
A Logic of Non-Monotone Inductive Definitions

MARC DENECKER

K.U.Leuven, Belgium

EUGENIA TERNOVSKA

Simon Fraser University, Canada

Well-known principles of induction include monotone induction and different sorts of non-

monotone induction such as inflationary induction, induction over well-founded sets and iterated
induction. In this work, we define a logic formalizing induction over well-founded sets and mono-

tone and iterated induction. Just as the principle of positive induction has been formalized in

FO(LFP), and the principle of inflationary induction has been formalized in FO(IFP), this paper
formalizes the principle of iterated induction in a new logic for Non-Monotone Inductive Defini-

tions (ID-logic). The semantics of the logic is strongly influenced by the well-founded semantics

of logic programming.
This paper discusses the formalisation of different forms of (non-)monotone induction by the

well-founded semantics and illustrates the use of the logic for formalizing mathematical and

common-sense knowledge. To model different types of induction found in mathematics, we define
several subclasses of definitions, and show that they are correctly formalized by the well-founded

semantics. We also present translations into classical first or second order logic. We develop
modularity and totality results and demonstrate their use to analyze and simplify complex defini-

tions. We illustrate the use of the logic for temporal reasoning. The logic formally extends Logic

Programming, Abductive Logic Programming and Datalog, and thus formalizes the view on these
formalisms as logics of (generalized) inductive definitions.

Categories and Subject Descriptors: I.2.4 [ARTIFICIAL INTELLIGENCE]: Knowledge Rep-

resentation Formalisms and Methods

Additional Key Words and Phrases: Inductive Definitions, Classical Logic, Logic Programming

1. INTRODUCTION

This paper studies the extension of classical logic with a general notion of inductive
definitions. An inductive definition is a recipe to construct a mathematical object,
usually one or more sets, by describing when to add elements given the presence or
absence of other objects. In mathematical texts, inductive definitions are usually

Author’s address: Marc Denecker, Department of Computer Science, K.U.Leuven, Celestijnen-
laan 200A, B-3001 Heverlee, Belgium. Phone: +32 16 327544 — Fax: +32 16 327996. Email:

marcd@cs.kuleuven.ac.be

Evgenia Ternovska, Computational Logic Laboratory, School of Computing Science, Simon Fraser
University, Burnaby, British Columbia, Canada V5A 1S6. Phone: +1-604-291-4771 — Fax :+1

604 291-3045. Email: ter@cs.sfu.ca
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1529-3785/2006/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006, Pages 1–50.

2 · Marc Denecker and Eugenia Ternovska

represented as collections of rules representing a set of base cases and inductive
cases. Inductive rules may be monotone or non-monotone. A familiar example
in which both type of rules occur is the definition of the satisfaction relation |=
between a truth assignment I and a formula. In case of propositional logic, this
relation is defined by induction on the subformula order on formulas:

- I |= p if p ∈ I,
- I |= ψ ∧ φ if I |= ψ and I |= φ,
- I |= ψ ∨ φ if I |= ψ or I |= φ,
- I |= ¬ψ if I 6|= ψ.

The second and third rules are monotone, while the last rule is non-monotone
because it adds the pair (I,¬ψ) to the truth relation if the pair (I, ψ) does not
belong to it. This is an example of an inductive definition over a well-founded
order, given here by the subformula relation.

It is well-known that, in general, inductive definitions cannot be expressed in
first-order logic (FO). Yet, inductively defined concepts are often very useful in
practice. For example, in the context of databases, query languages have been ex-
tended with fixpoint constructs to represent inductively definable concepts. Also
description logics have been extended with such fixpoint constructs. The lack of
expressive power of FO logic to represent recursion (including recursion through
negation) has motivated its extension with fixpoint constructs. In these logics,
several forms of induction have been modelled: e.g. monotone induction, partial
fixpoint induction, inflationary fixpoint induction. However, there are forms of non-
monotone induction which are quite common in mathematics that are not modelled
well by fixpoint logics. In particular, inductions over well-founded orders and iter-
ated inductions [Kreisel 1963; Buchholz et al. 1981] are not handled naturally in
any of the fixpoint logics.

Recently, the authors of [Denecker 1998; Denecker et al. 2001] investigated such
generalized forms of induction in mathematics and pointed out that semantical
studies in the area of logic programming may contribute to a better understand-
ing of them. In particular, it was argued that the well-founded semantics of logic
programming [Van Gelder et al. 1991] extends monotone induction and formalises
and generalises induction over well-founded sets and iterated induction. This ob-
servation motivated the first author to define ID-logic, an extension of classical
logic with a notion of inductive definition based on the well-founded semantics
[Denecker 2000]. In [Denecker and Ternovska 2004b], we extended ID-logic by al-
lowing arbitrary boolean combinations of FO formulas and definitions. There, we
also investigated the modularity properties of definitions in ID-logic and presented
equivalence preserving transformations of subclasses of ID-logic to classical logic.

On the computational level, ID-logic has recently been proposed as the under-
lying language for a constraint programming framework [Mitchell and Ternovska
2005]. This framework is based on the search for models which satisfy an ID-logic
theory and expand a given structure by new relations. A parameterized version
of the framework was shown to capture the complexity class NP, and other com-
plexity classes can also be captured. Several ID-logic solvers implementing this
computational paradigm have been developed [Pelov and Ternovska 2005; Mariën
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 3

et al. 2006], and active research on formal foundations is going on.
The computational role of ID-logic is not restricted to model expansion. ID-logic

formally extends several computational logics such as Logic Programming and Dat-
alog, and Abductive Logic Programming. Prolog systems such as XSB [Rao et al.
1997] and query systems for Datalog can be seen seen as query systems for fragments
of ID-logic. Abductive inference systems from Abductive Logic Programming such
as the Asystem [Kakas et al. 2001] can be used to perform abductive reasoning in
(fragments of) ID-logic. Another topic of research is the development of deduc-
tive inference methods for ID-logic extending methods from fixpoint logics such as
[Compton 1993].

The current paper contains the complete presentation of the ideas in the two con-
ference papers [Denecker 2000; Denecker and Ternovska 2004b] and extends these
studies in several respects. We define ID-logic as an extension of classical logic
with inductive definitions. This enterprise is similar to the extension FO(LFP) of
classical logic with monotone fixpoints, or to the extension FO(IFP) with inflation-
ary fixpoints. The main difference with fixpoint logics is that it incorporates other
forms of non-monotone induction, which arise much more often in mathematics
and common-sense reasoning. The main goal of this paper is to demonstrate that
this integration of classical logic and (non-monotone) inductive definitions leads to
a coherent, natural and useful logic for knowledge representation. To this end, we
study the following topics:

—We explain the different notions of inductive definition and give an intuitive argu-
ment why well-founded semantics correctly formalises them. This was attempted
before in [Denecker et al. 2001], but we improve the argument.

—Definitions over well-founded sets occur very frequently in mathematics. Other
forms of non-monotone induction such as iterated inductive definitions occur not
as frequently. We will show examples that illustrate both concepts. We will show
that in the context of knowledge representation, both types of definitions arise
very naturally.

—We demonstrate the use of inductive definitions to model several well-known
principles of knowledge representation: Domain Closure Axiom, Closed World
Assumption, default reasoning and default inheritance, and temporal reasoning.

—We define some special classes of definitions, to model different types of defi-
nitions found in mathematics: monotone inductive definitions, definitions over
well-founded orders, and iterated inductive definitions. For each class, we de-
fine an alternative formal semantics which more directly captures that particular
kind of induction. We then show that for each class, this new semantics coin-
cides with the well-founded semantics. This gives further evidence to the thesis
that well-founded semantics uniformally formalises different forms of inductive
definitions.

—Non-monotone inductive definitions are descriptions of complex mathematical
construction processes. A technical part of the paper is devoted to the develop-
ment of a set of tools to analyse inductive definitions: (1) dependency relations
give a view on the internal structure of a definition; (2) modularity results allow
one to split up big definitions into a conjunction of often much simpler sub-
definitions; (3) totality conditions guarantee that a definition is total, i.e., defines

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

4 · Marc Denecker and Eugenia Ternovska

its relation(s) in an exact and total manner; and (4) translations from subclasses
of definitions to first- and second-order formulas show connections with classical
logic.

—We present a temporal reasoning example and show a simple and natural solution
using iterated inductive definitions in ID-logic. To our knowledge, this example
cannot be represented in any of the existing situation calculus formalisms. We
also use this example to demonstrate the analysis techniques: we show the inter-
nal structure of the definition, break it up in simple sub-theories and translate
the theory to classical logic.

—Here, we will not study ID-logic from an expressivity theoretic point of view.
Well-founded semantics has been investigated from this perspective, e.g. in [Van
Gelder et al. 1991; Van Gelder 1993; Schlipf 1995b]. The perspective of this
paper is epistemological and pragmatic, i.e., this paper is a formal study of in-
ductive definitions, a form of knowledge that appears informally in mathematics;
we study the relation with common-sense knowledge representation principles;
the mathematical tools developed here serve to clarify the meaning of inductive
definitions expressed in ID-logic.

We consider it as one of our most important achievements that ID-logic is a co-
herent and conceptually clean integration of classical logic and logic programming.
These two formalisms are usually viewed as serving such thoroughly different rep-
resentational and computational purposes, that an integration seems impossible or
even undesirable. But if we see logic programs as declarative representations of
inductive definitions, then it is natural to integrate logic programs with classical
logic, in order to compensate for the latter’s representational weakness on inductive
definability.

Many of the concepts, techniques and results used here are generalizations or
variants of concepts, techniques or results introduced in logic programming. There
are however, some important differences. To be able to integrate logic programming
in classical logic, we need to drop two standard constraints of logic programming.
The first is that a logic program defines all its predicates. An ID-logic definition
defines only a subset of defined predicates of the theory and does not constrain
other predicates. This feature is a significant improvement from the knowledge
representation point of view.

The second is that logic programming semantics are typically based on Herbrand
interpretations. To achieve an integration with classical logic, we base the semantics
of ID-logic on general interpretations. Consequently, the use of classical logic forces
us to generalise many concepts of Logic Programming to arbitrary interpretations
rather than Herbrand interpretations, and to first-order rule bodies rather than
conjunctions of literals. We devote Section 4.3 to a discussion of the history of the
view of logic programs as inductive definitions.

2. FORMAL STUDY OF INDUCTIVE DEFINITIONS

Mathematical induction refers to a class of construction techniques used in math-
ematics. There, a set, or a set of sets, or a structure, is frequently defined as the
result of an iterative constructive process, consisting of repeated applications of a
basic set of operations. Mathematicians often describe such a construction by an
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 5

inductive definition. The scientific study of the concept of inductive definition, as
used in mathematical texts, is an important topic of mathematical logic. In this
section, we discuss several informal forms of inductive definitions and how they have
been formalized. Then we will introduce the definition construct of ID-logic and
explain what forms of induction it formalizes. The section refines ideas presented
earlier in [Denecker 1998; Denecker et al. 2001].

Mathematicians often follow certain linguistic conventions to phrase such defini-
tions. For example, reconsider the definition from Section 1:

Definition 2.1. The truth relation |= between interpretations I and propositional
sentences ϕ is defined by induction on the subformula order (or on the length) of
formulas:

- I |= p if p ∈ I,
- I |= ψ ∧ φ if I |= ψ and I |= φ,
- I |= ψ ∨ φ if I |= ψ or I |= φ,
- I |= ¬ψ if I 6|= ψ.

This definition starts with the phrase that the defined set “is defined by induction
(on some order)” followed by a set of basic and inductive rules, where the latter
type of rules specify when to add elements to the defined set, given the presence or
absence of other elements.

In most inductive definitions in mathematics, the inductive rules are all mono-
tone, meaning that they add elements to the defined sets given the presence of other
elements in the set. For example:

Definition 2.2. The transitive closure TG of a directed graph G is inductively
defined by the following rules:

—(x, y) ∈ TG if (x, y) ∈ G;
—(x, y) ∈ TG if for some vertex z, (x, z) ∈ TG and (z, y) ∈ TG.

Other typical examples of monotone inductive definitions are the definition of a
subgroup generated by a set of group elements, or the definitions of a term, formula,
etc. in logic. A fundamental application in logic is that of the deductive closure
Cn(T) of a propositional or first-order logic theory T which is inductively defined
by the formulas of T and a sound and complete set of inference rules.

The set defined by such definitions can be characterized in a downward, non-
constructive way, as the least set closed under application of the rules, i.e., as the
intersection of all sets for which the conclusion of each rule is satisfied whenever the
condition is satisfied. Alternatively, the defined set can also be characterized in an
upward, constructive way as the limit of a process starting from the empty set and
iteratively applying rules until saturation occurs. Although these characterizations
are very different, it is a fundamental fact of monotone induction that both views
correspond.

Monotone induction has been extensively studied from an expressivity-theoretic
point of view and is a key concept in recursion theory. Its study was started by [Post
1943] and was continued in many later studies such as [Spector 1961; Moschovakis

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

6 · Marc Denecker and Eugenia Ternovska

1974a; Aczel 1977]. In these formal studies, a monotone inductive definition was
often formalized by a formula ϕ(x̄,X) where X is a predicate variable of arity n
with only positive occurrences in ϕ and x̄ a tuple of n variables. This formula
encodes the set of rules of an inductive definition by specifying all the conditions
under which tuple x̄ belongs to the defined predicate X. For instance, for the
transitive closure example above we have:

ϕtrans((x, y), TG) := G(x, y) ∨ ∃z(TG(x, z) ∧ TG(z, y)).

Given a structure I, the formula ϕ(x̄,X) characterises an operator Γϕ(x̄,X) mapping
a relation R to the relation R′ consisting of tuples ā such that ϕ(ā, R) is true in I.
For positive formulas, this operator is monotone, i.e., preserves the subset relation
⊆, and has a least fixpoint, which is both the least set closed under application
of the operator (i.e., the least pre-fixpoint of Γϕ(x̄,X), i.e., the least R such that
Γϕ(x̄,X)(R) ⊆ R) and the fixpoint obtained by iterating the operator on the empty
relation. A logic to represent monotone inductive definitions is the least fixpoint
logic FO(LFP) (see, e.g. [Ebbinghaus and Flum 1999]).

Mathematicians also define concepts through non-monotone inductive rules, which
add elements to the defined relation given that the absence of other elements has
been established. An example is the fourth rule of Definition 2.1:

I |= ¬ϕ if I 6|= ϕ.

Definition 2.1 is an example of an inductive definition over a well-founded order.
Such definitions describe the membership of an element in the defined relation in
terms of the presence or absence of elements in the defined relation that are strictly
smaller with respect to some well-founded (pre-)order. By applying the rules to the
minimal elements and then iterating them for higher levels, possibly a transfinite
number of times, the defined predicate can be constructed, independent of whether
the inductive rules are monotone or non-monotone. This shows that for this type
of induction, the upward interpretation of a definition continues to hold, under the
proviso that rules should be applied along the well-founded order, i.e., rules defining
higher elements in the order are applied after the lower levels of the relation have
been constructed. On the other hand, the downward interpretation is not longer
correct, i.e., in general the defined set is not the least set closed under the rules.
Consider the following (simplified) definition:

Definition 2.3. The set of even numbers is defined by induction over the standard
order of the natural numbers:

—0 is an even number;

—n+ 1 is an even number if n is not an even number.

This set of rules does not have a least set closed under the rules. In particular,
{0, 2, 4, 6, . . . } and {0, 1, 3, 5, 7, . . . } are both minimal sets closed under the rules
(i.e., they both contain 0 and the successor of each of the numbers not in the set).
The operator of the corresponding formula

ϕeven(x,E) := x = 0 ∨ ∃y(x = s(y) ∧ ¬E(y)), (1)
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 7

is non-monotone, has many minimal but no least pre-fixpoints but has a unique
fixpoint, the set of even numbers.

Definitions over well-founded (pre-)orders are very frequent in mathematics. Ex-
amples are all definitions over ordinal numbers, such as the ordinal powers of a
monotone operator. Another example is that of the rank of an element in a well-
founded order, defined as the least ordinal strictly larger than the ranks of all lesser
elements. This form of inductive definition is strongly related to the principle of
proof by induction over the element relation ∈ of set theory, which has been studied
extensively in proof theory [Pohlers 1989]. In Section 6, we will present a general
formalization of inductive definitions over a well-founded order as a subclass of
definitions in ID-logic.

Induction over a well-founded order is based on a fundamental and widely used
mathematical mechanism. A common way to extend a mathematical theory is by
introducing a new concept and defining it in terms of the existing concepts of the
theory. Here, it does not matter whether the defined concept depends positively
or negatively on the already existing concepts. An essential property of such an
extension is that it has no impact on the properties of the original concepts; i.e.,
all properties of the original concepts remain exactly as before the extension. We
will call this the principle of definitional extension. In [Schlipf 1995b], it was called
the principle of stratification and was investigated there in the context of several
semantics of logic programming. Also here in this paper, we will present several
results formalizing this principle.

The principle of induction over a well-founded order is clearly a fine-grained,
iterative application of definitional extensions, where the inclusion of a potential
element in the defined set is defined non-recursively in terms of the inclusion of
strictly smaller domain elements in the set. A further generalization of this idea is
found in iterated inductive definitions. Just like induction over a well-founded order,
the basic idea underlying iterated induction is to iterate basic construction steps
over a segment of ordinals or a well-founded order, but here the basic construction
steps are monotone inductions.

A nice example of an iterated inductive definition is the definition of a stable
theory of some propositional theory T , presented in [Marek 1989]1. Intuitively, the
stable set is an extension of the deductive closure CN(T) of T with a set of formulas
of modal logic, constructed by closing T under the inference rules of propositional
logic augmented with two additional inference rules:

` ψ
` Kψ

and
6` ψ
` ¬Kψ

.

Observe that the second rule is non-monotone.
Formally, let τ0 be the vocabulary of T , and for each n > 0, τn := τn−1 ∪

{K(ϕ)|ϕ is a propositional formula over τn−1}. Define the modal depth l(ϕ) of a
modal formula ϕ as the least n such that ϕ is a propositional formula over τn.
Equivalently, the modal depth is the maximal nesting depth of the modal operator
in ϕ. The propositional language over τn consists of all modal formulas with modal

1The original definition in [Moore 1983] defines a stable set through a fixpoint equation.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

8 · Marc Denecker and Eugenia Ternovska

depth ≤ n. Then we define

S0 = Cn(T),

computed over τ0, and for each n > 0,

Sn = Cn(T ∪ {K(ϕ)|ϕ ∈ Sn−1} ∪ {¬K(ϕ)|ϕ 6∈ Sn−1}),

computed over τn.
Clearly, each Sn is a set of formulas of modal depth ≤ n. There is an easy

inductive argument to see that a formula φ of modal depth ≤ n belongs to Sn+1

iff it belongs to Sn. Indeed, φ belongs to Sn+1 iff it can be proven from T ′ =
T ∪ {K(ϕ)|ϕ ∈ Sn} ∪ {¬K(ϕ)|ϕ 6∈ Sn}. Observe that theory T ′ can be split up
in a theory T ′1 over τn and a theory T ′2 over τn+1 \ τn. Since φ is over τn, it can
be proven from T ′ iff it can be proven from T ′1 = T ∪ {K(ϕ)|ϕ ∈ Sn ∧ l(ϕ) ≤
n−1}∪{¬K(ϕ)|ϕ 6∈ Sn∧ l(ϕ) ≤ n−1}. By the induction hypothesis, T ′1 is exactly
T ∪ {K(ϕ)|ϕ ∈ Sn−1} ∪ {¬K(ϕ)|ϕ 6∈ Sn−1}. By definition of Sn, φ belongs to Sn
iff it can be proven from T ′1 iff it can be proven from T ′ iff φ belongs to Sn+1.

