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Abstract 21 

Computational modelling is an invaluable tool for investigating features of human locomotion 22 

and motor control which cannot be measured except through invasive techniques. Recent 23 

research has focussed on creating personalised musculoskeletal models using population-based 24 

morphing or directly from medical imaging. Although progress has been made, robust 25 

definition of two critical model parameters remains challenging: (i) complete tibiofemoral (TF) 26 

and patellofemoral (PF) joint motions, and (ii) muscle tendon unit (MTU) pathways and 27 

kinematics (i.e., lengths and moment arms). The aim of this study was to develop an automated 28 

framework, using population-based morphing approaches to create personalised 29 

musculoskeletal models, consisting of personalised bone geometries, TF and PF joint 30 

mechanisms, and MTU pathways and kinematics. Informed from medical imaging, 31 

personalised rigid body TF and PF joint mechanisms were created. Using atlas- and 32 

optimisation-based methods, personalised MTU pathways and kinematics were created with 33 

the aim of preventing MTU penetration into bones and achieving smooth MTU kinematics that 34 

follow patterns from existing literature. This framework was integrated into the 35 

Musculoskeletal Atlas Project Client software package to create and optimise models for 6 36 

participants with incrementally increasing levels of personalisation with the aim of improving 37 

MTU kinematics and pathways. Three comparisons were made: (i) non-optimised (Model 1) 38 

and optimised models (Model 3) with generic joint mechanisms; (ii) non-optimised (Model 2) 39 

and optimised models (Model 4) with personalised joint mechanisms; and (iii) both optimised 40 

(Model 3 and 4) models. Following optimisation, improvements were consistently shown in 41 

pattern similarity to cadaveric data in comparison i and ii. For comparison iii, a number of 42 

comparisons showed no significant difference between the two compared models. Importantly, 43 

optimisation did not produce statistically significantly worse results in any case.  44 



Introduction 45 

Computational models of the human musculoskeletal system enable researchers to study 46 

internal biomechanics without invasive and expensive experiments. Rigid body 47 

musculoskeletal modelling tools, e.g., AnyBody Modeling Software AnyBody (AnyBody 48 

Technology, Aalborg, Denmark) and OpenSim (Delp et al. 2007; Seth et al. 2018) have been 49 

used to study a wide range of sport, health, and industrial questions, and used to estimate 50 

internal body mechanics such as muscle tendon unit (MTU) and joint contact forces during 51 

daily activities (Winby et al. 2009; Ackland et al. 2011; Cleather and Bull 2011; Guess et al. 52 

2014; Saxby et al. 2016; Konrath et al. 2017; Andersen 2018; Modenese et al. 2018). Typically, 53 

generic models of bone geometries and MTU pathways are used but are unlikely to reflect 54 

individual anatomy even when carefully scaled (Kainz et al. 2017; Davico et al. 2020a). 55 

Linearly scaled models may not well represent MTU moment arms, producing almost identical 56 

values across subjects despite measured differences in cadavers (Fick 1879; Draganich et al. 57 

1987; Visser et al. 1990; Spoor and van Leeuwen 1992; Buford et al. 1997; Pal et al. 2007; 58 

Wilson and Sheehan 2009; Arnold et al. 2010; Navacchia et al. 2017). Further, these generic 59 

models typically contain tibiofemoral (TFJ) and patellofemoral joints (PFJ) that do not permit 60 

6 degree of freedom (DOF) e.g., setting abduction/adduction and internal/external rotation to 61 

0. Consequently, these models may be inappropriate to accurately estimate common 62 

tibiofemoral variables from movement simulations (Gerus et al. 2013; Demers et al. 2014; 63 

Lerner et al. 2015). To overcome these limitations, personalised models can be used. 64 

Numerous features within musculoskeletal models can be personalised, including bone 65 

geometry, segment mass and inertia, joint anatomy and kinematics, and MTU internal 66 

parameters and pathways (Saxby et al. 2020). Previous research has shown the inclusion of 67 

personalised features has a significant effect on tibiofemoral variables from simulations (e.g., 68 

joint moments (Reinbolt et al. 2007), and contact loading (Gerus et al. 2013; Lerner et al. 69 

2015)). Although several studies have presented methods to include personalised skeletal 70 

anatomy (Scheys et al. 2009; Wesseling et al. 2016; Valente et al. 2017; Modenese et al. 2018), 71 

and joint kinematic functions (Sancisi and Parenti-Castelli 2011a, b; Brito da Luz et al. 2017; 72 

Dzialo et al. 2018; Barzan et al. 2019; Smale et al. 2019), few studies have reported methods 73 

to define MTU pathways (Scheys et al. 2009; Nolte et al. 2016; Modenese et al. 2018; 74 

Modenese and Kohout 2020) in models with personalised bone geometry, joint anatomy, and 75 

joint kinematics. Many personalisation methods are reliant on human user input with few 76 



comparisons made with, for example, cadaveric MTU kinematics, i.e., lengths and moment 77 

arms. 78 

Creating personalised high-fidelity musculoskeletal models entails collecting extensive sets of 79 

medical imaging. Statistical shape modelling permit population-based morphing from motion 80 

capture (MOCAP) data, or combined with minimal medical images (Zhang et al. 2014, 2016; 81 

Nolte et al. 2016, 2020; Bahl et al. 2019; Suwarganda et al. 2019; Bakke and Besier 2020; 82 

Davico et al. 2020a). These approaches have been implemented in the Musculoskeletal Atlas 83 

Project (MAP) Client (Zhang et al. 2014) that, compared to linear scaling are able to morph 84 

and create OpenSim models that accurately produce anatomical reconstruction (Zhang et al. 85 

2016; Bahl et al. 2019; Suwarganda et al. 2019; Davico et al. 2020a), which in turn produce 86 

improved simulation repeatability (Bakke and Besier 2020). However, automatic generation of 87 

MTU pathways from morphed data i.e., without the need for explicit muscle imaging, is 88 

undefined.  89 

Hence, this paper presents a framework built atop the MAP-Client (Zhang et al. 2014) that 90 

automates the creation and tuning of personalised OpenSim musculoskeletal models with 91 

particular focus on the TFJ. Steps used to create these models are designed to automatically 92 

perform tasks typically performed manually, constrained by algorithms to mimic manual 93 

checks. These manual checks include ensuring MTU do not penetrate bone surfaces and MTU 94 

kinematics follow available data, i.e., measured lengths and moment arms. They also include 95 

checks that MTU perform the correct action i.e., extensor muscles produce an extension 96 

moment, which we refer to as MTU polarity. Personalised features include bone geometries, 97 

joint axes definitions, TFJ and PFJ kinematic mechanisms, MTU origins and insertions points, 98 

and intermediate pathways of selected TFJ spanning MTUs. The MAP- Client, along with the 99 

developed open-source software, was used to generate four OpenSim models with different 100 

levels of personalisation, which were then implemented and tested with the following three 101 

hypotheses. First (H1) optimisation of MTU wrapping surfaces would improve similarity of 102 

MTU kinematics with those reported in literature. Second (H2), wrapping surface optimisation 103 

would prevent MTU penetrating bones and MTU polarity errors. Third (H3), optimisation of 104 

MTU wrapping surfaces would improve MTU length and moment arm smoothness. Finally, 105 

(H4) models with optimised MTU wrapping surfaces and personalised TFJ and PFJ 106 

mechanisms would produce more physiological MTU kinematics (i.e., prevent MTU 107 

penetrating bones and MTU polarity error, and improve MTU length and moment arm 108 

smoothness) compared to models with optimised MTU wrapping surfaces but generic TFJ and 109 

PFJ mechanisms. 110 



Methods 111 

Motion capture and magnetic resonance imaging 112 

Data were collected at Griffith University as part of an ongoing project (PES/36/10/HREC). 113 

Six participants were selected from a larger cohort to span the age, height, and mass range 114 

(Table 1). Participants had no history of musculoskeletal injury, trauma, or lower-limb 115 

surgeries. Each participant provided their written and informed consent prior to undergoing 116 

comprehensive MOCAP and medical imaging. Three-dimensional (3D) marker positions 117 

during a static calibration trial were converted from standard MOCAP (i.e., c3d) to OpenSim 118 

(trc) format using MOtoNMS (Mantoan et al. 2015) for use in the MAP-Client. 119 

 120 

[Table 1] 121 

Each participant underwent lower-limb magnetic resonance imaging (MRI) at a local radiology 122 

clinic (QScan Southport, QLD, Australia) performed on the same or preceding day as MOCAP. 123 

Axial T1-weighted 3D fast field echo sequences were acquired bilaterally from above the iliac 124 

crest to below the toes, while the participant lay supine in a 3 T MRI scanner (Philips Medical 125 

