KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

Automated Threat Analysis for
Security and Privacy

Laurens Sion

Supervisors: Dissertation presented in partial
Prof. dr. ir. W. Joosen fulfillment of the requirements for the
Dr. ir. K. Yskout degree of Doctor of Engineering

Science (PhD): Computer Science

October 2020

Automated Threat Analysis for Security and Privacy

Laurens SION

Examination committee:
Prof. dr. ir. J. Berlamont, chair
Prof. dr. ir. W. Joosen, supervisor
Dr. ir. K. Yskout, supervisor
Prof. dr. ir. E. Steegmans
Prof. dr. M.-F. Moens
Dr. D. Van Landuyt
Prof. dr. R. Scandariato
(Gothenburg & Chalmers University)
Prof. dr. A. Rashid
(University of Bristol)

October 2020

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

© 2020 KU Leuven — Faculty of Engineering Science
Uitgegeven in eigen beheer, Laurens Sion, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar
gemaakt worden door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze
ook zonder voorafgaande schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint,
microfilm, electronic or any other means without written permission from the publisher.

In memory of my father.

Preface

Welcome, dear reader, to the result of a long journey. The past years
have been an immensely enriching and rewarding experience. It would
not have been possible without the support of many people along the
way. To all of them, I want to express my profound gratitude.

First, I would like to thank my supervisor, Wouter Joosen, for giving
me the opportunity to pursue a PhD at DistriNet, for the freedom to
explore interesting research topics, and for all the guidance and advice.

Second, I would like to thank Koen Yskout, for the continuous guidance
and feedback, the lengthy discussions, for always being there when had
any questions or problems, often introducing me to new problems I
had not yet foreseen. A good meeting always ended with a lot more
new and interesting questions to research.

Third, I would also like to thank Dimitri Van Landuyt, for the guidance,
advice, pitching paper ideas, and our lengthy discussions. Our joint
publication record unequivocally demonstrates the extent of your
guidance and support all these years.

Next, I would also like to thank Riccardo Scandariato, for introducing
me into this fascinating research field during my master thesis.

I would also like to thank the chair of my jury, prof. Jean Berlamont,
and all the jury members: prof. Wouter Joosen, dr. Koen Yskout,
prof. Eric Steegmans, prof. Sien Moens, dr. Dimitri Van Landuyt,
prof. Riccardo Scandariato, and prof. Awais Rashid for the challenging
questions, insightful discussion, and valuable feedback on the text.

Additionally, I would like to thank all the co-authors I had the pleasure
of working with over the past years. Special thanks also to the
organizers and participants of the Dagstuhl Seminar on Empirical
Evaluation of Secure Development Processes, where I had many
interesting and though-provoking discussions. I would also like to
thank Adam Shostack for generously sharing his feedback and insights
on past publications.

Furthermore, I want to thank all of Secdam: Alexander, Dimitri,
Kim, Koen, Oleksandr, and Stef, for the supportive environment, the
collaborations, and the interesting discussions.

I also want to thank all my current and former office mates: Alexander,
Andreas, Arun, Dimitri, Gertjan, Ilias, Kim, Michiel, Nayyab, Shirin,
and Vincent, for the daily discussions, the support, and, of course, the
coffee breaks. Additionally, a thank you to all the people that joined
the daily, although currently suspended, trips to the Alma, for all the
stimulating conversations. The global coronavirus pandemic makes it
painfully obvious how useful and welcome these breaks can be and how
they support the generation of new insights and ideas to work on.

I also want to thank all of DistriNet and especially everyone at the
business office: Annelies, Annick, Ghita, Katrien, who make everything
run smoothly and are always there to help you out. But also, everyone
else at DistriNet, all of you together provide the wonderful, stimulating,
and supporting environment that is DistriNet.

Finally, I would like to thank my family and friends for their continuous
support all these years.

Laurens Sion
Heverlee
September 2020

This research is partially funded by the Research Fund KU Leuven, IWT, imec,
and the Flemish Research Programme Cybersecurity.