It follows that the sequence (Sn)n∈N is monotonically increasing. The limit of
this sequence is called the stable set of T . The stable theory of T can be shown to
be the set of all modal formulas ϕ such that for the collection W of models of T
and for each model M ∈W , it holds that W,M |= ϕ. Intuitively, the stable set can
be viewed as the set of modal formulas believed by an ideally rational agent with
perfect introspection whose base beliefs are represented by T .

The logical study of iterated induction was started in [Kreisel 1963] and extended
in later studies of so-called Iterated Inductive Definitions (IID) in [Feferman 1970],
[Martin-Löf 1971], and [Buchholz et al. 1981]. The IID formalism defined in [Fefer-
man 1970; Buchholz et al. 1981] is a formalism to define sets of natural numbers
through iterated induction. To represent an iterated inductive definition of a set
H, one associates with each natural number an appropriate level index, an ordinal
number. This level index can be understood as the index of the sub-definition which
determines whether the number belongs to the defined set or not. The iterated in-
ductive definition is described by a finite parametrized formula ϕ(n, x, P,H), where
n represents a level index, x is a natural number, P is a unary predicate variable
with only positive occurrences in ϕ and ranging over natural numbers, and H is
the defined relation represented as a binary predicate ranging over tuples (n, x) of
natural numbers x and their level indices n. The formula ϕ(n, x, P,H) encodes that
n is the level index of x, and x can be derived (using the inductive definition with
level index n) from the set P and the restriction of H to tuples with level index
< n.

We illustrate IID by sketching how to encode the definition of a stable theory.
Let us assume some Gödel numbering of modal formulas. For each modal formula
φ, denote its Gödel number by |φ|. The IID formula ϕ(n, x, P,H) encodes that x
is the Gödel number of a formula ψ such that n is l(ψ), the modal depth of ψ, and
one of the following conditions hold:

—there exists a ψ′ such that ψ = K(ψ′) and H(n− 1, |ψ′|) holds, or
—there exists a ψ′ such that ψ = ¬K(ψ′) and ¬H(n− 1, |ψ′|) holds, or
—there is an instance of an inference rule `ψ1,...,`ψn

`ψ of propositional logic and for

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 9

each i, 1 ≤ i ≤ n, either l(ψi) < n and H(l(ψi), |ψi|) holds or l(ψ) = n and
P (|ψi|) holds.

The first two items encode the modal inference rules. Using standard methods of
Gödel numbering, the above specification can be encoded in FO and leads to a
formula in which P occurs only positively.

Using ϕ(n, x, P,H), the set H is characterized by two axioms. The first one
expresses that H is closed under ϕ:

∀n∀x (ϕ(P (σ)/H(n, σ))→ H(n, x)).

In this formula, ϕ(P (σ)/H(n, σ)) denotes the formula obtained from ϕ by substi-
tuting H(n, σ) for each expression P (σ) in ϕ.

The second axiom is a second-order axiom expressing that for each n, the subset
{x | (n, x) ∈ H} of N is the least set of natural numbers closed under ϕ:

∀n∀P [∀x (ϕ→ P (x))→ ∀x (H(n, x)→ P (x))].

The two axioms axiomatise H as the set of all pairs (n, x) where x belongs to the
set defined by iterated induction, and n is its level index.

2.1 A logic of inductive definitions

We have now introduced the different sorts of inductive definitions that we want to
formalize in ID-logic. A definition in ID-logic will be represented simply as a set of
rules of the form:

∀x̄(P (x̄)← ψ),

where P is a relational symbol defined by the definition, and ψ an arbitrary first-
order formula. For example, the non-monotone definition of even numbers will be
represented by the set: {

∀x(E(x)← x = 0),
∀x(E(s(x))← ¬E(x))

}
. (2)

From a representational point of view, this syntax has several interesting features.
First, formalizations of definitions in ID-logic preserve the rule-based structure of
informal definitions in mathematics. Second, this syntax includes simultaneous
inductive definitions. Consider for example the following simultaneous inductive
definition of even and odd numbers: ∀x(E(x)← x = 0),

∀x(E(s(x))← O(x)),
∀x(O(s(x))← E(x))

 .

Third, the logic offers a uniform formalization of the above mentioned types of
definitions. Syntax and semantics of ID-logic are designed for uniform formaliza-
tion of non-inductive (recursion-free) definitions, positive or monotone inductive
definitions, definitions over well-founded orders and iterated inductive definitions.

A feature of the representation of non-monotone definitions in ID-logic is that,
in contrast to e.g. IID, no well-founded order or level indices have to be specified.
Intuitively, it is not so difficult to see that this order or this level indexing is not
really needed to construct the defined relation(s). For example, in Definition 2.1, the

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

10 · Marc Denecker and Eugenia Ternovska

satisfaction relation |= was defined by induction on the subformula order, but could
have been equivalently defined by induction on two other well-founded strict orders,
those induced by the length or by the depth of formulas. Indeed, the formulas that
are mentioned in the condition of rules of Definition 2.1 are strict subformulas and
have strictly smaller length and depth than formulas in the head. The point is
that a mathematician has a certain liberty in choosing the order associated to a
definition. This order should be well-founded and a potential element of the defined
relation(s) mentioned in the head of an inductive rule should be strictly larger than
those on which it depends, i.e., those mentioned in the condition of the rule. In
this way, it is guaranteed that the definition is well-behaved, in the sense that the
defined relation can be constructed along this dependency relation. However, the
defined relation does not depend on which order is chosen. As we will see in Section
4, the well-founded model construction delays the application of rules defining an
atom until enough information has been established about the atoms on which it
depends. In other words, the well-founded model construction performs an iterated
induction along the implicit dependency order encoded in the rules. This fact
can be viewed as the contribution of the well-founded model construction to the
semantical study of the above non-monotone forms of inductive definitions.

The generality and uniformity of definitions in ID-logic also causes problems. In
mathematics, not every set of basic and inductive rules defines a relation. Similarly,
not every definition formula expresses a correct definition. For example, in the
natural numbers, the definition

{
∀x(E(x)← ¬E(s(x))

}
(3)

induces a dependency of an atom E(n) on E(n + 1) and would correspond to an
“informal” definition of the set of even numbers by induction on ≥, the inverse of
the standard order of the natural numbers. But this is not a well-founded order.
The construction of the set is ill-defined because there are no minimal elements in
this order and therefore, there are no base cases of the induction. In mathematics,
such definitions are errors. This matches with ID-logic’s treatment of definition
formulas such as (3): the well-founded model construction for this definition fails
and the definition is inconsistent.

In summary, monotone induction, induction over a well-founded order and iter-
ated induction are well-known and frequently used forms of induction in mathe-
matics. Mathematicians often follow certain linguistic conventions to express such
inductive definitions by sets of base rules and inductive rules. The definition con-
struct in ID-logic is designed to allow a uniform, faithful translation of such informal
definitions in the logic.

The close correspondence between definition formulas in ID-logic and definitions
in mathematics, is important for knowledge representation and modelling. The
technical details of well-founded model construction are non-trivial (although sim-
pler semantical theories hold for most forms of inductive definitions, see Section
6), but to understand or represent a definition in ID-logic, it is not necessary to
mentally compute this well-founded model. To a great deal, we can rely on our
understanding of its informal semantics.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 11

2.2 Another form of non-monotone induction: Inflationary Induction.

In order to extend the theory of monotone inductive definitions to the class of all
formulas, Moschovakis [Moschovakis 1974b] proposed to associate with an arbitrary
formula ϕ(x̄,X) (possibly non-positive) the operator Γ′ϕ(x̄,X), where

Γ′ϕ(x̄,X)(R) := Γϕ(x̄,X)(R) ∪R.

Operator Γ′ϕ(x̄,X) is not monotone, but it is inflationary, that is, for every R,
R ⊆ Γ′ϕ(x̄,X)(R). Thus, by iterating this operator starting at the empty relation,
an ascending sequence can be constructed. This sequence eventually reaches a
fixpoint of Γ′ϕ(x̄,X). This fixpoint was later called the inflationary fixpoint, and
the corresponding logic FO(IFP) was introduced [Gurevich and Shelah 1986]. This
logic introduces inflationary, and its dual, deflationary, fixpoint constructs. The
inflationary fixpoint logic played an important role in descriptive complexity theory
and has been used to characterize the complexity class PTIME [Immerman 1986;
Livchak 1983; Vardi 1982]. FO(IFP) is well-known to be a very expressive logic.
For some applications of inflationary and deflationary induction, we address the
reader to [Graedel and Kreutzer 2003].

Inflationary induction and iterated induction (as formalized in ID-logic) are differ-
ent extensions of monotone induction. For instance, inflationary induction applied
on the non-monotone Definition 2.3 yields the set of all natural numbers. More
precisely, this is the set obtained with one application of the operator Γ′ϕeven

, where
ϕeven is given in formula (1).

Our argument to extend FO with induction over well-founded order and iterated
induction rather than inflationary induction stems from knowledge representation.
Induction over well-founded order and iterated induction have with many applica-
tions in mathematics. Part of our project is to demonstrate that these forms of
inductive definitions have also many applications outside mathematics, in knowl-
edge representation and computational logic. In comparison, natural applications
of inflationary induction in mathematics and computational logic seem to be quite
rare. Although inflationary induction is expressive, in practice rephrasing even sim-
ple iterated inductive definitions through inflationary induction may be extremely
difficult. The author of [Van Gelder 1993] discusses the case of the complement
NTG of the transitive closure of a graph G. The obvious way to define this in
ID-logic is: {

∀x∀y (TG(x, y)← G(x, y) ∨ ∃z(TG(x, z) ∧ TG(z, y))),
∀x∀y (NTG(x, y)← ¬TG(x, y))

}
.

This is a simple iterated inductive definition with 2 levels. On the other hand,
according to [Van Gelder 1993], it was “a significant research achievement” when a
set of (function-free) logic programming rules (rules with a conjunction of literals as
body) was discovered expressing the same relation under the inflationary semantics.
The simplest known solution is a complex set of rules including several intermediate
relations and it is far from obvious how computing the inflationary fixpoint of this
program constructs the relation.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

12 · Marc Denecker and Eugenia Ternovska

3. PRELIMINARIES

3.1 Preliminaries from Logic

We begin by fixing notation and terminology for the basic syntactic and semantic
notions related to first- and second-order logic.

We assume an infinite supply of distinct symbols, which are classified as follows:

1. Logical symbols:
a) Parentheses: (,);
b) Logical connectives: ∧, ¬;
c) Existential quantifier: ∃;
d) Binary equality symbol: = (optional);
e) Two propositional symbols: t and f .

2. Non-logical symbols:
a) countably many object symbols. Object symbols are denoted by low-case

letters;
b) for each positive integer n > 0, countably many n-ary function symbols of

arity n. Function symbols are denoted by low-case letters;
c) for each positive integer n, countably many n-ary relation symbols, also called

predicate or set symbols of arity n. We use upper-case letters to denote pred-
icates.

As usual, we identify object symbols with 0-ary function symbols and propositional
symbols with predicate symbols of arity 0.

Remark 3.1. In most parts of this paper, we do not make a formal distinction
between variable and constant symbols. Symbols occurring free in a formula can be
viewed as constants; symbols in the scope of a quantifier can be viewed as variables.
In examples, we tend to quantify over x, y, X, Y , and leave c, g, f and P , Q free
and treat them as constants.

We define a vocabulary as any set of non-logical symbols. We denote vocabularies
by τ, τo

∆, We shall denote the set of function symbols of τ by τfn, and we use
σ, σ1, σ2 etc., to refer to an arbitrary symbol of the vocabulary. We write σ̄ to
denote a sequence of symbols (σ1, σ2, . . .) or, depending on the context, simply the
set of symbols {σ1, σ2, . . . }. Likewise, X̄ denotes a sequence or a set of relational
symbols (i.e, set variables or constants), and x̄ is used to denote a sequence or a
set of object symbols, etc..

A term is defined inductively as follows:

- an object symbol is a term;
- if t1, . . . , tn are terms and f is an n-ary function symbol, where n ≥ 1, then
f(t1, . . . , tn) is a term.

A formula is defined by the following induction:

- if P is an n-ary predicate constant or variable, and t1, . . . , tn are terms then
P (t1, . . . , tn) is a formula, called an atomic formula or simply an atom;

- if φ, ψ are formulas, then so are ¬φ, φ ∧ ψ;
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 13

- if x is an object symbol, f a function symbol, X is a predicate symbol and φ is
a formula, then ∃x φ, ∃f φ and ∃X φ are formulas.

A bounded occurrence of symbol σ in formula φ is an occurrence of σ in a
subformula ∃σψ of φ. A free occurrence of σ in φ is an unbounded occurrence. The
set of symbols which occur free in φ is denoted free(φ). A relation symbol X has a
negative (positive) occurrence in formula F if X has a free occurrence in the scope
of an odd (even) number of occurrences of the negation symbol ¬.

A formula φ is a formula over vocabulary τ if its free symbols belong to τ
(free(φ) ⊆ τ). We use SO[τ] to denote the set of all formulas over τ ; and we
use FO[τ] to denote the set of first-order formulas over τ , that is those without
quantified predicate or function variables.

We use (φ ∨ ψ), (φ ⊃ ψ), (φ ≡ ψ), ∀x φ, ∀f φ and ∀X φ, in the standard way,
as abbreviations for the formulas ¬(¬φ ∧ ¬ψ), ¬(φ ∧ ¬ψ), ¬(φ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬φ),
¬∃x (¬φ), ¬∃f (¬φ), ¬∃X (¬φ), respectively.

Having defined the basic syntactic concepts, we define the semantic concepts.
Let A be a non-empty set. A value for an n-ary relation (function) symbol σ of
vocabulary τ in A is an n-ary relation (function) in A. A value for a 0-ary function
symbol, i.e., an object constant or variable, is an element of the domain A. A value
for a 0-ary relation symbol Y is either ∅ or {()}, the singleton of the empty tuple.
We identify these two values with false, respectively true. The value of the equality
symbol is always the identity relation on A. The value of t is {()} (true) and the
value of f is ∅ (false).

A structure I for a given vocabulary τ (in short, a τ -structure) is a tuple of a
domain dom(I), which is a non-empty set, and a mapping of each symbol σ in τ to
a value σI in dom(I). If σ ∈ τ and I is a τ -structure, we say that I interprets σ.
We also use letters J , K, L, M to denote structures. Given I, τI denotes the set
of symbols interpreted by I.

Let us introduce notation for constructing and modifying structures with a shared
domain A. Let I be a τ -structure, and σ̄ be a tuple of symbols not necessarily in
τ . Structure I[σ̄ : v̄] is a τ ∪ σ̄-structure, which is the same as I, except symbols σ̄
are interpreted by values v̄ in dom(I). Given a τ -structure I and a sub-vocabulary
τ ′ ⊆ τ , the restriction of I to the symbols of τ ′ is denoted I|τ ′ . Vice versa, a
structure I is called an extension of Io if Io = I|τIo

.
Let t be a term, and let I be a structure interpreting each symbol in t. We define

the denotation tI of t under I by the usual induction:

- if t is an object symbol σ, then tI is σI , the value of σ in I;
- if t = f(t1, .., tn), then tI := f I(tI1 .., t

I
n).

Next we define the satisfaction or truth relation |=. Let I be a structure and let
φ be a formula such that each free symbol in φ is interpreted by I. We define I |= φ
(in words, φ is true in I, or I satisfies φ) by the following standard induction:

- I |= X(t1, .., tn) if (tI1, .., t
I
n) ∈ XI ;

- I |= ψ1 ∧ ψ2 if I |= ψ1 if I |= ψ2;
- I |= ¬ψ if I 6|= ψ;
- I |= ∃σ ψ if for some value v of σ in the domain dom(I) of I, I[σ : v] |= ψ.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

14 · Marc Denecker and Eugenia Ternovska

Note that the truth of a formula φ is only well-defined in a structure interpreting
each free symbol of φ. We shall denote the truth value of φ in I by φI , i.e., if I |= φ
then φI is true ({()}) and otherwise, it is false (∅).

Sometimes, we wish to investigate the truth value of a formula φ as a function
of the values assigned to a specific tuple of symbols σ̄. We then call these symbols
the parameters of φ and denote the formula by φ(σ̄). Let I be some structure and
let v̄ be a tuple of values for σ̄ in the domain dom(I). We often write I |= φ[v̄] to
denote I[σ̄ : v̄] |= φ.

Let X be an n-ary relation symbol and A some domain. We define a domain
atom of X in A as any pair (X, d̄) where d̄ is an arbitrary n-tuple of elements A,
and denote such a domain atom by X[d̄]. For I a structure with domain A, the
value of X[d̄] in I is true if d̄ ∈ XI ; otherwise it is false. For a vocabulary τ , we
define AtτA as the set of all domain atoms in domain A over relation symbols in τ .

Suppose we are given a structure I with domain dom(I), a tuple x̄ of n variables
and a first-order formula φ(x̄) such that all its free symbols not in x̄ are interpreted
by I. The relation defined by φ(x̄) in the structure I is defined as follows:

R := { ā ∈ (dom(I))n | I |= φ[ā]}.

We call R first-order definable in I. In this paper, we study inductive and non-
monotone inductive definability. In this context, defined relations are not, in gen-
eral, first-order definable.

3.2 Preliminaries from Set and Lattice Theories

3.2.1 Orders, Lattices, operators and fixpoints. A pre-ordered set is a structured
set 〈W,≤〉, where W is an arbitrary set and ≤ is a pre-order on W , i.e., a reflexive
and transitive binary relation. As usual, x < y is a shorthand for x ≤ y ∧ y 6≤ x.
A pre-well-founded set is a pre-ordered set where ≤ is a pre-order such that every
non-empty set S ⊆W contains a minimal element, i.e., an element x such that for
each y ∈ S, if y ≤ x then x ≤ y. Equivalently, it is a set without infinite descending
sequence of elements x0 > x1 > x2 >

A partially ordered set, or simply poset, is an asymmetric pre-ordered set 〈W,≤〉,
i.e., one such that x ≤ y and y ≤ x implies x = y. A well-founded set is a pre-well-
founded poset.

