern workstations—featuring 32 or more cores—can
complete the entire evaluation in a few hours. Batching can also facilitate earlier
estimates and alleviate storage issues. As shown in Section 3.6, the leakage can
be detected much before all frames are analyzed. Therefore, in practice only a
fraction of the batches may need to be processed if a flaw is present. Each batch
is processed in the same manner as a whole simulation would be, updating the
analyzer’s context. As all computations are performed on the fly there is no
need for storing terabytes of simulated data dumped by the logic simulators.

Therefore, the computational complexity and the scalability can not be an
obstacle towards the adoption of this approach.

3.8 Conclusions

In this chapter we present SCA-aware extensions to the standard-cell ASIC
design flow. We adhere to the iterative and systematic use of simulations across
different design stages in the flow. We demonstrate how different models from
the SCA and EDA communities can be used to detect SCA leakage starting
from the earliest design stages. To do so effectively, we review the models,
methods and metrics available in the SCA literature with those of the EDA
world. Thus, we introduce the use of CCS models for the SCA evaluation.

To bridge the gap between the two large communities we design and implement
CASCADE, a comprehensive framework for design-time evaluation of SCA
security. CASCADE is built on the state of the art EDA tools and SCA
evaluation and methodologies, combining them in a methodical and automated
manner. We show how it can be applied in the early design stages regardless of
the type of SCA countermeasure, as long as it is based on standard-cells. We
benchmark the performance of selected modules in our framework to show its
aptitude in testing realistic cryptographic designs, and argue its feasibility for
real-world use even when relying on a single desktop workstation. Lastly, a
snapshot of CASCADE has been released in the form of open-source software,
available to the research community.

Chapter 4

Evaluating Glitch-Resistant
Masking Schemes Against
Fault Sensitivity Analysis

Content Source

This chapter is largely based on material published in:

V. Arribas, T. De Cnudde and D. Šijačić, "Glitch-Resistant Masking
Schemes as Countermeasure Against Fault Sensitivity Analysis," 2018
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
Amsterdam, 2018, pp. 27-34.

Contribution: One of the main authors; designed and conducted the
ASIC-simulation-based approach for evaluation.

In this chapter we use CASCADE to evaluate glitch-resistant masking schemes,
such as threshold implementations, against the Fault Sensitivity Analysis (FSA).
Figure 4.1 depicts the design stages of the standard-cell ASIC design flow
applied for this evaluation. We denote parts of the flow irrelevant for this
chapter using grey color.

We start from theoretical considerations based on the properties of the masking
schemes and FSA introduced by Li et al. [88]. We then proceed to perform
experiments using highly detailed CCS models of the logic gates and the discuss

81

82 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Post-Layout
Logic

Simulation

Behavioral
Modeling

RTL Design
Using HDL

Logic Synthesis

Library Mapping
and

Optimization

Insertion
of

Test Structures

Placement
and

Optimization

Clock Tree
Synthesis

(CTS)

Routing
and

Optimization

Substitution of
Cell-Layouts

Black-Box
Simulation

IP Core Specification

BEH

RTL

Preliminary
Area and Power

Estimation

Be
ha

vi
or

al
Le

ve
l

SYN

GLN

St
ru

ctu
ra

l L
ev

el

Delay
Calculation

(wires and cells)

Pre-Layout
Timing

Verifiction

Electrical
Rule Check

(ERC)

Tapeout

PAR

Synthetic Step

Analytic Step

Design Flow

Corrective Step

Library Input

Ph
ys

ica
l L

ev
el

Formal
Equivalence

Check

Formal
Equivalence

Check

Design Rule
Check
(DRC)

Physical
Layout

Extraction

Layout vs
Schematic

(LVS)

PHY

Substitution of
Detailed Circuits

for Cell Icons

Flow Output

Delay
Calculation

(Layout)

Post-Layout
Timing

Verification

Cell and
Interconnect
Extraction

Signal Integrity (SI)
and Design Rule

Check (DRC)

Layout vs
Schematic

(LVS)

Power Grid (PG)
Analysis

SCA Aware Steps

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Delta-Delay
Generic Logic

Simulation

Delta-Delay
Generic Logic

Simulation

FSA Evaluation

Figure 4.1: FSA in the ASIC design flow.

MOTIVATION 83

the practicality of said approach. We aim to give the attacker a high advantage
of accessing detailed backend information. Hence we perform the analysis on
top of event-driven logic simulation denoted with the blue color. Naturally,
similar analysis can be performed in the earlier design stages. However, we
prefer to capture as much physical detail to show the resistance against FSA
provided by the glitch-resistant masking schemes.

Unlike the countermeasure implementation design-time evaluation performed in
the previous chapter, we evaluate the countermeasure itself at design-time. We
show how the extensive physical information provided by the CCS models can
be used to evaluate a countermeasure. Another principal difference compared
to the fully passive countermeasures is that there are no downsides to the 1 ps
precision of CCS models. Namely, actively triggered and fully active attacks
rely on the attacker’s intervention. In practice it is not so easy to inject faults
with high precision, therefore simulation allows evaluators to create worst-case
scenarios, i.e. best-case for the attackers. Lastly, as active attacks often depend
on the propagation of injected faults to the outputs, cycle-accurate simulation
often suffices. However, in this particular attack, adversaries are trying to
measure the data-dependent propagation delay within a clock cycle. For such
physical observations, high-precision hardware models are invaluable as in
addition to the side-channel security evaluation they allow deeper insights in
certain aspects of the countermeasure.

In parallel to the reasoning behind the physical modeling and experiments
targeting the ASIC platform, our co-authors have carried out experiments on
an FPGA platform in parallel to strengthen the significance of the findings.

Note that the results of this paper hold true for the original FSA introduced by
Li et al. [88]. Two years following the publication of this work at FDTC 2018,
a new more powerful attack akin to FSA was put forward by Delvaux [38]. We
address this finding in Section 4.8.

4.1 Motivation

We discuss masking schemes as a popular countermeasure against passive
SCA in Section 2.3.2. They provide SCA resistance by randomizing the
intermediate computation steps, in order to decorrelate them from the side-
channel measurement. Alternatively, Fault Analysis (FA) [25] can be used to
recover secrets from cryptographic devices. Through a physical manipulation,
FA attackers disrupt the operation of the target implementation in a controlled
manner. Thus they drive the devices to compute faulty ciphertexts. In the
next step, FA attackers can infer the sensitive information by the cryptanalytic

84 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

comparison and processing of the faulty and the correct outputs. A notable
example is Differential Fault Analysis (DFA) [15].

Li et al. [88] introduce a hybrid attack called FSA. FSA is an actively triggered
passive side-channel attack. The attacker injects faults, not to obtain faulty
ciphertexts, but only to detect when the target starts malfunctioning. To do so,
an attacker gradually increases the fault intensity, instead of using a fixed one
like in DFA. Regardless of the fault injection mechanism, e.g. clock-glitching or
supply-voltage manipulation, FSA attackers aim to reduce the clock period so
they can detect when does the circuit start malfunctioning. Effectively, FSA
side-channel is the propagation-delay for each data input. Therefore, it requires
a more sophisticated fault injection setup compared to the classical fault attacks
such as DFA. However, since FSA does not require the faulty ciphertexts it can
bypass fault-detection countermeasures that issue an alarm and prevent output
of the faulty ciphertexts. Several authors [107, 106, 101, 130] have used FSA to
circumvent the traditional FA countermeasures. This is not surprising as the FA
attackers inject faults in order to perform cryptanalysis on the faulty outputs.
However, the FSA attackers inject faults to reveal a physical side-channel, i.e.
the data-dependent propagation delay. Therefore, SCA countermeasures may
provide better protection against FSA.

4.2 Related Work

Li et al. [88] also argue for the use of SCA countermeasures against FSA. In
particular they suggest that masking schemes could provide resistance against
FSA based on the randomization of the intermediate variables. Moradi et
al. [107, 106], as well as Mischke et al. [101] debunk this assumption by
successfully breaking several masked AES implementations. Consequently, a
few dedicated countermeasures against FSA emerged.

Ghalaty et al. [55] propose a gate-level approach based on the propagation-
delay balancing. Li et al. [87] suggest another countermeasures that can be
applied at the RTL stage. Namely, they gate every register input, allowing the
outputs of the combinatorial logic to reach the register-input pins only after a
fixed time, thus blinding all the data-dependent propagation delays with the
arrival time of the gate-enable. Endo et al. [44, 45] give a method to tune
the gate-enable timing after chip manufacturing, to ensure protection against
FSA. Both of these countermeasures have negligible circuit-complexity and
performance overhead compared to masked implementations. However, neither
of these countermeasures provide any resistance against SCA. As prospecting
adversaries tend to search for the weakest link, it stands to reason to provide

CONTRIBUTIONS 85

protection against combined attacks. To this end Schneider et al. [133] and
De Cnudde and Nikova [31] propose combined protection strategies based on
Boolean masking schemes.

Lastly, Moradi et al. [107, 106], seemingly show that glitch-resistant threshold
implementations provide no resistance against FSA. In particular, they attack
a core named AES_TI. However, this masked implementation fulfills only one
of the three constituting properties of the threshold implementations, namely
correctness. Therefore, no security properties of the threshold implementations
extend to this implementation.

4.3 Contributions

The resistance of glitch-resistant masking schemes, such as threshold
implementations, against FSA introduced by Li et al. [88] remains to be
determined. To this end, we first layout theoretical considerations and physical
assumptions about the underlying hardware to answer this question. We focus
on threshold implementations in particular. As they are likely to be deployed
as a SCA countermeasure, they have the potential to increase the level of FSA
resistance without further costs.

Inline with our considerations and assumptions, we create an experimental
setup based on the detailed CCS timing simulation in the backend design stages.
We argue why such a simulated setup is the best-case scenario for the attackers.
Using this setup, we attack two representative cryptographic S-Boxes, namely
Present and Keccak, in their protected and unprotected form. Unrealistically
high precision of the simulated FSA traces allows unprotected implementations
to be broken with ease. However, our experiments show that the protected
versions of both S-Boxes resist the FSA.

The remainder of this chapter is organized as follows. In Section 4.4 we describe
the fault sensitivity analysis as introduced by Li et al. [88]. In Section 4.5 we
argue how glitch-resistant masking schemes, such as threshold implementations,
can be used to mitigate FSA. Next, we present our experimental setup, the
reasoning behind it and demonstrate the results attacks on two state-of-the-art
S-Boxes in Section 4.6. We conclude our findings in Section 4.7. Lastly, we
briefly address the attack put forward by Delvaux [38].

86 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

4.4 Fault Sensitivity Analysis

Assume that an attacker injects a fault with Fault Intensity (FI). Fault
Sensitivity (FS) is the intensity of the injected fault FI, at which the device
starts outputting incorrect results. Reversely, circuit operates correctly as long
as FI < FS. FSA as introduced by Li et al. [88] correlates the input data values
with their fault sensitivity. Faults can be injected using, e.g. by lowering the
supply voltage, by introducing glitches in the clock signal and so on. In any
case, attackers aim to reduce the time allocated for signal propagation. As
propagation delays in CMOS circuits depend on the input data, FS is data
dependent too. This dependency constitutes the actively triggered side-channel.
Figure 4.2 illustrates this dependency.

(a) AND gate propagation. (b) XOR gate propagation.

Figure 4.2: Variable data propagation delay.

For the AND gates, Figure 4.2a, if A = 0 output C = 0 is set immediately,
regardless of the B value. However, if A = 1, signal B has to propagate
through the inverter first. Therefore, propagation delay td can be described
using Equation (4.1). Similarly, in case of OR gates, active value A = 1 would
yield the invariant behavior of the input B. In case of XOR gates, depicted
in Figure 4.2b, propagation delay is data independent and always equal to
td = tNOTd + tXORd .

td =

{
tANDd , if A = 0,
tNOTd + tANDd , otherwise.

(4.1)

4.4.1 Attack phases

FSA is divided into two phases. The first is the profiling phase, as delineated
in Algorithm 4. It entails collection of fault sensitivities for a set of input
plaintexts.

FAULT SENSITIVITY ANALYSIS 87

Algorithm 4 Profiling phase of the FSA.

Input: Encryption algorithm Ek(pt, fi), applied to plaintext pt, perturbed
using FI fi.

Input: Fault injection resolution δ.
Input: Vector I of N plaintexts.
Output: Vector O of N ciphertext ct, fault sensitivity fs tuples.
1: for i = 1 to N do
2: O[i]← (Ek(I[i], 0), 0)
3: fi← δ
4: while O[i][0] = Ek(I[i], fi) do
5: fi← fi+ δ
6: end while
7: O[i][1] = fi
8: end for

A vector of plaintexts I is chosen uniformly at random. For each plaintext I[i],
the corresponding output tuple O[i] is initialized with the correct ciphertext
Ek(I[i], 0), and a null FS value. Said plaintext I[i] is repeatedly encrypted,
reseting the device before every encryption, while perturbing the design using
incrementally larger fault intensity. Here, δ is the resolution at which the
attacker can control the perturbation, e.g. the precision of the clock glitching
apparatus. FI at which the encryption yields an incorrect ciphertext is stored
in the output tuple as the FS for the target plaintext.

The second is the key recovery phase, as delineated in Algorithm 5. It entails
correlation between the collected fault sensitivities with the predictive model.

Algorithm 5 Key recovery phase of the FSA.

Input: Modeling function f̂ s(ct, k̂), applied to the ciphertext ct and the key
guess k̂.

Input: Vector O of N ciphertext ct, fault sensitivity fs tuples.
Output: A t-bit (sub)key k ∈ {0, 1}t.
1: for k̂ = 0 to 2t − 1 do
2: for i = 1 to N do
3: F̂S[i]← f̂ s(O[i][0], k̂)
4: FS[i]← O[i][1]
5: end for
6: end for
7: Corr[k̂]←| ρ(F̂S,FS) |
8: k ← k̂ |Corr[k̂]≡max(Corr)

88 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

The collected fault sensitivities fs are stored along the ct data in a set O. Fault
sensitivities stored at O[i][1] are correlated with the predicted values FS based
on a model f̂ s. Modeling functions are typically based on HW and HD models
of the targeted intermediate. Similarly like in the CPA [27], for each output
tuple O[i] Pearson’s correlation coefficient ρ is computed between the predicted
FS and the measured FS O[1]. The highest correlation then leads to the correct
key [88].

Success of a FSA attack is in practice is dictated by the resolution of the fault
injection δ the attacker can apply, and whether or not the selected model,
i.e. function Dk̂(ct, f̂s), can be extracted. Endo et al. [46, 47] demonstrate
the efficacy of clock-glithers. As our setup is based on ASIC simulation we
use a “clock-glitcher” that outperforms any one that can be found in practice.
Li et al. [88] rely on the HW model. Alternatively, Mischke et al. [101] use a
zero-value attack model.

4.5 Glitch-Resistant Masking Schemes as a FSA
Countermeasure

In this section we delineate the theoretical considerations based on which
we claim the resistance of masking schemes that fullfil the non-completeness
property—such as TI, DOM and Consolidated Masking Schemes (CMS)—
against FSA, as introduced by Li et al. [88]. We base our delineation on the
following assumptions:

1. we discuss protection against FSA as introduced by Li et al. [88], therefore
the attacker does not exploit the faulty ciphertexts in any way, other than
determining their correctness and the profiling phase is performed exactly
as described in Algorithm 4.

2. the attacker measures the data-dependent propagation delay td by
injecting faults;

3. each share leaks independently and masking schemes are implemented
properly.

The second assumption follows directly from the way the profiling phase is
conducted. After each FI increase, the attacker notes whether the computation
was correct and the corresponding FI. Let the attacker note the response after
injection i as tuples (∆i, F Ii), defined as per Equation ((4.2)).