Systems, Netherlands). Images were acquired using a body coil in 5 stations, ~245 slices per 126 

station, 10 mm inter-station overlap throughout, 1 mm slice thickness, and 1 mm inter-slice 127 

gap with a voxel size of 0.79 mm3 and field of view of 446 mm x 446 mm. 128 

The pelvis (excluding sacrum), femur, tibia-fibula, and patella were segmented using Mimics 129 

v19 (Materialise, Leuven, Belgium). Dedicated TFJ and PFJ scans were also acquired from a 130 

randomised limb (Table 1). Joint scans were comprised of 3D proton density 16 channel 131 

sequences acquired from mid-thigh to below the tibial tuberosity. Images were acquired in one 132 

station (~440 slices) with 0.6 mm slice thickness, and 0.3 mm inter-slice gap with a voxel size 133 

of 0.79 mm3 and field of view of 446 mm x 446 mm. Images were used to segment the distal 134 

femur, proximal tibia, and patella bones as well as femoral, tibial, and patella cartilages, and 135 

anterior cruciate, posterior cruciate, and medial collateral ligament attachment regions. 136 

Creating personalised OpenSim models 137 

Four OpenSim models (Table 2) with incremental levels of personalisation were created. 138 

Models were compared based on their performance in producing MTU kinematics that were 139 

both physiologically and anatomically plausible (see below and Appendix 2). Briefly, 140 

physiologically plausible kinematics refer to kinematics that are smooth and follow the patterns 141 

of previously published measurements taken from cadavers (Fick 1879; Draganich et al. 1987; 142 



Visser et al. 1990; Spoor and van Leeuwen 1992; Buford et al. 1997; Pal et al. 2007; Wilson 143 

and Sheehan 2009; Arnold et al. 2010; Navacchia et al. 2017). Anatomically plausible refers 144 

to MTU which do not penetrate bones or produce non-physical pathways (i.e., circumferential 145 

loop of wrapping surface). 146 

Personalised OpenSim model creation 147 

Models were created using the MAP-Client by combining MOCAP and MRI (Zhang et al. 148 

2016). The MAP-Client uses a graphical interface along with different geometry fitting 149 

methods to reconstruct (Bahl et al. 2019; Suwarganda et al. 2019; Davico et al. 2020a) certain 150 

bones of the lower-limb (i.e., pelvis, femur, tibia, fibula, and patella). Briefly, marker positions 151 

acquired in MOCAP were used to scale a model containing statistical shape models (SSM) of 152 

the pelvis, femur, tibia, fibula, and patella. Scaled SSM were then registered to MRI bone 153 

segmentation using an iterative closest point method. Registered SSM was then morphed using 154 

host-mesh fitting to closely match MRI segmentations. Finally, a point-to-point (i.e., local) 155 

morphing was used to refine the morphed SSM to match the MRI segmentation. This 156 

previously validated process (Suwarganda et al. 2019) was completed for each bone, these 157 

morphed bones were then used to create personalised OpenSim models. 158 

Personalised OpenSim models are in fact generic OpenSim models (Delp et al. 2007) with 159 

personalised bone geometries, joint positions, body mass, and inertial properties (Zhang et al. 160 

2014, 2016). Only the pelvis, femur, tibia, fibula, and patella were personalised, while the 161 

ankle-foot was scaled isotopically as the MAP-Client is yet to support a statistical shape model 162 

of the foot-ankle complex. 163 

Defining the muscle-tendon unit pathway 164 

The MTU origin and insertion points were defined (Zhang et al. 2014, 2016) using a template 165 

based model, i.e., the SOMSO (Marcus Sommer SOMSO Modelle, Sonneberg, Germany). The 166 

SOMSO is a physical model used for anatomy education and contains a collection of lower-167 

limb bones with their associated MTU attachment regions. On the SOMSO model several 168 

prominent bone sites and centroids of the MTU attachment regions were digitised. Using bone 169 

sites, MTU attachment centroids were projected to the closest node onto MAP-Client generated 170 

bones equivalent to the SOMSO bones. Subsequently, these centroids were used to define MTU 171 

origin and insertion points. 172 

To generate MTU pathways, the MAP-Client used both fixed and conditional via points 173 

consistent with the generic model. However, via points often introduce discontinuities in MTU 174 



kinematics (Garner and Pandy 2000; Hammer et al. 2019) and non-physiological muscle shapes 175 

(Appendix 1). To overcome these limitations and ensure consistency with recent OpenSim 176 

models (Arnold et al. 2010; Rajagopal et al. 2016; Catelli et al. 2019), wrapping surfaces were 177 

implemented. 178 

Wrapping surface parameters, i.e., location, orientations, and dimensions, were based on 179 

analytical shapes fit to bone regions and the position of MTU path points. Wrapping surface 180 

parameters were automatically defined using the MAP-Client and compared with the Fullbody 181 

Model (Rajagopal et al. 2016). However, this approach does not guarantee MTU kinematics 182 

(i.e., lengths and moment arms) that were physiologically and anatomically plausible and 183 

required further optimisation. 184 

Optimisation of the wrapping surfaces  geometric parameters was performed to produce 185 

physiologically plausible MTU kinematics and anatomically plausible MTU pathways. The 186 

optimisation used pyswarm (A Python package for particle swarm optimization (PSO) with 187 

constraint support, Abraham D. Lee, https://pythonhosted.org/pyswarm/) with two objective 188 

and three penalty custom functions (See Appendix 2 for detailed explanations). Previous 189 

studies have reported differences between cadaveric specimens in terms of the magnitude of 190 

MTU kinematics  (Fick 1879; Draganich et al. 1987; Visser et al. 1990; Spoor and van Leeuwen 191 

1992; Buford et al. 1997; Pal et al. 2007; Wilson and Sheehan 2009; Arnold et al. 2010; 192 

Navacchia et al. 2017). Therefore, the first objective, termed normalised gradient error, 193 

encouraged tracking of the cadaveric literature based on MTU kinematic patterns, rather than 194 

absolute magnitudes, using normalised gradients. The latter was the change in magnitude of 195 

MTU length or moment arm with respect to the change in joint angle (i.e., gradient) divided by 196 

the target (i.e., cadaveric) data gradient. The second objective, termed smoothness, encouraged 197 

MTU kinematic patterns to be smooth. Penalty functions produced anatomically plausible 198 

MTU pathways. The first, reduced the possibility of modelled MTU pathways penetrating 199 

bones. Penetration was detected using a ray casting method. A ray is defined between each 200 

adjacent MTU path point. The bones which the MTU can penetrate (based on the joints it spans) 201 

are loaded and the distance from each point on the bone mesh to the ray is calculated. If this 202 

distance is below a specified value, it is deemed to penetrate the bone. The second, termed 203 

polarity error, prevented moment arms inappropriately changing their mechanical actions, e.g., 204 

a flexor turning into an extensor and the third reduced the possibility of non-anatomical 205 

wrapping scenarios (Appendix 2). Once wrapping surface optimisation was completed for each 206 



participant, the MAP-Client was used to generate personalised TFJ and PFJ kinematic 207 

mechanisms. 208 

Joint mechanism definitions 209 

Two different sets of TFJ and PFJ mechanisms were created: scaled generic (Models 1 and 3) 210 

and personalised (Models 2 and 4). The range of motion for the tibiofemoral joint was restricted 211 

from 0 (full extension) to -100 degrees (flexion),  covering the range of motion during both 212 

walking and running (Novacheck 1998). Scaled generic TFJ mechanisms were three degree of 213 

freedom (DOF) joints with an independent flexion-extension DOF with two dependant 214 

translational DOFs (i.e., anterior/posterior and superior/inferior translations) defined as a 215 

function of TFJ flexion-extension. Translation functions were splines defined to maintain the 216 

distance between the medial and lateral femoral and tibial condyles throughout the range of 217 

motion using the neutral position as a reference (Zhang et al. 2016). Remaining DOFs (i.e., 218 

medial/lateral translation, abduction/adduction rotation, and internal/external rotation) were 219 

locked to zero. Next, a patella and PFJ was added, with patella origin located consistent with a 220 

previous model (Arnold et al. 2010) and its position fixed with respect to the tibia.  221 

Personalised TFJ and PFJ mechanisms were then created from MRI segmentations (Sancisi 222 

and Parenti-Castelli 2011a, b; Brito da Luz et al. 2017; Barzan et al. 2019). Segmented 223 

anatomical structures (i.e., bones, cartilages, and ligaments) were imported into 3-matic v10 224 

(Materialise, Leuven, Belgium), where surfaces and landmarks (e.g., ligament attachment 225 

regions) necessary to define joint mechanisms were identified. Multiple Objective Particle 226 

Swarm Optimisation (Multi-Objective Particle Swarm Optimization (MOPSO) by Yarpiz, 227 