A lattice is a poset 〈L,≤〉 such that every finite set S ⊆ L has a least upper bound
lub(S), the supremum of S, and a greatest lower bound glb(S), the infimum of S.
A lattice 〈L,≤〉 is complete if every (not necessarily finite) subset of L has both a
supremum and an infimum. Consequently, a complete lattice has a least element
(⊥) and a greatest element (>). An example of a complete lattice is the power set
lattice 〈Pow(A),⊆〉 of some set A. For any set S of elements of this lattice (i.e.,
for any set S of subsets of A), its least upper bound is the union of these elements,
lub(S) = ∪S. Thus, the greatest element > of 〈Pow(A),⊆〉 is ∪Pow(A), which is A.
Similarly, glb(S) = ∩S, and the least element ⊥ of this lattice is ∩Pow(A), which
is ∅.

Given a lattice 〈L,≤〉, an operator Γ : L → L is monotone with respect to ≤ if
x ≤ y implies Γ(x) ≤ Γ(y). Operator Γ is non-monotone, if it is not monotone. A
pre-fixpoint of Γ is a lattice element x such that Γ(x) ≤ x. The following theorem
was obtained by Tarski in 1939 and is sometimes referred to as the Knaster-Tarski
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 15

theorem because it improves their earlier joint result. The theorem was published
in [Tarski 1955], and it is one of the basic tools to study fixpoints of operators on
lattices.

Theorem 3.2 existence of a least fixpoint. Every monotone operator over
a complete lattice 〈L,≤〉 has a complete lattice of fixpoints (and hence a least fix-
point lfp(Γ) and greatest fixpoint gfp(Γ)).

This least fixpoint lfp(Γ) is the least pre-fixpoint of Γ and is the supremum of
the sequence (xξ)ξ which is defined inductively

xξ := Γ(x<ξ), and x<ξ := lub{xη|0 ≤ η < ξ}.

Notice that x<0 is, by definition, ⊥.
An operator Γ is anti-monotone if x ≤ y implies Γ(y) ≤ Γ(x). The square

Γ2 = Γ ◦ Γ of an anti-monotone operator is monotone.
An oscillating pair of an operator Γ is a pair (x, y) such that Γ(x) = y and

Γ(y) = x. An anti-monotone operator Γ in a complete lattice has a maximal
oscillating pair (x, y), i.e., for any oscillating pair (x′, y′), it holds that x ≤ x′ and
y′ ≤ y. Since (y, x) is also an oscillating pair, it follows that x ≤ y. Moreover,
since each fixpoint z of Γ corresponds to an oscillating pair (z, z), it follows that
x ≤ z ≤ y. If in addition x = y then x is the unique fixpoint of Γ.

The maximal oscillating pair (x, y) of Γ can be constructed by an alternating
fixpoint computation. Define four sequences (xξ)ξ, (x<ξ)ξ, (yξ)ξ, (y<ξ)ξ by the fol-
lowing transfinite induction:

- x<ξ = lub({xη : η < ξ}),
- xξ = Γ(y<ξ),
- y<ξ = glb({yη : η < ξ}),
- yξ = Γ(x<ξ).

Note that x<0 = ⊥ and y<0 = >. It can be shown that for each ξ, x<ξ ≤ xξ ≤
yξ ≤ y<ξ. The following theorem holds.

Theorem 3.3. [Van Gelder 1993] The sequence (xξ)ξ is ascending and its supre-
mum is lfp(Γ2). The sequence (yξ)ξ is descending and its infimum is gfp(Γ2). The
pair (lfp(Γ2), gfp(Γ2)) is the maximal oscillating pair of Γ.

In the sequel, we denote the maximal oscillating pair of an anti-monotone operator
G by OSC(G).

3.2.2 Lattice Congruences. Let 〈L,≤〉 be a complete lattice and let ∼= be an
equivalence relation (i.e., a reflexive, symmetric and transitive relation) on L. For
any x ∈ L, we denote its equivalence class {y ∈ L | x∼=y} by |x|. The collection
of equivalence classes is denoted by |L|. The relation ∼= can be extended to tuples:
(x1, . . . , xn)∼=(y1, . . . , yn) if x1

∼=y1 and . . . and xn∼=yn. It is extended to subsets of
L by defining for all S, S′ ⊆ L: S∼=S′ if for each x ∈ S there exists x′ ∈ S′ such
that x∼=x′ and vice versa, for each x′ ∈ S there exists x ∈ S such that x∼=x′. We
sometimes call an element of x̃ ∈ |L| a witness of x̃.

An equivalence relation ∼= on L is called a lattice congruence of 〈L,≤〉 if for
each pair S, S′ ⊆ L, S∼=S′ implies that lub(S)∼=lub(S′) and glb(S)∼=glb(S′). We

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

16 · Marc Denecker and Eugenia Ternovska

can define a binary relation ≤ on |L|: for all x̃, ỹ ∈ |L|, define x̃ ≤ ỹ if for some
x ∈ x̃, y ∈ ỹ : x ≤ y. It can be shown easily that if ∼= is a lattice congruence, then
the structure 〈|L|,≤〉 is a complete lattice.

A lattice congruence ∼= on L defines a pre-order ≤∼= on L, defined as x ≤∼= y iff
|x| ≤ |y| iff ∃x′, y′ : x∼=x′ ≤ y′∼=y.

We say that an operator Γ : Lm → Ln preserves ∼= if for any pair of x̄, ȳ ∈ Lm,
x̄∼=ȳ implies Γ(x̄)∼=Γ(ȳ). When Γ preserves ∼=, we define its quotient |Γ| as the
operator from |L|m to |L|n mapping every ¯̃x ∈ |L|m to |Γ(x̄)| where x̄ is an arbitrary
witness of ¯̃x.

The following straightforward proposition describes the relationships between Γ
and |Γ|.

Proposition 3.4. Assume that Γ : L→ L is an operator which preserves ∼=.

(a) If Γ is (anti-)monotone, then |Γ| is (anti-)monotone.
(b) If Γ is monotone then |lfp(Γ)| = lfp(|Γ|) and |gfp(Γ)| = gfp(|Γ|).
(c) If Γ is anti-monotone, then |OSC(Γ)| = OSC(|Γ|).

This proposition has a straightforward extension to operators of more arguments.

3.2.3 Structure lattices. The type of lattices that play a central role in this paper
are the sets of structures that extend a given structure. For a given vocabulary τ
and structure Ko such that τKo ⊆ τ , define SτKo

as the set of τ -structures that
extend Ko, i.e., the set of τ -structures I such that I|τKo

= Ko.
For any pair I1, I2 of τ -structures, define I1 v I2 if for each interpreted relation

symbol X, XI1 ⊆ XI2 . This relation is reflexive and transitive. It is not asym-
metric, since I1 and I2 may be identical on all relation symbols but different on
constant or function symbols. However, if Ko interprets all function symbols of τ ,
that is, if τfn ⊆ τKo , then v is a complete lattice order in the set SτKo

. Its least
element is the structure ⊥Ko := Ko[X̄ : ∅] assigning the empty relations to all
symbols X in τ \ τKo and its largest element >Ko is the structure assigning the
Cartesian product An to each n-ary symbol X ∈ τ \ τKo . For any subset S ⊆ SτKo

,
we denote its least upper-bound by tS and its greatest lower-bound by uS.

The lattice 〈SτKo
,≤〉 contains many sub-lattices. In particular, for any structure

K extending Ko such that τKo ⊆ τK ⊆ τ , 〈SτK ,v〉 is a sub-lattice of 〈SτKo
,v〉.

In this paper, the family of structure lattices and congruences on them plays an
important role.

4. ID-LOGIC

In this section, we present an extension of classical logic with non-monotone induc-
tive definitions. This logic extends the logic defined by the first author in [Denecker
2000].

4.1 Syntax

First, we introduce the notion of a definition. We introduce a new binary connective
←, called the definitional implication. A definition ∆ is a set of rules of the form

∀x̄ (X(t̄)← ϕ) (4)

where
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 17

—x̄ is a tuple of object variables,
—X is a predicate symbol (i.e., a predicate constant or variable) of some arity r,
—t̄ is a tuple of terms of length r,
—ϕ is an arbitrary first-order formula.

The definitional implication ← must be distinguished from material implica-
tion. A rule ∀x̄ (X(t̄) ← ϕ) in a definition does not correspond to the disjunction
∀x̄(X(t̄) ∨ ¬ϕ), but implies it. Note that in front of rules, we allow only universal
quantifiers. In the rule (4), X(t̄) is called the head and ϕ is the body of the rule.

The definitions of bound and free occurrence of a symbol in a formula and of
free(∆) extend to the case of a rule and a definition ∆ (see Section 3.1). ∆ is a
definition over τ if free(∆) ⊆ τ .

Example 4.1. The following expression is a simultaneous definition of the sets of
even and odd numbers on the structure of the natural numbers with zero and the
successor function: ∀x (E(x)← x = 0),

∀x (E(s(x))← O(x)),
∀x (O(s(x))← E(x))

 . (5)

Example 4.2. This is the definition of the transitive closure of a directed graph
G: {

∀x ∀y (T (x, y)← G(x, y)),
∀x ∀y (T (x, y)← ∃z (T (x, z) ∧ T (z, y)))

}
. (6)

A defined symbol of ∆ is a relation symbol that occurs in the head of at least one
rule of ∆; other relation, object and function symbols are called open. In Example
4.2, T is a defined predicate symbol, and G is an open predicate symbol. We call
∆ a positive definition if no defined predicate X has a negative occurrence in the
body of a rule of ∆. The definitions in Example 4.1 and Example 4.2 are positive.

Let ∆ be a definition over τ . The subset of defined symbols of definition ∆ is
denoted τd

∆. The set of open symbols of ∆ in τ is denoted τo
∆. The sets τd

∆ and τo
∆

form a partition of τ , i.e., τd
∆ ∪ τo

∆ = τ , and τd
∆ ∩ τo

∆ = ∅.
Now we are ready to define the well-formed formulas of the logic. A well-formed

formula of the Logic for Non-Monotone Inductive Definitions, briefly a ID-formula,
is defined by the following induction:

—If X is an n-ary predicate symbol, and t1, . . . , tn are terms then X(t1, . . . , tn) is
a formula.

—If ∆ is a definition then ∆ is a formula.
—If φ, ψ are formulas, then so are (¬φ) and (φ ∧ ψ).
—If φ is a formula, then ∃σ φ is a formula.

The definitions of bound and free occurrence of a symbol in a formula further
extend to all ID-formulas φ. A formula φ is an ID-formula over a vocabulary τ if
free(φ) ⊆ τ . We use SO(ID)[τ] to denote the set of all formulas of our logic over
fixed vocabulary τ . The first-order fragment FO(ID)[τ] is defined in the same way,
except that quantification over set and function symbols is not allowed.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

18 · Marc Denecker and Eugenia Ternovska

Example 4.3. The Peano induction axiom is:

∀P [P (0) ∧ ∀n(P (n) ⊃ P (s(n))) ⊃ ∀nP (n)].

This axiom can be formulated in ID-logic as:

∃N
[{
∀x (N(x)← x = 0),
∀x (N(s(x))← N(x))

}
∧ ∀x N(x)

]
. (7)

The first conjunct in this formula defines the set variable N as the set of the natural
numbers through the standard induction. The second conjunct expresses that each
domain element is a natural number. An equivalent alternative formalization is:

∀N
[{
∀x (N(x)← x = 0),
∀x (N(s(x))← N(x)

}
⊃ ∀x N(x)

]
. (8)

The equivalence of axioms (7) and (8) follows from the fact that the defined set is
unique. The uniqueness is guaranteed by the semantics we define next.

In the sequel, we use TN to denote the ID-theory consisting of axiom (7) and the
two other Peano axioms:

∀n ¬(s(n) = 0),
∀n∀m (s(n) = s(m) ⊃ n = m).

4.2 Semantics

The exposition below is a synthesis of different approaches to the well-founded
semantics, in particular those presented in [Van Gelder 1993; Fitting 2002; Denecker
et al. 2001]. We begin by defining the operator associated with a definition ∆. We
shall assume that definitions are finite sets of rules. The theory can easily be
extended to the infinite case (using infinitary logic).

Any definition containing multiple rules with the same predicate in the head can
be easily transformed into a definition with only one rule per defined predicate.

Example 4.4. The following definition of even numbers{
∀x (E(y)← y = 0),
∀x (E(s(s(x)))← E(x))

}
is equivalent to this one:{

∀x (E(y)← y = 0 ∨ ∃x(y = s(s(x)) ∧ E(x)))
}
.

In general, let ∆ be an arbitrary definition with defined relational symbols X̄ :=
(X1, . . . , Xn). For each defined symbol X of ∆, we define:

ϕX(x̄) := ∃ȳ1 (x̄ = t̄1 ∧ ϕ1) ∨ · · · ∨ ∃ȳm (x̄ = t̄m ∧ ϕm), (9)

where x̄ is a tuple of new object variables, and ∀ȳ1 (X(t̄1)← ϕ1), . . . , ∀ȳm (X(t̄m)←
ϕm) are the rules of ∆ with X in the head. Then ∆ is equivalent to the definition
∆1 consisting of rules ∀x̄(X(x̄)← ϕX(x̄)). The formulas ϕX(x̄) play an important
role in defining the semantics of definitions.

Let ∆ be definition over a vocabulary τ .

Definition 4.5. We introduce a unary operator Γ∆ : I 7→ I where I is the class
of all τ -structures. We have I ′ = Γ∆(I) iff
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 19

—dom(I) = dom(I ′),
—for each open symbol σ, σI

′
= σI and

—for each defined symbol X ∈ τd
∆,

XI′ := {ā | I |= ϕX [ā]},

where ϕX is defined by equation (9).

Let Io be a structure interpreting the open symbols of ∆ in τ . Lattice 〈SτIo ,v〉
consists of all τ -structures that extend Io. Operator Γ∆ is an operator on this
lattice. If ∆ is a positive definition (no negative occurrences of defined symbols
in rule bodies), then Γ∆ will be monotone. The least fixpoint is the limit of the
sequence (Iξ)ξ which is defined inductively:

Iξ := Γ∆(I<ξ), and I<ξ :=
⊔
{Iη | 0 ≤ η < ξ}.

Notice that I<0 is, by definition, the bottom element ⊥Io := Io[X̄ : ∅] in the lattice.
In general, Γ∆ is a non-monotone operator with no or multiple minimal fixpoints.

Iterating the operator starting from the bottom element may oscillate and never
reach a fixpoint, or, when it does reach a fixpoint, this fixpoint may not be the
intended fixpoint.

Example 4.6. Consider the following propositional definition:

∆0 :=

P ← t,
Q← ¬P,
Q← Q,
R← ¬Q

 .

Formally, structures of ∆ are mappings of the symbols P,Q,R to 0-ary relations.
We will represent such a structure in a more traditional way as the set of the
propositional symbols that are true (i.e., that are interpreted by {()}).

Notice that, in definition ∆, Q depends on P and R on Q. In ID-logic this
definition is understood as a 3-level iterated inductive definition (∆1,∆2,∆3), where

∆1 := {P ← t},
∆2 := {Q← ¬P , Q← Q},
∆3 := {R← ¬Q}.

By applying iterated induction, we obtain {P} for the first level, then ∅ for the
second and {R} for the third. Consequently, the intended model of this definition
is {P,R}. On the other hand, twice iterating the operator Γ∆ from the empty
structure, yields the fixpoint {P,Q} which is also a minimal fixpoint.

The intuition underlying the semantics is to use definitions to perform iterated
induction, while following the implicit dependency order given by the rules. We
explain how this intuition is formalized in the well-founded semantics. We compute
a converging sequence of pairs (Iξ, Jξ)ξ≥0 of τ -structures extending Io. In each
pair, Iξ represents a lower bound to the intended model of ∆ extending Io; Jξ

represents an upper bound: domain atoms true in Iξ can be derived from the
definition; atoms false in Jξ cannot be derived; for all atoms false in Iξ and true in
Jξ, it is not determined yet whether they can be derived or not. Thus, the pair

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

20 · Marc Denecker and Eugenia Ternovska

(Iξ, Jξ) represents approximate information about what can and what cannot be
derived from ∆ in Io.

The construction process starts with the pair (⊥Io ,>Io) of the least and largest
element in the lattice SτIo . This pair obviously consists of a lower and an upper
bound of what can be derived from the definition. Assuming we have obtained a
pair (Iξ, Jξ) of a safe lower and upper bound, we then apply an operation which
transforms this pair into a new pair (Iξ+1, Jξ+1) with an improved lower and upper
bound. By iterating this operation, a sequence (Iξ, Jξ)ξ≥0 of increasing precision
is constructed. The sequence of lower bounds (Iξ)ξ≥0 is monotonically increasing
and has a limit I (its lub); the sequence of upper bounds (Jξ)ξ≥0 is monotonically
decreasing and has a limit J (its glb) such that I v J . The pair of limits (I, J) is
the result of the construction and represents the information that can be derived
from ∆ in the context of the structure Io. The definition ∆ properly defines its
defined symbols in Io if I = J , that is, if for each defined domain atom X[~a],
X[a]I = X[a]J . If I = J , then we will call ∆ total in Io and I the extension of Io
defined by ∆. If I 6= J , then there will be no extension of Io defined by ∆.

We now explain how a pair (Iξ, Jξ) of lower and upper-bound is refined into a
new pair (Iξ+1, Jξ+1). The idea is to compute the new lower bound Iξ+1 and upper
bound Jξ+1 by monotone induction using the existing bounds (Iξ, Jξ). We cannot
use Γ∆ for this, due to its non-monotonicity, but there is a way.

In general, defined symbols have positive and negative occurrences in the rule
bodies ϕX(x̄). The negative occurrences are responsible for the non-monotone
behaviour of the operator Γ∆: adding more tuples to the value of a negatively
occurring defined symbol in ϕX(x̄) has an anti-monotone effect on the derived
relation and may lead to the derivation of fewer tuples ā satisfying this formula.
Thus we can eliminate the non-monotonicity of Γ∆ and set up a monotone induction
process using ∆ if we fix the value of negative occurrences of defined symbols in rule
bodies. Suppose we choose a fixed structure M to evaluate the negative occurrences
of defined symbols in rule bodies. We can then perform a monotonic derivation
process⊥Io ,K1,K2, . . . in which eachKi+1 is derived from ∆ by evaluating positive
occurrences of defined symbols in each ϕX(x̄) with respect to Ki and negative
occurrences with respect to M . This process will be monotone.

