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Abstract

In drug discovery, knowledge of the graph structure of chemical compounds is essen-

tial. Many thousands of scientific articles and patents in chemistry and pharmaceutical

sciences have investigated chemical compounds, but in many cases the details of the

structure of these chemical compounds is published only as an image. A tool to analyze

these images automatically and convert them into a chemical graph structure would be

useful for many applications, such as drug discovery. A few such tools are available and

they are mostly derived from optical character recognition. However, our evaluation

of the performance of these tools reveals that they make often mistakes in recognizing

the correct bond multiplicity and stereochemical information. In addition, errors some-

times even lead to missing atoms in the resulting graph. In our work, we address these

issues by developing a compound recognition method based on machine learning. More
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specifically, we develop a deep neural network model for optical compound recognition.

The deep learning solution presented here consists of a segmentation model, followed

by three classification models that predict atom locations, bonds, and charges. Fur-

thermore, this model not only predicts the graph structure of the molecule, but also

produces all information necessary to relate each component of the resulting graph to

the source image. This solution is scalable and can rapidly process thousands of im-

ages. Finally, we compare empirically the proposed method to the well-established tool

OSRA1 and observe significant error reduction.

Introduction

Knowledge of the chemical structure of compounds is central in drug discovery because

this structure determines the properties of the compound. It is for example used for drug

candidate selection. Because billions of euros in research and development investment are

needed to successfully bring a new drug to the market, tools that improve the drug candidate

selection process have a significant pharmaceutical impact.

Although chemical structures, which are the familiar graph drawings of molecules, do

lose some information about the electronic structure of a molecule (which is actually re-

sponsible for its chemical properties), they are powerful and effective abstractions. To query

such structures or apply machine learning, we need to start from a well-structured data set

encoding the graph representation of the chemical compound. This encoding step, which is

usually less flexible than an arbitrary drawing, might lose also some information about the

chemical structure, but it will provide a solid starting point for further automated process-

ing. Popular formats for representing chemical compounds are for example SMILES2 and

MOLfile,3 which contain all necessary information to build the complete molecular graph.

Using these formats, it would for example be possible to query databases for specific patterns

in chemical compounds. However, many sources, such as scientific journals and patents, do

not provide such encodings or do not make them systematically available.
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Thousands of scientific publications describe new chemical compounds and investigate

their properties. However, the structure of these chemical compounds is usually described

in the publication only as an image. This means that today a rich source of data, which

would be extremely valuable to develop novel machine learning approaches or simply query

documents more accurately, is largely underexploited. It is therefore important to convert

images of chemical structures into these formats. A few tools for recognizing graph structures

from chemical compound images are available, such as OSRA,1 ChemReader,4 Kekule,5

CLiDE Pro,6 and the work of M. Sadawi et al. 7 . However, we observed that, using these

tools, bond multiplicity and stereochemical information are sometimes lost. Those tools are

mainly expert systems using different techniques, such as image processing, optical character

recognition, hand-coded rules, or sophisticated algorithms. Modifying or further improving

these tools requires significant effort. A tool based on machine learning, which learns directly

from training data, would be most valuable. Such a tool could potentially become more

accurate than existing methods and its performance could be improved by increasing the

size and the diversity of the data sets, instead of having to modify its code.

Therefore, we propose a new data-driven machine learning tool that can learn to recog-

nize the chemical structure graph given only an image of the chemical structure. The core

of the tool is a deep learning model. In the work of Staker et al. 8 , another deep learning

model was also proposed. However, there the output is only a text-sequence representing

the graph. By contrast, we focus on directly predicting the graph structure (i.e., identifying

all the nodes and the edges and their labels). The positions of these nodes and edges in

the resulting graph would correspond to the positions in the original image of the chemical

structure, which makes our approach interpretable. The resulting graph can be later trans-

lated to any format (e.g., SMILES). Stereochemical information can also be encoded in a 2D

representation of a molecule. This stereochemical information is important to differentiate

molecules with the same molecular formula, but with a different spatial orientation. To

encode this central chirality, different type of lines are used to represent bonds in the 2D
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representation of a molecule: solid lines, wedge-shaped lines, or dashed lines.9 It is important

that this information is also captured correctly by our graph recognition tool.

In the next sections, we will describe the method, the neural networks it uses, and also

how the different networks interact. Then we describe the data sets used for training. Finally,

we focus on the performance of our method, and conclude with future work.

Related work and background

ChemGrapher is a machine learning based image processing tool which can be very useful in

the drug discovery process. In the recent years machine learning has made major impact in

both the field of image processing and drug discovery. We will highlight some of the machine

learning techniques used in both fields and how they apply to ChemGrapher.