2015) was then used to ensure physiological solutions, producing numerous candidate 228 

solutions, fit by a series of spline functions completely describing 6 DOF TFJ motions: 1 229 

independent DOF (i.e., flexion-extension), and 5 dependant DOF (i.e., secondary kinematics). 230 

Each TFJ solution was paired with a unique PFJ mechanism solution chosen based on 231 

correlation with cadaveric PFJ kinematics (Brito da Luz et al. 2017; Barzan et al. 2019). 232 

Candidate personalised TFJ-PFJ models were then joined with the MAP-Client generated 233 

model (Model 1) yielding multiple candidate personalised OpenSim models, i.e., one Model 2 234 

per TFJ solution. 235 

The final personalised TFJ-PFJ solution was chosen based on MTU kinematic evaluation 236 

metrics. Selected MTU (rectus femoris, vastus medialis, vastus lateralis, semimembranosus, 237 

biceps femoris long head, and medial gastrocnemius) kinematics were tested using the 238 



objective functions employed in the MTU wrapping surface optimisation (see above and 239 

Appendix 2). Evaluation metrics were summed for each model, and the TFJ-PFJ solution 240 

selected based on the lowest summed value, theoretically representing the most physiological 241 

MTU kinematics. MTU wrapping surface optimisation was then run to generate the final 242 

personalised model (Model 4). 243 

Model comparisons and muscle tendon unit kinematic evaluation 244 

After creation, each model  (Table 2) MTU kinematic evaluation metrics were calculated: (i) 245 

number of moment arm polarity penalties, (ii) normalised MTU moment arm gradient error, 246 

(iii) number of MTU bone penetration penalties, and (iv) MTU length and moment arm 247 

smoothness. Metrics were calculated for each MTU, model, and participant. For comparison, 248 

MTU were grouped: (i) quadriceps (left and right rectus femoris, vastus lateralis, vastus 249 

intermedius, and vastus medialis), (ii) hamstrings (left and right biceps femoris long and short 250 

head, semitendinosus, and semimembranosus), and (iii) extras (left and right medial and lateral 251 

gastrocnemius, sartorious, and gracilis). For each MTU metric, frequency count (i.e., penalties) 252 

or mean ± standard deviation (i.e., smoothness and error) were calculated. 253 

For each comparison, the superior model was determined by magnitudes of the evaluation 254 

metrics, with smaller values indicating more physiologically/anatomically plausible MTU 255 

pathways or kinematics. Each comparison was marked (i) improved, (ii) worse, or (iii) no 256 

change, and the count (i.e., number of occurrences) summed for each MTU group and all MTU. 257 

Metric counts were compared using proportion tests to determine statistically significant 258 

differences (Wessa P.; 2016, Testing Population Proportion (v1.0.3)). To calculate z-scores, a 259 

null hypothesis of 50% was assumed and significance set at p<0.05. Dominant outcome (i.e., 260 

improved, worse, or no change) was identified and tested for statistical significance. 261 

Results 262 

The total time to produce the entire set of four models for each subject was approximately 13.5 263 

hours on a standard computer (2.4 GHz Intel i5 Processor, 8 GB of RAM) plus 2 hours of HPC 264 

for the optimisation (Table 3). 265 

[Table 3] 266 

Effect of tuning in models with generic joint mechanisms 267 

When using generic TFJ and PFJ models, wrapping surface optimisation (i.e., Model 3) 268 

produced improved results compared to non-optimised models (i.e., Model 1) (Table 4, Fig 1 269 



and 2). The only MTU metric which showed a statistically significant improvement was MTU 270 

moment arm gradient error, which improved following optimisation (Model 3). All remaining 271 

metrics showed either a significant proportion of no change cases (i.e., moment arm polarity 272 

penalties, MTU bone penetration penalties with the exception of the extras MTU group, and 273 

MTU length smoothness), or no significant proportions (i.e., MTU moment arm smoothness, 274 

and MTU bone penetration in the extras MTU group). Despite this, moment arm polarity 275 

penalties, MTU bone penetration penalties, and MTU length smoothness showed a higher 276 

number of improved cases compared to worse cases in all MTU groups. Similarly, MTU 277 

moment arm smoothness showed a higher number of improved cases in all MTU groups except 278 

the quadriceps group which showed an equal distribution of improved and worse cases.  279 

 280 

[Table 4] 281 

[Fig 1] 282 

[Fig 2] 283 

Effect of tuning in models with personalised joint mechanisms 284 

Comparison of models with personalised joint kinematic models with non-optimised (Model 285 

2) and optimised (Model 4) wrapping surfaces showed similar results to the previous 286 

comparison (Table 5). Again, the only metric which showed a statistically significant 287 

improvement was MTU moment arm gradient error which improved in the optimised model 288 

(Model 4). A significant proportion of no change cases was shown in moment arm polarity 289 

penalties (except the hamstrings MTU group), MTU bone penetration penalty (except the 290 

extras MTU group), and MTU length smoothness. No significant proportion was identified for 291 

moment arm polarity penalty in the hamstrings MTU group, MTU bone penetration penalty for 292 

the extras MTU group, and MTU moment arm smoothness. Excluding no change cases, MTU 293 

moment arm smoothness showed a higher number of improved cases compared to worse cases. 294 

Additionally, a higher number of improved compared to worse cases was shown with respect 295 

to moment arm polarity penalties, MTU bone penetration penalties and MTU length 296 

smoothness for the All, and extras MTU group.  297 

[Table 5] 298 

 299 



Comparison of optimised models 300 

The final comparison, between optimised models with generic (Model 3) and personalised 301 

(Model 4) joints showed inconsistent results (Table 6; Fig 3 and 4). Across subjects, a 302 

significant proportion of cases for all MTU, quadriceps, and hamstrings groups showed no 303 

change between models for MTU moment arm polarity penalties. Likewise, MTU bone 304 

penetration penalties showed no change between models for the all MTU, quadriceps, and 305 

hamstrings groups. For all remaining comparisons, no dominant case was identified, as well as 306 

no trend in either improved or worse cases.  307 

[Table 6] 308 

[Fig 3] 309 

[Fig 4] 310 

Discussion 311 

This study aimed to develop and test a framework, built atop the MAP-Client, for automated 312 

tuning of personalised OpenSim musculoskeletal models, with a particular focus on the knee 313 

joint. The presented workflow automated tasks previously performed manually or semi-314 

manually but was also based on statistical shape modelling that used MOCAP and medical 315 

imaging to morph bones from which muscle origins, insertions, and pathways were created. 316 

This was achieved by representing the traditionally manually performed quality checks as 317 

mathematical algorithms formulated as an optimisation problem. This optimisation process 318 

automatically detected errors and adjusted the model to minimise these errors without the need 319 

for time consuming and subjective manual interventions. Generally, following the 320 

optimisation, the majority of MTU evaluation metrics showed improvements in models with 321 

both generic and personalised joint mechanisms. Importantly, this framework presents an 322 

approach for tuning model muscle pathways that could be extended from the present 323 

application (i.e., the knee joint) to other regions of the body.  324 

Comparison of non-optimised and optimised models 325 

The first hypothesis (H1), that, compared to non-optimised models, optimisation of wrapping 326 

surfaces would improve similarity of model MTU kinematics to those measured in cadavers 327 

was confirmed. With and without personalised knee mechanism, optimised wrapping surfaces 328 

resulted in a clear reduction in moment arm gradient error for all MTU groups (Tables 3 and 329 



4). Although unsurprising, since moment arm gradient error was included as an optimisation 330 

objective function, the consistent improvements provided confidence in the developed 331 

framework and indicates that optimised muscles have a similar pattern of moment arms. 332 

The second and third hypothesis (H2 and H3) that compared to non-optimised models, 333 

optimised models would show reduced instances of MTU penetration of bone and moment arm 334 

polarity errors, and improve MTU kinematic smoothness could not be confirmed. For both 335 

generic and personalised joints, MTU moment arm polarity, bone penetration, and length and 336 

moment arm smoothness showed no significant change in frequency of occurrence when 337 

wrapping surfaces were optimised. The likely reason behind the limited changes following 338 

wrapping surface optimisation was the design of the final weighted value. Considering the 339 

evaluation metrics combined for each subject and model (Appendix 3, Tables 6-9), despite 340 

normalising both smoothness and gradient errors, the magnitude of each objective functions is 341 

vastly different. Specifically, the moment arm gradient error is much larger, potentially 342 

explaining why this was the only metric to show consistent and statistically significant 343 

improvement. Implementing a different normalisation method could potentially result in more 344 

consistent and statistically significant changes for other metrics found recalcitrant to our efforts 345 

in this paper. Additionally, the different terms in the objective function may have competed 346 

with each other, which may also provide partial explanation as to why each MTU penalty (bone 347 

penetration and polarity) were not effectively minimised by the optimiser in the models. Future 348 

work should investigate new methods of normalisation or potentially objective weightings to 349 

determine if further improvements can be achieved. Despite the lack of statistical significance, 350 

most cases resulted in improvements in MTU kinematics and pathways (Fig 5) following 351 

optimisation.  352 

[Fig 5] 353 

Comparison of optimised models 354 

The final hypothesis (H4), that models with personalised joint mechanisms following 355 

optimisation would produce more physiological and anatomically plausible MTU kinematics 356 

was not uniformly supported. These results suggest the designed optimisation framework can 357 

produce MTU kinematics of similar quality (assessed using the suite of evaluation metrics we 358 

presented) irrespective of implemented joint mechanisms. Due to the additional data and 359 

processing time required to include these personalised joint mechanisms, models with generic 360 