We first choose M to be Iξ: negative occurrences of defined symbols are inter-
preted by the lower bound of what can be derived. Thus, during the derivation
process of ⊥Io ,K1,K2, . . . , we systematically underestimate the truth of negative
occurrences of defined predicates. Due to the anti-monotone effect of negative oc-
currences of defined symbols on what can be derived, in each stage Ki, too many
atoms may be derived. Consequently, the limit of this derivation process yields
an upper bound of what can be derived, and we take it to be our new upper
bound Jξ+1. Second, we choose M to be Jξ, our best upper bound so far on what
can be derived. Thus, during the derivation process ⊥Io , L1, L2, . . . , we system-
atically overestimate the truth of negative occurrences of defined symbols, and in
each derivation stage Ki, too few atoms are derived. Therefore, the limit of this se-
quence represents a lower bound of what can be derived and we define it to be Iξ+1.
We have constructed our new approximating pair (Iξ+1, Jξ+1), by two monotone
inductions.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 21

It is now easy to see in what sense the well-founded model construction follows
the natural dependency order between domain atoms, induced by the rules of a
definition. Assume that at some stage (Iξ, Jξ), the truth of a domain atom X[a]
has not yet been fixed (i.e., X[a]I

ξ 6= X[a]J
ξ

), but the truth values of all atoms
on which X[a] depends negatively have been derived. In the fixpoint computations
K0,K1,K2, . . . with limit Jξ+1 and L0, L1, L2, . . . leading to Iξ+1, the structures
K0 = ⊥Io = L0 evidently coincide on all atoms and a fortiori, also on those on
which X[a] depends. This property is preserved during the induction, since the
structures Iξ and Jξ which are used to evaluate negative occurrences of defined
symbols, coincide on all atoms on which X[a] depends negatively. Therefore, the
new lower and upper-bounds Iξ+1 and Jξ+1 will coincide also on the value of X[a].
Consequently, in this step the truth value of X[a] is obtained.

Now, we will formalize the above concepts. Let ∆ be a definition over vocabulary
τ (free(∆) ⊆ τ). The basis of the construction of the well-founded model is an
operator T∆ mapping pairs of τ -structures to τ -structures. Given such a pair
(I, J) , the operator T∆ operates like Γ∆, but evaluates the bodies of the rules in
a different way. In particular, it evaluates positive occurrences of defined symbols
in rule bodies by I, and negative occurrences of defined symbols by J .

To formally define this operator, we simply rename the negative occurrences in
rule bodies of ∆. We extend the vocabulary τ with, for each defined symbol X,
a new relation symbol X ′ of the same arity. The extended vocabulary τ ∪ X̄ ′ will
be denoted τ ′. For every formula ϕ, we denote by ϕ′ the formula obtained by
substituting the symbol X for each negative occurrence of a defined symbol X. By
applying this in each rule body in ∆, we obtain a new definition ∆′. For example,
given the following definition

∆ :=
{
∀x∀y (P (x)← S(x, y) ∧ ¬P (y)),
∀x∀y (P (x)← ¬Q(x, y) ∧ P (y))

}
,

we rename selected occurrences of P by P ′, as described above, and obtain

∆′ :=
{
∀x∀y (P (x)← S(x, y) ∧ ¬P ′(y)),
∀x∀y (P (x)← ¬Q(x, y) ∧ P (y))

}
.

The definition of ∆′ defines the same predicates as ∆ and its open symbols are those
of ∆ augmented with the new primed predicates X̄ ′. Moreover, a defined symbol X
has only positive occurrences and a primed symbol X ′ only negative occurrences in
rule bodies of ∆′. Thus, ∆′ is a positive definition over the vocabulary τ ′. For each
defined symbol X, the formula (9) constructed using ∆′ instead of ∆ is exactly ϕ′X ,
the renaming of ϕX .

For any pair of τ -structures I, J which share the same domain, define IJ as
the τ ′-structure J [X̄ : X̄I , X̄ ′ : X̄J]. This IJ is a τ ′-structure which satisfies the
following:

—its domain is the same as the domain of I and J ,
—each open symbol of ∆ is interpreted by J ,
—each defined symbol of ∆ is interpreted by I,
—the value of each new symbol X ′ is XJ , the value of X in J .

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

22 · Marc Denecker and Eugenia Ternovska

It is clear that for some defined symbol X, evaluating ϕ′X under IJ simulates
the non-standard evaluation of ϕX where J is “responsible” for the open and the
negative occurrences of the defined predicates, while I is “responsible” for the
positive ones.

Let ∆ be a definition over some vocabulary τ .

Definition 4.7. We introduce a partially defined binary operator T∆ : I ×I 7→
I, where I is the class of all τ -structures. The operator is defined on pairs of
structures which share the same domain, and is undefined otherwise. We have
I ′ = T∆(I, J) iff

—dom(I ′) = dom(J) = dom(I),
—for each open symbol σ, σI

′
:= σJ and

—for each defined symbol X ∈ τd
∆,

XI′ := {ā | IJ |= ϕ′X [ā]}.

This definition is equivalent to defining T∆(I, J) := Γ∆′(IJ)|τ , for any pair of
τ -structures I, J such that dom(I) = dom(J).

The following proposition shows a connection between operators T∆ and Γ∆.

Proposition 4.8. For any τ -structure I, it holds that T∆(I, I) = Γ∆(I).

Proof. Follows immediately from the fact that II |= ϕ′X [ā] iff I |= ϕX [ā].

Remark 4.9. The relationship between T∆ and Γ∆(I) is even stronger in three-
and four-valued logic. In particular, by interpreting Definition 4.5 in three-valued
logic, the operator Γ∆ has a natural extension Φ∆ which operates on three-valued
interpretations [Fitting 1985]. But three-valued interpretations Ĩ can be viewed as
pairs (I, J) of 2-valued interpretations for which I v J : for each domain atom P [ā],
P [ā]I = P [ā]J = P [ā]Ĩ if P [ā]Ĩ is t or f , and P [ā]I = f , P [ā]J = t otherwise. This
effectively implies that Φ∆ can be viewed as an operator of pairs of interpretations.
It turns out that Φ∆(I, J) = (T∆(I, J),T∆(J, I)). This property is the basis for an
algebraic treatment of the concept of well-founded model in [Denecker et al. 2000].

Proposition 4.10. Let Io be a fixed τo
∆-structure. In the lattice SτIo , the oper-

ator T∆(I, J) is monotone in its first argument, and anti-monotone in its second
argument.

Proof. Select arbitrary τ -structures I, I ′, J, J ′ ∈ SτIo such that I v I ′ and
J ′ v J . We need to show that T∆(I, J) v T∆(I ′, J ′). Let L = T∆(I, J) and
L′ = T∆(I ′, J ′).

Let us verify that for each defined symbol X, XL ⊆ XL′ . Let ā be any element
of XL. It holds that IJ |= ϕ′X [ā]. The structure I ′J′ assigns the same value to
open symbols in ϕ′X , greater value to the defined symbols X̄ which occur positively
in ϕ′X , and lesser value to the defined symbols X̄ ′ which occur negatively in ϕ′X .
Consequently, it holds that I ′J′ |= ϕ′X [ā]. We find that ā ∈ XL′ . We obtain our
proposition.

Corollary 4.11. Let I,M, J be three τ -extensions of a τo
∆-structure Io such

that I vM v J . Then it holds that T∆(I, J) v Γ∆(M) v T∆(J, I).

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 23

Proof. Since I vM v J , Proposition 4.10 entails that T∆(I, J) v T∆(M,M) =
Γ∆(M) v T∆(J, I).

This corollary shows that T∆ can be used to approximate Γ∆ over an interval of
structures. Indeed, if (I, J) is an approximation of M (i.e., M ∈ [I, J]) then the
corollary shows that (T∆(I, J),T∆(J, I)) is an approximation of Γ∆(M). We shall
elaborate on the approximation process in a moment.

Let J be a τ -structure, and Jo its restriction to τo
∆. The unary operator λI T∆(I, J),

often denoted by T∆(·, J), is a monotone operator in the lattice SτJo
; and its least

fixpoint in this lattice is computed by

lfp(T∆(·, J)) :=
⊔
ξ

Eξ, where

Eξ := T∆(E<ξ, J), and E<ξ :=
⊔
η<ξ

Eη.

Definition 4.12. Define the stable operator ST∆ : I 7→ I as follows:

ST∆(J) := lfp(T∆(·, J)) (computed in SτJo
).

The operator T∆(I, J) performs one derivation step by interpreting positive oc-
currences of defined symbols by I and negative occurrences by J . The stable oper-
ator performs a monotone induction during which negative occurrences of defined
predicates X in ∆ are interpreted by the fixed value XJ .

Proposition 4.13. Let Io be a fixed τo
∆-structure. Operator ST∆ is anti-monotone

in SτIo .

Proof. Let I v J be τ -extensions of Io. Let J ′ ∈ SτIo be an arbitrary pre-
fixpoint of T∆(·, I). Then, by anti-monotonicity of T∆ in the second argument
(Proposition 4.10), T∆(J ′, J) v T∆(J ′, I) v J ′. Thus J ′ is a pre-fixpoint of T∆(·, J)
and this entails that ST∆(J), the least (pre-)fixpoint of T∆(·, J) is less than ST∆(I),
the least (pre-)fixpoint of T∆(·, I).

Fix some τo
∆-structure Io with domain A of the open symbols of ∆ in τ .

As is standard for anti-monotone operators on a complete lattice (see Section
3.2), the operator ST∆ gives rise to a sequence (Iξ, Jξ)ξ≥0 in SτIo defined by

Iξ := ST∆(J<ξ), where J<ξ := uη<ξJη,
Jξ := ST∆(I<ξ), where I<ξ := tη<ξIη.

The anti-monotonicity of Γ∆ implies that the sequence (Iξ)ξ≥0 is increasing and
(Jξ)ξ≥0 is decreasing. Moreover, for each ξ, Iξ v Jξ. Thus, it holds that the
sequence (Iξ, Jξ)ξ≥0 is indeed a sequence of increasingly precise approximations.
This sequence has a limit (I, J), which is the maximal oscillating pair of ST∆.
Equivalently, I and J are fixpoints of the square ST 2

∆, lfp(ST 2
∆) and gfp(ST 2

∆),
respectively.

In the lattice SτIo , we define

Io
∆↓ := lfp(ST 2

∆), and Io
∆↑ := gfp(ST 2

∆).
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

24 · Marc Denecker and Eugenia Ternovska

We extend this notation to any structure L which interprets at least τo
∆ and define

L∆↓ := (L|τo
∆
)∆↓, and L∆↑ := (L|τo

∆
)∆↑.

Note that L∆↓ and L∆↑ agree with L on the open symbols but not necessarily on
the defined symbols.

Let I be any structure such that τo
∆ ⊆ τI ⊆ τ .

Definition 4.14 ∆-extension of I. If I∆↓ = I∆↑, define the ∆-extension of I,
denoted I∆, as I∆ := I∆↓. Otherwise, if I∆↓ 6= I∆↑, then I has no ∆-extension.

Note that for any τo
∆-structure Io, there is at most one ∆-extension of Io.

Proposition 4.15. Let Io be a fixed τo
∆-structure. If the ∆-extension of Io

exists, then it is a minimal fixpoint of Γ∆ and the unique fixpoint of ST∆ in SτIo .

Recall from Example 4.6 that Γ∆ may have multiple minimal fixpoints.

Proof. If I = Io
∆ exists, then, since (I, I) is the maximal oscillating pair of

ST∆, it is the unique fixpoint of this operator. I is also the least fixpoint of T∆(·, I).
By Proposition 4.8, I is a fixpoint of Γ∆. Assume that J v I is also a fixpoint
of Γ∆. By anti-monotonicity, T(J, I) v T(J, J) = J , hence J is a pre-fixpoint of
T∆(·, I). Since I is the least pre-fixpoint of this operator, I v J .

Example 4.16. We illustrate the stable operator and the iterative process de-
scribed above with the definition of Example 4.6. This definition has no open
symbols and is equivalent to the following definition: P ← t,

Q← ¬P ∨Q,
R← ¬Q

 .

For a propositional definition, the mapping ST∆(J) is the least fixpoint of the
positive definition obtained by substituting each negative occurrence of a defined
symbol and each occurrence of an open symbol by its truth value in J . For instance,
the stable operator maps the empty structure ∅ to the least fixpoint of the definition: P ← t,

Q← ¬f ∨Q,
R← ¬f

 .

This yields the structure {P,Q,R}. Similarly, the stable operator maps the struc-
ture {P,Q,R} to the least fixpoint of the definition: P ← t,

Q← ¬t ∨Q,
R← ¬t

 .

This yields the structure {P}. Using this technique, we can construct the following
table:

I<0 := ∅, J<0 := {P,Q,R}
I0 = I<1 := {P}, J0 = J<1 := {P,Q,R} (P is derived)
I1 = I<2 := {P}, J1 = J<2 := {P,R} (¬Q is derived)
I2 := {P,R}, J2 := {P,R} (R is derived)

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 25

The unique extension of this definition is {P,R}, which is exactly the intended
model as explained in Example 4.6.

Example 4.17. Consider the definition:

∆even :=
{
∀x (E(x)← x = 0),
∀x (E(s(x))← ¬E(x))

}
,

which is equivalent to:{
∀x [E(y)← y = 0 ∨ ∃x(y = s(x) ∧ ¬E(x))]

}
.

We show that in the extension of ∆even in the natural numbers, E is interpreted
by the set of even numbers. Note that this definition has no positive occurrences of
the defined predicate E. Therefore, T∆even

(I, J) = Γ∆even
(J), for all I, J sharing

the same domain. The well-founded model computation starts in the least precise
pair extending the natural numbers and proceeds as follows:

EI
<0

:= ∅, EJ
<0

:= N
EI

0
= EI

<1
:= {0}, EJ

0
= EJ

<1
:= N

EI
1

= EI
<2

:= {0}, EJ
1

= EJ
<2

:= N \ {1}
EI

2
= EI

<3
:= {0, 2}, EJ2

= EJ
<3

:= N \ {1}
EI

3
= EI

<4
:= {0, 2}, EJ3

= EJ
<4

:= N \ {1, 3}
. . .

After iterating this process ω steps, we obtain the fixpoint:

EI
ω

= EJ
ω

= {2n | n ∈ N}.

Now we are ready to define the satisfaction relation between structures and well-
formed formulas of the logic.

Definition 4.18 φ true in structure I. Let φ be a ID-formula and I any structure
such that free(φ) ⊆ τI .

We define I |= φ (in words, φ is true in I, or I satisfies φ, or I is a model of φ)
by the following induction:

—I |= X(t1, . . . , tn) if (tI1, . . . , t
I
n) ∈ XI ;

—I |= ψ1 ∧ ψ2 if I |= ψ1 and I |= ψ2;
—I |= ¬ψ if I 6|= ψ;
—I |= ∃σ ψ if for some value v of σ in the domain dom(I) of I, I[σ : v] |= ψ;
—I |= ∆ if I = I∆↓ = I∆↑.

Given an ID-theory T over τ , a τ -structure I satisfies T (is a model of T) if I
satisfies each φ ∈ T . This is denoted by I |= T .

Observe that a definition in ID-logic is a truth conditional construct (i.e., it has a
truth value in structure). On the other hand, the definitional implication ← is not
a truth functional connective (i.e., its truth is not described as a boolean function of
the truth values of head and body), in fact definitional rules are not even assigned
a truth value in structure.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

26 · Marc Denecker and Eugenia Ternovska

Example 4.19. An ID-theory can contain multiple definitions for the same pred-
icate. A simple illustration is when a natural class is partitioned in subclasses in
different ways, depending on the property used. For example, humans can be parti-
tioned in males and females, but also in adults and children, etc.. This is modelled
by the following formula:{

∀x (Human(x)←Male(x)),
∀x (Human(x)← Female(x))

}
∧

{
∀x (Human(x)← Adult(x)),
∀x (Human(x)← Child(x))

}
.

This formula implies that the class humans is the union of the classes males and
females, and also of the classes adults and children. The definition{

∀x (Human(x)←Male(x) ∨ Female(x)),
∀x (Human(x)← Adult(x) ∨ Child(x))

}
.

is weaker, in the sense that it does not entail that humans are either males or
females.

Example 4.20. Consider the theory TN of Example 4.3. We prove that each
model I of TN is isomorphic to the structure of the natural numbers. Let I be
a model of this theory. First, since I satisfies the two first-order Peano axioms,
the domain elements 0I , s(0)I , . . . , sn(0)I , . . . are pair-wise distinct and the set of
these domain elements constitutes a subset of dom(I), isomorphic to the natural
numbers. Therefore, it suffices to show that this set is exactly the domain of I.
Since I satisfies the ID-axiom replacing the induction axiom, there exists a set
S ⊆ dom(I) such that I[N : S] satisfies{

∀x (N(x)← x = 0),
∀x (N(s(x))← N(x))

}
∧ ∀x N(x).

Since I[N : S] satisfies ∀x N(x), S must be dom(I). As proven later in Theorem 6.3,
I[N : S] satisfies the positive definition in this axiom iff S is the least set containing
0I and closed under sI . Hence, dom(I) is exactly the set {0I , s(0)I , . . . , sn(0)I , . . . }.

The aim of a definition is to define its defined symbols, i.e., that the definition does
not produce undefined atoms. This is a natural quality requirement for a definition.
This principle is formalized in the semantics by the condition that Io∆↓ = Io

∆↑.

Definition 4.21 total definition. Let I be a structure such that τo
∆ ⊆ τI . Defini-

tion ∆ is total in I if I∆↓ = I∆↑. If τK ⊆ τo
∆, we say that ∆ is total in K if ∆ is

total in each τo
∆-structure extending K. The definition ∆ is total in a theory T if ∆

is total in each model of T . A definition ∆ is total if it is total in each τo
∆-structure

Io.

The next example shows that a (useful) definition which is total in one structure,
may not be total in other structures.

Example 4.22. Consider the definition of Example 4.17:

∆even :=
{
∀x (E(x)← x = 0),
∀x (E(s(x))← ¬E(x))

}
.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 27

Recall that the stable operator of this definition is identical to Γ∆even
. In Example

4.17, we showed that this definition is total in the structure of the natural numbers.
In Example 4.20, we saw that the natural numbers are the unique model of TN
(modulo isomorphism). Consequently, ∆even is total in TN.

The definition is not total in many other structures, in particular in those where
the successor function contains cycles or infinite descending chains. For example,
∆even is not total in the structure Io with domain {0, 1}, and sIo(0) = 1, sIo(1) = 1.
In this structure, the maximal oscillating pair (I, J) of Γ∆even interprets E as
follows:

EI := {0},
EJ := {0, 1}.