GLITCH-RESISTANT MASKING SCHEMES AS A FSA COUNTERMEASURE 89

(∆i, F Ii) =

{
(1, i× δ) , if the computation finishes correctly,
(0, i× δ) , otherwise.

(4.2)

The measurements are repeated until the attacker receives (∆m, F Im) = (0,m×
δ). At that point attacker collects [(∆1 = 1, F I1), (∆2 = 1, F I2), . . . , (∆m =
0, F Im)] and moves on to the next data input. Therefore, the attacker
determines that the critical propagation delay, i.e. data dependent propagation
delay td, as per Equation ((4.3)).

TCLK −m× δ < td 6 TCLK − (m− 1)× δ . (4.3)

In other words, the attacker measures the td, with the measurement resolution
δ. Practical success of attacks is sufficient to argue that sufficiently small δ is
attainable in practice. Conversely, fault intensity FIm corresponds to the fault
sensitivity. If FIm is high relative to the TCLK , then the fault sensitivity is low.

The third assumption is equivalent to the independent leakage assumption. In
other words, all shares of threshold implementations are implemented in parallel
and the FS of each share is independent of the FS of other shares.

4.5.1 Propagation Delay of Non-Complete Shares

We demonstrate how non-complete shares resist FSA using an example of a
three-share AND gate. Given the inputs x = x1 ⊕ x2 ⊕ x3 and y = y1 ⊕ y2 ⊕ y3
output shares z1, z2 and z3 are computed as per Equation (4.4). As we make
no additional assumptions other then the non-completeness, this reasoning can
be generalized.

z1 = f1(x2, x3, y2, y3) = x2y2 + x2y3 + x3y2 ,

z2 = f2(x1, x3, y1, y3) = x3y3 + x3y1 + x1y3 , (4.4)

z3 = f3(x1, x2, y1, y2) = x1y1 + x1y2 + x2y1 .

All shares are exist in parallel. For each data input, different fault intensity
FIm causes the share with the longest propagation delay td to stop operating
correctly. Conversely, that share has the highest fault sensitivity. Although

90 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

circuits are algebraically identical, consisting of three two-input AND gates,
followed by a three input XOR gate, each path will have a different propagation
delay due to clock skew on input registers, RC parasitics of the routing wires,
variations in the manufacturing process, and the inherent asymmetries of CMOS
gates described in the previous chapter. Additionally, sharing of more complex
functions can yield asymmetrical shares, one of which may have a distinctly
higher logic depth. Therefore, without the loss of generality, we assume this
occurs in share f1 and that the fault sensitivities of the remaining two shares
are as per Equation ((4.5)), where d is a piece of input data.

FSf1(d) > FSf2(d) > FSf3(d) ⇐⇒ FIf1m (d) 6 FIf2m (d) 6 FIf3m (d) . (4.5)

Let us analyze the data-dependency of the transitions in the share f1. Figure 4.3
depicts the structural netlist of each share. Here tid(d) denotes the propagation
delay of the i-th net for the input value d. Similarly, tAd represents the data
dependent propagation delay at the output of the AND gate labeled A. Let
the tid = t0d + i × ε, where ε is used to capture the above mentioned physical
artifacts that introduce variable delay. As we can label the nets arbitrarily, we
do not lose generality with such ranking.

Figure 4.3: One share of the AND gate presented in Equation (4.4)

The corresponding propagation delays are as per Equation ((4.6)).

GLITCH-RESISTANT MASKING SCHEMES AS A FSA COUNTERMEASURE 91

tAd (d) =

{
t1d + tANDd , if y3 = 0 ,

t2d + tANDd , otherwise .

tBd (d) =

{
t3d + tANDd , if x2 = 0 ,

t4d + tANDd , otherwise .
(4.6)

tCd (d) =

{
t5d + tANDd , if y2 = 0 ,

t6d + tANDd , otherwise .

Similarly, the propagation delay td for input data d at the output is given in
Equation (4.7).

td(d) ≡ max(

tAd (y3) + tANDd (y3, x2) + t7d + tXORd + tXORd (x2, x3, y2, y3) + t10d ,

tBd (x2) + tANDd (y2, x2) + t8d + tXORd + tXORd (x2, x3, y2, y3) + t10d , (4.7)

tCd (y2) + tANDd (y2, x3) + t9d + tXORd + tXORd (x2, x3, y2, y3) + t10d) .

Here, the data-dependent propagation delays of CMOS gates are annotated as
output net delays. Seeing how these variations can be considered an order of
magnitude smaller compared to the average gate propagation time together
with the propagation across routing wires, we can get to the model used
by Li et al. [88]. Propagation delay td following this simplification is shown
in Equation (4.8). However, the non-completeness property ensures that no
information can be inferred about the unshared variables x and y as x1 and y1
can not be leaked this way. Lastly, note that while we make this theoretical
considerations, the simulations take all these variations into account.

td(d) ≡ max(tAd (y3) + t7d + tXORd + t10d ,

tBd (x2) + t8d + tXORd + t10d , (4.8)

tCd (y2) + t9d + tXORd + t10d) .

92 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

Equation (4.5) does allow multiple shares to have the same fault sensitivity.
In theory this allows the attacker to observe multiple shares, hence breaking
the non-completeness for a particular input data d. Therefore, the provable
security of threshold implementations does not apply for protection against
FSA. In practice though, the likelihood of this happening for a significant
number of inputs, if any, is low due to the manyfold of physical sources of
variation including the added noise coming from fresh masks. Therefore, we
believe that threshold implementations, and other masking schemes that feature
non-completeness, provide a high degree of resistance against FSA.

Additionally, the shared AND gate from Figure 4.3 fails to satisfy the output
uniformity property of threshold implementations. However, as demonstrated
above, this lack of uniformity does not affect the resistance against FSA.

Lastly, depending on the time when the fault is injected relative to the clock
edge, i.e. TCLK − i× δ, hold times of output registers can be violated causing
metastable behavior. Consequently, the output register bit affected by the
error could be flipped back to the correct value, or another output register bit
could be affected. Similarly, as electronic circuits inevitably suffer from noise
that follows the Gaussian distribution [120], multi-σ outliers can disrupt this
ordering. This is observed and exploited by the novel attack of Delvaux [38].
However, in the case of the original FSA attacked introduced by Li et al. [88]
we do not see how these events could impact the security. If anything, in case
one such occurrence alters the ordering from Equation (4.5) it would give the
attacker an inaccurate measurement of the td, and the attacker who does not
exploit the ciphertext could still not determine which in which share does the
fault occur.

4.6 Experiments

We experimentally validate our theoretical considerations by simulating the
FSA attack introduced by Li et al. [88]. We use backend simulations to attain
the highest level of physical detail based on the CCS models. Thus we obtain
perfectly aligned and noiseless observations. Moreover, simulations allow us the
FI increment δ = 1 ps, i.e. propagation-delay measurement resolution, without
any jitter. Such a setup exceeds technical capabilities of modern day humans,
allowing us to observe even the smallest variations—like the ones caused by the
pin-dependent asymmetries of standard-cells. Lastly, our simulations include
only the target circuits, hence no surrounding circuitry can interfere with the
measurements. We believe that such measurements are unattainable in practice.

EXPERIMENTS 93

ASIC experiments. We synthesize, place and route designs using a 45nm
open-source standard-cell library from NanGate [78]. It relies on state-of-the-art
CCS models. CCS timing models capture even the smallest data-dependent
asymmetries of standard-cells, as discussed in Chapter 3. Using the worst-case
process corner, we maximally enhance these differences. We use Synopsys Design
Compiler for logic synthesis; Cadence Innovus for placement, routing and RC
extraction; and MentorGraphics QuestaSim for logic simulation. Design flow
automation and data processing is done using the CASCADE [153] framework.

FPGA experiments. We use Spartan-6 XCLX75-2CG484 as the target
platform and the simulator integrated in the Xilinx ISE 14.7 to perform
the simulations. Although the exact methodology of delay calculation for the
post-layout FPGA design is not available to us, as the manufacturers trade-
secret, we believe it is designed to provide designers with the estimates of the
comparable accuracy as the ASIC models. Moreover, as FPGAs are already
fabricated devices with a finite number of configurations, and their entire design
is “under one roof” of the manufacturer, we see no reason why these models
would be inferior to ASIC ones. All of the FPGA experiments are the work of
our co-authors. As this dissertation focuses on ASIC design, we remove them
from further considerations. We note that all results are consistent across both
platforms and kindly refer the interested reader to the original publication [156].

4.6.1 Profiling Phase

Li et al. [88] always reset the input to an all-zero bit vector. Therefore, they
have to profile 2n different input values for an n-bit circuit. We leverage the
speed and precision of simulations, as well as the size of our test circuits to
consider all input 22·n input transitions. Thus we obtain 2n different profiles,
one for each reset possible value. This allows us to select the profile with the
highest correlation, hence further maximizing the adversaries advantage.

4.6.2 Key Recovery Phase

We target a dummy cipher round consisting of an S-Box and the key addition.
We attack the circuit at the inputs using the HW-based prediction function f̂ s
described in Equation (4.9). Here, ct stands for the correct ciphertext value
and k̂ for a key guess.

f̂ s = HW(S-Box−1(ct⊕ k̂)) . (4.9)

94 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

Figure 4.4 depicts the principal architecture of the dummy cipher round.
Architecture for the unprotected S-Box is shown in Figure 4.4a, and of the
three-shared masked one in Figure 4.4b. We distinguish the “profiling view”
(grey) and the “key recovery view” (white). For the unprotected implementation
they are the same. For the protected implementation, we allow the attacker
to gain a more detailed profile based on the unshared inputs. Profiling view is
unattainable to non-invasive adversaries.

(a) Unprotected S-Box.

(b) Protected S-Box.

Figure 4.4: Target circuit.

Therefore, we give the attackers another unrealistically strong advantage by
allowing them to create profile with the strongest correlation. Moreover, the
profiling view removes the “jitter” in the propagation delay introduced by the
generation of random masks. Lastly, we allow the attacker full control over the
input values, including the selection of a reset value. In practice, such access

EXPERIMENTS 95

would be restricted by the device interface. Therefore, the target circuit can
only rely on its non-completeness and uniformity to resist FSA.

In summary, our experimental setup gives multiple unrealistically strong
advantages to the FSA attackers. The advantages of the simulated approach,
combined with the intimate view of the unshared values and the control over
data inputs form a best-case scenario for the attackers. We now move to
show how glitch-resistant masking schemes hold against the FSA under these
assumptions.

4.6.3 Present S-Box

Our first target is the 4-bit S-Box of the lightweight ISO blockcipher standard
Present [24]. It is a {0, 1}4 → {0, 1}4 non-linear mapping. In particular we use
the masked design of Poschmann et al. [117]. This design is decomposed into two
quadratic S-Boxes F and G forming a pipelined implementation. As previously
discussed, FSA introduced by Li et al. [88] targets the longest propagation
delay. For simplicity, we target just one of the two stages to gather the profiles,
choosing the F stage for our experiments. Note that as each of the decomposed
stages constitutes a threshold implementation we could observe only one of
them without the loss of generality. Present S-Box has four input bits, hence
22·4 possible input transitions. Three shares of the threshold implementations
yield a total of 22·12 transitions.

Profiling phase and the optimal reset value.

Typically FSA attackers use the all-zero input vector as the reset value between
two evaluations. We show that this is not always the best approach. Firstly, we
plot the correlation values between the HW of the data input and the FS for
different reset values in Figure 4.5. For the unprotected ASIC implementation
reset value 0xC results in a clear corelation peak of ρ = 0.75. Hence, using this
reset value in the to collect traces gives the best results in the key recovery
phase. For the protected implementation the shared reset value 0x789 yields the
maximal correlation peak of ρ = 0.41. Note that as attackers can not control the
shared value in practice. Allowing the optimal reset values is another advantage
we gift to the attackers.

Furthermore, we note that using the HD model instead of the HW decreases
the correlation. On the contrary, HD model is preferred in the context of
classical SCA on hardware implementations. We delineate this difference on
the example of a two-input AND gate. For the classical side-channels, such

96 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

0 4 8 C

Reset value [hex]

0.0

0.2

0.4

0.6

ρ

000 400 800 C00

Reset value [hex]

Figure 4.5: Present S-Box, correlations for different reset values, unprotected
(left), protected (right).

as the instantaneous power consumption, input transitions 0b00→ 0b11 and
0b11 → 0b00 both result in an output toggle. Therefore, on average their
side-channel emanation varies little. However, the second transition has a
lower propagation delay on average, determined by the first zero-value arriving.
Therefore, HW-based predictions outperform the HD-based ones in the FSA
setting.

Additionally, Figure 4.6 illustrates the advantage of the optimal reset value,
compared to considering all possible input transitions. Counterintuitively, a
smaller number of traces gives a consistently better correlation.

Key recovery phase.

Figure 4.7 illustrates the key recovery attacks on the unprotected and protected
implementations using the optimal profiles. Despite all the advantages, protected
implementation shows barely any correlation. The results hold for all the key
values. Present S-Box protected using a full-fledged threshold scheme exhibits
virtually no correlation, testifying to the resistance against FSA.

EXPERIMENTS 97

0 1 2 3 4

HW(Input)

100

200

300

400

500
t d

[p
s]

All transitions Reset to 0xC

Figure 4.6: Unprotected Present S-Box, data-dependent propagation delay td
in the function of the input HW.

0 4 8 12
Key guess

0.0

0.2

0.4

0.6

ρ

Unprotected Protected

Figure 4.7: Present S-Box, FSA recovery for the key value 7; × indicates k̂.

4.6.4 Keccak S-Box

We now move to evaluate the 5-bit nonlinear Keccak χ permutation, i.e. the
Keccak S-Box. We use the threshold implementation approach by Daemen [33],
also known as changing of the guards. It is a three-share implementation that
consumes four random bits per evaluation. Random bits are needed to achieve
uniformity. By setting the random bits to an all-zero value, we can evaluate the

98 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

resistance of glitch-resistant masking schemes reduced only to non-completeness
and correctness. Compared to the previous experiment, we do not exhaust all of
the 22·3·5 input transitions. Instead we randomly choose 22·12 input transitions
to match the previous experiment in volume. We repeat the experiments using
different pools of randomness and obtain consistent results.

Profiling phase and the optimal reset value.

Similarly to the Present S-Box, we plot the correlation values between the
HW of the data input and the FS for different reset values in Figure 4.8. For
the unprotected ASIC implementation reset value 0x9 results in the highest
corelation of ρ = 0.63. Hence, using this reset value in the to collect traces
gives the best results in the key recovery phase. However, this circuit has two
more reset values of comparable merit. For the protected implementation the
shared reset value 0x755f yields the maximal correlation peak of ρ = 0.49.

0 8 10 18

Reset value [hex]

0.0

0.2

0.4

0.6

ρ

0 2000 4000 6000

Reset value [hex]

Figure 4.8: Keccak S-Box, correlations for different reset values, unprotected
(left), protected (right).

Figure 4.9 confirms the previously-discussed advantage of the optimal reset
value, compared to considering all possible input transitions.

Key recovery phase.

Figure 4.10 shows the result of the key recovery phase. Despite the lack of
uniformity the advantageous attacker is as oblivious to the key value, as if a

EXPERIMENTS 99

0 1 2 3 4 5

HW(Input)

50

100

150

200

250

300
t d

[p
s]

All transitions Reset to 0x9

Figure 4.9: Unprotected Present S-Box, data-dependent propagation delay td
in the function of the input HW.

full-fledged threshold implementation were employed.

0 8 16 24
Key guess

0.0

0.2

0.4

0.6

ρ

Unprotected Protected

Figure 4.10: Keccak S-Box, FSA recovery for the key value 27; × indicates k̂.