TFJ and PFJ may be adequate in supporting muscle driven simulations, provided 361 



physiologically and anatomically plausible MTU kinematics are established. Although 362 

evaluation metrics showed similar results, it should be noted that the magnitudes of MTU 363 

kinematics, joint kinematics, and pathways are different (Appendix 4). As these parameters 364 

(MTU lengths and moment arms) cannot be feasibly measured throughout the joints range of 365 

motion, no conclusions can be made about which of the models are more representative of in-366 

vivo MTU kinematics or pathways.   367 

Comparison to previous methods 368 

The framework we present for automatic creation and tuning of MTU pathways has similarity 369 

to previous studies (Scheys et al. 2009; Nolte et al. 2016, 2020; Modenese et al. 2018; 370 

Modenese and Renault 2020), particularly its focus on automation. Our approach to incorporate 371 

data from an anatomical atlas to define MTU origins and insertions is consistent with a previous 372 

study (Nolte et al. 2016), and can be supplemented by additional medical imaging (Scheys et 373 

al. 2009). However, our method for defining intermediate MTU pathways differs from previous 374 

approaches. In past studies, cadaveric specimens were used for experiments and MTU 375 

pathways were discretised into path points through direct measurement and registration to the 376 

underlying skeleton. This approach is used for both generic (Delp et al. 2007) and subject-377 

specific (Scheys et al. 2009) models. More recent studies have opted for wrapping surfaces 378 

instead of path points, because they produce smoother MTU kinematics (Garner and Pandy 379 

2000; Hammer et al. 2019). However, sizing, positioning and, in cases of non-spherical objects, 380 

orientation, of these wrapping surfaces is typically achieved manually by the human operator 381 

(Garner and Pandy 2000; Rajagopal et al. 2016; Lai et al. 2017; Catelli et al. 2019; Hammer et 382 

al. 2019). Automated methods for defining MTU pathways have also been presented for 383 

muscles crossing the hip joint (Modenese and Kohout 2020), relying on full segmentations of 384 

the muscles of interest. The advantage of the methods in this present study is they do not rely 385 

on explicit knowledge of the shape, size, or other morphological features of each muscle, 386 

acquired through expensive medical imaging and segmentation of muscles. Although the 387 

current  framework did rely on imaging and segmentation of bones, these can be 388 

replaced by different morphing methods using either incomplete bone segmentations 389 

(Suwarganda et al. 2019) or 3D locations of optical motion capture markers (Nolte et al. 2016, 390 

2020; Davico et al. 2020a). 391 

Instead, our methods rely on testing the behaviour of the MTU within a model generated 392 

through standard MAP-Client processes, and can be easily extended to other muscles and 393 



joints. Although we focused our optimisation efforts on subject-specific models, their nature 394 

means they can also be applied to generic models to remove non-physiological and/or non-395 

anatomical MTU pathways. Furthermore, wrapping surfaces were implemented in this 396 

research, but the extension of this optimisation approach to models consisting of via points is 397 

possible and is currently being tested. 398 

There are limitations to this study that should be considered. First, we only considered MTU 399 

kinematics with respect to a single DOF, i.e., TFJ flexion/extension despite some MTU 400 

crossing two joints (e.g., rectus femoris). For the considered DOF, MTU kinematics may well 401 

follow the pattern from literature, however, when multiple DOFs are mobilised the MTU 402 

kinematics may present errors. Although we acknowledge this as a limitation, the framework 403 

was the first of its kind and can be extended to multiple DOFs in future work. Second, the 404 

resulting joint kinematics from the personalised joint mechanisms used in this study have not 405 

been directly validated using dynamic medical imaging. The tuning of these personalised joint 406 

mechanisms ensures physiologically and anatomically plausible solutions (Appendix 4) that 407 

track the cadaveric literature. Here we define physiologically and anatomically plausible 408 

kinematics as those which respect joint geometry (i.e., no bone into bone penetration) and tissue 409 

characteristics (i.e., ligament length changes). However, there is no guarantee the resulting 410 

kinematics represent subject-specific TFJ and PFJ kinematics.  In support of this method, 411 

previous research has shown agreement in an unloaded position for 8 children (Barzan et al. 412 

2019), while another using a similar optimisation approach, for a single subject, joint 413 

kinematics were comparable to those measured from fluoroscopy (Nardini et al. 2020).  414 

In its current implementation our method does not guarantee modelled pathways of each MTU 415 

matches those measured from medical imaging. Although each subject underwent lower-limb 416 

MRI, these were inadequate for segmenting individual MTUs. Therefore, we cannot comment 417 

on whether the optimised MTU pathways match those measured from MRI. However, the 418 

intention of our method was to ensure physiologically and anatomically plausible MTU 419 

kinematics using morphed bones and joints within the MAP-Client, rather than a fully 420 

personalised representation of each MTU. Indeed, a greater level of personalisation would be 421 

possible if there was availability of segmented muscles from either MRIs for single or multiple 422 

posture(s), or reconstructions from statistical shape modelling (currently being developed), in 423 

which their 3D centroids could be used as additional optimisation criteria to enforce tracking 424 

of personalised the MTU centroids. Thus, the lack of 3D MTU representations in the current 425 



ach, nor validation of the 426 

approach by other means. 427 

Indirect validation is possible by examining improvements in the predictions from a 428 

neuromusculoskeletal model (e.g. joint moments and/or joint contact forces) into which the 429 

optimised MTU pathways model is inserted. Although our group (Gerus et al. 2013; Davico et 430 

al. 2020b) and others (Serrancolí et al. 2020) have used this approach, it was beyond the scope 431 

of the current study. Our current main aim was to establish criteria and an automated framework 432 

to create musculoskeletal models of different levels of personalisation and examine their ability 433 

to produced anatomically and physiologically plausible MTU pathways and kinematics (MTU 434 

lengths and moment arms). Interestingly, previous research (Serrancolí et al. 2020) has 435 

presented a framework where MTU moment arms were directly calibrated by optimising 436 

performance of the neuromusculoskeletal model in predicting joint contact forces. However, 437 

this method introduced a mechanistic disconnect between MTU moment arms and MTU 438 

lengths (i.e. mathematically, moment arms are differential of MTU length with respect to joint 439 

angle), and MTU lengths are inputs to the MTU force generation models. Furthermore, 440 

calibrating MTU moment arms to attain better neuromusculoskeletal model predictions (e.g., 441 

joint contact forces, or joint moments) does not ensure a valid musculoskeletal model because 442 

of interdependences between musculoskeletal models and MTU models and their design 443 

variables. Instead, the current approach, by optimising the MTU pathways in the model, 444 

mechanistic validity, as well as anatomically and physiologically plausibility, is maintained 445 

between the model and the resulting MTU kinematics. Nevertheless, future research should 446 

examine if using this approach improves predictions of the overall neuromusculoskeletal 447 

models. 448 

The framework developed in this study represents a significant contribution to the field of 449 

personalised musculoskeletal modelling. This was the first study which used the MAP-Client 450 

to automatically develop and tune personalised models and assess their suitability for 451 

subsequent musculoskeletal simulations. Several improvements and additions were made to 452 

the MAP-Client, most prominently, the definition of MTU intermediate pathways without the 453 

need to explicitly collect MRI at single or multiple joint angles. Several processes which have 454 

previously been performed manually were automated within this framework, reducing the 455 

subjectivity associated with generating these personalised models. These processes include 456 

manual landmark definitions, defining joint positions, and the definition of both MTU origin 457 

and insertion and muscle intermediate pathways. Future work will focus on improving the 458 



MTU intermediate pathway definitions and optimisation. Specifically, an analysis of the 459 

optimisation formulation will be undertaken to minimise terms and their potential competition. 460 

Additionally, the application of these optimisation methods to via points rather that wrapping 461 

surfaces and extending the number of muscles and joint considered will also be undertaken. 462 