Image Processing and Machine Learning

A (deep) convolutional neural network10,11 is the type of network most often preferred (in-

stead of a fully connected network) for image recognition. The number of weights and

connections needed by a fully connected network to be able to deal with an 2D array input

like an image makes it very expensive in terms of memory, computation and sample com-

plexity. A convolution neural network however only makes ‘local’ connections (e.g. receptive

field) with a previous layer which reduces the number of connections and weights needed

drastically. These local connections make sense in the processing of an image as most of

the correlations in an image are spatially local. Convolutional neural networks are used for

several tasks in the field of computer vision including (1) simple image classification, which

classifies an image as a whole and (2) image semantic segmentation, which classifies each

pixel in the image. We combine both of these tasks in ChemGrapher.

The first step in the ChemGrapher workflow is semantic segmentation of the image of the

chemical compound. The aim of image segmentation is to classify each pixel of the image
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and assign it to a particular type of segment. In this part ChemGrapher splits the image in

different segments of atom, bond and charge types. The main goal of segmentation of the

image is to make the later step of classification of atoms/bonds/charges easier.

Our work builds upon the recent developments in image segmentation. Different machine

learning approaches12,13 can be used for the semantic segmentation of images. One well-

established approach is U-Net.12 This approach uses a network that combines a contracting

path and an expanding path. Several other works were based on the U-Net approach, such

as Jansson et al. 14 , where a U-Net is used to extract the vocal component from music. Other

works expanded this U-Net approach, such as Çiçek et al. 15 , which generalizes the U-Net

approach to 3D images.

ChemGrapher however uses an alternative approach to U-Net. For the segmentation

step we make use of dilated convolutions16, all stacked without decreasing the resolution

of the layers. The main advantage of dilated convolutions is that the receptive field can

grow exponentially by increasing the dilation in the dilated convolutional operator without

increasing the number of parameters. Firstly, this is computationally more efficient than

using multiple convolutions or larger kernels, and secondly, fewer parameters also means

that the network requires less training data.

After the segmentation step, ChemGrapher also uses several classification networks to

classify the different segments located in the image segmentation step. There has been a

trend to create deeper and deeper neural networks to improve performance for the classi-

fication of images. However, deeper networks could have convergence issues while training

because of vanishing gradients.17 To improve the training capabilities of such deep networks,

methods such as residual neural networks (Resnet)18,19 , batch normalisation20 and ELU21

have been developed. However these methods are not needed in our work as the classification

networks used in ChemGrapher are relatively shallow given the segmentation step simplified

the classification tasks.
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Drug discovery and machine learning

There are several stages in the process of drug discovery. The stages go from basic research

and drug candidate selection to the development phase, clinical trials, and finally produc-

tion. As development progresses further and sunken costs increase, the cost of failure of a

project thus increases. “Fail early” is thus important to contain the costs of drug discov-

ery. Predicting risks of failure later in the discovery process (for example, by predicting

toxicity for a compound) without draining the pipeline (enough candidate compounds need

to remain available) is essential. Machine learning techniques can be used at all stages of

drug discovery. Chen et al. 22 gives a good overview of the recent use of deep learning in

drug discovery. We would like to highlight some of these recent applications, which we find

interesting in the context of our graph recognition tool.

In the first place, there is the work from Xu et al. 23 , Winter et al. 24 , and Gómez-

Bombarelli et al. 25 , where unsupervised methods are used to extract features from only

SMILES input data. SMILES (Simplified Molecular Identification and Line Entry System)2

is a de facto standard for textual representation of chemical compounds. SMILES encodes

the molecule as the traversal of the spanning tree of its graph. The aforementioned works23–25

propose unsupervised learning approaches using the auto-encoder principle. The resulting

vector-based representations of molecules can then be used as input to supervised methods

to learn to predict molecular properties (e.g., bioactivity or lipophilicity).

Another interesting method to predict molecular properties of a chemical compound is to

use the neural graph fingerprint presented in Duvenaud et al. 26 . The neural graph fingerprint

is a way to represent and encode a chemical compound. Here, a graph convolutional neural

network takes the graph as input and is trained to predict molecular properties. Similarly,

more general machine learning approaches that work directly on the graph representation

have been proposed in Kearnes et al. 27 , Coley et al. 28 , Simm et al. 29 , and Pires et al. 30 .

Large amounts of data are needed to use or train the models mentioned above. It is

not always easy to find this data. This is where our tool is useful by extracting graph
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representations of chemical compounds directly from images. It is also worth mentioning the

work presented in B. Goh et al. 31 , where no graph representation of the chemical compound

is needed, instead, a machine learning model is trained to predict bio-activity directly from

images from chemical structures.