Abstract

Security and privacy are long recognized as key concerns in the
development of software systems. Despite their recognized importance,
much of the attention is focused only on the code-level implementation
of these principles. However, the design-level consideration of these
principles is instrumental to fully realize secure and privacy-preserving
software and avoid costly design flaws. Avoiding these security and
privacy flaws requires support for analyzing the software design for
security and privacy threats. A common design representation used in
this context is the Data Flow Diagram (DFD). Security and privacy
threat modeling approaches use this DFD representation to identify
security and privacy threats. However, these analyses involve extensive
manual effort and quickly lead to an explosion of threats to resolve. This
makes the analyses effort-intensive and error-prone. It hinders their
reproducibility and overburdens the evaluation of design alternatives.

This dissertation addresses the automation of security and privacy
threat analysis and thus supports security and privacy by design. The
automated threat analysis is enabled through: (i) an extension to the
DFD representation of software systems to support the inclusion of
essential information on security and privacy solutions, considering the
effects of these solutions in mitigating security and privacy threats,
and (ii) extending model-based security and privacy design analysis
activities to enable the elicitation of security and privacy threats
using model queries and the prioritization of the identified security and
privacy threats using risk indicators. These extensions are validated and
integrated in the SPARTA tool prototype to realize comprehensive and

automated security and privacy threat analyses. The implementation
provides a foundation for further exploring and realizing automation
opportunities in the construction of system designs, the evaluation
of security and privacy design alternatives, and the integration as an
automated analysis activity in contemporary continuous integration
and deployment practices.

Beknopte samenvatting

Beveiliging en privacy worden reeds lang erkend als essentiéle
eigenschappen in de ontwikkeling van softwaresystemen. Ondanks
hun belang, gaat veel van de aandacht enkel naar de implementatie
van deze principes op broncode-niveau. Niettemin is de evaluatie
van deze principes op ontwerp-niveau essentieel om veilige en
privacybeschermende software te realiseren en kostelijke ontwerpfouten
te vermijden. Het vermijden van beveiligings- en privacyproblemen
vereist de analyse van het softwareontwerp om beveiligings- en privacy-
bedreigingen te identificeren. Een courante voorstelling van het ontwerp
in deze context zijn Data Flow Diagramma’s (DFDs). Beveiligings-
en privacy-analysemethoden gebruiken deze DFD-voorstelling om
beveiligings- en privacy-bedreigingen te identificeren. Maar deze
analysemethoden vereisten uitgebreide manuele inspanningen en
leiden snel tot een explosie van bedreigingen om te verhelpen in
het ontwerp. Dit maakt de analyse zeer intensief en foutgevoelig,
hetgeen de reproduceerbaarheid belemmert en de evaluatie van
ontwerpalternatieven bemoeilijkt.

Dit proefschrift verbetert beveiligings- en privacy-bedreigingsanalyse
omdat het automatisatie mogelijk maakt. Deze automatisatie draagt
bij aan de realisatie van beveiliging en privacy vanuit het ontwerp.
De geautomatiseerde bedreigingsanalyse wordt gerealiseerd door:
(i) een uitbreiding van de DFD-voorstelling van softwaresystemen
met essentiéle informatie over beveiligings- en privacy-oplossingen;
en (ii) het uitbreiden van modelgebaseerde beveiligings- en privacy-
analyse. De eerste uitbreiding met beveiligings- en privacy-oplossingen

bevat de nodige informatie om de effecten van deze oplossingen in
het verhelpen van beveiligings- en privacy-bedreigingen in rekening te
brengen. De tweede uitbreiding laat toe om beveiligings- en privacy-
bedreigingen te identificeren aan de hand van modelopzoekingen en
deze bedreigingen te prioriteren aan de hand van risico-indicators.
Deze uitbreidingen zijn gevalideerd en geimplementeerd in het SPARTA
prototype om uitgebreide, geautomatiseerde beveiligings- en privacy-
analyse te realiseren. De implementatie vormt een fundering voor verder
onderzoek naar automatisatie in de constructie van softwareontwerpen,
de evaluatie van beveiligings- en privacy-ontwerpalternatieven, en de
integratie met geautomatiseerde analyseactiviteiten in hedendaagse
continuous integration en deployment systemen.