Declarations 463 

Funding 464 

The authors would like to acknowledge the funding from a PhD scholarship from Griffith 465 

University. 466 

Conflicts of interest 467 

The authors declare no conflict of interest relating to the presented work. 468 

Availability of code, data, and material 469 

The pre-existing MAP-Client is freely available here: https://map-470 

client.readthedocs.io/en/latest/ with additional information provided here 471 

https://simtk.org/projects/map. Note the framework is currently only available in Python 2, an 472 

updated version for Python 3 is currently being produced by the original developers. Updates 473 

regarding the status of this update will be provided on the above SimTK link. 474 

The developed frame generated as part of this research are available upon reasonable request 475 

from the corresponding author. The models generated as part of this research are available upon 476 

reasonable request 477 

  478 



References 479 

Ackland DC, Roshan-Zamir S, Richardson M, Pandy MG (2011) Muscle and joint-contact 480 
loading at the glenohumeral joint after reverse total shoulder arthroplasty. J Orthop Res 481 
29:1850 1858 482 

Andersen MS (2018) How sensitive are predicted muscle and knee contact forces to 483 
normalization factors and polynomial order in the muscle recruitment criterion 484 
formulation? Int Biomech 5:88 103 485 

Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A Model of the Lower Limb of Analysis of 486 
Human Movement. Ann Biomed Eng  38:269 279 487 

Bahl JS, Zhang J, Killen BA, et al (2019) Statistical shape modelling versus linear scaling: 488 
effects on predictions of hip joint centre location and muscle moment arms in people with 489 
hip osteoarthritis. J Biomech 85:164 172 490 

Bakke D, Besier T (2020) Shape model constrained scaling improves repeatability of gait data. 491 
J Biomech 107:109838. https://doi.org/https://doi.org/10.1016/j.jbiomech.2020.109838 492 

Barzan M, Modenese L, Carty CP, et al (2019) Development and validation of subject-specific 493 
pediatric multibody knee kinematic models with ligamentous constraints. J Biomech 494 
93:194 203. https://doi.org/https://doi.org/10.1016/j.jbiomech.2019.07.001 495 

Brito da Luz S, Modenese L, Sancisi N, et al (2017) Feasibility of using MRIs to create subject-496 
specific parallel-mechanism joint models. J Biomech 53:45 55 497 

Buford WL, Marty Ivey Jr F, Malone D, et al (1997) Muscle Balanace at the Knee - Moment 498 
Arm for the Normal and the ACL-Minus Knee. IEEE Trans Biomed Eng 5:367 379 499 

Catelli DS, Wesseling M, Jonkers I, Lamontagne M (2019) A musculoskeletal model 500 
customized for squatting task. Comput Methods Bioemchanics Biomed Eng 22:21 24 501 

Cleather DJ, Bull AM (2011) An optimization-based simultaneous approach to the 502 
determination of muscular, ligamentous, and joint contact forces provides insight into 503 
musculoligamentous interaction. Ann Biomed Eng 39:1925 1934 504 

Davico G, Pizzolato C, Killen BA, et al (2020a) Best methods and data to reconstruct paediatric 505 
lower limb bones for musculoskeletal  modelling. Biomech Model Mechanobiol 19:1225506 
1238. https://doi.org/10.1007/s10237-019-01245-y 507 

Davico G, Pizzolato C, Lloyd DG, et al (2020b) Increasing level of neuromusculoskeletal 508 
model personalisation to investigate joint contact forces in cerebral palsy: A twin case 509 
study. Clin Biomech 72:141 149. https://doi.org/10.1016/j.clinbiomech.2019.12.011 510 

Delp SL, Anderson FC, Arnold AS, et al (2007) OpenSim: open-source software to create and 511 
analyze dynamic simulations of movement. IEEE Trans Biomed Enginerring 54:1940512 
1950 513 

Demers MS, Pal S, Delp SL (2014) Changes in tibiofemoral forces due to variations in muscle 514 
activity during walking. J Orthop Res 32:769 776. https://doi.org/10.1002/jor.22601 515 

Draganich LF, Andriacchi TP, Andersson GB (1987) Interaction between intrinsic knee 516 
mechanics and the knee extensor mechanism. J Orthop Res 5:539 547 517 

Dzialo CM, Pedersen PH, Simonsen CW, et al (2018) Development and validation of a subject-518 



specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a 519
quasi-static lunge. J Biomech 72:71 80 520 

Fick AE (1879) Uber Zweigelenkige Muskeln. Arch Anat Physiol (Anat Abt) 201 239 521 

Garner BA, Pandy MG (2000) The Obstacle Set Method for Representing Muslce Paths in 522 
Musculoskeletal Models. Comput Methods Bioemchanics Biomed Eng 3:1 30 523 

Gerus P, Sartori M, Besier TF, et al (2013) Subject-specific knee joint geometry improves 524 
predictions of medial tibiofemoral contact forces. J Biomech 9:2 9. 525 
https://doi.org/10.1016/j.jbiomech.2013.09.005i 526 

Guess TM, Stylianou AP, Kia M (2014) Concurrent prediction of muscle and tibiofemoral 527 
contact forces during treadmill gait. J Biomech Eng 136:21032 528 

Hammer M, Gunther M, Haeufle DFB, Schmitt S (2019) Tailoring anatomical muscle paths: a 529 
sheath-like solution for muscle routing in musculoskeletal computer models. Math Biosci 530 
311:68 81 531 

Kainz H, Carty CP, Maine S, et al (2017) Effects of hip joint centre mislocation on gait 532 
kinematics of children with cerebral palsy calculated using patient-specific direct and 533 
inverse kinematic models. Gait Posture 57:154 160. 534 
https://doi.org/10.1016/j.gaitpost.2017.06.002 535 

Konrath JM, Saxby DJ, Killen BA, et al (2017) Muscle contributions to medial tibiofemoral 536 
compartment contact loading following ACL reconstruction using semitendinosus and 537 
gracilis tendon grafts. PLoS One 12:. 538 
https://doi.org/https://doi.org/10.1371/journal.pone.0176016 539 

Lai AKM, Arnold AS, Wakeling JM (2017) Why are Antagonist Muscles Co-activated in My 540 
Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Ann 541 
Biomed Eng 45:2762 2774. https://doi.org/10.1007/s10439-017-1920-7 542 

Lerner ZF, Demers MS, Delp SL, Browning RC (2015) How tibiofemoral alignment and 543 
contact locations affect predictions of medial and lateral tibiofemoral contact forces. J 544 
Biomech 48:644 650 545 

Modenese L, Kohout J (2020) Automated Generation of Three-Dimensional Complex Muscle 546 
Geometries for Use in Personalised Musculoskeletal Models. Ann Biomed Eng 48:1793547 
1804. https://doi.org/10.1007/s10439-020-02490-4 548 

Modenese L, Montefiori E, Wang A, et al (2018) Investigation of the dependence of joint 549 
contact forces on musculotendon parameters using a codified workflow for image-based 550 
modelling. J Biomech 73:108 118. https://doi.org/10.1016/j.jbiomech.2018.03.039 551 

Modenese L, Renault J-B (2020) Automatic Generation of Personalised Models of the Lower 552 
Limb from Three-Dimensional Bone Geometries: A Validation Study. bioRxiv 553 
2020.06.23.162727. https://doi.org/10.1101/2020.06.23.162727 554 

Nardini F, Belvedere C, Sancisi N, et al (2020) An Anatomical-Based Subject-Specific Model 555 
of In-Vivo Knee Joint 3D Kinematics From Medical Imaging. Appl. Sci.  10 556 

Navacchia A, Kefala V, Shelburne KB (2017) Dependence of Muscle Moment Arms on In 557 
Vivo Three-Dimensional Kinematics of the Knee. Ann Biomed Eng 45:789 798 558 

Nolte D, Ko S-T, Bull AMJ, Kedgley AE (2020) Reconstruction of the lower limb bones from 559 



digitised anatomical landmarks using statistical shape modelling. Gait Posture 77:269560
275. https://doi.org/https://doi.org/10.1016/j.gaitpost.2020.02.010 561 

Nolte D, Tsang CK, Zhang KY, et al (2016) Non-linear scaling of a musculoskeletal model of 562 
the lower limb using statistical shape models. J Biomech 49:3576 3581. 563 
https://doi.org/10.1016/j.jbiomech.2016.09.005 564 

Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77 95. 565 
https://doi.org/10.1016/s0966-6362(97)00038-6 566 

Pal S, Langenderfer JE, Stowe JQ, et al (2007) Probabilistic modelling of knee muscle moment 567 
arms: effects of methods, origin-insertion, and kinematic variability. Ann Biomed Eng 568 
35:1632 1642 569 