Problem statement

We now formulate our learning task. The goal of the proposed method is to learn a function

that maps an image x to its graph representation G.

Definition 1. x ∈ RU×V represents a single-channel 2D image with dimensions U × V .

Generalizations to multiple channels is straightforward, if colored images are available.

Definition 2. G = (V,E) represents a graph with labeled vertices V and labeled edges E.

The vertices V and the edges E represent the different atoms and bonds respectively of the

chemical compound in the image x.

For our graph recognition tool to work, we need to learn the following function:

g(x) 7→ G. (1)

This function will map a 2D input image of a chemical structure to the graph representation

of the molecule. To learn this function, we assume the availability of training data in the

form of labeled images of chemical structures. The images are assumed to be labeled pixel-

wise and therefore knowledge is needed about the pixel coordinates of every vertex (atom)

in the resulting graph and the existence of the edges (bonds) and their labels.
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Model

To learn the map g from data, we build a machine learning model. The model is split up in

different learning tasks: (1) semantic segmentation and (2) segment type classification.

First task: semantic segmentation

The first learning task is to learn to segment a 2D image of a chemical structure, where each

segment represents the location of a specific atom, charge or bond type in the image. The

image was already defined in previous section. Here, the segmentation of this image will be

defined.

Definition 3. Sa ∈ RU×V×na , Sb ∈ RU×V×nb , Sc ∈ RU×V×nc represent the atom type, bond

type, and charge segmentation of an image. The width U and the height V are the same as in

the input image while na, nb, and nc respectively are the number of atom types, bond types,

and charges (including the empty atom, charge, and bond types) present in the compound.

To perform image segmentation, we need to learn a function s(x) that maps the image

into these three segmentations:

s(x) 7→ Sa,Sb,Sc. (2)

The segmentation function is illustrated in Figure 1. To learn this function, we need to

pixelwise label the training elements. This process is explained in Section Data sets.

For training, we use the cross-entropy loss H. In the case of atom type segmentation,

the cross-entropy loss is calculated and summed for every pixel prediction (so fixing u and

v) in the following way:

Lossa =
U∑

u=1

V∑
v=1

H(yau,v, ŷ
a
u,v), (3)

where ya is the true (one-hot encoded) labels and ŷa is the estimated probability distribution

of the labels for atom segmentation.
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Sax

s

(a) Atom Segmentation

Sbx

s

(b) Bond Segmentation

Scx

s

(c) Charge Segmentation

Figure 1: The three figures show the atom, bond, and charge segmentation. On the left,
we have the input image x. On the right ,we have the resulting atom (Sa), bond (Sb), and
charge (Sa) segmentation.
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The losses (Lossb, Lossc) in the case of bond type segmentation and charge segmentation

are calculated in a similar fashion. The total loss is the sum of all partial losses:

Losstotal = Lossa + Lossb + Lossc. (4)

Second task: segment type classification

A second learning task is necessary to build a final graph. This learning task classifies parts

of the segmented image into the different possible atom, bond, and charge types. For each

segment type (atom, bond, and charge), a different classifier is trained using cut-outs of the

input x and predicted segmentation S. The input for each classifier consists in three parts:

1. The first part consists in the tensors S̃a, S̃b and S̃c which represent a cut-out of the

tensors Sa, Sb or Sc.

2. For the second part, we have x̃a, x̃b and x̃c which represent cut-outs of the original 2D

image x.

3. Finally extra highlights are also created ha, hb, and hc, which highlight the candidate

location to be classified. For the bond classifier, the highlight of the candidate location

hb is split in two parts to encode the direction of the bond, which is necessary to predict

the stereoisomeric bond direction.

The different inputs for the different classifiers are illustrated in Figure 2. The functions to be

learned by these classifiers are cA(S̃a, x̃a,ha) 7→ Y a, cB(S̃b, x̃b,hb) 7→ Y b, and cC(S̃
c, x̃c,hc) 7→

Y c, where Y a ∈ {0, 1}na , Y b ∈ {0, 1}nb , and Y c ∈ {0, 1}nc represent the one-hot encoded

vectors for the different classifiers. Similarly to the segmentation learning task, we use here

again the cross-entropy loss.
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Sax

s
to cA

x̃a

S̃a

ha

(a) input for atom segment type classifier

Sbx

s
to cB

x̃b

S̃b

hb

(b) input for bond segment type classifier

Scx

s
to cC

x̃c

S̃c

hc

(c) input for charge segment type classifier

Figure 2: To build the input for the different classifiers cA, cB, and cC , the outputs of the
segmentation network Sa, Sb, and Sc are cut out to feed to the classification network. This
cut-out is illustrated with a rectangle in the middle (S̃a, S̃b, and S̃c). To this, we also
add cut-out of the original image (x̃a, x̃b, and x̃c) together with highlighting the candidate
location (ha, hb, and hc) of the segment type to be classified. The complete input for each
classifier is shown on the right.
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Graph building algorithm