Definition ∆even is not total either in the structure Io′ with domain Z and sIo
′

the standard successor function on Z. In this structure, the maximal oscillating
pair (I, J) of Γ∆even

interprets E as follows:

EI := {2n | n ∈ N},
EJ := {n | n < 0} ∪ {2n|n ∈ N}.

What is the cause of the non-totality of a definition? In the above examples,
the dependency order, induced by the rules, contains infinite descending chains in
which atoms depend negatively on the same or other atoms. When this happens,
the stable operator oscillates between a structure in which all atoms of the chain
are false and one in which these atoms are true.

The next proposition expresses that total definitions in ID-logic satisfy the defi-
nitional extension principle (see Section 2).

Proposition 4.23. Let T be a theory over τo and ∆ a definition such that
τo
∆ = τo. If ∆ is total in T , then there is one-to-one correspondence between τo-

models N of T and τ -models M of T ∪ {∆} such that M = N∆. Consequently,
T ∪{∆} is satisfiable (i.e., has a model) iff T is satisfiable, and for each τo-formula
ϕ, T ∪ {∆} |= ϕ iff T |= ϕ.

The proof is straightforward. The property does not hold in case of non-total
definitions. For example, adding the definition {P ← ¬P} to a theory causes
inconsistency.

Totality is a fundamental property in our theory of non-monotone induction. Un-
fortunately, the problem of determining, for a given definition ∆ and τo

∆-structure
Io, whether ∆ is total in Io, is undecidable [Schlipf 1995a]. Below, we will prove
totality results for important subclasses of definitions.

4.3 Historical note

The well-founded model construction was first presented in [Van Gelder et al. 1991]
but the link with iterated induction and induction over well-founded orders was laid
only later in [Denecker 1998; Denecker et al. 2001]. Nevertheless, the view of logic
programs as representations of definitions has been implicit in many studies on the
semantics of logic programming, for example in the completion semantics [Clark
1978], in the standard semantics of stratified logic programs [Apt et al. 1988], in
the original work of well-founded semantics [Van Gelder et al. 1991], and in [Schlipf

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

28 · Marc Denecker and Eugenia Ternovska

1995b]. In [Van Gelder 1993], the well-founded semantics was extended to rule sets
with arbitrary FO-bodies. Van Gelder presents this logic in the spirit of fixpoint
logics, as a logic of alternating fixpoints and calls it AFP, for Alternating Fixpoint
Partial model. This logic can be viewed as an ancestor of ID-logic.

The view of logic programs as definitions was never standard due to the existence
of an alternative view originally proposed by Gelfond and Lifschitz. They proposed
to interpret negation as failure literals not P in logic programs as epistemic literals
I do not know P or as default negation it can be assumed that ¬P [Gelfond and
Lifschitz 1988]. This view was further developed in the stable semantics which is the
basis of Answer Set Programming [Niemelä 1999; Marek and Truszczyński 1999].
The differences between the ASP view and the definition view are remarkable.
While in the default view, negation as failure is an epistemic operator and the
rule operator of LP corresponds to material implication, in the definitional view,
it is the rule operator that has a non-classical interpretation while negation has
the classical logic meaning. Here we present three arguments for this thesis. First,
negation in non-monotone inductive rules in mathematics has the standard meaning
of negation, e.g. in the rule

I |= ¬ϕ if I 6|= ¬ϕ, i.e., if I does not satisfy ϕ.

Second, if negation in definitions would have an epistemic modal meaning, this
would be displayed in the formal semantics, e.g. by the use of Kripke-structures,
or possible world collections, or by the use of first-order belief sets (sets of believed
formulas, as in default logic, or sets of believed literals, as in ASP). This is not the
case. Third, all transformations of ID-logic definitions to classical logic presented
in Section 6 translate negation in rules to classical negation.

The stable and well-founded semantics are mathematically closely related and
coincide in many cases. It is remarkable then that they were proposed as formal-
izations of quite different informal semantics. This phenomenon is explained in
[Denecker 2004].

5. ANALYSIS OF INDUCTIVE DEFINITIONS

In this section, we study techniques to analyse inductive definitions in ID-logic: a
technique to investigate the internal structure of a definition, a modularity result to
split up a definition in an equivalent conjunction of sub-definitions and a technique
to prove totality of a large definition from its sub-definitions.

5.1 Reduction Relations

Several times, we informally discussed the concept of dependency relation between
defined atoms induced by a definition. In this section, we formalize this concept
through the notion of reduction relation and investigate its basic properties. In the
following sections, this concept will prove to be a useful tool to analyze definitions.

Assume a definition ∆ over τ and a structure Ko with domain A such that
τKo ⊆ τo

∆.
Recall that AtτA denotes the set of domain atoms over vocabulary τ in domain A.

Let ≺ be a binary relation on AtτA. Given a domain atom P [ā], we define I ∼=≺P [ā] J
if τI = τJ , f I = fJ for every constant and function symbol f appearing in ∆, and
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 29

Q[b̄]I = Q[b̄]J for all Q[b̄] ≺ P [ā]. This relation is extended to tuples by defining
(I, J) ∼=≺P [ā] (I ′, J ′) if I ∼=≺P [ā] I

′ and J ∼=≺P [ā] J
′.

Definition 5.1 reduction relation. A binary relation ≺ on AtτA is a reduction re-
lation (or briefly, a reduction) of a rule ∀x̄(P (t̄[x̄]) ← ϕ(x̄)) ∈ ∆ if for all τ -
structures I, J, I ′, J ′ extending Ko, for all tuples ā and d̄ such that ā = t̄J[x̄:d̄], if
(I, J) ∼=≺P [ā] (I ′, J ′) then it holds that IJ |= ϕ′[d̄] iff I ′J′ |= ϕ′[d̄].

The relation ≺ is a reduction relation of ∆ in Ko if for each defined predicate P
of ∆, ≺ is a reduction relation of the rule ∀x̄(P (x̄) ← ϕP) in Ko, where ϕP is as
defined in (9).

Let ≺ be a reduction of a rule (or definition) in Ko.

Proposition 5.2. If Ko
′ extends Ko (i.e., Ko

′|τKo
= Ko), then ≺ is a reduction

of the rule (or definition) in Ko
′.

Proposition 5.3. Any superset ≺′ of ≺ is a reduction relation of the rule (or
definition) in Ko.

Proposition 5.4. Let ≺ be a reduction relation of each rule in ∆ in Ko. Then
≺ is a reduction relation of ∆ in Ko.

The converse is not true. For instance, {(R,P)} is a reduction relation of the
definition {P ← R;P ← R ∧Q} but not of its second rule.

Proof. Assume that (I, J) ∼=≺P [ā] (I ′, J ′) and let P [ā] be an arbitrary defined
domain atom. If IJ |= ϕ′P [ā], then there exists a rule ∀x̄(P (t̄) ← ϕ(x̄)) ∈ ∆ and
domain elements d̄ such that ā = t̄J[x̄:d̄] and IJ |= ϕ′[d̄]. Because ≺ is a reduction
relation of the rule, I ′J′ |= ϕ′[d̄]. Because J ∼=≺P [ā] J

′, we have t̄J[x̄:d̄] = t̄J
′[x̄:d̄].

Consequently, I ′J′ |= ϕ′P [ā]. The opposite direction follows by symmetry.

The proposition below shows that the relevant tuples in a reduction relation are
those representing dependencies of defined atoms on domain atoms that are not
interpreted by Ko.

Proposition 5.5. If ≺ is a reduction of definition ∆ (or rule in ∆) in Ko, then
so is ≺∆

Ko
:= {(P [ā], Q[b̄]) ∈≺ |P 6∈ τKo and Q ∈ τd

∆}.

The above propositions suggest a methodology for constructing reductions of a
definition: define reductions for each of its rules and take the union.

Example 5.6. Consider the definition

∆ :=

 ∀x (E(x)← x = 0),
∀x (E(s(x))← O(x)),
∀x (O(s(x))← E(x))

 .

Below is a list of reduction relations, one for each rule, in the structure of natural
numbers:

∅,
{(O[n], E[n+ 1]) | n ∈ N},
{(E[n], O[n+ 1]) | n ∈ N}.

The union of these relations is a reduction relation of ∆.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

30 · Marc Denecker and Eugenia Ternovska

A reduction relation ≺ specifies for each domain atom P [ā] on which atoms
it directly depends. The transitive closure ≺∗ of ≺ is also a reduction relation
and specifies all atoms on which P [ā] depends directly or indirectly. A transitive
reduction relation generalizes the well-known concept of dependency graph of a
logic program to general structures and FO-formulas in the body of rules. Whereas
the dependency graph of a logic program is unique, a definition ∆ may have many
reduction relations in Ko. In particular, the total binary relation ≺t= AtτA ×
AtτA is always a reduction relation. A reduction relation in general overestimates
the dependencies between domain atoms in a definition. Only the least reduction
relation of a definition reflects the true dependencies. However, as shown in the
next example, some definitions do not have a least reduction relation.

Example 5.7. Consider the following definition in the context of the natural num-
bers:

∆ :=
{
P ← ∃n∀m(m > n ⊃ Q(m))

}
.

The predicate Q is open in this definition. This definition defines P to be true if
there exists a number n such that Q contains at least all natural numbers larger
than n. It can easily be verified that for each n ∈ N, the relation

≺n= {(Q(m), P)|m > n}

is a reduction relation of ∆ in N. The intersection of these relations is ∅, and this
is not a reduction relation of ∆.

Let ≺ be a transitive reduction relation of ∆ in Ko. The main theorem of this
section is that all models of ∆ extending Ko agree on a defined domain atom P [ā]
if they agree on all function symbols of ∆ and on all open atoms Q[b̄] ≺ P [ā].

Theorem 5.8. For each defined domain atom P [ā], for all models I, J of ∆
extending Ko, if I|τo

∆
∼=≺P [ā] J |τo

∆
then P [ā]I = P [ā]J .

The proof is based on the following basic proposition.

Proposition 5.9. Let ≺ be a reduction relation of ∆ in Ko, P [ā] a domain atom
and let I, I ′, J, J ′ be τ -structures extending Ko such that (I, J) ∼=≺P [ā] (I ′, J ′).

(a) If P is defined then P [ā]T∆(I,J) = P [ā]T∆(I′,J ′)
.

(b) If ≺ is transitive, then T∆(I, J) ∼=≺P [ā] T∆(I ′, J ′).

Proof. (a) Since P is a defined predicate of ∆, P [ā]T∆(I,J) is the truth value of
ϕ′P [ā] in IJ and likewise P [ā]T∆(I′,J ′) is the truth value of ϕ′P [ā] in I ′J′ . Since ≺ is
a reduction relation, the truth value of this formula is the same in IJ as in I ′J′ .
(b) Assume that ≺ is transitive. Let Q[b̄] be an arbitrary domain atom such that
Q[b̄] ≺ P [ā]. If Q is an open predicate of ∆ then Q[b̄]T∆(I,J) = Q[b̄]J = Q[b̄]J

′

=
Q[b̄]T∆(I′,J ′). Let Q be a defined predicate of ∆. By transitivity of ≺, the set of
atoms on which Q[b̄] depends is a subset of the set of atoms on which P [ā] depends.
This, and the fact that (I, J) ∼=≺P [ā] (I ′, J ′) implies that (I, J) =≺Q[b̄] (I ′, J ′). By

application of (a) we obtain that Q[b̄]T∆(I,J) = Q[b̄]T∆(I′J′).
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 31

If ≺ is a transitive reduction relation, item (b) of this proposition states that T∆

preserves ∼=≺P [ā], for each domain atom P [ā]. This is a key property. The reduction
relation ≺ defines a collection of lattice congruences ∼=≺P [ā] in SτKo

, one for each
domain atom P [ā] (confer Section 3.2.2). The operator T∆ is the basic operator
in the well-founded model construction. The fact that it preserves the congruence
∼=≺P [ā] “propagates” to the stable operator ST∆ and then to the construction of the
well-founded model. This observation is summarized in the following proposition.

Let ≺ be a transitive reduction of ∆ in Ko and assume that τfn ⊆ τKo ⊆ τo
∆ so

that 〈SτKo
,v〉 is a complete lattice.

Proposition 5.10. For every domain atom P [ā], the relation ∼=≺P [ā] is a lattice
congruence of 〈SτKo

,v〉. If ≺ is a transitive reduction of ∆ in Ko, then T∆ and ST∆

preserve ∼=≺P [ā] in the lattice 〈SτKo
,v〉 . For all τo

∆-structures Io, Jo, if Io ∼=≺P [ā] Jo

then Io
∆↓ ∼=≺P [ā] Jo

∆↓ and Io∆↑ ∼=≺P [ā] Jo
∆↑.

The proof of this proposition is by straightforward inductions first on the iteration
of T∆(·, I) and then of ST∆. Theorem 5.8 is a corollary to this proposition.

5.2 Modularity

In this section, we split a definition ∆ into sub-definitions {∆1,∆2, . . . ,∆n}. We
study under what conditions we can guarantee that for structure I,

I |= ∆ iff I |= ∆1 ∧∆2 ∧ · · · ∧∆n.

This is the subject of the Modularity theorem. The theorem tells us when we can
understand a large definition as a conjunction of component definitions. Frequently,
these component definitions have a simpler form — they may be positive defini-
tions or non-recursive definition. Therefore, the ability to decompose definitions
without side effects is useful for analyzing large definitions — some properties of
large definitions are implied by properties of sub-definitions. Thus, the Modularity
theorem is an important tool for simplifying logical formulas with definitions.

Everywhere in this section, we fix a definition ∆ over some vocabulary τ .

Definition 5.11 partition of definitions. A partition of definition ∆ is a set
{∆1, . . . ,∆n}, 1 < n, such that ∆ = ∆1∪· · ·∪∆n, and if defined symbol P appears
in the head of a rule of ∆i, 1 ≤ i ≤ n, then all rules of ∆ with P in the head belong
to ∆i.

If {∆1, . . . ,∆n} is a partition of ∆, then ∪iτd
∆i

= τd
∆, and τd

∆i
∩ τd

∆j
= ∅ whenever

i 6= j. Notice that each ∆i has some “new” open symbols. For instance, if P is
defined in ∆, but not in ∆i, then it is a new open symbol of ∆i. Of course, it holds
that τ = τo

∆ ∪ τd
∆ = τo

∆i
∪ τd

∆i
, 1 ≤ i ≤ n.

The following theorem demonstrates that a model of a definition, is, at the same
time, a model of each of its sub-definitions.

Theorem 5.12 decomposition. Let ∆ be a definition over τ with partition
(∆1, . . . ,∆n). Let I be a τ -structure. If I |= ∆ then I |= ∆1 ∧ . . . ∧∆n.

The following example shows that the inverse direction of Theorem 5.12 does not
hold in general.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

32 · Marc Denecker and Eugenia Ternovska

Example 5.13. Let ∆, ∆1, ∆2 be the following definitions:

∆ :=
{
P ← Q,
Q← P

}
,∆1 :=

{
P ← Q

}
,∆2 :=

{
Q← P

}
.

Definition ∆ is total, and its unique model is ∅ in which both P and Q are false.
According to Theorem 5.12, ∅ satisfies ∆1 and ∆2. Note that {P,Q} is not a model
of ∆ and yet, it satisfies ∆1 and ∆2. Indeed, {P,Q} is the ∆1-extension of the
τo
∆1

-structure {Q} and the ∆2-extension of the τo
∆2

-structure {P}.

In the proof of Theorem 5.12, we will use the following basic lemmas comparing
fixpoints of monotone and anti-monotone operators.

Proposition 5.14. Let Γ1,Γ2 be two monotone operators in a lattice with least
fixpoints lfp(Γ1) = o1, lfp(Γ2) = o2 respectively.

(a) if x ≤ o1 implies Γ1(x) ≤ Γ2(x) then o1 ≤ o2;
(b) if o2 ≤ x implies Γ1(x) ≤ Γ2(x) then o1 ≤ o2.

Proposition 5.15. Let Γ1, Γ2 be anti-monotone operators on lattice L with
maximal oscillating pair (o1, u1), respectively (o2, u2).

(a) If x ≤ o1 implies Γ2(x) ≤ Γ1(x) and u1 ≤ y implies Γ1(y) ≤ Γ2(y) then
o1 ≤ o2 ≤ u2 ≤ u1. If in addition o1 = u1, then o1 = o2 = u2 = u1.

(b) If x ≤ o1 implies u1 ≤ Γ2(x) and u1 ≤ y implies Γ2(y) ≤ o1, then o2 ≤ o1 ≤
u1 ≤ u2.

Proof. (of Theorem 5.12) Let I |= ∆ and denote Io := I|τo
∆

and Ioi := I|τo
∆i

.
We prove that I |= ∆i.

Observe that (I, I) = OSC(ST∆) in SτIo and (Ioi∆i↓, Ioi
∆i↑) = OSC(ST∆i

) in SτIoi .
We wish to apply Proposition 5.15(a) to compare the oscillation pairs of ST∆ and
ST∆i . To do that, we have to extend ST∆i to the greater lattice SτIo .
Let Ioi[τd

∆i
: K] denote the τ -structure interpreting symbols of τo

∆i
as in Ioi and

symbols of τd
∆i

as in K. Define the operator Γ on SτIo as the mapping from K ∈ SτIo
to ST∆i

(Ioi[τd
∆i

: K]). Clearly, Γ maps SτIo into its sub-lattice SτIoi , since Γ(K) =
ST∆i

(Ioi[τd
∆i

: K]) extends Ioi. Also, if K ∈ SτIoi then K = Ioi[τd
∆i

: K], hence Γ and
ST∆i coincide in SτIoi . It is also easy to see that Γ is an anti-monotone operator. It
follows from this that OSC(Γ) = OSC(ST∆i).
We will now show that for each K ∈ SτIo ,

K v I implies Γ(K) v ST∆(K), and (10)

I v K implies ST∆(K) v Γ(K). (11)

Application of Proposition 5.15(a) will then yield the desired result

I = Ioi
∆i↓ = Ioi

∆i↑.