Rajagopal A, Dembia CL, Demers MS, et al (2016) Full-Body Musculoskeletal Model for 570 
Muscle-Driven Simulation of Human Gait. IEEE Trans Biomed Eng 63:2068 2079 571 

Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ (2007) Are patient-specific joint and 572 
inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans 573 
Biomed Eng 54:782 793. https://doi.org/10.1109/TBME.2006.889187 574 

Sancisi N, Parenti-Castelli V (2011a) A novel 3D parallel mechanism for the passive motion 575 
simulation of the patella-femur-tibia complex. Meccanica 46:207 220. 576 
https://doi.org/10.1007/s11012-010-9405-x 577 

Sancisi N, Parenti-Castelli V (2011b) A New Kinematic Model of the Passive Motion of the 578 
Knee Inclusive of the Patella. J Mech Robot 3:. https://doi.org/10.1115/1.4004890 579 

Saxby DJ, Killen BA, Pizzolato C, et al (2020) Machine learning methods to support 580 
personalized neuromusculoskeletal modelling. Biomech Model Mechanobiol. 581 
https://doi.org/10.1007/s10237-020-01367-8 582 

Saxby DJ, Modenese L, Bryant AL, et al (2016) Tibiofemoral Contact Forces During Walking, 583 
Running and Sidestepping. Gait Posture 49:78 85. 584 
https://doi.org/10.1016/j.gaitpost.2016.06.014 585 

Scheys L, Loeckx D, Spaepen A, et al (2009) Atlas-based non-rigid image registration to 586 
automatically define line-of-action muscle models: a validation study. J Biomech 42:565587 
572. https://doi.org/10.1016/j.jbiomech.2008.12.014 588 

Serrancolí G, Kinney AL, Fregly BJ (2020) Influence of musculoskeletal model parameter 589 
values on prediction of accurate knee contact forces during walking. Med Eng Phys 590 
85:35 47. https://doi.org/https://doi.org/10.1016/j.medengphy.2020.09.004 591 

Seth A, Hicks JL, Uchida TK, et al (2018) OpenSim: Simulating musculoskeletal dynamics 592 
and neuromuscular control to study human and animal movement. PLoS Comput Biol 593 
14:e1006223 594 

Smale KB, Conconi M, Sancisi N, et al (2019) Effect of implementing magnetic resonance 595 
imaging for patient-specific OpenSim models on lower-body kinematics and knee 596 
ligament lengths. J Biomech 83:9 15 597 

Spoor CW, van Leeuwen JL (1992) Knee Muscle Moment Arms From MRI and From Tendon 598 
Travel. J Biomech 25:201 206 599 

Suwarganda EK, Diamond LE, Lloyd DG, et al (2019) Minimal medical imaging can 600 



accurately reconstruct geometric bone models for musculoskeletal models. PLoS One. 601
https://doi.org/https://doi.org/10.1371/journal.pone.0205628 602 

Valente G, Crimi G, Vanella N, et al (2017) nmsBuilder: Freeware to create subject-specific 603 
musculoskeletal models for OpenSim. Comput Methods Programs Biomed 152:85 92 604 

Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA (1990) Length and moment arm of human 605 
leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol 606 
61:453 460 607 

Wesseling M, De Groote F, Meyer C, et al (2016) Subject-specifc musculoskeletal modelling 608 
in patients before and after total hip arthroplasty. Comput Methods Biomech Biomed 609 
Engin 19:1683 1691 610 

Wilson NA, Sheehan FT (2009) Dynamic in vivo  3-dimensional moment arms of the 611 
individual quadriceps components. J Biomech 42:1891 1897 612 

Winby CR, Lloyd DG, Besier TF, Kirk TB (2009) Muscle and external load contribution to 613 
knee joint contact loads during normal gait. J Biomech 42:2294 2300 614 

Zhang J, Fernandez J, Hislop-Jambrish J, Besier TF (2016) Lower limb estimation from sparse 615 
landmarks using an articulated shape model. J Biomech 49:3875 3881 616 

Zhang J, Sorby H, Clement J, et al (2014) The MAP Client: User Friendly Musculoskeletal 617 
Modelling Workflows. In: Bello F, Cotin S (eds) Interntional Symposium on Biomedical 618 
Simulation. Springer, Strasbourg, France, pp 182 192 619 

 620 













Table 1: Demographic data pertaining to study participants. 

Participant Gender Limb Age (years) Height (cm) Weight (kg) 

M01 M R 24 182.0 82 

M02 F R 22 172.0 63 

M03 M R 23 180.0 88 

M07 M L 32 185.0 89 

M09 M L 31 161.0 45 

M11 F L 21 160.5 55 

(n or means±sd) 4M & 2F 3L & 3R 25.5±4.8 173.4±10.7 70.3±18.6 

M-males, F-females; L-left , R-right; sd-standard deviation. 

 

Table 2: Explanations of each of the four models developed as part of this study. 

MTU  muscle-tendon unit. 

 

Table 3: Time required for each task in model creation. 

Task Time (hours) 

MRI Segmentations (pelvis and bilateral lower limb) 3 

MAP-Client bone morphing (pelvis and bilateral lower-limb) 3 

TFJ MRI Segmentation (bone, cartilage, and ligaments) 3 

MAP-Client OpenSim creation 0.5 

TFJ and PFJ mechanism optimisation 4 

Wrapping-surface optimisation 2* 

Total 15.5 hours 

*The optimisation was run on the high-performance computer cluster and run in parallel. The specifications of 

the clusters used were 2-4GB RAM 

MRI  magnetic resonance imaging; TFJ  tibiofemoral joint; PFJ  patellofemoral joint.

Model 1  MAP-Client generated model containing personalised: bone geometry, joint 

positions, MTU origin and insertions, and non-optimised wrapping-surfaces 

Model 2 Model 1, but scaled generic TFJ and PFJ have been replaced with  personalised joint 

mechanisms (Brito da Luz et al. 2017; Barzan et al. 2019) 

Model 3  Model 1 following MTU wrapping-surface optimisation 

Model 4  Model 2 following MTU wrapping-surface optimisation 
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Fig 1: Right leg sartorius MTU kinematic curves for participant M02 where left plot is MTU 

length and right plot is TFJ flexion moment arm. Black lines are for the isotropic linearly 

scaled gait2392 model, green lines are combined cadaveric literature data, red lines represent 

Model 1, and blue lines represent Model 3. MTU  muscle-tendon unit; TFJ  tibiofemoral 

joint. 

 

Fig 2: Right leg semimembranosus MTU kinematic curves for participant M03 where left 

plot is MTU length and right plot is TFJ flexion moment arm. Black lines are for the isotropic 

linearly scaled gait2392 model, green lines are combined cadaveric literature data, red lines 

represent Model 1, and blue lines represent Model 3. MTU  muscle-tendon unit; TFJ  

tibiofemoral joint. 

 

Fig 3: Left leg sartorius MTU kinematic curves for participant M01 where left plot is MTU 

length and right plot is TFJ flexion moment arm. Black lines are for the isotropic linearly 

scaled gait2392 model, green lines are combined cadaveric literature data, red lines represent 

Model 3, and blue lines represent Model 4. MTU  muscle-tendon unit; TFJ  tibiofemoral 

joint. 

 

Fig 4: Right leg rectus femoris MTU kinematic curves for participant M01 where left plot is 

MTU length and right plot is TFJ flexion moment arm. Black lines are for the isotropic 

linearly scaled gait2392 model, green lines are combined cadaveric literature data, red lines 

represent Model 3, and blue lines represent Model 4. MTU  muscle-tendon unit; TFJ  

tibiofemoral joint. 

 

Fig 5: An esxample of MTU bone penetration for participant M09 in Model 1 (A, C) in the 

semitendinosus (A, B) and vastus lateralis (C,D) which are removed following model 

optimisation, i.e., Model 3 (B, D). 