Once we have learned the functions described in the previous sections, we need an algorithm

to combine the outputs of these functions and build up a final graph structure. We propose

an iterative algorithm that first detects all atoms and then identifies bonds using the detected
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atoms, see Algorithm 1:
Algorithm 1: Graph building algorithm
Data: Image tensor x

Result: Graph G

Sa,Sb,Sc = s(x)

atomCandidates = generateAtomCandidates(Sa)

V = []

for atomCand in atomCandidates do
S̃a,x̃a,ha = cutAtomCand(atomCand,Sa,x)

S̃c,x̃c,hc = cutAtomCand(atomCand,Sc,x)

Y a = cA(S̃
a, x̃a,ha)

Y c = cC(S̃
c, x̃c,hc)

if isNotEmptyAtomType(Y a) then
V.appendAtom(Y a, Y c, atomCand)

end

end

bondCandidates = generateBondCandidates(V )

E = []

for bondCand in bondCandidates do
S̃b, x̃b,hb = cutBondCand(bondCand,Sb,x)

Y b = cB(S̃
b, x̃b,hb)

if isNotEmptyBondType(Y b) then
E.appendBond(Y b, bondCand)

end

end

In the first phase, the proposed Algorithm 1 will first apply the segmentation func-

tion s to the input image. Next, using the segmentation Sa, candidate locations (co-

ordinates) atomCandidates will be generated by generateAtomCandidates. The function

generateAtomCandidates will calculate for each segment in Sa the center of mass. These
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centers of mass will be the candidate locations (coordinates) to classify. Given these candi-

date locations, the nodes V of the graph can be built in an iterative way. For this purpose,

the segmentations Sa and Sc can be cut (cutAtomCand) into smaller segments S̃a and S̃c

thanks to every candidate location atomCand. At the same time, the original image x is

also cut (cutAtomCand) into smaller parts x̃a and x̃c. Extra highlights, ha and hc, are also

created highlighting the candidate location to be classified. Then, the algorithm applies the

classification networks cA and cC to determine what kind of atom and charge is located at

the candidate location. If the candidate location is not empty (isNotEmptyAtomType), the

location, atom type Y a, and charge Y c will be added to the list of nodes V .

In the second phase, the algorithm will use the identified nodes V to build the edges E of

the graph G. For this, it first will need to generate (generateBondCandidates) the candidate

bond locations (assigned to bondCandidates). Similarly, as for the nodes, the bonds E of

the graph can be built in an iterative way. For this purpose, for each bond candidate the

segmentation Sb and the image x are cropped (by cutBondCand) into smaller tensors S̃b

and x̃b based on the location of the candidate bond bondCand. The function cutBondCand

also creates an extra tensor hb that highlights the bond location to be classified. Finally, the

classification network cB is applied to determine the existence and the type of the candidate.

If the candidate bond location is not empty (isNotEmptyBondType), the location, and type

Y b will be added to the list of bonds E.

Deep learning implementation

For the graph recognition tool, we employ a combination of different convolutional neural

networks.10 First, we have a semantic segmentation network using the Dense Prediction Con-

volutional Network16,32 followed by three classification networks. As mentioned in previous

sections, the output of the segmentation network is part of the input of the classification

networks. Other approaches were also tried: (a) one big segmentation network without
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classification and (b) 3 separate segmentation networks (atom, bond, charge) with 3 clas-

sification networks. However, these approaches had weaker performance. In the different

networks we tried several kernel sizes and layer structures and iteratively kept the best ones.

However we did not perform an exhaustive search in the hyperparameters space, so there

could be more gains if a more thorough search is performed.

Semantic segmentation network

Before feeding the image to the segmentation network s, it is preprocessed to a binary black

and white image. The output of the segmentation network are different channels predicting

for every pixels in the image the class to which the pixels belong. The possible classes

represent the different atom types, bond types, and charges. For the implementation of this

network, we build on the concept of dilated convolution described in Yu and Koltun 16 .

Network architecture

The network has 8 3x3 convolutional layers from which 6 layers make use of dilation. All

convolutional layers are followed by a Rectified Linear Unit (ReLU). The last layer is a linear

layer. Padding is used so that the resolution of the layers does not change. The padding

and dilation for the different convolutional layers are summarized in Table 1.