100 EVALUATING GLITCH-RESISTANT MASKING SCHEMES AGAINST FAULT SENSITIVITY ANALYSIS

4.7 Conclusions

In this chapter we investigate the resistance of glitch-resistant masking schemes
against fault sensitivity analysis, actively triggered passive side-channel attack,
introduced by Li et al. [88]. We present our theoretical reasoning and
experimental setup based on ASIC hardware simulation. All simulations
are based on detailed post-layout delay calculation that takes into account many
intricate asymmetries of CMOS hardware. Under a set of assumptions about
the underlying hardware we experimentally show how glitch-resistant schemes
that satisfy the non-completeness property resist the aforementioned attack.

To fortify our findings, we perform experiments under conditions that strongly
favor the attacker. Amongst other advantages given to the attackers, we allow
them to choose the optimal profile, based on the reset value. This consideration
in itself has not been previously addressed in the literature. However this is
understandable as from the perspective of attacking larger designs it is infeasible
to exhaust all input transitions in search of the optimal reset value.

We focus on two instances of threshold implementations in our experiments.
However, we believe that any glitch-resistant masking schemes that fulfills the
non-completeness provides the same level of resistance against FSA introduced
by Li et al. [88]. Lastly, our analysis shines light onto why Moradi et al. [107, 106]
succeeded in breaking the masked AES implementations, as they were actually
lacking the non-completeness property and therefore were insecure in the
presence of glitches.

4.8 Follow-up Work

In a recent follow-up of this work, Delvaux [38] introduces a more powerful form
of FSA. The original FSA is based on measuring data-dependent propagation
delays, by means of injecting faults of increased intensity. We discuss this while
explaining Equation (4.3). Figure 4.11 depicts how FI relates to the FS. Namely,
for each transition FS is denoted using the horizontal dashed line. It is the
“critical FI”, as the circuits stops operating for FI > FS. Under such profiling
phase our theoretical considerations and experimental results hold.

However, Delvaux mounts the attack as shown in Figure 4.12. Namely, the
author applies the same FI value across different transitions. This simple
change allows multiple shares to be faulted, thus breaking the non-completeness.
Furthermore, Delvaux uses the fixed FI value, depicted using the horizontal
dashed line, as a distinguisher and relies on ciphertext exploitation akin to the

FOLLOW-UP WORK 101

DFA. As glitch-resistant masking schemes are not designed to withstand fault
attacks, it stands to reason that such an attack would work. However, we do
not consider this to be the same attack as the FSA introduced by Li et al. [88];
as shown in the two figures.

1 2 . . . n
Transition

F
au

lt
In

te
n

si
ty

f1 f2 f3

Figure 4.11: Measuring propagation delays of different shares via FI.

1 2 . . . n
Transition

F
au

lt
In

te
n

si
ty

f1 f2 f3

Figure 4.12: Fixed FI as a distinguisher by Delvaux [38].

Chapter 5

Investigating the Impact of
Layout Parasitics on Masked
Circuits

Inspiration is for amateurs—the
rest of us just show up and get to
work.

Charles Thomas Close

Content Source

This chapter is largely based on material published in:

Šijačić, D., Balasch, J., and Verbauwhede, I. Sweeping for leakage in
masked circuit layouts. In 2020 Design, Automation Test in Europe
Conference Exhibition (DATE) (2020), pp. 915–920.

Contribution: Principal author.

We denote the steps of the standard-cell ASIC design flow affected by the work
in this chapter using green arrows in Figure 5.1. Methods in this chapter do
not rely on the gate-level simulation, characteristic for this flow. Instead, we
improve the gate-level modeling for SCA purposes. We denote the remaining
parts of the flow using grey color.

103

104 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

IP Core Specification

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Post-Layout
Logic

Simulation

Behavioral
Modeling

RTL Design
Using HDL

Logic Synthesis

Library Mapping
and

Optimization

Insertion
of

Test Structures

Placement
and

Optimization

Clock Tree
Synthesis

(CTS)

Routing
and

Optimization

Substitution of
Cell-Layouts

Black-Box
Simulation

BEH

RTL

Preliminary
Area and Power

Estimation

Be
ha

vi
or

al
Le

ve
l

SYN

GLN

St
ru

ctu
ra

l L
ev

el

Delay
Calculation

(wires and cells)

Pre-Layout
Timing

Verifiction

Electrical
Rule Check

(ERC)

Tapeout

PAR

Synthetic Step

Analytic Step

Design Flow

Corrective Step

Library Input

Ph
ys

ica
l L

ev
el

Formal
Equivalence

Check

Formal
Equivalence

Check

Design Rule
Check
(DRC)

Physical
Layout

Extraction

Layout vs
Schematic

(LVS)

PHY

Substitution of
Detailed Circuits

for Cell Icons

Flow Output

Delay
Calculation

(Layout)

Post-Layout
Timing

Verification

Cell and
Interconnect
Extraction

Signal Integrity (SI)
and Design Rule

Check (DRC)

Layout vs
Schematic

(LVS)

Power Grid (PG)
Analysis

SCA Aware Steps

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Delta-Delay
Generic Logic

Simulation

Delta-Delay
Generic Logic

Simulation

FSA Evaluation

Modeling Impact

Figure 5.1: Steps of the standard-cell ASIC design flow affected by SCA-
dedicated layout consideration.

MOTIVATION 105

In this chapter we move from the standard-cell logic gate simulations to the
underlying level of analog Simulation Program with Integrated Circuit Emphasis
(SPICE) simulations. We do so to uncover the effects of physical phenomena
that may pass unnoticed as a consequence of performance-driven modeling
for digital circuits, yet that impact SCA security. We aim to gain detailed
insights into these effects, caused by the parasitic elements that naturally occur
in layouts, and to improve their modeling such that they can be captured in
the standard-cell ASIC design flow. Figure 5.1 emphasizes directly influenced
backend stages. However, as the extraction of parasitic elements plays crucial
role in delay calculation, as well as in power distribution network and signal
integrity assessments, this work may indirectly influence the entire placement
and routing stage of the standard-cell design flow. While this is a preliminary
investigation, the ultimate goal of such analysis would be the distillation of
design constraints and placement and routing rules dedicated to SCA security.

5.1 Motivation

Provable security claimed by masking schemes is underlined by different
assumptions regarding hardware and logic behavior. Focusing on Boolean
masking schemes we introduce in Section 2.3.2, sharing an n-bit variable x into
N shares entails randomly generating x1, x2, . . . xN−1 and computing xN such
that Equation (5.1) holds. Thus obtained variables xi are used as inputs to the
N randomized shares, implemented as concurrent blocks in hardware.

x = x1 ⊕ x2 ⊕ . . .⊕ xN . (5.1)

While the exact sets of assumptions vary among masking schemes, the
independent leakage assumption is inevitable. It states that information leakage
is a linear combination of leakages of the individual shares. For a hardware
implementation of an arbitrary shared computation, the independent leakage
assumption can be represented with the circuit depicted in Figure 5.2. All
shares are connected in parallel to an ideal voltage source, capable of providing
infinite supply current to each share.

As masking schemes do not make assumptions on the implementation of
individual shares, they can be realized using standard-cell ASIC libraries or on
FPGAs. We focus on ASIC implementations. On the front-end of the design
cycle, using gate-level modeling, the abstraction shown on Figure 5.2 holds. In
the back-end stages, said logic cells are placed on the same substrate, along
with different physical cells such as filler cells, a clock distribution network
and a Power Distribution Network (PDN). Logic cells are then interconnected

106 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

Share	2 Share	NShare	1

Figure 5.2: Circuit model for the independent leakage assumption.

using multiple metal layers in a process called routing. Consequently, a myriad
of parasitic elements and non-linear effects emerge that are not considered in
models used for masking. We aim to uncover whether any of said phenomena
can violate the independent leakage assumption. To this end, we consider
analog simulations on a wholesome circuit model that incorporates the effects
due to:

a) PDN, an analog circuit distributing a low-frequency signal across a wide
area. It employs supply buffers to achieve sufficient current capacity
demanded by the digital logic core. Large parasitic resistances and
inductances of long PDN wires can cause ground-bounce (increase of the
low power rail from the reference) and supply sag (drop in the high power
rail below the nominal value) [69]. As chip-ground is often realized as a
large metal plate, each node of the PDN additionally forms a significant
capacitance towards ground.

b) logic core, the circuit’s functionality composed by numerous tightly placed
digital cells. Relatively short wires and library designers’ efforts to avoid
oscillations leave no significant parasitic inductances. As each share is
performing self-contained computations, there are no wires—hence no
parasitic resistances—between them. Parasitic capacitances, however,
can electrically couple the shares via crosstalk. Thus, capacitances
between routing wires carrying data-dependent, high-frequency signals
from different shares remain threatening to the independent leakage
assumption.

5.2 Related Work

The usual suspect for SCA leakage due to back-end phenomena are parasitic
capacitances. Recent work by De Cnudde et al. [30] for the first time practically
demonstrates information leakage on a masking scheme caused by placement
and routing. The authors implement a masking scheme on an FPGA platform
and compare two placements: unconstrained (shares placed closely together)

RELATED WORK 107

versus constrained (all shares are placed far apart). Using Test Vector Leakage
Assessment (TVLA) [59, 32] they show that unconstrained placement leads
to lower SCA security. Nevertheless the authors are unable to pinpoint the
source of observed leakage. Instead they suspect crosstalk and the resistive (IR)
supply voltage drop as causes of the decreased SCA security. As they target
an FPGA implementation, where the device layout is a closely guarded secret
of the manufacturer, the actual causes of increased leakage cannot be further
investigated. Other works that address sources of coupling include [41, 29, 151]
Dyrkolbotn et al. [41] rely on capacitive crosstalk to observe double the leakage
of the Hamming Distance (HD) model on an 8-bit bus. Chen et al. [29] discuss
the effects of glitches and coupling through inter-wire capacitances. Zussa et
al. [151] show that capacitive coupling between logically independent blocks
can be the source of information leakage.

Analog SPICE transistor models yield the most accurate representation of
ASIC designs. Unfortunately, the number of transistors in digital circuits
is prohibitively large for analog simulations to scale efficiently. Designers
can instead resort to gate-level simulators, that use piece-wise linear models
extracted from complex transistor-level simulations. Such models are enabled
by the high robustness of the CMOS logic style: large parasitic components,
may cause significantly different analog waveforms without altering the digital
behavior. Consequently, highly efficient gate-level models are obtained at the
price of overlooking the analog deviations. Such mismatch in modeling and
toolchains can however lead to serious misrepresentation of SCA security in
simulation. Tiri and Verbauwhede et al. [143] show how different RC extraction
methods can lead to greatly different security evaluations using SPICE. Lastly,
Šijačić et al. [155] show there is little distinction between the wire-load models
of the pre-layout netlist versus the extracted RC parasitics from the layout,
using state-of-the-art digital simulators.

Nevertheless, no concrete results quantifying the impact of layout effects on
SCA security can be found. Crosstalk through parasitic capacitances has been
identified to deteriorate security in several cases, but this remain a qualitative
observation. In terms of other design parameters, such as energy consumption, it
has been quantified to inevitably increases the energy consumption and couples
the supply current of logically independent components, as demonstrated by
Moll et al. [102]. On the other hand, baring the work of De Cnudde et
al. [30] considerations of the PDN as the source of information leakage remains
unaddressed to the best of our knowledge.

108 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

5.3 Contributions

We propose a SPICE model for the co-simulation of the analog PDN with
the digital logic core. It accounts for the finite current capacity power supply
buffers, parasitic resistors, inductors and capacitors that inevitably occur in
the long lines of the PDN, along with the parasitic capacitors of the logic core.
We use this model to investigate the gap between digital and analog modeling
for SCA security by analyzing representative masked gates devised to provide
first-order security. By means of experiments, we determine the impact of
all parasitic elements that may exist in a masked circuit, while allowing it to
operate correctly. Thus, we provide a deeper insight into the sources of leakage
in masked designs.

The rest of this chapter is organized as follows. Section 5.4 describes the rational
behind our experimental setup. Section 5.6 contains the results of experimental
evaluations. In Section 5.7 we discuss these findings and their applicability.
Lastly, we conclude this work in Section 5.8.

5.4 Methodology

Parasitic elements are inherent to any circuit. As byproducts of the placement
and routing, their values can not be controlled directly. Instead designers—with
the aid of EDA tools—try to minimize their values such that their impact
on performance allows meeting the design constraints. Models and extraction
tools for digital design are tailored to this purpose, creating a gap between the
analog and digital behavior. We aim to investigate this gap to detect how may
parasitic elements—while being acceptable for the circuit performance—impact
the SCA security of masked designs and to what extent.

To this end, we use the analog SPICE simulator from the Synopsys FineSim
v2018.09 suite and the 45 nm open-source standard-cell library from Nangate [78]
in junction with predictive transistor models [149]. We use transient simulation
with a 10 ps simulation step, equivalent to a 100GS/s sampling rate. To ensure
equidistant sampling at the simulator output, we set the strobeperiod=10p
argument of the .tran simulation.

Our setup allows to obtain single precision, noiseless and perfectly aligned
simulations, which may represent an overly pessimistic SCA evaluation scenario.
Our aim is however not to determine how feasible such leakages can be exploited
or even measured in practical laboratory settings, but rather to diagnose which
parasitic elements have the potential to compromise the SCA security. Lastly,

SPICE MODEL 109

we focus on the potential sources of leakage stemming from the design, rather
than the influences of measurement setups [72, 86].

We aim to conduct a preliminary investigation of possible sources of leakage,
without questioning how probable they may be. We annotate each parasitic
element individually in order to observe its independent impact on the SCA
security. For each parasitic element, our methodology works as follows:

1. Chose the sweep ranges such that they cover scenarios varying from
negligible small to values that cause the circuit to malfunction.

2. Perform series of transient analyses by sweeping the value of each parasitic
element.

3. Probe voltage waveforms of input and output data nodes to continually
verify the correctness of computations.

4. Probe all supply current waveforms.

5. Perform SCA security evaluation on supply current waveforms.

Here, recorded supply current waveforms are used to form side-channel traces.
Each transient simulation is driven using randomly generated input data vectors,
adhering to the TVLA evaluation methodology. We use the TVLA as the core
metric to evaluate the information leakage in the function of each parasitic
element and its values, relative to the parasitic-free case.

5.5 SPICE Model

Our SPICE model for co-simulation of the PDN with the logic core is depicted
in Figure 5.3. We buffer the ideal voltage source using standard-cell buffers of
finite current capacity, as shown in Figure 5.3a. Buffers generate two different
power supplies: one for the core logic and one for buffering of the ideal inputs
coming from the SPICE vector file (*.vec). Figure 5.3c shows how input and
output signals are driven and loaded.

We thus isolate the target circuitry to ensure that signals adhere to the models
of the standard-cell library, preventing the influence of any ideal waveforms
that may offset the results obtained for smaller target circuits. In other
words, we create a “sterile” environment for observing the supply currents of
shares. Furthermore, we account for the high-frequency response caused by
supply currents drawn by the CMOS gates in logic shares. Unlike the constant

110 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

(a) PDN load buffers.

(b) PDN R, L, C components.

(c) Data input isolation.

Figure 5.3: SPICE model for PDN co-simulation.

impedance of parasitic resistors ZR = R, both the impedance of parasitic
inductances ZL = jωL and capacitances ZC = 1

jωC depend on the angular
frequency of the inciting current. Thus the voltage fluctuations over ZL and
ZC cause non-linear ground-bounce and supply-sag. Lastly, in contrast to a
security evaluation where the waveform of merit is the supply current that can
be measured, we chose the supply current iCORE , as per Equation (5.2), as the
side-channel for diagnostic purposes. Thus we isolate the core logic from ideal
waveforms and create a sterile environment for observing supply currents of
shares.