List of Abbreviations

AQL Acceleo Query Language. 121
Av Asset Value. 101, 129, 158, 165

Bsimm Building Security in Maturity Model. 8

CA1ris Computer-Aided Integration of Requirements and Information
Security. 144

CapreC Common Attack Pattern Enumeration and Classification. 61,
64, 111, 112

CAWE Common Architectural Weakness Enumeration. 111
CB Countermeasure Bypassed. 130

CpD Countermeasure Defeated. 90, 130, 132

Cr Contact Frequency. 95, 130

CorAs Model-Driven Risk Analysis approach (not an acronym [LSS10]).
25, 113, 145, 146

CvE Common Vulnerabilities and Exposures. 18

CwE Common Weakness Enumeration. 61, 84, 111

DrD Data Flow Diagram. iii, 3, 5-8, 10, 11, 14-17, 19, 20, 25, 28, 29,
32-38, 41, 44-53, 56-64, 68, T0-73, 77, 78, 83, 84, 87, 93-96, 99—
101, 103, 106, 110, 112-115, 117-119, 121-123, 125, 132, 134-137,
140, 142, 144, 147, 150-152, 154, 157159, 161-163, 165-169

Dpbp Data Protection by Design. 2, 31
Dpria Data Protection Impact Assessment. 3, 39

DREAD Damage Reproducibility Exploitability Affected users Discov-
erability. 23

DrOWN Decrypting RSA using Obsolete and Weakened eNcryp-
tion [ASS*16b], a cross-protocol attack on TLS, which uses a
flaw in SSLv2. 41

DsT Data Subject Type. 129

Dt1s Data Type Sensitivity. 94, 129

EpFD Extended Data Flow Diagram. 61
Emr Eclipse Modeling Framework. 28, 121, 135

FAIR Factor Analysis of Information Risk. 24, 25, 69, 86, 87, 104, 141,
152

FMEA Failure Mode and Effects Analysis. 145

F1A Fault Tree Analysis. 145

GAPP Generally Accepted Privacy Principles. 2

GDPR General Data Protection Regulation. 2, 31, 39, 109, 152, 153,
158, 159

GPs Global Privacy Standard. 2

HrTp HyperText Transfer Protocol. 37
HrTps HTTP over TLS. 34-37, 39, 41, 49, 51, 52

IrIS Integrating Requirements and Information Security. 144

LEF Loss Event Frequency. 127, 129

LINDDUN Linkability, Identifiability, Non-repudiation, Disclosure of
information, Unawareness, Non-compliance. 20, 28, 59, 63, 68,
70, 71, 73, 77, 87, 93, 97, 105, 107, 110, 114, 153

LM Loss Magnitude. 127, 129

NDs Number of Data Subjects. 129
NR Number of Records. 92, 129

OcL Object Constraint Language. 112

OcTAVE Operationally Critical Threat, Asset, and Vulnerability
Evaluation. 25

OpensaMM Software Assurance Maturity Model. 8

OvvL Open Weakness Vulnerability Modeler, threat modeling tool.
60, 143

Owasp Open Web Application Security Project. 8, 60, 111, 143

PbD Privacy by Design. 31, 64, 68
PA-DFD Privacy-Aware Data Flow Diagram. 62
PASTA Process for Attack Simulation and Threat Analysis. 113

PERT Program (or Project) Evaluation and Review Technique. 127,
128

PET Privacy-Enhancing Technology. 109
P1aA Privacy Impact Assessment. 109, 110, 114, 146
PoA Probability of Action. 95, 130

PoobpLE Padding Oracle On Downgraded Legacy Encryption [MDK14],
a TLS downgrade attack. 41

PRrRiaM Privacy Risk Analysis Methodology. 110, 114, 146

Pv Privacy Value. 129

RE Requirements Engineering. 4

RP Retention Period. 91, 129

S Strength. 130

S/MIME Secure/Multipurpose Internet Mail Extensions. 52
SbD Security by Design. 2, 31, 64, 68

SDL Security Development Lifecycle. 23, 24, 109

SpLc Secure Development Life Cycle. 8

SPARTA Security and Privacy Analysis through Risk-driven Threat
Assessment. iii, vi, 11, 14, 51, 55, 119-123, 125-127, 132, 135-142,
147, 151-153, 155, 158, 161, 162

SQL Structured Query Language. 16, 62

SQUARE Security Quality Requirements Engineering. 114, 146
STECA Systematic-Theory Early Concept Analysis. 110

STPA System-Theoretic Process Analysis. 110

STRIDE Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service, Elevation of Privilege. 10, 17, 18, 20, 21, 28,
32, 33, 35, 59, 63, 73, 93, 100, 103, 109, 110, 140, 153