Fix an arbitrary K ∈ SτIo . It holds that

ST∆(K) = lfp(T∆(·,K))

where the first argument of T∆ ranges over SτIo . Likewise, for every K ∈ SτIo ,

Γ(K) = lfp(T∆i
(·, Ioi[τd

∆i
: K]))

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 33

but here the first argument of T∆i
ranges over SτIoi . To compare ST∆(K) and

Γ(K), we want to apply the fixpoint comparison Proposition 5.14 for the monotone
operators T∆(·,K) and T∆i

(·, Ioi[τd
∆i

: K]). A problem is that the fixpoint compu-
tations are done in different lattices. Observe however that T∆i

(·, Ioi[τd
∆i

: K]) is
well-defined and monotone in the greater lattice SτIo and that it maps any J ∈ SτIo
into SτIoi . It follows that Γ(K) = lfp(T∆i

(·, Ioi[τd
∆i

: K])) computed in the lattice
SτIo .
For arbitrary J ∈ SτIo , let us denote J1 := T∆(J,K) and J2 := T∆i(J, Ioi[τ

d
∆i

: K]).
For every domain atom Q[b̄] such that Q ∈ τo

∆i
∩ τd

∆, it holds that:

Q[b̄]J1 = ϕ′Q[b̄]JK ,

Q[b̄]J2 = Q[b̄]Ioi = Q[b̄]I = ϕ′Q[b̄]II

where the last equality follows from I = T∆(I, I).
For every domain atom P [ā] such that P ∈ τd

∆i
, it holds that:

P [ā]J1 = ϕ′P [ā]JK ,

P [ā]J2 = ϕ′P [ā]
J

Ioi[τ
d
∆i

:K]
.

In the evaluation of ϕ′Q[b̄]JK and ϕ′P [ā]JK , positive occurrences of predicates are
interpreted by J while negative occurrences are interpreted by K. When K v I
and I v J then also K v Ioi[τd

∆i
: K], and by using well-known monotonicity laws

of truth assignment, it is easy to see that Q[b̄]J2 ≤ Q[b̄]J1 and P [ā]J2 ≤ P [ā]J1 , i.e.,

T∆i
(J, Ioi[τd

∆i
: K]) v T∆(J,K). (12)

Likewise, if I v K and J v I then also Ioi[τd
∆i

: K] v K and Q[b̄]J1 ≤ Q[b̄]J2 and
P [ā]J1 ≤ P [ā]J2 , i.e.,

T∆(J,K) v T∆i(J, Ioi[τ
d
∆i

: K]). (13)

To prove (10), assume that K v I. For any J ∈ SτIo such that ST∆(K) v J , it
holds that I = ST∆(I) v ST∆(K) v J (by anti-monotonicity of ST∆), and hence,
(12) holds. By application of Proposition 5.14(b), we obtain the desired result that
Γ(K) v ST∆(K).
Similarly, to prove (11), assume that I v K. For any J ∈ SτIo such that J v
ST∆(K), it holds that J v ST∆(K) v ST∆(I) = I, hence (13) holds. Now the
conditions of Proposition 5.14(a) are satisfied and we obtain that ST∆(K) v Γ(K).
This concludes the proof.

Theorem 5.12 gives one direction of the Modularity theorem. Now our goal is to
come up with some condition on the partition of ∆ so that both directions of the
Modularity theorem hold.

Recall from Example 5.13 that the other direction does not hold in general. In
particular, {P,Q} satisfies

{
P ← Q

}
and

{
Q← P

}
but not

{
P ← Q, Q← P

}
.

In this example, splitting the definition breaks the circular dependency between P
and Q. This causes the broken equivalence between ∆ and ∆1 ∧∆2. The example

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

34 · Marc Denecker and Eugenia Ternovska

suggests that splitting a definition will be equivalence preserving if the splitting
does not break circular dependencies between atoms. Below we will formalise this
notion using the notion of reduction relation defined in Section 5.1.

Recall that a pre-well-order is a reflexive and transitive relation such that every
non-empty subset contains a minimal element. Let Ko be a structure such that
τKo ⊆ τo

∆.

Definition 5.16 reduction partition. Call partition {∆1, . . . ,∆n} of definition ∆
a reduction partition of ∆ in Ko if there is a reduction pre-well-order ≺ of ∆ in Ko

such that for all defined domain atoms P [ā], Q[b̄], if Q[b̄] ≺ P [ā] and P [ā] ≺ Q[b̄],
then P and Q are defined in the same ∆i.

The intuition underlying this definition is that in a reduction partition, if an atom
defined in one module depends on an atom defined in another module, then the
latter atom is strictly less in the reduction ordering and hence does not depend on
the first atom.

Recall from Section 3.2.2 that each lattice congruence ∼= induces a lattice-pre-
order ≤∼=. In case of ∼=≺P [ā], it is easy to verify that I v≺P [ā] J iff for all domain
atoms Q[b̄] ≺ P [ā], Q[b̄]I ≤ Q[b̄]J .

Lemma 5.17. Let ≺ be a transitive reduction relation of a rule ∀x̄(Q(x̄)← ϕ[x̄])
in Ko. Let P [ā] be a domain atom and I, I ′, J, J ′ be τ -extensions of Ko such that
I v≺P [ā] I

′ and J ′ v≺P [ā] J . If Q[b̄] ≺ P [ā] then ϕ′[b̄]IJ ≤ ϕ′[b̄]I′J′ .

Proof. Let I, I ′, J, J ′ and Q[b̄] be as in the lemma. Construct structure I1 from
I and I ′ such that for each domain atom R(c), R(c)I1 := R(c)I

′
if R(c) ≺ P [ā],

and R(c)I1 := R(c)I otherwise. Similarly construct structure J1 such that for
each atom R(c), R(c)J1 := R(c)J

′
if R(c) ≺ P [ā], and R(c)J1 := R(c)J otherwise.

By construction, I v I1 ∼=≺P [ā] I
′ and J ′ ∼=≺P [ā] J1 v J . By transitivity of ≺,

I1∼=Q[b̄]I
′ and J ′∼=Q[b̄]J1. We have

ϕ′[b̄]IJ ≤ ϕ′[b̄]I1J1 = ϕ′[b̄]I
′
J′ .

Proposition 5.18. Let ≺ be a transitive reflexive reduction relation of ∆ in a
τo
∆-structure Io and let ∆i be an element of some partition of ∆. Denote Ioi :=
Io

∆↓|τo
∆i

and Ioi′ := Io
∆↑|τo

∆i
.

If Ioi ∼=≺P [ā] Ioi
′ then Ioi

∆i↓ v≺P [ā] Io
∆↓ v Io∆↑ v≺P [ā] Ioi

∆i↑.

Proof. The proof follows the line of argument of the proof of Theorem 5.12. For
convenience, let us denote I := Io

∆↓ and I ′ := Io
∆↑. Assume that Ioi ∼=≺P [ā] Ioi

′.
Recall that for any structure J ∈ SτIo , |J |≺P [ā] denotes the equivalence class of J in
the lattice congruence ∼=≺P [ā]. The statement to be proven is equivalent to

|Ioi∆i↓|≺P [ā] v |Io∆↓|≺P [ā] v |Io∆↑|≺P [ā] v |Ioi∆i↑|≺P [ā]. (14)

It follows from Proposition 5.10 and Proposition 3.4 that

(|I|≺P [ā], |I ′|≺P [ā]) = OSC(|ST∆|≺P [ā]),
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 35

computed in the lattice |SτIo |≺P [ā], and

(|Ioi∆i↓|≺P [ā], |Ioi∆i↑|≺P [ā]) = OSC(|ST∆i
|≺P [ā]),

computed in the lattice |SτIoi |≺P [ā]. Thus, we need to compare the maximal oscil-
lating pairs of the two quotient operators.
The first step is to extend the operator |ST∆i

|≺P [ā] to the larger lattice |SτIo |≺P [ā].
Consider again the operator Γ defined in the proof of Theorem 5.12. This operator
maps any K ∈ SτIo to ST∆i(Ioi[τ

d
∆i

: K]). When K ∼=≺P [ā] K
′, then clearly Ioi[τd

∆i
:

K] ∼=≺P [ā] Ioi[τd
∆i

: K ′]. Also, ≺ is a reduction relation of ∆i in Ioi. It follows that
Γ preserves ∼=≺P [ā]. Therefore, its quotient |Γ|≺P [ā] is a well-defined anti-monotone
operator such that

OSC(|ST∆i
|≺P [ā]) = OSC(|Γ|≺P [ā]).

We will show that for each K̃ ∈ |SτIo |≺P [ā],

K̃ v |I|≺P [ā] implies |I ′|≺P [ā] v |Γ|≺P [ā](K̃), and (15)

|I ′|≺P [ā] v K̃ implies |Γ|≺P [ā](K̃) v |I|≺P [ā]. (16)

Application of Proposition 5.15(b) will then yield the desired result.

We first prove (15). Select an arbitrary K̃ ∈ |SτIo |≺P [ā] and a witness K of K̃. The
structures I ′ and Γ(K) are the least fixpoints of the following monotone operators
in SτIo :

I ′ = lfp(T∆(·, I)), and

Γ(K) = lfp(T∆i(·, Ioi[τd
∆i

: K])).

Let J̃ be an arbitrary element of |SτIo |≺P [ā], and let J be a witness of J̃ . Denote
J1 := T∆(J, I) and J2 := T∆i

(J, Ioi[τd
∆i

: K]).
For every domain atom Q[b̄] ≺ P [ā] such that Q ∈ τo

∆i
∩ τd

∆, it holds that:

Q[b̄]J1 = ϕ′Q[b̄]JI ,

Q[b̄]J2 = Q[b̄]Ioi = Q[b̄]Ioi
′

= Q[b̄]I
′

= ϕ′Q[b̄]I
′
I

where the second equality holds because Ioi ∼=≺P [ā] Ioi
′ andQ[b̄] ≺ P [ā], respectively

I ′ = T∆(I ′, I). For every domain atom R[c̄] ≺ P [ā] such that R ∈ τd
∆i

, it holds
that:

R[c̄]J1 = ϕ′R[c̄]JI ,

R[c̄]J2 = ϕ′R[c̄]
J

Ioi[τ
d
∆i

:K]
.

Assume that K̃ v |I|≺P [ā] or equivalently, K v≺P [ā] I. We shall prove that J̃ v
|I ′|≺P [ā] implies J1 v≺P [ā] J2, or equivalently,

|T∆|≺P [ā](J̃ , |I|≺P [ā]) v |T∆i |≺P [ā](J̃ , |Ioi[τd
∆i

: K]|≺P [ā]).

By Proposition 5.14(a), it will follow then that |I ′|≺P [ā] v |Γ|≺P [ā](K̃).
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

36 · Marc Denecker and Eugenia Ternovska

Assume that J̃ v |I ′|≺P [ā], i.e., J v≺P [ā] I
′. From Lemma 5.17, it follows that

Q[b̄]J1 = ϕ′Q[b̄]JI ≤ ϕ′Q[b̄]I
′
I = Q[b̄]J2 . Since K v≺P [ā] I, it holds that Ioi[τd

∆i
:

K] v≺P [ā] I. Again using Lemma 5.17, we find that R[c̄]J1 ≤ R[c̄]J2 . Hence,
J1 v≺P [ā] J2. This concludes the proof of (15).

The proof of (16) differs from the one of (15) in subtle ways. Now assume that
|I ′|≺P [ā] v K̃, or I ′ v≺P [ā] K. This time, we use:

I = lfp(T∆(·, I ′)),

Γ(K) = lfp(T∆i(·, Ioi[τd
∆i

: K])).

For arbitrary J̃ ∈ |SτIo |≺P [ā] and witness J of J̃ , denote J1 := T∆(J, I ′) and J2 :=
T∆i(J, Ioi[τ

d
∆i

: K]). We shall prove that I v≺P [ā] J implies J2 v≺P [ā] J1. Under
these conditions, application of Proposition 5.14(b) yields the desired conclusion
that |Γ|≺P [ā](K̃) v |I|≺P [ā].
For every domain atom Q[b̄] ≺ P [ā] such that Q ∈ τo

∆i
∩ τd

∆, it holds that:

Q[b̄]J1 = ϕ′Q[b̄]JI′ and Q[b̄]J2 = Q[b̄]I = ϕ′Q[b̄]II′ ,

where the last equation follows from I = T∆(I, I ′).
For every domain atom R[c̄] ≺ P [ā] such that R ∈ τd

∆i
, it holds that:

R[c̄]J1 = ϕ′R[c̄]JI′ and R[c̄]J2 = ϕ′R[c̄]
J

Ioi[τ
d
∆i

:K]
.

When I v≺P [ā] J , Lemma 5.17 implies Q[b̄]J2 ≤ Q[b̄]J1 . Since I ′ v≺P [ā] K and
Ioi ∼=≺P [ā] Ioi

′, it holds that I ′ v≺P [ā] Ioi
′[τd

∆i
: K] ∼=≺P [ā] Ioi[τd

∆i
: K]. Again using

Lemma 5.17, we find that R[c̄]J2 ≤ R[c̄]J1 . It follows that J2 v≺P [ā] J1.

Now, we are in a position to prove the second direction of the modularity theorem.
Let τo ⊆ τo

∆.

Theorem 5.19. If ∆ has a reduction partition {∆1, . . . ,∆n} in the τo-structure
Ko, then for any τ -structure I extending Ko, if I |= ∆1 ∧ · · · ∧∆n then I |= ∆.

Proof. Let I be a model of ∆1 ∧ · · · ∧ ∆n extending Ko and let Io = I|τo
∆
.

Assume, towards contradiction, that Io∆↓ 6= I or Io∆↑ 6= I. Let P [ā] be a minimal
domain atom in the reduction pre-well order of the partition such that P [ā]Io

∆↓
6=

P [ā]I or P [ā]Io
∆↑
6= P [ā]I and suppose P is defined in ∆i. By our choice of P [ā],

I|τo
∆i

∼=≺P [ā] Io
∆↓|τo

∆i

∼=≺P [ā] Io
∆↑|τo

∆i
. Let us denote Io∆↓|τo

∆i
by Ioi. Proposition

5.10 guarantees that I = (I|τo
∆i

)∆i ∼=≺P [ā] Ioi
∆i↓ ∼=≺P [ā] Ioi

∆i↑. Since ≺ is reflexive,

P [ā]I = P [ā]Ioi
∆i↓

= P [ā]Ioi
∆i↑

. But Proposition 5.18 implies that Ioi∆i↓ v≺P [ā]

Io
∆↓ v Io∆↑ v≺P [ā] Ioi

∆i↑. We obtain the desired contradiction.

Theorem 5.20 modularity. If {∆1, . . . ,∆n} is a reduction partition of ∆ in
τo-structure Ko, then for any τ -structure I extending Ko,

I |= ∆ iff I |= ∆1 ∧ · · · ∧∆n.

Proof. Combine Theorems 5.12 and 5.19.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 37

An immediate consequence is the following corollary.

Corollary 5.21. Let To be a theory over τo such that for any τo-model Io of
To, {∆1, . . . ,∆n} is a reduction partition of ∆ in Io.

Then To ∧∆ and To ∧∆1 ∧ · · · ∧∆n are logically equivalent.

Example 5.22. Consider the partition of the definition from Example 5.6:

∆1 :=
{
∀x (E(x)← x = 0) ,
∀x (E(s(x))← O(x))

}
, ∆2 :=

{
∀x (O(s(x))← E(x))

}
.

The transitive reflexive closure ≺∗∗ of the reduction of ∆ presented in Example 5.6
is a well-founded partial order. It holds that E[n] ≺∗∗ O[m] and O[n] ≺∗∗ E[m]
iff n < m. Consequently, {∆1,∆2} is a reduction partition. The conjunction of
∆1 and ∆2 has one model extending the natural numbers. In ID-logic, the natural
numbers are formalized by TN (Examples 4.3 and 4.20). By Corollary 5.21, the
theories TN ∪ {∆1 ∪∆2} and TN ∪ {∆1 ∧∆2} are equivalent.

Since a definition has at most one extension in an τo
∆-structure Io, another corol-

lary of Theorem 5.20 is the following.

Corollary 5.23. If ∆ has a reduction partition {∆1, . . . ,∆n} in a τo
∆-structure

Io then ∆1 ∧ · · · ∧∆n has at most one model extending Io.

The modularity problem has been studied quite extensively in the context of dif-
ferent semantics and for several extensions of logic programming, e.g. in [Lifschitz
and Turner 1994; Schlipf 1995b; Verbaeten et al. 2000], but our results are unifor-
mally stronger in the sense that they are proven for a more expressive logic and
under more general conditions. An algebraic version of our modularity theorem
was proven in [Vennekens et al. 2005] in the context of approximation theory.

5.3 Proving totality of a definition

As a final topic of this section, we also study under what conditions the totality of
the sub-definitions ∆1, . . . ,∆n guarantees the totality of ∆. This is investigated in
the totality theorem. Let τo ⊆ τo

∆.

Theorem 5.24 totality. If {∆1, . . . ,∆n} is a reduction partition of ∆ in τo-
structure Ko and, for every i ∈ {1, . . . , n}, ∆i is total in Ko then ∆ is total in
Ko.

Thus, one way to prove that ∆ is total in Ko is to prove that it has a reduction
partition, and that each definition ∆i in the partition is total in Ko.

Proof. Take an arbitrary τo
∆-structure Io extending Ko. Assume, towards con-

tradiction, that Io∆↓ 6= Io
∆↑ and let P [ā] be a minimal domain atom in the reduc-

tion pre-well order of the partition such that P [ā]Io
∆↓
< P [ā]Io

∆↑
. Let P be defined

in ∆i. By our choice of P [ā], Io∆↓|τo
∆i

∼=≺P [ā] Io
∆↑|τo

∆i
. Let us denote Io∆↓|τo

∆i

by Ioi. By totality of ∆i, Ioi∆i↓ = Ioi
∆i↑. It follows from Proposition 5.18 that

Ioi
∆i↓ v≺P [ā] Io

∆↓ v Io
∆↑ v≺P [ā] Ioi

∆i↑. By reflexivity of ≺, it follows that P [ā]
has the same value in all these structures. This is a contradiction.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

38 · Marc Denecker and Eugenia Ternovska

Corollary 5.25. Let To be a theory over τo such that for any τo-model Io of
To, {∆1, . . . ,∆n} is a reduction partition of ∆ in Io and each ∆i is total in Io.
Then ∆ is total in To.

Corollary 5.26 Satisfiability. If ∆ has a reduction partition {∆1, . . . ,∆n}
in a τo

∆-structure Io such that ∆1, . . . ,∆n are total in Io, then ∆ and ∆1∧ · · ·∧∆n

are satisfiable and have exactly one model that extends Io.

6. SOME FAMILIAR TYPES OF DEFINITIONS

This section reconsiders the four different types of informal inductive definitions
discussed in Section 2: non-recursive definitions, positive definitions, definitions
over well-founded sets and iterated inductive definitions. We demonstrate that
these types of definitions can be correctly and uniformly represented in ID-logic.
To this end, we define four formal subclasses of definitions of ID-logic that naturally
correspond to the four informal types of inductive definitions and prove theorems
to show that the well-founded semantics correctly formalizes the meaning of these
types of definitions.

6.1 Non-Recursive Definitions.

A first case is that of non-recursive definitions. A definition ∆ is non-recursive if
the bodies of the rules do not contain defined predicates.

Definition 6.1 completion of ∆ [Clark 1978]. Define the completion of ∆, de-
noted comp(∆), as the conjunction, for each defined symbol X of ∆, of formulas

∀x̄(X(x̄)↔ ϕX [x̄]).