Table 1: Summary of the layers of the segmentation network

Layer Kernel Nonlinearity Padding Dilation

conv1 3x3 ReLU 1 no dilation
conv2 3x3 ReLU 2 2
conv3 3x3 ReLU 4 4
conv4 3x3 ReLU 8 8
conv5 3x3 ReLU 8 8
conv6 3x3 ReLU 4 4
conv7 3x3 ReLU 2 2
conv8 3x3 ReLU 1 no dilation
last 1x1 none no padding no dilation
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Classification networks

For the atom location, the bond prediction and the charge prediction, we use three separate

classification networks. All three networks use part of the output of the segmentation net-

works in their input as explained in a previous section. For every image segmentation, the

classification network has to run several times to classify all cut-outs (resolution 101x101)

from the candidate locations, resulting in all atom, bond, and charge predictions in the orig-

inal image as explained in previous section. The size of the cut-outs was chosen to cover a

neighborhood of around 2 bond lengths. The average bond length in the original training

images is 50 pixels, which resulted in a cut-out of size 101x101. However smaller cut-outs

could work and could be tested in future work. This could reduce the training compute cost.

Network architecture

The three classification networks have similar layer structures. There are 5 convolutional

layers where 3 of them are dilated and 1 of them (the first one) is actually a depthwise

separable convolution.33 After the convolutional layers, there is always a ReLU layer. The

last layer is a linear layer and the layer before that is a max pool layer. All layers are

summarized in Table 2.

Table 2: Different layers in the classification network

Layer Kernel Nonlinearity Padding Dilation

depthconv1 3x3 ReLU 1 no dilation
conv2 3x3 ReLU 2 2
conv3 3x3 ReLU 4 4
conv4 3x3 ReLU 8 8
conv5 3x3 ReLU 1 no dilation
global maxpool input size None no padding no dilation
last 1x1 None no padding no dilation
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Data sets

To build our data sets for the segmentation network and the classification networks, we

downloaded and split different chemical structures in SMILES format from the ChEMBL34

database. The set of 1.9 million chemical structures is split into 4 non-overlapping parts:

1. A training pool for the segmentation network of 1.5 million chemical structures

2. A pool of 300K chemical structures used for the validation of the segmentation network

and training of classification networks

3. A pool of around 35K chemical structures for the validation of the classification net-

works

4. Another pool of 35K chemical structures to test the overall performance

From these pools, we can sample the actual data sets for our different networks. By

sampling, we can control the relative frequency of different atom types and bond types in

the actual data sets. This is important for the performance of our networks, because of data

imbalance for the different atom types and bond types, as we will see in the next section.

Segmentation data set

For the training of the segmentation network (s), we need 2D images of chemical structures

together with pixelwise labeled target values. This type of data set is not available as far as

we know, so we need to construct this data set ourselves. Labeling thousands of 2D images

of chemical structures pixelwise by hand is not feasible. We thus construct an automatic

procedure to generate this data set. For the training data set, we sample around 114,000

chemical compounds in SMILES format from the ChEMBL training pool in a way that

every atom type is present in at least 1,000 chemical compounds. Using RDKit35 in Python,

we create the images starting from the SMILES. Furthermore, to create the labeling, we
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make some modifications36 in the code of RDKit at the drawing time of the image, so that

it additionally produces the necessary labeling and location information needed to create

the true segmentation mask for each image. In Table 3 an example is shown of an RDKit

generated image with the corresponding labels. For the validation data set, we use the same

procedure. To make the method more robust for style changes we vary the fonts, font size,

line width and offset between multiple bonds while creating the images. Additionally we

also add some salt and pepper noise to 10 percent of the images.

Table 3: RDKit labeling example: On the left we have the original SMILES, in the middle we
have the RDKit generated image and on the right we have the resulting labels generated by
our modified36 version of RDKit. The highlights show the part in the labels that correspond
to the highlights in the image and in the original SMILES.