SPICE MODEL 111

iCORE =

N∑
j=1

iVDDj ,VSSj
. (5.2)

5.5.1 Target Circuits

Any Boolean function over binary fields GF (2n) can be implemented in algebraic
normal form using only two-input XOR and AND gates, XOR2 and AND2
respectively. Thus secure instances of these two gates are fundamental to
protect any Boolean masking scheme. Boolean masking schemes use XOR as
the sharing operator, making the linear layer masking trivial. Given an n-bit
XOR2 gate zi = ai⊕ bi, sharing it into N shares requires zi,j = ai,j⊕ bi,j ; where
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , N}. Conversely, the unshared output bit is
obtained as zi =

⊕N
j=1 zi,j . Figure 5.4 shows the generic schematic of an n-bit

XOR2 gate with N = 2. It provides first-order security, that is, it prevents SCA
that exploit leakage in the first-order statistical moment.

1

1

1 2

2

2

Figure 5.4: Shared n-bit XOR2 circuit with N = 2, implemented using XOR2_X1
gate. Each gate is marked with its share number.

In contrast, masking non-linear operations is a demanding task. Figure 5.5
shows the schematic of an AND2 gate with N = 3, proposed in [19]. It also
provides first-order security, but requires an additional share and an additional
random input bit r, compared to the protected version of XOR2.

Our study focuses on these simple circuits, as they allow to address virtually any
Boolean masking schemes, looking from the algebraic perspective. Additionally,
their small sizes are favorable for SPICE simulation.

112 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

1

1

1

2

2

2

3

3

3

a2b2
a2
b3
a3
b2

1

1

r

z11

2

a3
b3
a1
b3
a3
b1

2

r a1

2 2

r b1

2 2 z2

a1
b1
a1
b2
a2
b1

3

3

3 3

r a1 b1r

3
z3

r

3 3

Figure 5.5: Shared 1-bit AND2 circuit with N = 3, implemented using XOR2_X1
and AND2_X1 gates. Each gate is marked with its share number.

5.5.2 Security Metric

We use TVLA [32] as the core security metric. TVLA determines whether
statistical moments of two sets of data, of N1 and N2 elements, are
distinguishable by using Welch’s t-test. Upon partitioning traces based on
unshared data, the security order is defined as the highest statistical moment in
which the Welch’s t-statistic does not exceed a confidence interval of |t| 6 4.5.
For the first-order security, a score ti is computed for each sample i in the
supply current waveform as per Equation (5.3), where µi and (σi)2 are sample
mean and variance normalized to the number of samples in each set N1, N2.

ti =
µi1 − µi2√

(σi1)2/N1 + (σi2)2/N2

. (5.3)

The resulting t-trace is a temporal waveform that contains all ti samples
corresponding to a fixed number of traces (constant N1 and N2). In our
experiments in Section 5.6 we often plot the trend of the max(|t|) score for an
increasing number of traces. A constant max(|t|) trend with |t| 6 4.5 indicates
a certainty that no leakage exists. On the contrary, a rising max(|t|) trend
indicates that collecting more traces may lead to a vulnerability. Alternatively,

EXPERIMENTAL RESULTS 113

by fixing the number of traces, we can additionally observe the max(|t|) trend
function of the swept parasitic element value. Doing so allows us to identify
the parasitics that may compromise the SCA security. Due to the small circuit
sizes and the noiseless nature of simulation, the number of traces we simulate
in certain cases is relatively small. Nevertheless, this does not undermine the
findings. Should we increase the number of traces rising max(|t|) trends would
only lead to higher t-scores, further strengthening our observations.

5.6 Experimental Results

In this section we provide experimental results of the parametrized sweeps
of parasitic elements. We target the first-order secure instances of a two-
share XOR2 and a three-share AND2 gates. In all cases we use TVLA with
partitioning based on the unshared output.

5.6.1 Impacts of PDN

To examine the impact of PDN we use an 8-bit instance of the two-share XOR2
gate depicted in Figure 5.4. We instantiate eight XOR2_X1 cells in parallel
to instigate a more significant supply current. As the circuit computation is
completely linear and inputs of each share are independent, all observed leakage
may stem only from the PDN. We simulate 215 traces for each experiment.

Firstly, we investigate how the finite current capacity of the power supply
impacts the SCA security, independently of the layout parasitics. By setting
RPi = RGi = 0 Ohm, LPi = LGi = 0 H and CDDi = CSSi = 0 F and omitting the
buffers, we reduce our model to the idealization depicted in Figure 5.2. We then
introduce buffers of different drive strength and plot the average supply sag
for each case in Figure 5.6. There is no significant difference between the two
supply nodes. Average supply sag is 10%, 15%, and over 20% of the nominal
value for BUF_X32, BUF_X8, and BUF_X1, respectively. In the latter case, the
excessive supply sag causes the circuit to malfunction. Therefore, this case is
not relevant as such a device would never enter the market. However, supply
sag in the range of 10–15% is likely to occur.

Figure 5.7 shows the max(|t|) score for an increasing number of traces. As the
ideal voltage source has infinite current capacity, it maintains the nominal supply
voltage throughout the circuit operation. Consequently, the corresponding
max(|t|) score has a stable horizontal trend around the |t| = 4.5 mark.

114 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

0 250 500 750

t[ps]

0.8

0.9

1.0

1.1
V

D
D

1
[V

]

none BUF X01 BUF X08 BUF X32

0 250 500 750

t[ps]

V
D

D
2
[V

]

Figure 5.6: Two-share 8-bit XOR2, average supply sag.

However, using buffers with lower current capacity, results in higher supply sag.
As a result the max(|t|) scores start to rise. For, BUF_X32 and BUF_X8 max(|t|)
trends stabilize below the |t| = 4.5 mark. However, this increase indicates
that the current capacity, i.e. driving strength, of the power supply influences
side-channel security of masked designs. In the rest of the experiments we use
BUF_32 to model the finite current capacity of the power supply. We call this
the referent, parasitic-free, case.

0 8192 16384 24576

t[ps]

0

1

2

3

4

5

V
D

D
1
[V

]

none BUF X01 BUF X08 BUF X32

Figure 5.7: Two-share 8-bit XOR2, impact of supply buffers to max(|t|) score.

EXPERIMENTAL RESULTS 115

Next, we move to investigate the impact of parasitic elements in the PDN:
resistors, capacitors and inductors. The results are shown in Figures 5.8, 5.9
and 5.10. We overlap results obtained for the parasitic elements that exhibit
similar behavior, as well as max(|t|) trend curves for different sweep values.

Figure 5.8 shows the impact of IR drop over parasitic resistors. We sweep
resistor values between 1Ohm and 10 kOhm using a logarithmic sweep. On
the one hand, RP1 and RL1 affect the supply nodes of both shares. Increasing
them to 3.5 kOhm and 6.3 kOhm, respectively, leads to a slight increase in
the max(|t|) score, though remaining below the |t| = 4.5 threshold. Further
increases of their value break the circuit functionality. On the other hand,
RP2 and RL2 decrease the max(|t|) score when increased up to 4.0 kOhm and
3.9 kOhm, respectively. As they affect only the supply node of the second share,
they have a limiting effect, as serial resistors, on the supply currents drawn by
that share. Therefore, they attenuate the signal of the chosen side-channel and,
consequently, the amount of leakage.

0 8192 16384 24576
Number of traces

1.5

3.0

4.5

m
ax

(|t
|)

0 8192 16384 24576
Number of traces

Figure 5.8: Impact of resistors RP1 and RG1 (left), RP2 and RG2 (right). The
referent case is green, correct traces are black, malfunctioning traces are grey.

Figure 5.9 shows the impact of the PDN capacitors. We sweep capacitance
values between 1 fF and 1 nF using a logarithmic sweep. In addition to the
capacitors towards the ground plate, we sweep capacitors between supply nodes
of the same polarity (left), and capacitors between supply nodes of the opposing
polarity (right).

0 8192 16384 24576
Number of traces

1.5

3.0

4.5

m
ax

(|t
|)

0 8192 16384 24576
Number of traces

Figure 5.9: Impact of capacitors CDD1,CSS1,CDD2,CSS2, CVDD1,VDD2
, and

CVSS1,VSS2 (left), CVDD1,VSS1 ,CVDD1,VSS2 , CVDD2,VSS1 , and CVDD2,VSS2 (right).
The referent case is green, correct traces are black. There are no malfunctions.

116 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

The latter are referred to as decoupling capacitors in the literature. Serving as
charge caches for the logic core, they lower the required bandwidth of the PDN.
In other words, they filter information carrying high-frequency components of
the supply current. Hence, we observe a decrease in the max(|t|) score.

Figure 5.10 shows the impact of the PDN inductors. We sweep inductance
values between 1 pH and 1µH using a logarithmic sweep. LP1 and LG1 lead to
max(|t|) > 4.5 when they exceed 1.2 nH and 0.8 nH, respectively. They produce
peak max(|t|) scores of between 20 and 23 when increased up to 18 nH. LP2 and
LG2 have significantly lower impact, as the affect only the supply node of the
second share. Figure 5.11 shows the magnitude of the max(|t|) score function
of parasitic inductors.

0 8192 16384 24576
Number of traces

4.5
10.0

20.0

m
ax

(|t
|)

0 8192 16384 24576
Number of traces

Figure 5.10: Impact of inductors LP1 and LG1 (left), LP2 and LG2 (right). The
referent case is green, correct traces are black, malfunctioning traces are grey.

10 1 100 101 102 103

L[nH]

4.5
10.0

20.0

m
ax

(|t
|) LP2,LG2

LP1

LG1

Figure 5.11: Magnitude of the max(|t|) for 215 traces; • denotes correct and ×
failed computation of the two-share 8-bit XOR2.

5.6.2 Effects of Coupling Capacitances

The last part of our experiments examines the impact of coupling capacitances.
For a circuit with n nodes, a total of

(
n
2

)
capacitors can be annotated between

them. The computational effort of exhausting all
(
48+4

2

)
capacitors of the

8-bit XOR2 is non-permitting. Thus in order to keep the computational
effort reasonable, we perform experiments on the 1-bit shared XOR2 shown
in Figure 5.4. We then move on to the AND2 gate shown in Figure 5.5 with(
32+6

2

)
possible capacitors.

EXPERIMENTAL RESULTS 117

Shared XOR2

Given the four input bits, there exist only 24×2 − 24 = 240 non-trivial input
transitions to simulate. By excluding the supply to supply capacitors discussed
in the previous section, we split the remaining

(
10
2

)
− 6 = 39 capacitors as

follows:

• share-rail (SR) between data nodes of one share and the supply node of
the same share;

• cross-rail (CR) between data nodes of one share and the supply node of
another share;

• share-data (SD) between data nodes within one share;

• cross-data (CD) between data nodes of different shares.

We sweep each capacitance using a logarithmic sweep between 10 aF and 100 fF.
The impact of all four categories of capacitors is shown in Figure 5.12: SR, CR
and SD (left) and CD (right). In accordance with theory, only CD capacitances,
Cz1,z2 in particular, result in a significant increase the SCA leakage. The rest
of capacitances cause barely any deviation from the referent max(|t|) trend.

0 60 120 180
Number of traces

4.5
10.0

20.0

m
ax

(|t
|)

0 60 120 180
Number of traces

Figure 5.12: Impact of SR, CR, SD (left) and CD (right) on 1-bit XOR2, N = 2;
overlapped sweep traces.

Figure 5.13 shows the magnitude of the max(|t|) function of CD capacitance.
The presence of leakage due to Cz1,z2 starts at 0.3 fF, peaking to max(|t|) = 23.1
at Cz1,z2 = 19.3 fF. For larger values, the circuit starts to malfunction.

Qualitatively, this result is expected, as we partition based on the unshared
value of the circuit output. Similar behaviors are obtained for capacitors
coupling input pins, e.g. Ca1,a2 should an input pin, e.g. a, be the partitioning
target.

118 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

10 1 100 101

C[fF]

4.5
10.0

20.0
m

ax
(|t

|)

Ca1, z2 ,Cb1, z2 ,Ca2, z1 ,Cb2, z1

Cz1, z2

Figure 5.13: Magnitude of the max(|t|) for 240 traces; • denotes correct and ×
failed computation of 1-bit XOR2.

Therefore only a subset of parasitic capacitors harms the side-channel security.
Next we investigate how the remaining CD and SD capacitors impact the side-
channel security in combination with a large Cz1,z2 capacitor. We fix the value
Cz1,z2 = 4.9nF, and repeat the experiment when this is the only non-zero CD
capacitance. Keeping Cz1,z2 = 4.9 nF fixed, we run 100 randomized experiments.
Each time, we sample the normal distribution N (σ2 = 0.2 fF, µ = 1 fF) to
annotate the values for all remaining CD and SD capacitors.

0 200 400 600 800

t[ps]

0

5

10

15

t

randomized Cz1,z2only reference

Figure 5.14: The t-trace for the sole Cz1,z2 = 4.9 fF, compared to added 100
randomly chosen values of the remaining CD and SD capacitors.

Other than slowing the computation down, added capacitors unanimously reduce
the t-scores. This is better depicted using the max(|t|) trend in Figure 5.15.
Increasing parameters µ and σ2 of the random capacitance distribution causes

EXPERIMENTAL RESULTS 119

a wider spread of the randomized t-traces. Nevertheless, the max(|t|) scores
are consistently lower compared to the sole CD capacitance Cz1,z2 = 4.9 fF.

0 50 100 150 200 250

Number of traces

0

5

10

15

m
a
x

(|t
|)

randomized Cz1,z2only reference

Figure 5.15: Magnitude of the max(|t|) score for 240 traces for the sole
Cz1,z2 = 4.9 fF, compared to added 100 randomly chosen values of the remaining
CD and SD capacitors.

TI AND2

Given the 7 input bits there exist only 27×2 − 27 non-trivial input transitions
to simulate. As we annotate numerous 326 CD capacitors for the non-linear
TI AND2, N = 3 gate, we lower the amount of experiments to 213 traces.
We sweep each capacitance using logarithmic sweep between 0.1 fF and 128 fF
using a logarithmic sweep. Out of 326 CD capacitors, we identify 191 which
cause max(|t|) > 4.5 while allowing the circuit to compute correctly. Based on
the minimal capacitance value for which the capacitor causes max(|t|) > 4.5,
henceforth called critical value, we further separate these capacitors in three
groups:

• 18 high risk (H) capacitors, with critical value CH 6 1 fF.

• 88 medium risk (M) capacitors, with critical value 1 fF 6 CM 6 4 fF

• 85 low risk (L) capacitors, with critical value CL > 4 fF.

120 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

We chose the delimiting values of 1 fF and 4 fF for demonstrative purposes
for the given circuit. Nevertheless, they are meaningful values for they are
the same order of magnitude as the pin capacitances of the standard-cells we
use. Figure 5.16 shows the magnitude of the max(|t|) in the function of the H,
M, L groups of CD capacitances. It is important to notice that we deem the
capacitors with lower critical value to bear more risk, despite leading to lower
max(|t|) scores before causing the circuit to malfunction. Most of these 191 CD
capacitors cause the circuit to malfunction when they reach between 17.5 fF
and 23.7 fF in value or more. We discuss this ranking in more detail in Sec. 5.7.

10 1 100 101

C[fF]

4.5
10.0
15.0

m
ax

(|t
|) H M L

Figure 5.16: Magnitude of the max(|t|) for 213 traces; • denotes correct and ×
failed computation of TI AND2.