 



Appendix 1: Common non-physiological MTU kinematics and non-physical MTU 1 
pathways 2 

In most generic OpenSim models, MTU intermediate pathways are predominantly defined 3 

using a combination of fixed and conditional points. The use of via points allows 4 

users to define MTU pathways conditional to the behaviour of the model (e.g., becoming active 5 

when the model reaches a specific configuration). Although this approach may work in generic 6 

models, transferring these via points to personalised models through linear or deviatoric scaling 7 

is a non-trivial task. Previous researchers (Scheys et al. 2009; Modenese et al. 2018), as well 8 

as the MAP-Client developers have used non-rigid morphing methods to fit via points to 9 

personalised bone geometries. Although these methods can be implemented in a 10 

straightforward manner within the MAP-Client, they often introduce non-physical pathways 11 

(Fig S1) and non-physiological MTU kinematics (Fig S2). Non-physical pathways refer to 12 

pathways which contain 90º turns and penetrate bones. Non-physiological MTU kinematics 13 

refer to MTU lengths which are not smooth and/or do not follow the patterns (represented as 14 

the change in moment arm magnitude with respect to joint angle) from previously published 15 

literature developed through cadaveric experiments. 16 

 17 

Fig S1: Examples of non-physiological MTU shapes (A, B, C)  and MTU bone penetration (C, 18 

D, E, F)  in a standard MAP-Client generated model with morphed via points. MTU  muscle-19 

tendon unit. 20 



 21 

Fig S2: The MTU lengths and moment arms from a standard MAP-Client generated model 22 

(red), generic gait2392 model (black), and cadaveric literature (green) for the rectus femoris, 23 

medial gastrocnemius, and vastus lateralis where discontinuities are highlighted in black boxes. 24 

MTU  muscle-tendon unit. 25 

  26 

Medial gastrocnemius length 



Appendix 2: Detailed optimisation and evaluation criteria  27 

The optimisation method was written using open-source Python packages and deployed on the 28 

Griffith University High- https://conf-29 

ers.griffith.edu.au/display/GHCD/Gowonda+HPC) enabling massive parallelisation. The 30 

optimisation method used within this framework is referred to as particle swarm optimisation 31 

(PSO) (pyswarm: A Python package for particle swarm optimization (PSO) with constraint 32 

support, Abraham D. Lee, https://pythonhosted.org/pyswarm/). The PSO simultaneously 33 

searches d34 

iteration, MTU length and moment arms were calculated and tested against various objective 35 

criteria and penalty functions. 36 

The MTU moment arms calculated using OpenSim are highly sensitive to small changes in 37 

MTU length. To overcome this and increase computational speed, previously published 38 

methods for accurate estimations of MTU moment arms were implemented. This 39 

implementation uses cubic B-splines fit to MTU lengths (Sartori et al. 2012)  across the 40 

TFJ flexion/extension range of motion. The MTU moment arms are then calculated as the 41 

partial derivatives of these splines with respect to joint degree of freedom, i.e., changes in 42 

length divided by changes in joint angle. To ensure this process was not artificially increasing 43 

the calculated MTU length smoothness (covered below), the normalised error (splineNormErr) 44 

between the OpenSim calculated and cubic B-splined MTU lengths was calculated and 45 

minimised within the optimisation framework. 46 

Patterns of MTU kinematics were represented as gradients with respect to joint angle (change 47 

in MTU moment arm/length divided by the change in joint angle), therefore pattern similarity 48 

was assessed using the normalised error between the gradients (maGradErr) of the modelled 49 

(MAP-Client personalised model) and target data (cadaveric literature data). Further objective 50 

functions were created to measure and control curve smoothness to ensure smooth and 51 

continuous MTU kinematics. The smoothness measure relied on three assumptions. First, MTU 52 

kinematic curves were primarily monophasic with no significant peaks or troughs, which is 53 

correct when the joints are moved through physiological ranges. Second, the gradient of the 54 

curves was constant with respect to MTU length or slowly changing in the case of MTU 55 

moment arms. The third and final assumption was that if MTU kinematic curves were a 56 

perfectly straight line, the second derivative of this line would be zero. Consequently, if the 57 

MTU kinematics had only slightly changing gradients the second derivative would 58 

approximate zero. Therefore, kinematic smoothness was defined as the number of modelled 59 



curve (MAP-60 

range, mean, and maximum to fall below predefined thresholds. The smoothness measure of 61 

the tested curve was then normalised to the smoothness measure of the target data. It should be 62 

noted that only the generic OpenSim model data were used to normalise the smoothness 63 

measure whereby the average smoothness measure of the two generic OpenSim models (see 64 

below) was used. As mentioned above, the objective criteria used several targets within the 65 

optimisation. 66 

Target data were taken from multiple sources but can be divided into two distinct categories: 67 

model and literature data. Model data were obtained from two generic OpenSim models: 68 

gait2392 model (Delp et al. 2007), on which MAP-Client models are based, and the more recent 69 

Fullbody Model (Rajagopal et al. 2016). Unlike model data, literature data were taken from a 70 

wide range of different studies carried out on cadavers (Fick 1879; Draganich et al. 1987; 71 

Visser et al. 1990; Spoor and van Leeuwen 1992; Buford et al. 1997; Pal et al. 2007; Wilson 72 

and Sheehan 2009; Arnold et al. 2010; Navacchia et al. 2017). Note that selected original 73 

cadaveric data was not directly available for each of the aforementioned studies. However, we 74 

used cadaveric data that were reproduced and published elsewhere (Arnold et al. 2010; 75 

Rajagopal et al. 2016). These values were combined for each MTU, and the mean and standard 76 

deviation calculated. 77 

Optimisation criteria and penalty functions were employed to mathematically detect various 78 

79 

required to have a mechanical action about a joint DOF (e.g., flexion or extension) consistent 80 

with target data (Fig 81 

defined to ensure these were physiological (moment arm polarity penalty). At each TFJ flexion 82 

angle, the polarity of the tested model (i.e., MAP-Client personalised model) and the generic 83 

gait2392 model was compared. If the polarity was the same, no penalty was applied, else a 84 

secondary test was performed. Specifically, the adjacent 20 angles (i.e., ±10º) were checked. If 85 

the polarity of the tested model within this range matched the target data, the discrepancy was 86 

no longer considered a polarity error. When this condition was not met, a penalty was applied 87 

to the final weighted value. 88 

 89 

 90 



 91 

Fig S3: Example of MTU moment arm polarity error in the MAP-Client generated model (red) 92 

compared to both generic model (black) and literature (green) data. 93 

Depending on where an MTU intersects an associated wrapping cylinder, it may wrap entirely 94 

around it, i.e., complete a full circumferential loop before continuing to the insertion point (Fig 95 

S4A). To avoid these non-physical MTU pathways, the MTU path points in the neutral position 96 

were queried. These points represent the origin, insertion, and via points as well as the points 97 

where the MTU starts and finishes wrapping (Fig S4B). With the assumption that each MTU 98 

path point is inferior compared to the previous path point (which is true in the neutral position), 99 

the superior/inferior coordinate of each path point is tested. If the superior/inferior coordinate 100 

of a path point was greater than the superior/inferior coordinate of the previous path point this 101 

was indicative of a wrapping error. 102 

 103 

Fig S4: (A) Example of MTU wrapping error in an OpenSim model whereby the MTU wraps 104 

around the circumference of the cylinder and (B) associated MTU path points numbered 105 

sequentially where points 3 and 4 illustrate the wrap error. 106 

MTU bone penetration penalty employed an automated detection algorithm. Initially, the joints 107 

that each MTU spanned and the bodies (i.e., bones) they could penetrate were determined. Like 108 

the wrap error penalty, each MTU path point is determined and a vector calculated between 109 

adjacent path points. Due to limitation in the OpenSim application programming interface 110 



(API), the path between wrap on/off points cannot be readily determined. As a result the penalty 111 

only considered vectors that intersected bone surfaces between either: (i) two fixed points (e.g., 112 

origin or via point), (ii) a fixed point and a wrapping on point, (iii) a wrapping off and wrapping 113 

on point (on different wrapping surfaces), and (iv) a wrapping off point and a fixed point (Fig 114 

S5). It was assumed that if the on/off wrapping points did not penetrate, the intermediate path 115 

also did not penetrate. 116 

 117 

Fig S5: (A) Illustration of the vastus medialis pathway at 100º of TFJ flexion within OpenSim 118 

and (B) each of the path points available within the OpenSim API. Where points 1, 6, 7, and 8 119 

are fixed points, points 2 and 4 are wrapping on points, and points 3 and 5 are wrapping off 120 

points. Using the proposed framework, tested path point pairs are: 1-2, 3-4, 5-6, 6-7, and 7-8. 121 

Once each of the penalties had been determined, they were combined into a single penalty 122 

value where each penalty function, if returning a positive test, attracted penalty value. The 123 

penalty functions and objective criteria were combined into a single weighted value, which was 124 

minimised via optimisation (Equation 1). Detailed explanations of each of the optimisation 125 

functions and penalty functions are restated explicitly below. 126 

  (1) 127 

where,  is the weighted value,  is the smoothness measure of the splined 128 

lengths fit to the OpenSim MTU lengths,  is the smoothness measure of the OpenSim 129 

API derived MTU lengths,  is the normalised error between the OpenSim 130 

derived and cubic B-spline fit MTU lengths,  is the normalised error between the 131 

MTU moment arms and target data, and,  is the summed penalty value. 132 



splineLenN: provided an estimation of the smoothness of the splines MTU lengths. Here the 133 