SMILES Generated Image Generated Labels

c1cc(F)ccc1Cl

idx,mol,bond,at1,ch1,at2,ch2,x1,y1,x2,y2
0,0,2.0,C,0,C,0,590,685,376,685
1,0,1.0,C,0,C,0,590,685,697,500
2,0,1.0,C,0,C,0,376,685,269,500
3,0,1.0,C,0,F,0,269,500,55,500
4,0,2.0,C,0,C,0,269,500,376,314
5,0,1.0,C,0,C,0,376,314,590,314
6,0,2.0,C,0,C,0,590,314,697,500
7,0,1.0,C,0,Cl,0,697,500,911,500
8,0,nobond,F,0,F,0,55,500,55,500
9,0,nobond,Cl,0,Cl,0,911,500,911,500

Atom classification data set

Once the segmentation network is trained and validated, we can sample from the ChEMBL

classification training pool a new data set to feed into the segmentation network. The output

of these runs are saved to create the input data set for the next classification networks. As

already explained in a previous section, the atom classification network (cA) additionally

expects as input the candidate locations (coordinates) to classify. For the training and

validation data sets of the classification network cA, we generate candidate locations based
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on the true atom location values, but also add locations where no atom is located for the

prediction of the empty class. For these locations, we take the middle point of every bond

in the data set. As we know that no atom is located in the middle of a bond, these locations

can be used for the empty values in the data sets.

Bond classification data set

For the bond prediction network (cB), we apply a similar technique. In addition to the inputs

from previous segmentation network, the bond prediction network expects the candidate

bond locations (coordinates). For the training and validation data of cB, we generate these

candidate locations by going over all possible combinations of pairs of atoms in a molecule

within the range of less than two times the average bond length. In case there is a bond

between a generated pair of atoms, we label that item with the corresponding bond type. If

there is no bond between the pair of atoms, the item is labeled as empty.

Charge classification data set

For the charge classification network (cC), the same data sets as the atom prediction data

sets can be used except for the labels. Instead of the atom types the labels would now be

the charge (including empty charge) of the atom candidate.

Experiments and results

For implementation and training of the different networks PyTorch37 was used. All networks

were trained using a compute node with two NVIDIA Tesla v100 GPUs with 32GB of

memory. Further training details are summarized in Table 4. For the classification networks,

the number of input images (shown in Table 4) are divided in a number of cut-outs in order

to build the different classification training data sets (atom, charge and bond candidates) as

explained in previous section.
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Table 4: Training details for different networks

Network #input images #epochs minibatch size walltime learning rate

Segm. network 114K 5 8 24h 0.001
Atom Clas. 12.4K 2 16 8h 0.001
Charge Clas. 12.4K 2 16 8h 0.001
Bond Clas. 4.4K 2 64 4h 0.001

For validation, we sample new data sets from the validation ChEMBL pools for the differ-

ent networks. For the segmentation network, we sample around 12,000 chemical structures.

For the validation of the classification networks, fewer chemical structures are needed, so we

only sample around 450 chemical structures. Starting from these 450 chemical structures,

we generate atom candidates and bond candidates. This results in a data set of around

27,000 atom candidates for atom type and charge classification networks and a data set of

around 55,000 bond candidate locations for the bond classification network. We measure the

performance on the different networks on these validation data sets.

Performance of segmentation network

For the segmentation network (s), we measure the F1 score38 for all the pixel predictions for

the different atom, bond, and charge types. The F1 score takes into account both precision

and recall equally. Figure 3 plots the F1 scores of various atom and bond types against their

frequencies in the training set. As can be seen from the figure, there is a correlation between

the F1 scores and frequencies, which is expected for machine learning models.

Performance of classification networks

For the classification networks, we again use the F1 score to measure the performance for

the atom, bond, and charge type classification. Again, we see a correlation between the

F1 score and the frequency of the different types in the training data set. We can also

empirically see that the F1 score for the classification networks is significantly higher than
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Figure 3: F1 score for segmentation and classification networks. There is clearly a correlation
between the performance of the networks on the different prediction types and the frequency
of the specific type in the training data set. The classification networks perform significantly
better than the segmentation networks.
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for the segmentation networks. This is what we would expect as the segmentation network

has to solve a more complicated problem than the classification networks. The segmentation

network needs to get all pixels correct while the classification network only needs to make

one prediction for a limited region. So, the classification networks can do a good job even

when the segmentation is not perfect. The performance of these classification networks has

to be very good as for every graph prediction tens of bond and atom classifications have to

be made and this would otherwise degrade the overall accuracy rapidly. The results are also

summarized in Figure 3 .

Overall graph accuracy

Now that we know the performance of the different parts, we can combine those building

blocks and measure the overall accuracy of the resulting graph predictions. As already

mentioned in a previous section, we use Algorithm 1 to build the resulting graph.

Images (size 1000x1000, resolution 72dpi) in four different styles (varying fonts, fonts size,

line width, offset between multiple bonds) are generated using RDKit. Two of the generated

styles are also included in the training data set styles while the other two styles are not.