5.7 Discussion

In this section we discuss our findings in detail. We argue these phenomena
could demonstrate themselves in a practical scenario. Lastly, we propose further
research steps.

5.7.1 Impacts of the PDN

To the best of our knowledge, this is the first time a detailed consideration is
given to the PDN modeling for SCA security. Firstly, we show that the finite
current capacity of the power supply may increase the levels of leakage even
when everything else in the circuit is ideal, Figure 5.7. Contrary to the suspicions
of [30], our experiments do not show the resistive IR drop as one of the leading
sources of SCA leakage. As shown in Figure 5.8, PDN resistors may increase
the max(|t|) score before the circuit malfunctions. In our experiments this
increase is small. As serial impedances in the PDN circuit, RP1 causes the sag
on supply nodes of both shares. Therefore, the max(|t|) score increase is small,
such resistors should not be neglected during security analysis. Furthermore,
our experiments further show the decoupling capacitances, often used in PDN

DISCUSSION 121

modeling, lead to the decrease of the max(|t|) score, as shown in Figure 5.9.
Reactive impedances ZC = 1

jωC form highly conductive paths for the data
dependent high-frequency components of the supply current without upsetting
the power supply voltages. Our experiments show however that parasitic PDN
inductors are the more likely culprit, causing a steep rise in the max(|t|) score,
as shown in Figure 5.10 Reactive impedances ZL = jωL cause voltage drop
predominated by the data dependent high-frequency components of the supply
current drawn by the target circuit. More importantly, the supply sag caused
by the serial inductor is more dependant on the data-carrying high-frequency
signal. The extent to which such a data-dependent upset of the power supply
nodes can break the independent leakage assumption is shown in Figure 5.11.

Ground-bounce and supply-sag are prominent issues at the packaging level, over
long bonding wires, as they may cause the upset of supply nodes that makes the
circuit malfunction. While some physical cells, such as power gating circuitry,
are shown to cause significant upsets [75], their effects are certainly smaller
within the logic core. Still, our experiments show that parasitic inductors may
break the independence assumption at values L 6 1 nH two orders of magnitude
before causing the circuit to malfunction at L > 100 nH. This margin is design
specific and likely not to be this dramatic. Yet as long as the performance
constraints are met, parasitic inductors with significant impact on the SCA
security may remain in the design. Moreover, parasitic inductances on the order
of nH, or worse yet tens of nH, may seem unrealistically large to an experienced
design practitioner. As our target designs are minute, easily four orders of
magnitude smaller than a practical design, orders of magnitude higher values
are needed to instigate a significant voltage fluctuation in the supply nodes.

Lastly, decoupling capacitors are used to battle the effects of the ground-bounce
and supply sag. This effect is shown in Figure 5.9. Nevertheless, decoupling
capacitors are not free, they require area and design effort. Larger area means
increased the PDN parasitics, as the rails grow longer. Hence, they are likely to
be sized up to the extent that satisfies the performance margin, not the SCA
one.

5.7.2 Impacts of Coupling Capacitances

Even though theoretical leakage models completely overlook the influence of
the PDN, SD and CD coupling capacitances are widely accepted as the possible
source of leakage. Our experiments support these suspicions and quantify them
further. We confirm that SR and SD capacitances lead to no significant leakage
regardless of their size. Interestingly, CR capacitances yield no significant
leakage either, although they span from one share to another. Therefore, CD

122 INVESTIGATING THE IMPACT OF LAYOUT PARASITICS ON MASKED CIRCUITS

capacitances remain as the only potential sources of leakage. This is clearly
shown in the fundamental example of the 1-bit XOR2, N = 2 gate in Figure 5.13.
Only the capacitance Cz1,z2 directly coupling the shares of the partitioning
target causes max(|t|) > 4.5, indicating significant leakage.

Once all of the CD and SD capacitors are considered jointly the resulting
max(|t|) score is lowered from the independent scenario. To show this we
choose the moderately high value of Cz1,z2 = 4.9 nF, while the other capacitors
are on average about five times smaller. As the target circuit is small, it
can be expected to be sufficiently localized for capacitances equivalent to the
annotated ones to exist. Thus, we attribute the decrease in t-scores to the charge
distribution among these uneven capacitors, causing an upset in the supply
current waveform drawn. Moreover, all CD and SD capacitances, including the
Cz1,z2 would belong to the same Gaussian distribution if they were extracted
instead of annotated. Hence we believe the relative decrease compared to the
one demonstrated in Figure 5.14 would be even more prominent.

In the case of TI AND2, N = 3 however determining which capacitances may
cause information leakage is not so trivial. We qualify 191 out of all 326 CD
capacitances as the potential source of leakage. We rank them to emphasize
the following. Higher max(|t|) score at the right-hand end of the Figure 5.16
are a consequence of larger capacitances in the range between 17.5 fF and
23.7 fF or more. While their impact is indeed higher, we expect fewer of such
large parasitic elements to occur in a functioning design. On the other hand,
capacitors on the order of magnitude of 1 fF are highly likely to occur given the
input capacitances of cells in the target library (on the order of fF), especially
assuming unconstrained placement and routing. Hence, we asses the potential
risk from such capacitors to be higher. Lastly, note that the joint impact of
annotated capacitors, demonstrated in Figure 5.14, applies to this circuit as
well.

5.8 Conclusions

We have proposed a model for co-simulation of the analog PDN along with the
digital logic core dedicated to SCA. Using said model we conduct an exploratory
study to quantify the impact of different layout parasitics to SCA security.
We craft experiments in a way that allows us to diagnose all possible sources
of leakage from within the logic core. Selecting small, fundamental, circuits
allows us to perform all experiments using SPICE. This allows us to categorize
parasitic elements and quantify their impact on SCA security. Furthermore, we
are the first to study the impact of PDN to the security of the core logic. As all

CONCLUSIONS 123

of these issues arise in the back-end stages, they are left out of the mathematical
models although they may account for the significant information leakage. We
provide the first detailed insights into the matter.

Computational complexity of SPICE simulators prevents this model to be
applied on larger designs. It is worth investigating whether other existing EDA
tools could be used for such analysis. For example, supply current waveform
obtained using data driven digital simulators such as Synopsys PrimeTime (PT)
with PX addon could possibly be back-annotated into the analog PDN model.
In this case, manual annotation and export of parasitic components can be used
to study effects of parasitic components in a generic manner, without having to
go through the laborious process of multifaceted placement and routing.

Other than the investigative nature of this method, we believe it can be adopted
by the designers, assuming the computational aspects are overcome. Given a
gate-level netlist of the target design, practitioners could perform course grain
exploratory sweeps to determine which parasitic elements may be critical to
their designs. Thus they could focus on their extraction and analysis, potentially
tailoring Electronic Design Automation (EDA) tool constraints to bound said
parasitic elements.

Chapter 6

Conclusions and Insights for
Future Research

If more information was the
answer, then we’d all be
billionaires with perfect abs.

Derek Sivers

This dissertation tackles different aspects of design-time SCA security
evaluations. We aim to uncover the physical vulnerabilities prior to chip
manufacturing. To do so, we cascade down the standard-cell ASIC hardware
design flow, addressing design stages as depicted in Figure 6.1.

6.1 Conclusions

Firstly, in Chapter 3 we go far and wide to study the interoperability of the
state-of-the-art EDA tools and models with the state-of-the-art SCA evaluation
methods and metrics. We introduce several SCA-aware evaluation steps as
denoted in Figure 6.1 using the red shade. We strengthen the practicality of
our findings by implementing a flexible framework that aids the automation
and supports the integration of design-time evaluations into the standard-cell
ASIC hardware design flow. We list the following findings.

125

126 CONCLUSIONS AND INSIGHTS FOR FUTURE RESEARCH

IP Core Specification

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Post-Layout
Logic

Simulation

Behavioral
Modeling

RTL Design
Using HDL

Logic Synthesis

Library Mapping
and

Optimization

Insertion
of

Test Structures

Placement
and

Optimization

Clock Tree
Synthesis

(CTS)

Routing
and

Optimization

Substitution of
Cell-Layouts

Black-Box
Simulation

BEH

RTL

Preliminary
Area and Power

Estimation

Be
ha

vi
or

al
Le

ve
l

SYN

GLN

St
ru

ctu
ra

l L
ev

el

Delay
Calculation

(wires and cells)

Pre-Layout
Timing

Verifiction

Electrical
Rule Check

(ERC)

Tapeout

PAR

Synthetic Step

Analytic Step

Design Flow

Corrective Step

Library Input

Ph
ys

ica
l L

ev
el

Formal
Equivalence

Check

Formal
Equivalence

Check

Design Rule
Check
(DRC)

Physical
Layout

Extraction

Layout vs
Schematic

(LVS)

PHY

Substitution of
Detailed Circuits

for Cell Icons

Flow Output

Delay
Calculation

(Layout)

Post-Layout
Timing

Verification

Cell and
Interconnect
Extraction

Signal Integrity (SI)
and Design Rule

Check (DRC)

Layout vs
Schematic

(LVS)

Power Grid (PG)
Analysis

SCA Aware Steps

Post-Layout
Logic

Simulation

Pre-Layout
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Cycle-Accurate
Logic

Simulation

Delta-Delay
Generic Logic

Simulation

Delta-Delay
Generic Logic

Simulation

FSA Evaluation

Modeling Impact

Figure 6.1: The impact of this thesis on the standard-cell ASIC design flow.

CONCLUSIONS 127

• Flaws in cryptographic implementations based on standard-cell libraries
can be detected as soon as the gate-level netlist is synthesized.

• This can be done efficiently based on the logic simulation and simple
power models as the Marching Sticks Model (MSM), and timing models
as simple as the ∆-delay model. As simulation performance varies slightly
depending on the underlying timing model, we recommend performing
evaluations based on Composite Current Source (CCS) timing where
possible, i.e. when the target library is known.

• Using increasingly detailed models detects leakage with a smaller number
of traces. CCS power simulation, e.g. using PT, does introduce a
significant overhead. However, it is predicated by the logic simulation
that constitutes the bulk of the MSM power computation. Therefore, it
is always advantageous to perform the MSM-based evaluation before the
PT traces are ready.

• Although they are performed in the same manner, we differentiate glitch-
resistant Boolean masking schemes evaluations from standard-cell-based
secure logic styles evaluations. The former benefit from high-precision
observations and time resolution, as we aim to maximize the occurrence
of glitches. For the latter, high simulation precision, absence of noise and
jitter, as well as the level of detail provided by the CCS models, expose
the security-critical asymmetries beyond what can be measured.

• The 1ps characterization precision of the CCS is needed for modeling
on-chip behavior. However, we believe that the 1TS/s measurement
sampling is unattainable using today’s CMOS technology. As moving
to the 10ps simulation precision does change the evaluation of Boolean
masking schemes and gives a more realistic evaluation of the standard-
cell-based secure logic styles, we recommend this precision for the most
rigorous simulations. Its sampling period, i.e. 100GS/s sampling rate,
corresponds to the 50GHz measurements bandwidth that can be achieved
using high-end equipment only. Moreover, as these observations are free
from any distortions and low-pass filtering of the physical components
such as the PDN and decoupling capacitors, we believe this simulation
precision need not be exceeded.

• As synthesis tools, both logic and physical, can breach properties of
countermeasures (e.g. the non-completeness property of the threshold
implementations) it is important that this approach be applied at each
design stage. Moreover, improper handling of the design constraints can
cause false positive leakage assessment.

128 CONCLUSIONS AND INSIGHTS FOR FUTURE RESEARCH

• Parsers, analyzers, automation scripts and data formats developed
within the Computer-Aided Side-Channel Analysis Design Environment
(CASCADE) framework serve to demonstrate practicalities of the
approach and the feasibility in terms of performance in realtime. These
results are enabled by the underlying fast gate-level CCS models.

Secondly, in Chapter 4 we show how the high level of physical detail provided by
the CCS models can be used to scrutinize theoretical considerations regarding
masking schemes. In particular we examine resistance of glitch-resistant Boolean
masking schemes to Fault Sensitivity Analysis (FSA). The high-level of physical
detail captured by the CCS models is a good tradeoff between the abstract
assumptions masking schemes make about hardware and the analog behavior
of the physical world. Naturally, CCS models do not encompass all physical
phenomena. However, they characterize the temporal behavior of physical cells
at the 1 ps precision. As FSA leverages measuring data-dependent propagation
delays, we rely on this precision to construct the best-case scenario for the
attackers. Namely, we give the attackers the 1 ps precision noiseless traces, that
are otherwise unattainable in practice. In this scenario, we apply FSA to two
glitch-resistant Boolean masking schemes, to show that they resist FSA under
a set of assumptions about the underlying hardware. These experiments relate
in the backend stages of the standard-cell ASIC design flow as per Figure 6.1,
denoted using the blue shade.

Thirdly, in Chapter 5 we step away from the gate-level modeling to investigate
the impact of layout parasitics to the SCA security of glitch-resistant Boolean
masking schemes. We design an experimental setup that allows us to examine
the impact of individual parasitic elements. Contribution of this work are
twofold.

• To the best of our knowledge we are the first to consider the RLC parasitic
elements of the PDN in a SCA security evaluation. Accordingly we create
a co-simulation model for the analog PDN along with the digital logic
core that implements the shares.

• We use the parametric sweeps of individually annotated parasitic values
to examine how the impact the SCA security. Using this approach we
confirm that inter-share capacitances coupling data nodes may cause
the deterioration of the SCA security. Additionally, we demonstrate
the leakage-mitigation that comes from decoupling capacitances. More
importantly we point out to parasitic resistors and inductors as potential
sources of SCA information leakage.

FUTURE RESEARCH DIRECTIONS 129

These findings may indirectly impact steps of the standard-cell ASIC hardware
design flow as noted using green arrows in Figure 6.1. They do so by potentially
changing how layout parasitics are extracted and included in the analysis of
SCA-resistant designs.

6.2 Future Research Directions

Following the work for this dissertation we find it important to make the
distinction depicted in Figure 6.2. The left-hand portion depicts the “modeling
for performance” of ASIC chips, common in the EDA world. We believe that
the “modeling for SCA security” needs to address what attackers can measure.
In the case of the non-invasive adversaries monitoring power consumption it
is the current waveform of the digital logic core distorted by the analog PDN,
decoupling capacitors and so on.

Figure 6.2: Modeling for performance (left) and SCA security (left and right).

The digital logic core in Figure 6.2 is depicted as a series of independent
shares, but the insights hold for any other standard-cell-based countermeasure.
The sophisticated CCS models developed by the EDA industry are meant to
capture the behavior of digital gates at the highest precision possible. They
are meant to represent the behavior of the logic core with the highest accuracy,
such that every last picosecond of the timing slack can be attained for the
optimal performance under target constraints. Thus modeling for performance
is clearly viable for the typical EDA applications. However, the high-frequency
data-dependent current waveforms of the digital logic core are significantly
distorted by the low-pass filters in the analog layers above them. Thereby,
from Chapter 3 we believe that the excessive simulation precision can be safely
degraded for the purpose of design-time SCA evaluations. Furthermore, from
Chapter 5 layout extraction can be done selectively as many parasitic elements
do not affect the SCA security, e.g. intra-share coupling capacitors. The same

130 CONCLUSIONS AND INSIGHTS FOR FUTURE RESEARCH

chapter leads us to believe that that inter-share coupling capacitors are less
likely to cause a noticeable information leakage. Instead, we believe the “macro”
coupling through the PDN that mixes the currents of all shares is the more
likely culprit.