The equivalence ∀x̄(X(x̄)↔ ϕX [x̄]) is called the completed definition of X.

Theorem 6.2. Let ∆ be a non-recursive definition over τ . Then ∆ is total and
a τ -structure I satisfies ∆ iff I satisfies comp(∆).

Proof. It is straightforward to show that if ∆ is non-recursive, then for each
τo
∆-structure Io, the operator T∆ is constant in the lattice SτIo and it maps each

pair of τ -structures to the unique structure I such that, for each defined symbol X,

XI = {d̄ | Io |= ϕX [d̄]}.

This I is the unique model of ∆ and the unique model of comp(∆) in SτIo .

6.2 Positive Definitions.

Let ∆ be a positive definition, defining the symbols P̄ . Let X̄ be a set of new
predicate symbols such that for each defined symbol Pi, Xi and Pi have the same
arity. Define the following formula

PID(∆) :=
∧

∆ ∧ ∀X̄(
∧

∆[P̄ /X̄] ⊃ (P̄ ⊆ X̄)).

Here,
∧

∆ is the conjunction of formulas obtained by replacing definitional rules
with material implications in ∆; ∆[P̄ /X̄] is the definition obtained by substituting
Xi for each defined symbol Pi and P̄ ⊆ X̄ is a shorthand for the formula ∀x̄(P1(x̄) ⊃
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 39

X1(x̄)) ∧ · · · ∧ ∀x̄(Pn(x̄) ⊃ Xn(x̄)). The formula PID(∆) is the standard second-
order formula to express that predicates P̄ satisfy the positive inductive definition
∆.

Define also

Circ(∆; P̄) :=
∧

∆ ∧ ∀X̄(
∧

∆[P̄ /X̄] ∧ X̄ ⊆ P̄) ⊃ P̄ ⊆ X̄).

This formula is the standard circumscription of
∧

∆ with respect to the defined
predicates P̄ [Lifschitz 1994].

Theorem 6.3. Let ∆ be a positive definition over τ . Then ∆ is total and for
all τ -structures I, the following are equivalent:

(a) I is a model of ∆;
(b) I is the least fixpoint of Γ∆ in the lattice SτIo ;
(c) I is a model of PID(∆);
(d) I is a model of Circ(∆; P̄).

Proof. In case ∆ is a positive definition, defined symbols have no negative
occurrences, so ∆ and ∆′ are identical. Consequently, for any pair of structures
I, J in the lattice SτIo , it holds that T∆(I, J) = Γ∆(I) which does not depend on
J . Thus, the stable operator ST∆ is a constant operator in this lattice and maps
any structure J to the least fixpoint of Γ∆. Thus, it follows that Io∆↓ and Io∆↑ are
identical to the least fixpoint of Γ∆ in SτIo . This proves the equivalence of (a) and
(b).
The equivalence of (b) and (c) in case of a positive definition is well-known (see
e.g. [Aczel 1977]). Finally, the axiom PID(∆) expresses that P̄ should be the least
relations satisfying

∧
∆, while Circ(∆; P̄) expresses that P̄ should be minimal

relations satisfying
∧

∆. Both axioms are equivalent, since there is a set of least
relations satisfying

∧
∆, and it is the unique set of minimal relations satisfying this

formula.

The theorem is significant since it shows that for positive definitions, the seman-
tics defined here coincides with standard monotone induction. It implies that if
I |= ∆ then I is the least structure extending Io that satisfies the rules of ∆ viewed
as a set of first-order implications.

Example 6.4. Consider the formulation of the induction axiom in ID-logic in
Example 4.3:

∃N
[{
∀x (N(x)← x = 0),
∀x (N(s(x))← N(x))

}
∧ ∀x N(x))

]
.

By Theorem 6.3, it is equivalent to the second-order axiom

∃N

∀x (N(x) ⊂ x = 0)∧
∀x (N(s(x)) ⊂ N(x))∧
∀X [∀x (X(x) ⊂ x = 0) ∧ ∀x (X(s(x)) ⊂ X(x)) ⊃ ∀x(N(x) ⊃ X(x))]∧
∀x N(x)

 .
We show that this formula is logically equivalent to the standard induction axiom.
The first two conjuncts follow from the last and may be deleted. Using the last

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

40 · Marc Denecker and Eugenia Ternovska

conjunct, the third conjunct can be simplified as follows:

∃N
[
∀X [∀x (X(x) ⊂ x = 0) ∧ ∀x (X(s(x)) ⊂ X(x)) ⊃ ∀x X(x)]∧
∀x N(x))

]
.

Notice that the first element of the conjunction does not depend of N , so the
outer existential quantifier can be moved inwards, and the tautological ∃N ∀x N(x)
can be removed. We obtain the standard induction axiom:

∀X [∀x (X(x) ⊂ x = 0) ∧ ∀x (X(s(x)) ⊂ X(x)) ⊃ ∀x X(x)].

6.3 Iterated Inductive Definitions

Recall from Section 2 that an iterated inductive definition constructs a set as the
limit of a sequence of subsidiary computations, each of which itself is a monotone
induction. Here, we formalize that intuition, and make a connection between this
new “formalism” and the representation of iterated inductive definitions in ID-logic.

Let (∆1, . . . ,∆n) be a finite sequence of positive definitions over a vocabulary τ
such that:

—all definitions define disjunct sets of relation symbols, i.e., τd
∆i
∩τd

∆j
= ∅ for i 6= j;

—if a relation symbol is defined in some ∆i, then it does not occur as an open
symbol in ∆j , for any j < i.

We call such a sequence an iterated inductive definition and we interpret it as a
simple, finite case of an iterated inductive definition.

Let X̄ be the set τd
∆1
∪ · · · ∪ τd

∆n
, i.e., the collection of all symbols defined in at

least one definition ∆i, 1 ≤ i ≤ n, and let τo be the vocabulary τ \ X̄. Select an
arbitrary τo-structure Io.

We define Io(∆1,...,∆n) by induction on i: Io() := Io and for each i, 1 ≤ i ≤ n,
Io

(∆1,...,∆i) := (Io(∆1,...,∆i−1))∆i . Note that by Theorem 6.3, Io(∆1,...,∆i) is the least
fixpoint of the positive definition ∆i extending Io(∆1,...,∆i−1). The above definition
models precisely the process of iterated induction as explained in Section 2. We say
that the τ -structure Io(∆1,...,∆n) is the structure defined by the iterated inductive
definition (∆1, . . . ,∆n) in Io.

Consider the iterated inductive definition (∆1, . . . ,∆n) and the new definition
∆ = ∆1 ∪ . . . ∪∆n. It is obvious that τo

∆ is equal to τo.

Theorem 6.5 iterated induction. Let (∆1, . . . ,∆n) be an iterated inductive
definition over vocabulary τ . Definition ∆ := ∆1 ∪ . . . ∪ ∆n is a total definition,
and for all τ -structures I extending a τo-structure Io, the following are equivalent:

(a) I is a model of ∆;
(b) I is the structure defined by (∆1, . . . ,∆n) in Io, i.e., I = Io

(∆1,...,∆n);
(c) I satisfies PID(∆1) ∧ . . . ∧ PID(∆n).

The above notion of iterated inductive definition extends that of a stratified logic
program and its perfect model [Apt et al. 1988]. Theorem 6.5 generalizes theorem
6.1 in [Van Gelder et al. 1991] to rules with FO bodies and arbitrary structures.
The theorem’s significance and the reason to include it in this paper is that it shows
that definitions in ID-logic correctly formalize iterated induction, a point that was
not addressed in [Apt et al. 1988] and [Van Gelder et al. 1991].
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 41

An iterated induction can be viewed as a repeated application of the principle
of definitional extension. The proof of Theorem 6.5 indeed relies on the following
formalization of this principle.

Proposition 6.6. Let ∆ be a definition over τo, ∆1 a definition over τ such
τo
∆1

= τo, i.e., ∆1 defines new symbols in terms of τo. Let Ko be a structure such
that τfn ⊆ τKo ⊆ τo.

If ∆1 is total in Ko then there is a one-to-one mapping between τ -models M of
∆ ∪∆1 extending Ko and τo-models N of ∆ extending Ko such that M = N∆1 .

Consequently, extending a definition ∆ with a total set of rules defining new sym-
bols, has no effect on the entailed properties expressible in the vocabulary of ∆.

Proof. Consider the binary relation ≺ on AtτA such that P [ā] ≺ Q[b̄] if P ∈ τo

and Q ∈ τ , or, if P,Q ∈ τd
∆1

. Since the rules of ∆1 do not mention symbols of τd
∆,

this is a reduction relation of ∆∪∆1 in Ko. Clearly, {∆,∆1} is a reduction partition
of ∆ ∪ ∆1 in Ko. Hence, for any τ -structure M extending Ko, M |= ∆ ∪ ∆1 iff
M |= ∆ and M |= ∆1 iff M |τo |= ∆ and M = (M |τo)∆1↓ = (M |τo)∆1↑. By
totalness of ∆1 in Ko, the proposition follows.

Proof. (of Theorem 6.5.) The proof is by induction on n. Assume that the
theorem holds for iterated inductive definitions of length n − 1. By Theorem 6.3,
∆n is total in any structure. By Proposition 6.6, for every τ -structure I, I |= ∆1 ∪
· · ·∪∆n iff I|τo

∆n
|= ∆1∪· · ·∪∆n−1 and I = (I|τo

∆n
)∆n . Again by Theorem 6.3, the

latter condition is equivalent to I |= PID(∆n). By the induction hypothesis, the
first condition is equivalent to I|τo

∆n
= Io

(∆1,...,∆n−1) and with I|τo
∆n
|= PID(∆1)∧

. . . ∧ PID(∆n−1). The theorem follows directly.

6.4 Definitions over Well-Founded Order.

We now present a formalization of the informal concept of a definition over a well-
founded order (see section 2) in the framework of ID-logic. Let ∆ be a definition
over τ and Ko a structure such that τKo ⊆ τo

∆.

Definition 6.7 strict reduction relation. A reduction relation ≺ of ∆ in Ko is
strict if it is a strict well-founded partial order (i.e., an anti-symmetric, transitive
binary relation without infinite descending chains).

Hence, a strict reduction ≺ has no cycles. If ∆ allows a strict reduction then there
are no atoms that depend on themselves.

Definition 6.8 definition over a well-founded order. We say that ∆ is a defini-
tion over the (strict) well-founded order ≺ in Ko if ≺ is a strict reduction relation
of ∆ in Ko.

Theorem 6.9 completion. Suppose ≺ is a strict reduction relation of ∆ in
Ko. The definition ∆ is total in Ko and for any τ -structure I extending Ko, I |= ∆
iff I |= comp(∆).

Proof. Fix an arbitrary τo
∆-structure Io extending Ko. We will show that the

equality Io∆↓ = Io
∆↑ = Io

∆ holds, and moreover that for any τ -structure I extend-
ing Io, I |= comp(∆) iff I = Io

∆. Since Io is arbitrary, we will obtain the proof of
the theorem.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

42 · Marc Denecker and Eugenia Ternovska

We start by showing that there is at most one pair (I, J) in SτIo satisfying
T∆(I, J) = I and T∆(J, I) = J , moreover if such a pair exists then I = J .
Suppose that there are two such pairs; i.e., there exist I, J, I ′, J ′ ∈ SτIo such that
T∆(I, J) = I, T∆(J, I) = J , T∆(I ′, J ′) = I ′ and T∆(J ′, I ′) = J ′. Let P [ā] be
a minimal atom in ≺ such that P [ā]I 6= P [ā]I

′
or P [ā]J 6= P [ā]J

′
. Since ≺ is

irreflexive, it holds that I ∼=≺P [ā] I
′ and J ∼=≺P [ā] J

′. Hence by Proposition 5.9,

P [ā]I = P [ā]T∆(I,J) = P [ā]T∆(I′,J ′) = P [ā]I
′
, and

P [ā]J = P [ā]T∆(J,I) = P [ā]T∆(J′,I′) = P [ā]J
′
.

We obtain a contradiction.
It follows that there can be at most one pair (I, J) satisfying this condition. More-
over, if such a pair, say (I, J), exists then also the symmetric pair (J, I) satisfies
the condition and consequently, I and J have to be identical.

Now, the proof of totality follows easily. The pair (Io∆↓, Io
∆↑) is the maximal

oscillating pair of the stable operator. Every oscillating pair (I, J) of the stable
operator satisfies T∆(I, J) = I and T∆(J, I) = J . By the previous paragraph, it
follows that Io∆↓ = Io

∆↑ = Io
∆.

We also just proved that Io∆ is the unique structure that extends Io and satisfies
the fixpoint equation T∆(I, I) = I. We derive for all I extending Io:

I = Io
∆ iff I = T∆(I, I)

iff I = Γ∆(I) (Proposition 4.8)
iff for each defined domain atom P [ā], P [ā]I = ϕP [ā]I

iff I |= comp(∆).

We obtain the following corollary.

Corollary 6.10. Suppose a definition ∆ over τ and a theory To over τo ⊆ τo
∆

such that for any model Ko of To, ∆ is a definition over some well-founded order
≺ in Ko. Then To ∧∆ and To ∧ comp(∆) are logically equivalent.

Example 6.11. Consider the definition ∆ of Example 4.17:

∆even :=
{
∀x (E(x)← x = 0) ,
∀x (E(s(x))← ¬E(x))

}
.

The transitive closure of the reduction {(E[n], E[n+1]) | n ∈ N} is a strict reduction
of ∆even in the natural numbers. Consequently, TN ∧∆even and TN ∧ comp(∆even)
are equivalent.

Note that in the natural numbers, PID(∆even) is inconsistent. Indeed, the sets
{0, 2, 4, 6, . . . } and {0, 1, 3, 5, . . . } are both minimal sets containing 0 and containing
n+1 if n is not contained. Consequently, there is no least such set.

7. KNOWLEDGE REPRESENTATION

Mathematicians use inductive definitions to construct exact, precise mathematical
objects. Unfortunately, in practical settings of knowledge representation, precise,
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 43

clear-cut information is usually lacking and the precision of mathematics is not
attainable. This phenomenon has been the motivation for the research areas of
non-monotonic and common-sense reasoning. We demonstrate here that although
ID-logic is founded on a principle from mathematics, this principle is also deeply
linked to some of the most important common-sense knowledge principles.

7.1 Definitions in KR

In [Brachman and Levesque 1982], it was observed that definitional knowledge is an
important form of human expert knowledge. This was the motivation for extending
the KR-one system with a Tbox to represent (non-recursive) definitions. This work
laid the foundations for the area of Description logics [Baader et al. 2002]. The
current generation of description logics were extended with fixpoint constructs to
represent monotone induction and Co-induction. ID-logic fits into the paradigm
of description logics, in the sense of its separation of definitional and assertional
knowledge, and extends it by allowing definitions for n-nary predicates and non-
monotone inductive definitions.

Inductive definitions may be useful to express complex properties of relations,
e.g. properties involving reachability. As an example, consider the concept of a
Hamiltonian cycle in a graph G: a path in G that reaches every vertex of the graph
exactly once and ends in its first vertex. A Hamiltonian path is characterized by its
successor relation. This successor function is a subgraph of G, each successor has
at most one successor and is the successor of at most one vertex, and each vertex
is reachable from some initial vertex a:

∀x∀y (Suc(x, y) ⊃ G(x, y))
∀x∀y∀z (Suc(x, y) ∧ Suc(x, z) ⊃ y = z)
∀x∀y∀z (Suc(y, x) ∧ Suc(z, x) ⊃ y = z)

∀x Reached(x){
∀x (Reached(x)← Suc(a, x)),
∀x∀y (Reached(x)← Reached(y) ∧ Suc(y, x))

}
This theory illustrates the use of definitions in terms of open predicates, and the
combined use of classical logic and definitions. This example is a benchmark exam-
ple of Answer Set Programming [Marek and Truszczyński 1999; Niemelä 1999]. In
the model expansion paradigm [Mitchell and Ternovska 2005], Hamiltonian paths
are computed by extending a given input interpretationKo interpreting the symbols
G and a, into a model of the above theory.

7.2 Domain Closure Axioms and Unique Names Axioms

One of the first non-monotonic reasoning principles that was investigated is the
Domain Closure Assumption [Reiter 1980]. It is the assumption that the domain of
discourse contains no other objects than those named by ground terms. For a vo-
cabulary τ , it can be formalized by the following Domain Closure Axiom (DCA(τ))
in ID-logic:

∃U

 . . .
∀x̄ U(f(x̄))← U(x1) ∧ · · · ∧ U(xn)
. . .

 ∧ ∀x U(x)

 ,

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

44 · Marc Denecker and Eugenia Ternovska

where the definition contains one rule for every n-ary object or function symbol f
(n ≥ 0) of τ . Base cases of the definition are the rules U(c)← t for object symbols
c ∈ τ . The inductive rules close the domain elements denoted by these constants
under application of the functions. Consequently, the definition defines U as the set
of all objects named by ground terms. The assertion ∀x U(x) states that this set
coincides with the domain of discourse. This formula is SO[ID], but skolemization
of U turns it into FO[ID]. When τ contains no function symbols of arity > 0, the
definition is non-recursive and the formula is equivalent to:

∀x(x = c1 ∨ · · · ∨ x = cn)

where c1, . . . , cn are the object symbols in τ .
The Domain Closure Axiom is often applied in combination with the Unique

Name Axioms, UNA(τ), which express that different terms represent different ob-
jects:

∀x̄∀ȳ (f(x̄) 6= g(ȳ))
∀x̄∀ȳ (f(x̄) = f(ȳ) ⊃ x1 = y1 ∧ · · · ∧ xn = yn),

for every pair of constant or function symbols f, g ∈ τ . The combination of DCA(τ)
and UNA(τ) is implicitly present in logics with Herbrand model semantics, such
as logic programming. Observe that these principles are found also in Peano’s
axioms, where of course they do not model default assumptions but solid mathe-
matical truth. In fact, the theory TN of Example 4.3 consists of DCA({0, S/1})
and UNA({0, S/1}). This shows that DCA(τ) is a generalized induction axiom.

7.3 Closed World Assumption and Default Inheritance

When a definition ∆ contains no open predicates (and only then!), an interesting
alternative interpretation of ∆ is possible: as a set of material implications aug-
mented with the Closed World Assumption [Reiter 1978]: the assumption that an
atom is false unless it can be proven from the material implications. As a conse-
quence, ID-logic is suitable to model certain forms of default reasoning and default
inheritance. Below is an ID-logic representation of a well-known toy-example:

∀x (Bird(x) ∧ ¬Ab(x) ⊃ Fly(x))
∀x (Penguin(x) ⊃ ¬Fly(x))
∀x (Bird(x)← Penguin(x))
∀x (Ab(x)← Penguin(x))

Bird(Tweety)← t
Penguin(Clyde)← t

This theory, augmented with DCA(τ)+UNA(τ), where τ consists of all free sym-

bols in the above theory, can be viewed as a representation of the state of the world
in which all defaults hold. For instance, it entails the desired default properties
fly(Tweety) and ¬Penguin(Tweety) and ¬fly(Clyde). Adding the atomic rule
Penguin(Tweety) ← t to the definition has the non-monotonic effect of deriving
¬Fly(Tweety). In general, complex inheritance hierarchies can be modelled in this
way, using the methodologies for representing default inheritance developed in the
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 45

context of Logic Programming, e.g. in [You et al. 1999].