MTU lengths at each joint angle defined by the B-spline method are differentiated with respect 134 

to joint angle. This derivation was repeated (using the numpy.gradient function) until the mean, 135 

max, min, and range of the derivates fell below a defined threshold which was 9 orders of 136 

magnitude smaller than the tested values. The number of derivations required for this to occur 137 

defined the splineLenN value. 138 

lenN: Is identical to the above splineLenN measure however instead of using the lengths from 139 

the implemented B-spline method, it uses length derived directly fr  140 

splineNormErr: was deisgned to ensure the implemented B-spline method was not artifically 141 

increasing the smoothness of the MTU lengths. It was calculated as the root mean squared 142 

difference between the MTU length from the OpenSim API and the B-spline estimation 143 

normalise to the MTU length from OpenSim. 144 

maGradErr: provided an estimation of the similarity between the cadaveric and model data. 145 

As mentioned above, the pattern of both cadaveric and model moment arms is represent as the 146 

gradient, i.e., change in moment arm / change in joint angle. The maGradErr was then 147 

calculated as the root mean squared difference between cadaveric and model values, 148 

normalised to the cadaveric value. 149 

pen: represented the summed penalty value, as mentioned there were three penalties 150 

implemented in this framework. First the wrapping error penalty and second MTU bone 151 

penetration error, and third the MTU polarity penalty. Each of these errors, if presented were 152 

penalised with a value of 250 added to the final error.  153 



Appendix 3: Model evaluation criteria results for each model 154 

The combined evaluation metrics used within this research are shown below for Models 1  4, 155 
in Table S1- S4, respectively.  156 

Table S1: Performance criteria results for the MAP-Client model with fit wrapping surfaces 157 
and a generic joint model (Model 1). 158 

 Polarity 

penalty 

Muscle 

penetration 

Length 

smoothness 

Moment arm 

smoothness 

Moment arm 

gradient error 

M01 7 (29.2%) 8 (33.3%) 3.5 ± 11.5 1.5 ± 0.4 1270.8 ±1964.14 

M02 4 (16.7%) 8 (33.3%) 1.1 ± 0.2 3.1 ± 6.5 19527 ± 72014 

M03 7 (29.2%) 8 (33.3%) 1.4 ± 1.1 1.6 ± 1.1 1891.7 ± 4145.5 

M07 6 (25.0%) 9 (37.5%) 1.3 ± 0.8 1.42 ± 0.9 1704.2 ± 2666.1 

M09 5 (20.8%) 13 (54.2%) 2.1 ± 4.8  6.7 ± 20.6 55325.7 ± 182702  

M11 8 (33.3%) 7 (29.2%) 3.4 ± 10.8 6.8 ± 23.4 42438.2 ± 20233 

Where polarity penalty and muscle penetration are reported as the number and 

percentage of occurrences of each penalty, and the remaining metrics are reported as 

the average ± standard deviation across each of the 24 muscles considered in this 

analysis. In all cases, a lower value represents a better result. 

 159 

Table S2: Performance criteria results for the MAP-Client model with fit wrapping surfaces 160 
and a personalised joint model (Model 2). 161 

 Polarity 

penalty 

Muscle 

penetration 

Length 

smoothness 

Moment arm 

smoothness 

Moment arm 

gradient error 

M01 10 (41.7%) 8 (33.3%) 2.7 ± 7.6  2.8 ± 5.3 9915.8 ± 416417.7 

M02 4 (16.7%) 12 (50%) 1.6 ± 2.1 5.7 ± 18 33246.5 ± 157718 

M03 3 (12.5%) 10 (41.7%) 1.2 ± 0.2 1.5 ± 0.5 683.9 ± 741.9 

M07 6 (25%) 9 (37.5%) 1.1 ± 0.2 3.7 ± 5.5 7808.9 ± 13452.1 

M09 12 (50%) 15 (60%) 1.7 ± 1.8 7.2 ±17.3  45440.5 ± 147443 

M11 9 (37.5%) 11 (45.8%) 1.12 ± 0.19 3.9 ± 9.7 22362.5 ± 96077.7 

Where polarity penalty and muscle penetration are reported as the number and 

percentage of occurrences of each penalty, and the remaining metrics are reported as 

the average ± standard deviation across each of the 24 muscles considered in this 

analysis. In all cases, a lower value represents a better result. 

 162 



Table S3. Performance criteria results for the MAP-Client model with optimised wrapping 163 

surfaces and a generic joint model (Model 3). 164 

 Polarity 

penalty 

Muscle 

penetration 

Length 

smoothness 

Moment arm 

smoothness 

Moment arm 

gradient error 

M01 7 (29.2%) 0 (0.0%) 1.06 ± 0.2 1.36 ± 0.9 97.88 ± 251.9 

M02 7 (29.2%) 0 (0.0%) 1.37 ± 1.3 1.36 ± 0.8 36.46 ± 49.7 

M03 5 (20.84%) 1 (4.2%) 1.23 ± 0.7 1.32 ± 0.4 87.62 ± 151.3 

M07 7 (29.2%) 4 (16.7%) 1.17 ± 0.2 1.40 ± 0.6 110.94 ± 188.7 

M09 6 (25.0%) 2 (8.3%) 1.06 ± 0.2 1.30 ± 0.6 54.42 ± 87.3 

M11 5 (20.8%) 1 (4.2%) 1.13 ± 0.2 1.72 ± 0.6 142.36 ± 186.1 

Where polarity penalty and muscle penetration are reported as the number and percentage 

of occurrences of each penalty, and the remaining metrics are reported as the average ± 

standard deviation across each of the 24 muscles considered in this analysis. In all cases, a 

lower value represents a better result. 
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Table S4. Performance criteria results for the MAP-Client model with optimised wrapping 166 

surfaces and a personalised joint model (Model 4). 167 

 Polarity 

penalty 

Muscle 

penetration 

Length 

smoothness 

Moment arm 

smoothness 

Moment arm 

gradient error 

M01 3 (12.5%) 3 (12.5%) 1.41 ± 0.9 1.46 ± 0.7 422.44 ± 1126.1 

M02 0 (0.0%) 2 (8.3%) 0.99 ± 0.2 1.33 ± 0.4 32.50 ± 35.6 

M03 4 (16.7%) 5 (20.8%) 1.58 ± 2.1 1.83 ± 1.9 438.29 ± 1983.8 

M07 Fig4 

(16.7%) 

9 (37.5%) 1.62 ± 1.6 1.71 ± 0.9 150.03 ± 302.1 

M09 5 (20.8%) 5 (20.8%) 1.32 ± 0.2 1.29 ± 0.4 169.25 ± 321.1 

M11 4 (16.7%) 6 (25.0%) 1.14 ± 0.2 1.68 ± 1.1 186.06 ± 353.7 

Where polarity penalty and muscle penetration are reported as the number and percentage 

of occurrences of each penalty, and the remaining metrics are reported as the average ± 

standard deviation across each of the 24 muscles considered in this analysis. In all cases, a 

lower value represents a better result. 
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Appendix 4: Comparison of joint mechanism  169

Two different types of joint mechanisms were implemented in this manuscript, the first a 170

generic implementation similar to the generic gait2392 model, and second personalised joint 171

mechanisms based on medical imaging segmentations. No direct validation between these 172

two joint mechanisms was performed as no gold standard ground truth data was available. 173

The personalised joint mechanisms were implemented due to observed errors in joint motion 174

in the generic joint mechanisms, specifically, the tibia was observed to translate too far 175

superiorly (Fig S6) at 90 degrees of knee flexion.  176

 177

Fig S6: Comparison of the tibia position at 90 degrees of tibiofemoral flexion in the generic 178

gait 2392 model (A), a model with the generic joint mechanism (B), and a personalised joint 179

mechanism (C) 180

In addition to these seemingly non-physiological motions, the observed variation in the 181

estimated secondary kinematics showed much higher variability in both tibiofemoral and 182

patellofemoral kinematics (Fig S8, S9) especially compared to those in the generic joint 183

mechanisms (Fig S7) 184



 185 

Fig S7: Tibiofemoral joint motion from MAP Client generated models with  generic joint 186 

mechanisms for each participant and each of the 6 DOFs where each colour represents a 187 

different participant. Translations are reported in metres and rotations in radians. Note that 188 

each motion is expressed relative to the TFJ flexion angle. 189 

 190 

Fig S8: Personalised TFJ kinematics for each participant and each of the 6 DOFs where each 191 

colour represents a different participant. Translations are reported in metres and rotations in 192 

radians. Note that each motion is expressed relative to the TFJ flexion angle.193 



194 

Fig S9: Personalised PFJ motion for each participant and each of the 6 DOFs where each colour 195 

represents a different participant. Translations are reported in metres and rotations in radians. 196 

Note that each motion is expressed relative to the TFJ flexion angle 197 