We believe that models similar to the PDN co-simulation model we introduce
are principal for unequivocal discovery of the leakage sources. In Chapter 5
we simulate the entire test circuit using SPICE. Running similar experiments
on a large-scale design, e.g. an entire masked AES implementation, can take
several months. This can be done for a more detailed investigation. However,
performing such a simulation for a design-time SCA evaluation would be a
serious time-to-market increase. Instead, the power consumption waveforms
of the digital core can be obtained using CCS simulations, e.g. using PT as if
they were independent. These waveforms can be back-annotated as piece-wise
linear current sources in the SPICE simulation, one for each of the shares.
Thus the complexity of the SPICE circuit can be drastically reduced. This
solution allows the off-the-shelf use of library models. However, the library
characterization process, shown in Algorithm 1, can be extended to capture
the current waveforms for different values of the power supply. Varying power
supply values are already used for characterizing sets of operating conditions,
therefore we see no technical difficulties for such an extended characterization.
Given such models, it would be straightforward to implement an instantaneous
power consumption simulator dedicated to SCA security. Unfortunately, this
approach is predicated by technology manufacturers adopting this type of
characterization.

Recently, Levi et al. [86] have demonstrated how a single external resistor
can be used to degrade SCA security of a masked implementation, based
on measurements. As this resistor corresponds to the RP1 and LP1 in our
simulated setup shown in Figure 5.3b, we are further encouraged to believe that
the sources of the inter-share coupling stem from the analog R, L, C parasitics
“on top” of the digital logic core, rather than the inter-share capacitors coupling
data nodes. In support of this insight we present Figure 6.3. In this motivational
example, for the independent leakage assumption—the physical assumption
that underlies all masking schemes—to hold, Equation (6.1) must be true.

iext(t)|Share1+Share2 = iext(t)|Share1 + iext(t)|Share2 . (6.1)

In other words, the addition of the share supply currents is a linear operation,
hence whether both shares are present at the same time iext(t)|Share1+Share2, or
only one of them exists in the circuit iext(t)|Sharei the resulting current measured
by the attacker is invariant. However, this is not the case, even in the simple
model from Figure 6.3. The measurable current iext(t) is as per Equation (6.2).

FUTURE RESEARCH DIRECTIONS 131

+

-

Figure 6.3: A simple model for SCA security of a shared design.

iext(t) = C
dVin(t)

dt
+ iShare1(data,Vin(t), t) + iShare2(data,Vin(t), t) . (6.2)

Assuming that each share is implemented using the standard-cell CMOS, the
drain current of each transistor depends on the supply voltage. Moreover,
supply voltage change impacts the gain of the CMOS inverters, Section 5.3 in
[120]. Therefore, as soon as one of the shares starts drawing a supply current
it affects the supply voltage of both shares, creating a non-linear dependency
between the two currents. The independent leakage assumption can never be
fully attained in hardware. The research question that remain are how small
does this coupling have to be in order for the designs to remain secure and how
to model and evaluate it at design-time efficiently.

The counterpart depicted in the right-hand portion of Figure 6.2 corresponds to
the modeling of the attacker’s setup. The influence of measurement setups in
simulation [71] and in practice [86] is addressed in the literature, albeit sparsely.
We believe that more research should be done on that side too.

To increase the confidence in findings on both sides of the modeling for SCA
security, we believe that dedicated tapeouts are needed. For a fixed Gate-Level
Netlist (GLN) of a logic core, e.g. a masked AES implementation, several
PDNs and on-chip decoupling capacitor banks can be implemented. Tapeouts
should also include different placement and routing constraints. For instance,
placement and routing can be such that the capacitive crosstalk among different
shares is maximized. It would be interesting to demonstrate how much SCA
measurements in this worst-case differ from an unconstrained placement and
routing scenario.

The modeling for SCA security, depicted in Figure 6.2, combined with the current
contributions of this dissertation and dedicated tapouts, are the key-stones
of the reliable design-time evaluation for SCA attack resistant cryptographic
implementations.

Bibliography

[1] FIPS PUB 140-3, Security requirements for cryptographic modules, 2019.
U.S. Department of Commerce/National Institute of Standards and
Technology.

[2] Abraham, D. G., Dolan, G. M., Double, G. P., and Stevens,
J. V. Transaction security system. IBM Syst. J. 30, 2 (Mar. 1991),
206–229.

[3] Amin, C. S., Dartu, F., and Ismail, Y. I. Weibull-based analytical
waveform model. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24, 8 (Aug 2005), 1156–1168.

[4] Arribas, V., Bilgin, B., Petrides, G., Nikova, S., and Rijmen, V.
Rhythmic keccak: Sca security and low latency in hw. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2018, 1 (Feb. 2018),
269–290.

[5] Arribas, V., Nikova, S., and Rijmen, V. Vermi: Verification tool
for masked implementations. In 25th IEEE International Conference
on Electronics, Circuits and Systems, ICECS 2018, Bordeaux, France,
December 9-12, 2018 (2018), IEEE, pp. 381–384.

[6] Arribas, V., Wegener, F., Moradi, A., and Nikova, S.
Cryptographic fault diagnosis using verfi. IACR Cryptol. ePrint Arch.
2019 (2019), 1312.

[7] Atlantic, T. Why you’re probably getting a microchip implant someday,
Sep. 2018. Accessed April, 2020.

[8] Balasch, J., Gierlichs, B., Verdult, R., Batina, L., and
Verbauwhede, I. Power analysis of Atmel CryptoMemory - recovering
keys from secure EEPROMs. In Topics in Cryptology - CT-RSA
2012 - The Cryptographers’ Track at the RSA Conference 2012, San

133

134 BIBLIOGRAPHY

Francisco, CA, USA, February 27 - March 2, 2012. Proceedings (2012),
O. Dunkelman, Ed., vol. 7178 of LNCS, Springer, pp. 19–34.

[9] Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire,
B., Strub, P.-Y., and Zucchini, R. Strong non-interference and type-
directed higher-order masking. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (New York,
NY, USA, USA, 2016), CCS ’16, Association for Computing Machinery,
p. 116–129.

[10] Bellare, M., Canetti, R., and Krawczyk, H. Keying hash functions
for message authentication. In Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings (1996), N. Koblitz, Ed.,
vol. 1109 of Lecture Notes in Computer Science, Springer, pp. 1–15.

[11] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Keccak.
In Advances in Cryptology – EUROCRYPT 2013 (Berlin, Heidelberg,
2013), T. Johansson and P. Q. Nguyen, Eds., Springer Berlin Heidelberg,
pp. 313–314.

[12] Bertoni, G., and Martinoli, M. A methodology for the
characterisation of leakages in combinatorial logic. In Security, Privacy,
and Applied Cryptography Engineering - SPACE 2016 (2016), C. Carlet,
M. A. Hasan, and V. Saraswat, Eds., vol. 10076 of LNCS, Springer,
pp. 363–382.

[13] Bhasin, S., Danger, J., Graba, T., Mathieu, Y., Fujimoto,
D., and Nagata, M. Physical security evaluation at an early design-
phase: A side-channel aware simulation methodology. In Engineering
Simulations for Cyber-Physical Systems - ES4CPS 2014 (2014), C. Berger
and I. Schaefer, Eds., ACM, p. 13.

[14] Bhatnagar, H. Advanced ASIC Chip Synthesis: Using Synopsys’ Design
Compiler and PrimeTime. Kluwer Academic Publishers, USA, 1999.

[15] Biham, E., and Shamir, A. Differential fault analysis of secret key
cryptosystems. In CRYPTO (1997), vol. 1294 of Lecture Notes in
Computer Science, Springer, pp. 513–525.

[16] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., and Rijmen,
V. Higher-order threshold implementations. In ASIACRYPT (2) (2014),
vol. 8874 of Lecture Notes in Computer Science, Springer, pp. 326–343.

[17] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., and Rijmen, V.
A more efficient AES threshold implementation. In Progress in Cryptology

BIBLIOGRAPHY 135

– AFRICACRYPT 2014 (Cham, 2014), D. Pointcheval and D. Vergnaud,
Eds., Springer International Publishing, pp. 267–284.

[18] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., and Rijmen, V.
Trade-offs for threshold implementations illustrated on AES. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 34, 7 (2015), 1188–1200.

[19] Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., and Stütz, G.
Threshold Implementations of All 3 x 3 and 4 x 4 S-Boxes. In Cryptographic
Hardware and Embedded Systems - CHES 2012 (2012), E. Prouff and
P. Schaumont, Eds., vol. 7428 of LNCS, Springer, pp. 76–91.

[20] Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S.,
and Winter, J. Formal verification of masked hardware implementations
in the presence of glitches. In Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II (2018), J. B. Nielsen and V. Rijmen, Eds., vol. 10821
of Lecture Notes in Computer Science, Springer, pp. 321–353.

[21] Bloomberg. Internet of things market to reach us $ 1111.3 billion by
2026, at a ferocious cagr of 24.7%, Jul. 2019. Accessed October, 2019.

[22] Board, L. T. A. Liberty. Accessed May, 2020.

[23] Bogdanov, A., Khovratovich, D., and Rechberger, C. Biclique
cryptanalysis of the full AES. In Advances in Cryptology – ASIACRYPT
2011 (Berlin, Heidelberg, 2011), D. H. Lee and X. Wang, Eds., Springer
Berlin Heidelberg, pp. 344–371.

[24] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M. J., Seurin, Y., and Vikkelsoe,
C. Present: An ultra-lightweight block cipher. In Proceedings
of the 9th International Workshop on Cryptographic Hardware and
Embedded Systems (Berlin, Heidelberg, 2007), CHES ’07, Springer-Verlag,
p. 450–466.

[25] Boneh, D., DeMillo, R. A., and Lipton, R. J. On the importance
of checking cryptographic protocols for faults (extended abstract). In
EUROCRYPT (1997), vol. 1233 of Lecture Notes in Computer Science,
Springer, pp. 37–51.

[26] Božilov, D., Knežević, M., and Nikov, V. Optimized threshold
implementations: Securing cryptographic accelerators for low-energy and
low-latency applications. Cryptology ePrint Archive, Report 2018/922,
2018.

136 BIBLIOGRAPHY

[27] Brier, E., Clavier, C., and Olivier, F. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems
- CHES 2004 (2004), M. Joye and J. Quisquater, Eds., vol. 3156 of LNCS,
Springer, pp. 16–29.

[28] Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. Towards
sound approaches to counteract power-analysis attacks. In Advances in
Cryptology - CRYPTO ’99 (1999), M. J. Wiener, Ed., vol. 1666 of LNCS,
Springer, pp. 398–412.

[29] Chen, Z., Haider, S., and Schaumont, P. Side-channel leakage in
masked circuits caused by higher-order circuit effects. In Advances in
Information Security and Assurance (Berlin, Heidelberg, 2009), J. H.
Park, H.-H. Chen, M. Atiquzzaman, C. Lee, T.-h. Kim, and S.-S. Yeo,
Eds., Springer Berlin Heidelberg, pp. 327–336.

[30] Cnudde, T. D., Bilgin, B., Gierlichs, B., Nikov, V., Nikova,
S., and Rijmen, V. Does coupling affect the security of masked
implementations? In Constructive Side-Channel Analysis and Secure
Design -COSADE 2017 (2017), S. Guilley, Ed., vol. 10348 of LNCS,
Springer, pp. 1–18.

[31] Cnudde, T. D., and Nikova, S. More efficient private circuits ii
through threshold implementations. In FDTC (2016), IEEE Computer
Society, pp. –.

[32] Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy,
G., and Rohatgi, P. Test Vector Leakage Assessment (TVLA)
Methodology in Practice. International Cryptographic Module Conference,
2013.

[33] Daemen, J. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Fischer and Homma [50],
pp. 137–153.

[34] Daemen, J., and Rijmen, V. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[35] De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov,
V., and Rijmen, V. Masking AES with d+1 shares in hardware. In
Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security (New York, NY, USA, USA, 2016), TIS ’16, Association for
Computing Machinery, p. 43.

BIBLIOGRAPHY 137

[36] De Meyer, L., Bilgin, B., and Reparaz, O. Consolidating security
notions in hardware masking. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2019, 3 (May 2019), 119–147.

[37] De Santis, F., Schauer, A., and Sigl, G. Chacha20-poly1305
authenticated encryption for high-speed embedded iot applications. In
Proceedings of the Conference on Design, Automation & Test in Europe
(Leuven, BEL, 2017), DATE ’17, European Design and Automation
Association, p. 692–697.

[38] Delvaux, J. Threshold implementations are not provably secure against
fault sensitivity analysis. Cryptology ePrint Archive, Report 2020/400,
2020.

[39] Dobbertin, H., Bosselaers, A., and Preneel, B. RIPEMD-160:
A strengthened version of RIPEMD. In Fast Software Encryption,
Third International Workshop, Cambridge, UK, February 21-23, 1996,
Proceedings (1996), D. Gollmann, Ed., vol. 1039 of Lecture Notes in
Computer Science, Springer, pp. 71–82.

[40] Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer, M.
Cryptanalysis of ascon. In Topics in Cryptology - CT-RSA 2015, The
Cryptographer’s Track at the RSA Conference 2015, San Francisco, CA,
USA, April 20-24, 2015. Proceedings (2015), K. Nyberg, Ed., vol. 9048 of
Lecture Notes in Computer Science, Springer, pp. 371–387.

[41] Dyrkolbotn, G. O., Wold, K., and Snekkenes, E. Security
implications of crosstalk in switching CMOS gates. In Information Security
(Berlin, Heidelberg, 2011), M. Burmester, G. Tsudik, S. Magliveras, and
I. Ilić, Eds., Springer Berlin Heidelberg, pp. 269–275.

[42] Dziembowski, S., and Pietrzak, K. Leakage-resilient cryptography.
In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations
of Computer Science (USA, 2008), FOCS ’08, IEEE Computer Society,
p. 293–302.

[43] Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh,
M., and Shalmani, M. T. M. On the power of power analysis in the real
world: A complete break of the keeloqcode hopping scheme. In Advances
in Cryptology - CRYPTO 2008 (2008), D. Wagner, Ed., vol. 5157 of
LNCS, Springer, pp. 203–220.

[44] Endo, S., Li, Y., Homma, N., Sakiyama, K., Ohta, K., and Aoki,
T. An efficient countermeasure against fault sensitivity analysis using
configurable delay blocks. In FDTC (2012), IEEE Computer Society,
pp. 95–102.

138 BIBLIOGRAPHY

[45] Endo, S., Li, Y., Homma, N., Sakiyama, K., Ohta, K., Fujimoto,
D., Nagata, M., Katashita, T., Danger, J., and Aoki, T. A silicon-
level countermeasure against fault sensitivity analysis and its evaluation.
IEEE Trans. VLSI Syst. 23, 8 (2015), 1429–1438.

[46] Endo, S., Sugawara, T., Homma, N., Aoki, T., and Satoh, A.
An on-chip glitchy-clock generator for testing fault injection attacks. J.
Cryptographic Engineering 1, 4 (2011), 265–270.

[47] Endo, S., Sugawara, T., Homma, N., Aoki, T., and Satoh, A. A
configurable on-chip glitchy-clock generator for fault injection experiments.
IEICE Transactions 95-A, 1 (2012), 263–266.

[48] Faust, S., Grosso, V., Pozo, S. M. D., Paglialonga, C., and
Standaert, F. Composable masking schemes in the presence of physical
defaults & the robust probing model. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018, 3 (2018), 89–120.

[49] Fischer, H. A History of the Central Limit Theorem. Springer-Verlag,
New York, NY, USA, 2011.

[50] Fischer, W., and Homma, N., Eds. Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings (2017), vol. 10529 of Lecture
Notes in Computer Science, Springer.

[51] Fujimoto, D., Nagata, M., Katashita, T., Sasaki, A. T., Hori, Y.,
and Satoh, A. A fast power current analysis methodology using capacitor
charging model for side channel attack evaluation. In Hardware-Oriented
Security and Trust - HOST 2011 (2011), IEEE, pp. 87–92.