7.4 Temporal Reasoning

Temporal reasoning has always been a major test case for knowledge representation
formalisms. In this section, we illustrate the use of iterated inductive definitions and
the tools introduced in the previous sections in the context of a temporal reasoning
example. A more general study of this topic was made in [Denecker and Ternovska
2004a; 2007].

The problem domain we want to axiomatise is a variant of the well-known blocks
world planning domain. Given is a set of blocks on a table. A robot can execute
action pickup to pick up a block and action put to put the block on the table or
another block. When a block is picked up on top of which other blocks are piled up,
the effect of this action depends on the size of the pile: if the size exceeds a given
threshold, then the pile collapses and all blocks fall on the table with exception of
the picked one. Otherwise, the robot can hold and move the block and all blocks
piled on it. We assume that initially all blocks are on the table and the robot’s
hand is empty.

We model this problem in a variant of situation calculus, using a sorted version
of ID-logic. Sorts are sit, action, block and nat. The symbols of sort block are the
constant Table and one constant for each block in the problem domain. We use
an object symbol S0 and a binary function symbol do of sort sit, where do has
arguments of sorts action and sit, a unary symbol pickup and binary symbol put
of sort action, both with arguments of sort block, and, finally, a constant n of sort
nat to represent the threshold. To formalize the domain of each sort, we use a
typed version of the domain closure and unique name axioms. For example, for the
situation sort sit, the theory DCA(τsit) ∧ UNA(τsit) is:

∀a∀s S0 6= do(a, s)
∀a∀s∀a′∀s′ (do(a, s) = do(a′, s′) ⊃ a = a′ ∧ s = s′)

∃P (
{
P (S0)← t,∀a∀s (P (do(a, s))← P (s))

}
∧ ∀sP (s))

Similar theories can be defined for the sorts action and block. Since these sorts
do not have recursively applicable function symbols (e.g. action functions with
an action argument), the definitions in DCA(τaction) and DCA(τblock) are non-
recursive. We denote the union of these theories by F . This theory has only one
model A, modulo isomorphism.

The definition in Figure 1 describes the effects of all actions. Predicate Above
represents the transitive closure of the predicate On. The first rule describes the
initial situation, the second expresses the effect of putting down a block, the third
of picking up a pile of blocks which is too large, and the fourth expresses what
actions leave two blocks on each other. The next two rules express when a block is
clasped. The four final rules are inductive definitions of Above and Pilesize.

The example illustrates nicely the concept of an iterated inductive definition.
The fluents On and Clasped are defined in terms of the state of the fluents in the
previous situation through both positive and negative inductive rules. In particular,
the fourth rule defining On contains negative occurrences of Above and Pilesize,
which in turn are defined in terms of On through monotone induction. The result is
an iterated inductive definition on the well-founded set of situations with alternating

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

46 · Marc Denecker and Eugenia Ternovska

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

∀s∀b (On(b, Table, S0)← b 6= Table),

∀a∀s∀b∀b′ (On(b, b′, a, s))← a = do(put(b, b′), s),
∀a∀s∀b∀b′ (On(b, Table, do(pickup(b′), s))← Above(b, b′, s) ∧ Pilesize(b′, n, s)∧

n > Tresh),

∀a∀s∀b, b′ (On(b, b′, do(a, s))← On(b, b′, s)∧
¬(a = pickup(b) ∨ ∃c∃n (a = pickup(c) ∧Above(b′, c, s)

∧Pilesize(c, n, s) ∧ n > Tresh))),

∀a∀s∀b (Clasped(b, do(a, s))← a = pickup(b)),

∀a∀s∀b (Clasped(b, do(a, s))← Clasped(b, s) ∧ ¬∃b′ a = put(b, b′)),

∀b∀b′∀s (Above(b, b′, s)← On(b, b′, s)),
∀b∀b′∀s (Above(b, b′, s)← ∃c (On(b, c, s) ∧Above(c, b′, s))),

∀b∀s (Pilesize(b, 0, s)← ¬∃b′ (On(b′, b, s))),
∀b∀n∀s (Pilesize(b, n + 1, s)← ∃b′ (On(b′, b, s) ∧ Pilesize(b′, n, s)))

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>;
Fig. 1. Inductive definitions in situation calculus

phases of monotone and non-monotone induction.
In the propositions below, we analyse the above definition. In the context of the

structure A satisfying F , we define the relation ≺ as the set of all tuples:

(Above[c, c′, s], On[b, b′, doA(a, s)]), (Pilesize[c, n, s], On[b, b′, doA(a, s)]),
(On[b, b′, s], On[b, b′, doA(a, s)]),

(Clasped[b, s], Clasped[b, doA(a, s)]),
(On[c, c′, s], Above[b, b′, s]),

(Above[c, c′, s], Above[b, b′, s]),
(On[b, b′, s], P ilesize[c, n, s]),

(Pilesize[b, n, s], P ilesize[b′,m, s]),

for all blocks b, b′, c, c′, for all natural numbers n,m, for all actions a and for all
situations s.

Proposition 7.1. The relation ≺ is a reduction relation of ∆ in A. Its reflexive
and transitive closure is a pre-well-order.

Proof. Each of the seven rows in the definition of ≺ corresponds to one of
the seven recursive rules in ∆ with defined predicates in the body. It is straight-
forward to verify that the tuples on each row specify a reduction relation of the
corresponding rule. Consequently, ≺ is a reduction relation of ∆.

For every fluent symbol F in {On,Clasped,Above, P ilesize}, let ∆F be the set
of rules defining F .

Proposition 7.2. {∆On,∆Clasped,∆Above,∆Pilesize} is a reduction partition in
A, and each of these definitions is total.

Proof. It is straightforward to see that {∆On,∆Clasped,∆Above,∆Pilesize} is
a reduction partition under the transitive closure ≺∗ of ≺. The totality of the
partition follows from the fact that all component definitions are positive.

Proposition 7.3. ∆On and ∆Clasped are definitions by well-founded induction
over the successor relation between situations in A.
ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 47

Proof. By Proposition 5.5, the restriction ≺∆On

A of ≺ to tuples with an atom
On(b, b′, s) in the second argument is a reduction relation of ∆On inA. Its transitive
closure is also a reduction relation and moreover, it is a strict well-founded order.
A similar argument holds for ∆Clasped and ≺∆Clasped

A , the restriction of ≺ to tuples
with a Clasped domain atom in the second argument.

We obtain as a corollary the following equivalence result.

Proposition 7.4. The theories F∪{∆} and F∪{comp(∆On)∧comp(∆Clasped)∧
PID(∆Above) ∧ PID(∆Pilesize)} are logically equivalent.

The non-monotone forms of inductive definitions in ID-logic, have interesting
applications in causal and temporal reasoning. In [Denecker et al. 1998], it was
observed that the construction process of an inductive definition formally mimics
the physical process of the propagation of causes and effects in a dynamic system.
Based on this idea, a general solution to model ramifications using inductive defi-
nitions was proposed. In [Denecker and Ternovska 2004a; 2007], this solution was
integrated in situation calculus. This solution is currently the most general solution
for the ramification problem in the situation calculus.

8. CONCLUSION

Extending work of the first author in [Denecker 2000; Denecker et al. 2001], we
presented a logical formalization of several informal forms of inductive definitions
in mathematics, allowing a uniform, rule-based representation of non-recursive def-
initions, monotone inductive definitions and non-monotone forms such as induction
over a well-founded order and iterated inductive definitions. In order to compensate
for classical first-order logic’s representational weakness on inductive definability,
we extended it with definition formulas. The main technical theorems here are the
Modularity and Totality theorems and the theorems analysing specific subclasses
of definitions and translating them into classical logic.

ID-logic is inspired by semantical studies of logic programming, and formally
extends logic programming and variants such as Datalog and Abductive Logic Pro-
gramming under the well-founded semantics. Thus, we succeeded in integrating
classical logic and logic programming in a coherent and conceptually clean way. We
informally discussed the strong relationship with IID, a mathematical formalism for
representing iterated inductive definitions. As an extension of classical logic with
an alternating fixpoint construct, ID-logic fits into the paradigm of fixpoint logics.
It also fits in the paradigm of Description logics, well-known in Knowledge Repre-
sentation, in the sense of its separation of definitional and assertional knowledge.
We also argued that despite its mathematical origin, the concept of inductive defi-
nition is closely related to principles of common-sense reasoning, including Domain
Closure, Closed World Assumption, defaults and temporal and causal reasoning.
We also showed a natural example of an iterated inductive definition in the context
of situation calculus for temporal reasoning and applied the technical apparatus de-
veloped in this paper to demonstrate the equivalence of this definition to a situation
calculus axiomatization in classical logic based on completion and circumscription.

Thus, it appears that the notion of definition and its inductive generalizations
emerges as a unifying theme in many areas of mathematics and computational logic.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

48 · Marc Denecker and Eugenia Ternovska

Hence, its study could improve insight in the interrelations between these areas and
lead to synergy.

REFERENCES

Aczel, P. 1977. An introduction to inductive definitions. In Handbook of Mathematical Logic,
J. Barwise, Ed. North-Holland Publishing Company, 739–782.

Apt, K., Blair, H., and Walker, A. 1988. Towards a theory of Declarative Knowledge. In Foun-
dations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann,

89–148.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., Eds. 2002.

The Description Logic Handbook. Theory, Implementation and Applications. Cambridge Uni-
versity Press.

Brachman, R. J. and Levesque, H. J. 1982. Competence in Knowledge Representation. In

National Conference on Artificial Intelligence (AAAI’82). 189–192.

Buchholz, W., Feferman, S., and Sieg, W. P. W. 1981. Iterated Inductive Definitions and

Subsystems of Analysis: Recent Proof-Theoretical Studies. Lecture Notes in Mathematics, vol.
897. Springer-Verlag.

Clark, K. L. 1978. Negation as failure. In Logic and Databases, H. Gallaire and J. Minker, Eds.
Plenum Press, 293–322.

Compton, K. 1993. A Deductive System for Existential Least Fixpoint Logic. Journal of Logic

and Computation 3, 2, 197–213.

Denecker, M. 1998. The well-founded semantics is the principle of inductive definition. In

Logics in Artificial Intelligence (JELIA’98), J. Dix, L. Fariñas del Cerro, and U. Furbach, Eds.
Lecture Notes in Artificial Intelligence, vol. 1489. Springer-Verlag, 1–16.

Denecker, M. 2000. Extending classical logic with inductive definitions. In First International
Conference on Computational Logic (CL’2000), J. Lloyd et al., Ed. Lecture Notes in Artificial

Intelligence, vol. 1861. Springer, 703–717.

Denecker, M. 2004. Whatś in a model? Epistemological analysis of Logic Programming. In Ninth

International Conference on Principles of Knowledge Representation and Reasoning (KR’04).
106–113. URL = http://www.cs.kuleuven.ac.be/cgibin-dtai/publ info.pl?id=41086.

Denecker, M., Bruynooghe, M., and Marek, V. 2001. Logic programming revisited: Logic

programs as inductive definitions. ACM Transactions on Computational Logic 2, 4 (October),

623–654.

Denecker, M., Marek, V., and Truszczyński, M. 2000. Approximating operators, stable op-

erators, well-founded fixpoints and applications in nonmonotonic reasoning. In Logic-based
Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers, Chapter 6, 127–144.

Denecker, M. and Ternovska, E. 2004a. Inductive Situation Calculus. In Ninth International

Conference on Principles of Knowledge Representation and Reasoning (KR’04). 545–553.

Denecker, M. and Ternovska, E. 2004b. A logic of non-monotone inductive definitions and

its modularity properties. In Seventh International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’7), V. Lifschitz and I. Niemelä, Eds.

Denecker, M. and Ternovska, E. 2007. Inductive situation calculus. Artificial Intelligence.

Denecker, M., Theseider Dupré, D., and Van Belleghem, K. 1998. An inductive defini-
tion approach to ramifications. Linköping Electronic Articles in Computer and Information

Science 3, 7, 1–43. URL: http://www.ep.liu.se/ea/cis/1998/007/.

Ebbinghaus, H. and Flum, J. 1999. Finite Model Theory, Second ed. Springer-Verlag.

Feferman, S. 1970. Formal theories for transfinite iterations of generalised inductive definitions
and some subsystems of analysis. In Intuitionism and Proof theory, A. Kino, J. Myhill, and

R. Vesley, Eds. North Holland, 303–326.

Fitting, M. 1985. A Kripke-Kleene Semantics for Logic Programs. Journal of Logic Program-
ming 2, 4, 295–312.

Fitting, M. 2002. Fixpoint semantics for logic programming - a survey. Theoretical Computer
Science 278, 25–51.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

A Logic of Non-Monotone Inductive Definitions · 49

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

International Joint Conference and Symposium on Logic Programming (JICSLP’88). MIT
Press, 1070–1080.

Graedel, E. and Kreutzer, S. 2003. Will deflation lead to depletion? on non-monotone fixed

point inductions. In IEEE Symposium on Logic in Computer Science (LICS’03). 158–.

Gurevich, Y. and Shelah, S. 1986. Fixed-point Extensions of First-Order Logic. Annals of
Pure and Applied Logic 32, 265–280.

Immerman, N. 1986. Relational queries computable in polynomial time. Information and Con-

trol 68, 86–104.

Kakas, A. C., Van Nuffelen, B., and Denecker, M. 2001. A-system : Problem solving through

abduction. In Seventeenth International Joint Conference on Artificial Intelligence (IJCAI’01),

B. Nebel, Ed. Vol. 1. Morgan Kaufmann Publishers, Inc., 591–596.

Kreisel, G. 1963. Generalized inductive definitions. Tech. rep., Section III in the Stanford

University report on the Foundations of Analysis.

Lifschitz, V. 1994. Circumscription. In Handbook of Logic in AI and Logic Programming. Vol. 3.
Oxford University Press, 298–352.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In International Conference on

Logic Programming (ICLP’94). 23–37.

Livchak, A. 1983. The Relational Model for Process Control. Automatic Documentation and
Mathematical Linguistics 4, 27–29.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: a 25 Years Perspective, K. Apt, V. Marek,
M. Truszczyński, and D. Warren, Eds. Springer-Verlag, pp. 375–398.

Marek, W. 1989. Stable theories in autoepistemic logic. Fundamenta Informaticae 12, 2, 243–

254.

Mariën, M., Wittocx, J., and Denecker, M. 2006. The IDP framework for declarative
problem solving. In Search and Logic: Answer Set Programming and SAT. 19–34. URL =

http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42379.

Martin-Löf, P. 1971. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In
Second Scandinavian Logic Symposium, J. Fenstad, Ed. 179–216.

Mitchell, D. and Ternovska, E. 2005. A framework for representing and solving np search

problems. In AAAI’05. AAAI Press/MIT Press, 430–435.

Moore, R. 1983. Semantical Considerations on non-monotonic logic. In International Joint

Conference on Artificial Intelligence (IJCAI’83). 272–279.

Moschovakis, Y. N. 1974a. Elementary Induction on Abstract Structures. North-Holland Pub-
lishing Company, Amsterdam- New York.

Moschovakis, Y. N. 1974b. On non-monotone inductive definability. Fundamenta Mathemat-

ica 82, 39-83.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3,4, 241–273.

Pelov, N. and Ternovska, E. 2005. Reducing inductive definitions to propositional satisfiability.

In International Conference on Logic Programming (ICLP’05). 221–234.

Pohlers, W. 1989. Proof Theory: an introduction. Springer-Verlag.

Post, E. 1943. Formal reduction of the general combinatorial decision problem. American Journal

of Mathematics 65, 197–215.

Rao, P., Ramskrishnan, I., Sagonas, K., Swift, T., Warren, D., and Freire, J. 1997. XSB:
A system for efficiently computing well-founded semantics. In International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR’97). Lecture Notes in Computer
Science, 1265. Springer-Verlag, 430–440.

Reiter, R. 1978. On Closed World Data bases. In Logic and Data Bases, H. Gallaire and
J. Minker, Eds. Plenum Press, New York, 55–76.

Reiter, R. 1980. Equality and domain closure in first-order databases. Journal of the ACM 27,
235–249.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

50 · Marc Denecker and Eugenia Ternovska

Schlipf, J. 1995a. Complexity and undecidability results in logic programming. Annals of

Mathematics and Artificial Intelligence 15, 257–288.

Schlipf, J. 1995b. The expressive powers of the logic programming semantics. Journal of Com-
puter and System Sciences 51, 64–86.

Spector, C. 1961. Inductively defined sets of natural numbers. In Infinitistic Methods (Proc.

1959 Symposium on Foundation of Mathematis in Warsaw). Pergamon Press, Oxford, 97–102.

Tarski, A. 1955. Lattice-theoretic fixpoint theorem and its applications. Pacific journal of
Mathematics 5, 285–309.

Ternovskaia, E. 1998a. Causality via inductive definitions. In Working Notes of ”Prospects for

a Commonsense Theory of Causation”, AAAI Spring Symposium Series, March 23-28.

Ternovskaia, E. 1998b. Inductive definability and the situation calculus. In Transaction and

Change in Logic Databases. Lecture Notes in Computer Science, vol. 1472. Springer-Verlag.

Van Gelder, A. 1993. The alternating fixpoint of logic programs with negation. Journal of

Computer and System Sciences 47, 1, 185–221.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM 38, 3, 620–650.

Vardi, M. 1982. The complexity of relational query languages. In Proc. of the 14th ACM
Symposium on the Theory of Computing. 137–146.

Vennekens, J., Gilis, D., and Denecker, M. 2005. Splitting an operator: Algebraic modularity

results for logics with fixpoints semantics. ACM Transactions on Computational Logic. URL
= http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41545.

Verbaeten, S., Denecker, M., and De Schreye, D. 2000. Compositionality of normal open

logic programs. Journal of Logic Programming 41, 3 (Mar.), 151–183.

You, J.-H., Wang, X., and Yuan, L. Y. 1999. Compiling defeasible inheritance networks to
general logic programs. Artificial Intelligence 113, 1-2 (September), 247 – 268.

Received January 2005; revised February 2006; accepted June 2006

ACM Transactions on Computational Logic, Vol. V, No. N, October 2006.