For every style we generate two sets: (1) one set only has images without stereochemical

information encoded in the compounds, while (2) the other set has images where all com-

pounds have stereochemical information encoded. This results in 8 sets of each 1,000 images

to measure the performance on our tool ChemGrapher. We define graph prediction to be

correct if there are no mistakes in the resulting graph (i.e., the graph matches exactly the

true graph). We therefore compare the true canonical SMILES with the predicted canonical

SMILES. For comparison, we use the same data sets to measure the performance of OSRA1

version 2.1.0. The results are summarized in Figures 4 and 5 . We observe in almost all

styles a higher accuracy of our ChemGrapher tool compared to OSRA, for non-stereo as well

as stereo images. For the computations of the ChemGrapher predictions we used a compute

node with one NVIDIA Tesla v100 with 32GB memory. To predict the canonical SMILES
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of 1000 images it took about 27 minutes walltime. This includes loading and initialisation

time of the model on the GPU. This could still be improved as several steps can be executed

in parallel. For example while segmenting the different images using the GPU the different

atom candidates can already be calculated on the CPU for the classification step. These

steps are now still implemented sequentially. For comparison we measured the speed of

OSRA on a CPU only machine (no GPU). Using just 1 core of Intel® Xeon® CPU E5-2676

v3 @ 2.40GHz it took only 19.5 minutes for OSRA to process the same 1000 images.

Styles included in training dataset styles

0 10 20 30 40 50 60 70 80 90
Error Percentage

stereo

non-stereo

22.5

13.9

84.2

67.8

OSRA
ChemGrapher

(a) Error rate for Style 1

0 10 20 30 40 50 60 70 80 90
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stereo

non-stereo

21.4
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54.6

OSRA
ChemGrapher

(b) Error rate for Style 2

Figure 4: The graph accuracy of our tool compared with OSRA v2.1.0 measured on images
(size 1000x1000, resolution 72dpi) generated in different styles using RDKit. For each style,
two experiments are performed: one with images without stereochemical information and
one with images with stereochemical information. On the left, we observe for each style the
results on the error rate. On the right, we observe for each style an example image in that
specific style.
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Styles NOT included in training dataset styles
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(a) Error rate for Style 3
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Figure 5: The graph accuracy of our tool compared with OSRA v2.1.0 measured on im-
ages (size 1000x1000, resolution 72dpi) generated in different styles using RDKit (styles not
included in training dataset styles). For each style, two experiments are performed: one
with images without stereochemical information and one with images with stereochemical
information. On the left, we observe for each style the results on the error rate. On the
right, we observe for each style an example image in that specific style.
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Case study 1: performance on journal article images

As a case study we explore how well ChemGrapher performs on images from journal articles.

As this kind of data set is not available, we built one manually. We cut out images from

journal articles about chemical compounds, preprocess them into the correct input format

(size 1000x1000, resolution 72dpi), and feed them to our tool. We evaluate the resulting

graph on correctness to measure the accuracy. Similarly as before, we denote a prediction as

correct if the graph matches exactly the true graph. For comparison, we execute the same

procedure for OSRA v2.1.0. The results of this experiment are summarized in Figure 6.

Thus, out of a total of 61 images we tried on ChemGrapher, 12 were incorrectly predicted,

while OSRA predicted 19 images incorrectly. This corresponds to a significant reduction in

error. One observation we make on this case study is that ChemGrapher clearly has better

performance on images of compounds with only carbon atoms compared to OSRA. For these

compounds, typically no letters appear in the image.

0 5 10 15 20 25 30 35 40
Error Percentage

19.7

31.1

OSRA
ChemGrapher

Figure 6: Error rate of our tool ChemGrapher on test set of journal article images compared
with OSRA. From the errors, we learn there is still room for improvement in future work.

Case study 2: performance on Maybridge dataset

As the dataset of case study 1 is fairly limited in variability and size, we also carry out another

experiment with a bigger benchmark data set39 published by the developers of MolRec7 which

we will call the Maybridge dataset. The Maybridge dataset contains no journal images but

scanned images from Maybridge’s Catalogues for drug design and discovery. These images

25



typically also have some level of noise like salt and pepper noise. In order to feed the images

to ChemGrapher we first pad every image into to have the size of 1000x1000. For every image

in the Maybridge dataset a ground truth compound is given by a corresponding MOL file.3

We convert this MOL file using RDKit35 to canonical SMILES. Again for comparison we

compare the canonical SMILES taken from OSRA and ChemGrapher to measure accuracy.

ChemGrapher predicts 4051 out of 5740 images correct, which gives an accuracy rate of

70.57%, while for OSRA v2.1.0 we clearly measure a better performance of 4677 images

correct which gives an accuracy rate of 81.48%. Analyzing the error cases of ChemGrapher

we noticed a significant amount of images have superatom nitrogen dioxide (NO2). As

ChemGrapher does not support superatoms, all images with nitrogen dioxide were incorrectly

predicted.