[52] Gandolfi, K., Mourtel, C., and Olivier, F. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded
Systems - CHES 2001 (2001), Ç. K. Koç, D. Naccache, and C. Paar, Eds.,
vol. 2162 of LNCS, Springer, pp. 251–261.

[53] Genkin, D., Shamir, A., and Tromer, E. Rsa key extraction via low-
bandwidth acoustic cryptanalysis. In Advances in Cryptology – CRYPTO
2014 (Berlin, Heidelberg, 2014), J. A. Garay and R. Gennaro, Eds.,
Springer Berlin Heidelberg, pp. 444–461.

[54] Gershenfeld, N. When Things Start to Think. Henry Holt and Co.,
Inc., New York, NY, USA, USA, 1999.

[55] Ghalaty, N. F., Aysu, A., and Schaumont, P. Analyzing and
eliminating the causes of fault sensitivity analysis. In DATE (2014),
European Design and Automation Association, pp. 1–6.

BIBLIOGRAPHY 139

[56] Ghoshal, A., and Cnudde, T. D. Several masked implementations of
the boyar-peralta AES s-box. In Progress in Cryptology - INDOCRYPT
2017 - 18th International Conference on Cryptology in India, Chennai,
India, December 10-13, 2017, Proceedings (2017), A. Patra and N. P.
Smart, Eds., vol. 10698 of Lecture Notes in Computer Science, Springer,
pp. 384–402.

[57] Gierlichs, B., Batina, L., Tuyls, P., and Preneel, B. Mutual
information analysis. In Cryptographic Hardware and Embedded Systems -
CHES 2008 (2008), E. Oswald and P. Rohatgi, Eds., vol. 5154 of LNCS,
Springer, pp. 426–442.

[58] Giry, D. Cryptographic key lenght recommendation, Jul. 2020.

[59] Goodwill, G., Jun, B., Jaffe, J., and Rohatgi, P. A Testing
Methodology for Side-Channel Resistance Validation. NIST non-invasive
attack testing workshop, 2011.

[60] Goubin, L., and Patarin, J. DES and differential power analysis
(the "duplication" method). In Cryptographic Hardware and Embedded
Systems - CHES’99 (1999), Ç. K. Koç and C. Paar, Eds., vol. 1717 of
LNCS, Springer, pp. 158–172.

[61] Gross, H., Mangard, S., and Korak, T. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection
order. In Proceedings of the 2016 ACM Workshop on Theory of
Implementation Security (New York, NY, USA, USA, 2016), TIS ’16,
Association for Computing Machinery, p. 3.

[62] Harris, D., Ho, R., Wei, G.-Y., and Horowitz, M. The fanout-of-4
inverter delay metric.

[63] Hassoune, I., Mace, F., Flandre, D., and Legat, J.-D. Dynamic
differential self-timed logic families for robust and low-power security ICs.
INTEGRATION, the VLSI Journal 40 (3 2007), 355–364.

[64] He, M. T., Park, J., Nahiyan, A., Vassilev, A., Jin, Y., and
Tehranipoor, M. RTL-PSC: automated power side-channel leakage
assessment at register-transfer level. In 37th IEEE VLSI Test Symposium,
VTS 2019, Monterey, CA, USA, April 23-25, 2019 (2019), IEEE, pp. 1–6.

[65] Hennessy, J. L., and Patterson, D. A. A new golden age for
computer architecture. Commun. ACM 62, 2 (Jan. 2019), 48–60.

[66] Huss, S. A., Stöttinger, M., and Zohner, M. AMASIVE: an
adaptable and modular autonomous side-channel vulnerability evaluation

140 BIBLIOGRAPHY

framework. In Number Theory and Cryptography - Papers in Honor
of Johannes Buchmann on the Occasion of His 60th Birthday (2013),
M. Fischlin and S. Katzenbeisser, Eds., vol. 8260 of Lecture Notes in
Computer Science, Springer, pp. 151–165.

[67] Inc., S. Ccs timing technical white paper copyright notice and proprietary
information.

[68] Ishai, Y., Sahai, A., and Wagner, D. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology - CRYPTO
2003 (Berlin, Heidelberg, 2003), D. Boneh, Ed., Springer Berlin Heidelberg,
pp. 463–481.

[69] Jakushokas, R., Popovich, M., Mezhiba, A. V., Kse, S., and
Friedman, E. G. Power Distribution Networks with On-Chip Decoupling
Capacitors, 2nd ed. Springer Publishing Company, Incorporated, 2010.

[70] Kaeslin, H. Top-Down Digital VLSI Design: From Architectures to
Gate-Level Circuits and FPGAs, 1st ed. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2014.

[71] Kamel, D., Renauld, M., Flandre, D., and Standaert, F.
Understanding the limitations and improving the relevance of SPICE
simulations in side-channel security evaluations. J. Cryptographic
Engineering 4, 3 (2014), 187–195.

[72] Kamel, D., Renauld, M., Flandre, D., and Standaert, F.-X.
Understanding the limitations and improving the relevance of spice
simulations in side-channel security evaluations. Journal of Cryptographic
Engineering 4, 3 (Sep 2014), 187–195.

[73] Kerckhoffs, A. La cryptographie militaire, première partie. In Journal
des sciences militaires, vol. IX (Jan. 1883), pp. 5––38.

[74] Kerckhoffs, A. La cryptographie militaire, seconde partie. In Journal
des sciences militaires, vol. IX (Feb. 1883), pp. 161––191.

[75] Kim, S., Kosonocky, S. V., and Knebel, D. R. Understanding
and minimizing ground bounce during mode transition of power gating
structures. In ISLPED ’03. (Aug 2003), pp. 22–25.

[76] Kirschbaum, M., and Popp, T. Evaluation of power estimation
methods based on logic simulations. In Austrochip 2007 (2007), K.-C.
Posch and J. Wolkerstorfer, Eds., Verlag der Technischen Universität
Graz, p. 45–51.

BIBLIOGRAPHY 141

[77] Knichel, D., Sasdrich, P., and Moradi, A. SILVER - statistical
independence and leakage verification. IACR Cryptol. ePrint Arch. 2020
(2020), 634.

[78] Knudsen, J. Nangate 45nm open cell library. In 12th Si2/OpenAccess+
Conference (2008).

[79] Koblitz, N. Elliptic curve cryptosystems. Mathematics of Computation
48, 177 (1987), 203–209.

[80] Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz,
M., and Yarom, Y. Spectre attacks: Exploiting speculative execution.
In 40th IEEE Symposium on Security and Privacy (S&P’19) (2019).

[81] Kocher, P. C. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Advances in Cryptology - CRYPTO ’96 (1996),
N. Koblitz, Ed., vol. 1109 of LNCS, Springer, pp. 104–113.

[82] Kocher, P. C., Jaffe, J., and Jun, B. Differential power analysis.
In Advances in Cryptology - CRYPTO ’99 (1999), M. J. Wiener, Ed.,
vol. 1666 of LNCS, Springer, pp. 388–397.

[83] Krovetz, T., and Rogaway, P. The OCB Authenticated-Encryption
Algorithm. RFC 7253, May 2014.

[84] Leiserson, A. J., Marson, M. E., and Wachs, M. A. Gate-level
masking under a path-based leakage metric. In Cryptographic Hardware
and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings (2014), L. Batina
and M. Robshaw, Eds., vol. 8731 of Lecture Notes in Computer Science,
Springer, pp. 580–597.

[85] Leiserson, C. E., Rose, F. M., and Saxe, J. B. Optimizing
synchronous circuitry by retiming (preliminary version). In Third Caltech
Conference on Very Large Scale Integration (Berlin, Heidelberg, 1983),
R. Bryant, Ed., Springer Berlin Heidelberg, pp. 87–116.

[86] Levi, I., Bellizia, D., and Standaert, F. Reducing a masked
implementation’s effective security order with setup manipulations and
an explanation based on externally-amplified couplings. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019, 2 (2019), 293–317.

[87] Li, Y., Ohta, K., and Sakiyama, K. Toward effective countermeasures
against an improved fault sensitivity analysis. IEICE Transactions 95-A,
1 (2012), 234–241.

142 BIBLIOGRAPHY

[88] Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J.,
and Ohta, K. Fault sensitivity analysis. In CHES (2010), vol. 6225 of
Lecture Notes in Computer Science, Springer, pp. 320–334.

[89] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh,
A., Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,
and Hamburg, M. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18) (2018).

[90] Macé, F., Standaert, F., and Quisquater, J. Information theoretic
evaluation of side-channel resistant logic styles. In Cryptographic
Hardware and Embedded Systems - CHES 2007 (2007), P. Paillier and
I. Verbauwhede, Eds., vol. 4727 of LNCS, Springer, pp. 427–442.

[91] Mangard, S., Oswald, E., and Popp, T. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security).
Springer-Verlag, Berlin, Heidelberg, 2007.

[92] Mangard, S., Popp, T., and Gammel, B. M. Side-channel leakage of
masked CMOS gates. In Topics in Cryptology – CT-RSA 2005 (Berlin,
Heidelberg, 2005), A. Menezes, Ed., Springer Berlin Heidelberg, pp. 351–
365.

[93] Marin, E., Singelée, D., Yang, B., Verbauwhede, I., and
Preneel, B. On the feasibility of cryptography for a wireless insulin
pump system. In Proceedings of the Sixth ACM on Conference on Data
and Application Security and Privacy, CODASPY 2016, New Orleans, LA,
USA, March 9-11, 2016 (2016), E. Bertino, R. Sandhu, and A. Pretschner,
Eds., ACM, pp. 113–120.

[94] McCann, D., Whitnall, C., and Oswald, E. ELMO: emulating
leaks for the ARM cortex-m0 without access to a side channel lab. IACR
Cryptol. ePrint Arch. 2016 (2016), 517.

[95] McGrew, D. A., and Viega, J. The security and performance of
the galois/counter mode (gcm) of operation. In Progress in Cryptology
- INDOCRYPT 2004 (Berlin, Heidelberg, 2005), A. Canteaut and
K. Viswanathan, Eds., Springer Berlin Heidelberg, pp. 343–355.

[96] Menezes, A., and Vanstone, S. A. Elliptic curve cryptosystems and
their implementations. J. Cryptology 6, 4 (1993), 209–224.

[97] Menezes, A. J., Vanstone, S. A., and Oorschot, P. C. V. Handbook
of Applied Cryptography, 1st ed. CRC Press, Inc., Boca Raton, FL, USA,
1996.

BIBLIOGRAPHY 143

[98] Miller, C., and Valasek, C. Adventures in automotive networks and
control units. In Defcon 21, USA (2013).

[99] Miller, C., and Valasek, C. Remote exploitation of an unaltered
passenger vehicle. In Black Hat, USA (2015).

[100] Miller, V. S. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings (1985), H. C. Williams, Ed., vol. 218 of Lecture
Notes in Computer Science, Springer, pp. 417–426.

[101] Mischke, O., Moradi, A., and Güneysu, T. Fault sensitivity analysis
meets zero-value attack. In FDTC (2014), IEEE Computer Society,
pp. 59–67.

[102] Moll, F., Roca, M., and Isern, E. Analysis of dissipation energy
of switching digital CMOS gates with coupled outputs. Microelectronics
Journal 34, 9 (2003), 833 – 842.

[103] Moos, T. Static power SCA of sub-100 nm CMOS asics and the insecurity
of masking schemes in low-noise environments. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019, 3 (2019), 202–232.

[104] Moos, T., Moradi, A., and Richter, B. Static power side-channel
analysis - an investigation of measurement factors. IEEE Trans. Very
Large Scale Integr. Syst. 28, 2 (2020), 376–389.

[105] Moradi, A. Side-channel leakage through static power - should we
care about in practice? In Cryptographic Hardware and Embedded
Systems - CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings (2014), L. Batina and M. Robshaw,
Eds., vol. 8731 of Lecture Notes in Computer Science, Springer, pp. 562–
579.

[106] Moradi, A., Mischke, O., and Paar, C. One attack to rule them
all: Collision timing attack versus 42 AES ASIC cores. IEEE Trans.
Computers 62, 9 (2013), 1786–1798.

[107] Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., and
Sakiyama, K. On the power of fault sensitivity analysis and collision
side-channel attacks in a combined setting. In CHES (2011), vol. 6917 of
Lecture Notes in Computer Science, Springer, pp. 292–311.

[108] Moradi, A., Richter, B., Schneider, T., and Standaert, F.
Leakage detection with the x2-test. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018, 1 (2018), 209–237.

144 BIBLIOGRAPHY

[109] Moradi, A., Salmasizadeh, M., Shalmani, M. T. M., and
Eisenbarth, T. Vulnerability modeling of cryptographic hardware
to power analysis attacks. Integration, the VLSI Journal 42, 4 (2009),
468 – 478.

[110] Motassadeq, T. E. Ccs vs nldm comparison based on a complete
automated correlation flow between primetime and hspice. In 2011 Saudi
International Electronics, Communications and Photonics Conference
(SIECPC) (2011), pp. 1–5.

[111] National Institute of Standards and Technology. FIPS PUB
180-4: Secure Hash Standard. Federal Inf. Process. Stds. (NIST FIPS),
Aug. 2015. Supersedes FIPS PUB 180 2012 March 6.

[112] Nikova, S., Rechberger, C., and Rijmen, V. Threshold
implementations against side-channel attacks and glitches. In ICICS
(2006), vol. 4307 of Lecture Notes in Computer Science, Springer, pp. 529–
545.

[113] Nikova, S., Rijmen, V., and Schläffer, M. Secure hardware
implementation of nonlinear functions in the presence of glitches. J.
Cryptology 24, 2 (2011), 292–321.

[114] Noorman, J., Bulck, J. V., Mühlberg, J. T., Piessens, F., Maene,
P., Preneel, B., Verbauwhede, I., Götzfried, J., Müller, T.,
and Freiling, F. C. Sancus 2.0: A low-cost security architecture for iot
devices. ACM Trans. Priv. Secur. 20, 3 (2017), 7:1–7:33.

[115] Oswald, D., and Paar, C. Breaking mifare desfire MF3ICD40: power
analysis and templates in the real world. In Cryptographic Hardware and
Embedded Systems - CHES 2011 (2011), B. Preneel and T. Takagi, Eds.,
vol. 6917 of LNCS, Springer, pp. 207–222.

[116] Popp, T., Kirschbaum, M., Zefferer, T., and Mangard, S.
Evaluation of the masked logic style mdpl on a prototype chip. In
Cryptographic Hardware and Embedded Systems - CHES 2007 (Berlin,
Heidelberg, 2007), P. Paillier and I. Verbauwhede, Eds., Springer Berlin
Heidelberg, pp. 81–94.

[117] Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., and
Ling, S. Side-channel resistant crypto for less than 2, 300 GE. J.
Cryptology 24, 2 (2011), 322–345.

[118] Pozo, S. M. D., Standaert, F., Kamel, D., and Moradi, A. Side-
channel attacks from static power: when should we care? In Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition,

BIBLIOGRAPHY 145

DATE 2015, Grenoble, France, March 9-13, 2015 (2015), W. Nebel and
D. Atienza, Eds., ACM, pp. 145–150.

[119] Quisquater, J., and Samyde, D. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In E-smart (2001),
vol. 2140 of Lecture Notes in Computer Science, Springer, pp. 200–210.

[120] Rabaey, J. M., Chandrakasan, A., and Nikolić, B. Digital
Integrated Circuits, 3rd ed. Prentice Hall Press, USA, 2008.

[121] Regazzoni, F., Cevrero, A., Standaert, F., Badel, S., Kluter,
T., Brisk, P., Leblebici, Y., and Ienne, P. A design flow and
evaluation framework for DPA-resistant instruction set extensions. In
Cryptographic Hardware and Embedded Systems - CHES 2009 (2009),
C. Clavier and K. Gaj, Eds., vol. 5747 of LNCS, Springer, pp. 205–219.

[122] Reparaz, O. Detecting flawed masking schemes with leakage detection
tests. In Fast Software Encryption - FSE 2016 (2016), T. Peyrin, Ed.,
vol. 9783 of LNCS, Springer, pp. 204–222.

[123] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., and
Verbauwhede, I. Consolidating masking schemes. In Advances in
Cryptology - CRYPTO 2015 (2015), R. Gennaro and M. Robshaw, Eds.,
vol. 9215 of LNCS, Springer, pp. 764–783.

[124] Reparaz, O., Gierlichs, B., and Verbauwhede, I. Fast leakage
assessment. In Cryptographic Hardware and Embedded Systems - CHES
2017 (2017), W. Fischer and N. Homma, Eds., vol. 10529 of LNCS,
Springer, pp. 387–399.

[125] Rivain, M., and Prouff, E. Provably secure higher-order masking
of AES. In Cryptographic Hardware and Embedded Systems, CHES
2010 (Berlin, Heidelberg, 2010), S. Mangard and F.-X. Standaert, Eds.,
Springer Berlin Heidelberg, pp. 413–427.

[126] Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM 21, 2
(Feb. 1978), 120–126.

[127] Rogaway, P. Authenticated-encryption with associated-data. In
Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, Washington, DC, USA, November 18-22, 2002 (2002),
V. Atluri, Ed., ACM, pp. 98–107.

[128] Ronen, E., Shamir, A., Weingarten, A., and O’Flynn, C. IoT
goes nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium
on Security and Privacy (SP) (2017), pp. 195–212.

146 BIBLIOGRAPHY

[129] Sasdrich, P., Bilgin, B., Hutter, M., and Marson, M. E. Low-
latency hardware masking with application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2 (2020), 300–326.

[130] Schellenberg, F., Finkeldey, M., Gerhardt, N., Hofmann, M.,
Moradi, A., and Paar, C. Large laser spots and fault sensitivity
analysis. In HOST (2016), IEEE Computer Society, pp. 203–208.

[131] Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., and
Seifert, J.-P. Simple photonic emission analysis of AES. In
Cryptographic Hardware and Embedded Systems – CHES 2012 (Berlin,
Heidelberg, 2012), E. Prouff and P. Schaumont, Eds., Springer Berlin
Heidelberg, pp. 41–57.

[132] Schneider, T., and Moradi, A. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Cryptographic Hardware and
Embedded Systems - CHES 2015 (2015), T. Güneysu and H. Handschuh,
Eds., vol. 9293 of LNCS, Springer, pp. 495–513.

[133] Schneider, T., Moradi, A., and Güneysu, T. Parti - towards
combined hardware countermeasures against side-channel and fault-
injection attacks. In CRYPTO (2) (2016), vol. 9815 of Lecture Notes in
Computer Science, Springer, pp. 302–332.

[134] Shamir, A. Protecting smart cards from passive power analysis with
detached power supplies. In Cryptographic Hardware and Embedded
Systems — CHES 2000 (Berlin, Heidelberg, 2000), Ç. K. Koç and C. Paar,
Eds., Springer Berlin Heidelberg, pp. 71–77.

[135] Shor, P. W. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science (1994), pp. 124–134.

[136] Standaert, F. How (not) to use Welch’s t-test in side-channel security
evaluations. In Smart Card Research and Advanced Applications, 17th
International Conference, CARDIS 2018, Montpellier, France, November
12-14, 2018, Revised Selected Papers (2018), B. Bilgin and J. Fischer, Eds.,
vol. 11389 of Lecture Notes in Computer Science, Springer, pp. 65–79.

[137] Standaert, F., Malkin, T., and Yung, M. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in
Cryptology - EUROCRYPT 2009 (2009), A. Joux, Ed., vol. 5479 of LNCS,
Springer, pp. 443–461.

[138] Statista. Statista dossier about the Internet of Things (IOT). Accessed
October, 2019.

BIBLIOGRAPHY 147

[139] Tao, B., and Wu, H. Improving the biclique cryptanalysis of AES. In
Information Security and Privacy (Cham, 2015), E. Foo and D. Stebila,
Eds., Springer International Publishing, pp. 39–56.

[140] Tehranipoor, M., and Koushanfar, F. A survey of hardware Trojan
taxonomy and detection. IEEE Design Test of Computers 27, 1 (2010),
10–25.

[141] Tiri, K., Akmal, M., and Verbauwhede, I. A dynamic and
differential CMOS logic with signal independent power consumption
to withstand differential power analysis on smart cards. In Proceedings of
the 28th European Solid-State Circuits Conference (2002), pp. 403–406.

[142] Tiri, K., and Verbauwhede, I. A logic level design methodology
for a secure DPA resistant ASIC or FPGA implementation. In Design,
Automation and Test in Europe - DATE 2004) (2004), IEEE Computer
Society, pp. 246–251.

[143] Tiri, K., and Verbauwhede, I. Simulation models for side-channel
information leaks. In Design Automation Conference - DAC 2005 (2005),
W. H. J. Jr., G. Martin, and A. B. Kahng, Eds., ACM, pp. 228–233.

[144] Tiri, K., and Verbauwhede, I. A VLSI design flow for secure side-
channel attack resistant ICs. In Design, Automation and Test in Europe
(March 2005), pp. 58–63 Vol. 3.

[145] Tiri, K., and Verbauwhede, I. A digital design flow for secure
integrated circuits. IEEE Trans. on CAD of Integrated Circuits and
Systems 25, 7 (2006), 1197–1208.

[146] Trichina, E. Combinational Logic Design for AES SubByte
Transformation on Masked Data. Cryptology ePrint Archive, Report
2003/236, 2003.

[147] Wanlass, F., and Sah, C. Nanowatt logic using field-effect metal-oxide
semiconductor triodes. In 1963 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (1963), vol. VI, pp. 32–33.

[148] Wegener, F., and Moradi, A. A first-order sca resistant AES without
fresh randomness. Cryptology ePrint Archive, Report 2018/172, 2018.

[149] Wei Zhao, and Yu Cao. New generation of predictive technology
model for sub-45nm design exploration. In 7th International Symposium
on Quality Electronic Design (ISQED’06) (March 2006), pp. 6 pp.–590.

[150] Wu, H., and Preneel, B. Aegis: A fast authenticated encryption
algorithm. Cryptology ePrint Archive, Report 2013/695, 2013.

148 BIBLIOGRAPHY

[151] Zussa, L., Exurville, I., Dutertre, J.-M., Rigaud, J.-B.,
Robisson, B., Tria, A., and Clédière, J. Evidence of an information
leakage between logically independent blocks. In Proceedings of the Second
Workshop on Cryptography and Security in Computing Systems (2015),
CS2 ’15, pp. 25:25–25:30.

List of publications

[152] T. Ashur, R. Posteuca, D. Šijačić, and S. D’haeseleer, “Generalized
Matsui algorithm 1 with application for the full DES,” in Security and
Cryptography for Networks, C. Galdi and V. Kolesnikov, Eds. Cham:
Springer International Publishing, 2020, pp. 448–467.

[153] D. Šijačić, J. Balasch, B. Yang, S. Ghosh, and I. Verbauwhede, “Towards
efficient and automated side-channel evaluations at design time,” Journal
of Cryptographic Engineering, p. 15, 2020.

[154] D. Šijačić, J. Balasch, and I. Verbauwhede, “Sweeping for leakage in
masked circuit layouts,” in 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 915–920.

[155] D. Šijačić, J. Balasch, B. Yang, S. Ghosh, and I. Verbauwhede,
“Towards efficient and automated side channel evaluations at design
time,” in PROOFS 2018, 7th International Workshop on Security Proofs
for Embedded Systems, colocated with CHES 2018, Amsterdam, The
Netherlands, September 13, 2018, ser. Kalpa Publications in Computing,
L. Batina, U. Kühne, and N. Mentens, Eds., vol. 7. EasyChair, 2018, pp.
16–31.

[156] V. Arribas, T. De Cnudde, and D. Šijačić, “Glitch-resistant masking
schemes as countermeasure against fault sensitivity analysis,” in 2018
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
2018, pp. 27–34.

[157] D. Šijačić, A. B. Kidmose, B. Yang, S. Banik, B. Bilgin, A. Bogdanov,
and I. Verbauwhede, “Hold your breath, PRIMATEs are lightweight,” in
Selected Areas in Cryptography – SAC 2016, R. Avanzi and H. Heys, Eds.
Cham: Springer International Publishing, 2017, pp. 197–216.

[158] S. Picek, D. Sisejkovic, D. Jakobovic, L. Batina, B. Yang, D. Šijačić,
and N. Mentens, “Extreme pipelining towards the best area-performance

149

150 BIBLIOGRAPHY

trade-off in hardware,” in Progress in Cryptology - AFRICACRYPT 2016
- 8th International Conference on Cryptology in Africa, Fes, Morocco,
April 13-15, 2016, Proceedings, ser. Lecture Notes in Computer Science,
D. Pointcheval, A. Nitaj, and T. Rachidi, Eds., vol. 9646. Springer, 2016,
pp. 147–166.

Appendix A

Data Formats

In this short chapter we present the specification of the two data formats
designed in this thesis. Both formats are designed to support efficient and
automated SCA evaluations. This is a form of vertical integration, as they can
embed design and evaluation decisions. They are optimized for performance.
However, if a larger flexibility is needed we recommend using the Hierarchical
Data Format (HDF5).

We represent the data formats using a C-like pseudo code. Variable length
vectors, denoted using data_type elements<n>; are encoded as uint64 n;
data_type *elements;.

Power Frame File (PFF) described in Listing A.1 is the custom binary used for
storing parsed traces.

Listing A.1: Power Frame File encoding
struct PFF {

frame_type type;
uint32 frame_period;
uint64 max_events_in_frame;
TaggedField extras<n>;
Frame frames<n_frames >;

}

Tagged fields, described in Listing A.2 can be used to embed the communication
between the tools. For example, a tagged field can be used to instruct an
analyzer to reconstruct the frame data as a MSM or as a rectangular waveform
produced by PT.

151

152 DATA FORMATS

Listing A.2: Tagged field encoding.
struct TaggedField { // Extended functionality.

uint16 tag;
uint08 encoded<n_bytes>

}

Each PFF can store frames of a single type, denoted by type type field.
Frame structure is described in Listing A.3, along with the type encodings in
Listing A.4.

Listing A.3: Frame encoding.
struct Frame {

DataVector data<n_data >;
switch (type) {

uint32 time_samples <n_events >;
case UI32FL32: // Default for simulations.

float32 values<n_events >;
;

case UI32FL64:
float64 values<n_events >;
;

case UI32UI08:
uint08 values<n_events >;
;

case UI32UI16:
uint16 values<n_events >;
;

}
}

Listing A.4: Frame type encodings.
typedef enumerate { // X-axis type, Y-axis type

UI32FL32 = 0x00,
UI32FL64 = 0x01,
UI32UI08 = 0x08,
UI32UI16 = 0x09

} frame_type;

Data vectors are variable length byte vectors, described in Listing A.5.

Listing A.5: Data vector encoding.
struct DataVector {

uint08 bytes<n_bytes >;
}

DATA FORMATS 153

Analyzers input PFF files and output Analyzed Frame Data (AFD) files,
described in Listing A.6. Similarly to the PFF files, a number of tagged fields
can be used to alter the behavior, e.g. output formatting or additional processing
such as adding gaussian noise. Context of any analyzer can be encoded and
stored in case more traces need to be added to the computation. As PFF files
store traces from all inputs in the same time-value format, desired waveform
after the reconstruction has to be communicated to the analyzers—either
through a command line argument or via a tagged field in the PFF file. While
we mostly use the AFD files for storing and visualizing results of the analysis,
such an encoding schemes is intended to minimize the amount of human error.

Listing A.6: Analyzed Frame Data encoding.
struct AFD {

TaggedField extras<n>;
AnalyzerContext context; // Analyzer -dependent.
waveform_type waveform; // Reconstruction.
float64 x_resolution;
float64 y_resolution;

}

Encodings for the waveform reconstruction functions are given in Listing A.7

Listing A.7: Frame type encodings.
typedef enumerate { // X-axis type, Y-axis type

MSM = 0x00, // Marching sticks
REC = 0x01, // Rectangular waveform
PWL = 0x08, // Piece-wise linear
ANA = 0xff // Analog waveform

} waveform_type;

Lastly, we give an example of an analyzer context, in particular the third-order
TVLA in Listing A.8.

Listing A.8: Third-order TVLA analyzer context.
struct CtxTvla1 {

uint64 n_samples;
uint64 n_epochs;
EpochTvla1 epochs[n_epochs];

}

Multiple epochs can be stored for acquiring the evolution traces. Format of an
epoch for the third-order TVLA is described in Listing A.9.

Listing A.9: Third-order TVLA analyzer epoch.

154 DATA FORMATS

struct EpochTvla1 {
// Set 0
uint64 n_0; // Number of traces
float64 mean_0[n_samples];
float64 cs2_0[n_samples];
float64 cs3_0[n_samples];
float64 cs4_0[n_samples];
float64 cs5_0[n_samples];
float64 cs6_0[n_samples];
// Set 1
uint64 n_1; // Number of traces
float64 mean_1[n_samples];
float64 cs2_1[n_samples];
float64 cs3_1[n_samples];
float64 cs4_1[n_samples];
float64 cs5_1[n_samples];
float64 cs6_1[n_samples];

}

Here, each “cs” field is a non-normalized central moment as defined in [132].

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COSIC
Kasteelpark Arenberg 10, box 2452

B-3001 Leuven

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Dependability and Device Lifecycle
	Security and Cryptography
	Grey-Box Security Model

	About This Dissertation

	Background
	Standard-Cell ASIC Design Flow
	Design Stages
	Contemporary EDA Tools and Data Formats
	Standard CMOS Cells and Library Characterization

	Physical Attacks
	Side-Channel Analysis
	Attack Techniques
	Countermeasures
	Side-Channel Security Metrics

	Conclusions

	SCA-Aware Standard-Cell ASIC Hardware Design Flow
	Motivation
	Related Work
	Contributions
	SCA-Aware Extensions to the Standard-Cell ASIC Design Flow
	The Preferred Side-Channel
	The Systematic Use of Simulations
	SCA Evaluation Methods
	Simulation Models
	Simulation Methodology

	Computer-Aided Side-Channel Analysis Design Environment (CASCADE)
	Experimental Validation
	A Motivating Example
	Protected S-Boxes

	Discussion
	Utility to the Designer
	Models and Countermeasures
	On the Importance of Design Constraints
	Performance

	Conclusions

	Evaluating Glitch-Resistant Masking Schemes Against Fault Sensitivity Analysis
	Motivation
	Related Work
	Contributions
	Fault Sensitivity Analysis
	Attack phases

	Glitch-Resistant Masking Schemes as a FSA Countermeasure
	Propagation Delay of Non-Complete Shares

	Experiments
	Profiling Phase
	Key Recovery Phase
	Present S-Box
	Keccak S-Box

	Conclusions
	Follow-up Work

	Investigating the Impact of Layout Parasitics on Masked Circuits
	Motivation
	Related Work
	Contributions
	Methodology
	SPICE Model
	Target Circuits
	Security Metric

	Experimental Results
	Impacts of PDN
	Effects of Coupling Capacitances

	Discussion
	Impacts of the PDN
	Impacts of Coupling Capacitances

	Conclusions

	Conclusions and Insights for Future Research
	Conclusions
	Future Research Directions

	Bibliography
	Data Formats