As a next experiment we manually labeled 20 images with superatom nitrogen dioxide

of the Maybridge data set pixel-wise, upsample (100x copies) them to 2000 images and add

them to the training data set of the segmentation network. The superatom nitrogen dioxide

is labeled in a way that it represents just another type of regular atom. For the classification

networks we label another set of 20 images, containing NO2, upsample them (20x copies)

to 400 images and add them to the original RDKit-based classification training data set.

We retrain all the networks of ChemGrapher and now obtain correct SMILES prediction for

4747 out of 5700 images (we removed the 40 labeled training images from the total data set

of 5740 images), which translates to an accuracy of 83.28%. So ChemGrapher was able, with

a limited amount (40) of labeled images, to increase the graph accuracy significantly. The

results are summarized in Figure 7. Note that as labeling the images with nitrogen dioxide

not only improved performance on the nitrogen dioxide images (from 0 images correct to

130 images out of 263 correct) but also the accuracy for the rest of the images. This is

because by the labeled images also contained many other atoms and bonds. Access to this

information improved the networks to quickly adapt to the specific style (font, line width.

etc.) of the Maybridge data set.
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(a) Performance on Maybridge dataset

0 10 20 30 40 50 60 70 80 90
Accuracy Percentage on NO2

0

49.4

83.7

OSRA
ChemGrapher retrained with Maybridge labels
ChemGrapher

(b) Accuracy on NO2 images

Figure 7: On the left we have the performance of ChemGrapher on the Maybridge data set
without and with retraining (with 40 labeled images from Maybridge data set) compared
to OSRA v2.1.0 . On the right we see the performance of ChemGrapher on NO2 images
(N = 263) in the Maybridge data set with and without retraining. For comparison the
performance of OSRA v2.1.0 on the same number of NO2 images is also shown.

Limitations and Future work

ChemGrapher currently handles superatoms as regular atoms. This means that every super-

atoms needs to be explicitly labeled. We leave it as future work to support superatoms with

a more efficient approach. The same holds for charges where every charge type (−1,+1,...)

is explicitly labeled as a different charge. ChemGrapher now only support charges from −1

to +1. In future work this could also be solved in a more efficient way. Another limitation

is that ChemGrapher expects a preprocessed image as input, meaning that chemical com-

pounds should be cropped out of a scanned text page for example. This image preprocessing

module could be built into ChemGrapher as future work to make it a standalone tool. Fi-

nally to train the segmentation network, we need a pixel-wise labeled data set. However,

this kind of data set is not always available. In this work, we created this data set with

RDkit. However, the consequence is that the format of the input image is somewhat biased.

We have seen in the case study that ChemGrapher performs reasonably well, although not

equally on real images. To handle other kind of image styles, it might be difficult to find a

pixel-wise labeled data set to retrain our networks. Therefore, future work could focus on

building a method that can learn from data that is not labeled pixel-wise. The data would
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only offer a way to verify if the resulting graph is correct or not. A potential candidate for

achieving this is to use machine learning methods from domain adaptation.

Conclusion

We presented a method to recognize the graph structure of molecules from 2D images of

chemical structures using deep learning. This method learns a model directly from data. We

have seen that careful data preparation is crucial. Care should be taken to have a balanced

data set for the different classes of atoms and bonds. However, even with an imperfectly

balanced data set, our deep learning methods give superior results. To make our method

work, we need the classification networks to have an almost perfect accuracy. While the

segmentation network can tolerate some errors, for the classification networks every drop in

accuracy can have dramatic results on the overall graph recognition accuracy. We showed

empirically that the performance of ChemGrapher is better than that of the well-known

tool OSRA1 and that it also provides detailed information about the layout of the resulting

graph to the user. For our deep learning method to learn accurately, we need pixel-wise

labels of 2D images of chemical structures. In fact, this pixel-wise labeling of images for the

segmentation is actually key to linking the atoms and bonds in the resulting graph back to

the source image. This makes our deep learning approach also interpretable. In the context of

drug discovery, such tools are important for information retrieval from patents and journals.
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The following data sets are available free of charge. These data sets were used to measure

the performance of our tool compared to OSRA.

• test_data_sets.zip: This zipped file contains 8 labeled (SMILES) data sets with each

1,000 images. The data sets where generated in 4 different styles. For each style, there

is a set with images without stereochemical information encoded and one set with

images with stereochemical information encoded.

• journal_data_set.zip: This file provides a data set with 2D images of chemical com-

pounds cut out of journal articles. For every image the source article is provided.
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