Tc Threat Capability. 95, 130

TEF Threat Event Frequency. 88, 129, 130

TLs Transport Layer Security. 8, 37, 41, 96

TMT Threat Modeling Tool. 33-37, 39, 41, 42, 60, 143

UML Unified Modeling Language. 5, 2628, 44, 62, 63, 111, 112, 152

V Vulnerability. 130, 132
VIATRA VIsual Automated model TR Ansformations. 84, 85, 123-125

VPN Virtual Private Network. 51

WebrTC Real-Time Communication in web browsers. 32-35, 37, 140,
168, 169

Xss Cross-Site Scripting. 9, 84-86

Contents at a Glance

1 Introduction 1

2 Background 13

3 Modeling Security and Privacy Concerns 31

4 Design-Level Analysis for Security and Privacy Threats 67
5 Advanced Tool Support 117

6 Conclusion 149

A Application Case Descriptions 161

Bibliography 171

xiii

Contents

1 Introduction 1
1.1 The Context of Security and Privacy before and by Design 4
1.2 The Role of Automation 6
1.3 Research Goal and Questions 7
1.4 Approach 10
1.5 Contributions 10
1.6 Overview 11

2 Background 13

2.1 Model Representations 15

2.2 STRIDE & LINDDUN Threat Knowledge 17

2.3 Threat Modeling 18
2.3.1 Modeling the System 19
2.3.2 Eliciting Security and Privacy Threats 20
2.3.3 Mitigating the Elicited Threats 21

2.4 A Note on Security Goals 21

2.5 Risk Analysis and Threat Prioritization 22
2.5.1 DREAD 23
2.5.2 Bug bar 23
2.5.3 Factor Analysis for Information Risk (FAIR) 24
2.5.4 Other Risk Approaches 25

2.6 Meta-Models 25
2.6.1 Modeling Supporting using Meta-Models 26

XV

2.6.2 UML Meta-Model Hierarchy 28
2.7 Summary 28

Modeling Security and Privacy Concerns 31
3.1 Running Example 33

3.2 Quality analysis 36
3.2.1 Expressiveness 36
3.2.2 Traceability 38
3.2.3 Separation of concerns 40
3.2.4 Support for dynamism 42

3.3 Meta-Model 44
3.3.1 DFD Meta-Model 45
3.3.2 Security and Privacy Solution Meta-Model 48
3.3.3 Impact on Threat Elicitation Process 50

3.4 Evaluation 51
3.4.1 Expressiveness 51
3.4.2 Traceability 52
3.4.3 Separation of Concerns 53
3.4.4 Support for dynamism 55
3.4.5 Summary 57
3.5 Discussion 57
3.6 Related Work 59
3.6.1 Security and Privacy Threat Modeling 60
3.6.2 DFD Extensions 61
3.6.3 Non-DFD-Based Modeling Approaches 62
3.6.4 Solution and Threat Knowledge 63
3.6.5 Other Security and Privacy Analysis Techniques 64

3.7 Conclusion 64

Design-Level Analysis for Security and Privacy Threats 67
4.1 Automating Threat Elicitation 70

4.1.1 Analysis of Element-Based Elicitation 70

4.1.2 Interaction-Based LINDDUN 73

4.1.3 Beyond Interaction-Based Elicitation 78
4.2 Prioritizing Threats through Risk Indicators 86

4.2.1 Risk Assessment Model 87

4.2.2

Impact on Threat Modeling 93

4.3 Evaluation and Discussion 96

4.3.1
4.3.2
4.3.3

4.3.4

Evaluation of the Interaction-Based Elicitation 97
Evaluation of the Risk Assessment Model 100
Discussion on Interaction-Based Threat Elicita-
tion 105

Discussion on the Risk Model 107

4.4 Related Work 109

4.4.1
4.4.2
4.4.3

Threat Elicitation 109
Design Flaw Detection 111
Threat Prioritization 112

4.5 Conclusion 115

Advanced Tool Support 117
5.1 Approach 119
5.2 Solution 120

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

Modeling 121

Elicitation 123
Prioritization 126
SPARTA Meta-Model 135
Using SPARTA 136

5.3 Evaluation and Discussion 137

5.3.1
5.3.2
5.3.3

Assessment of the Objectives 137
Validation of the Risk Model 139
Discussion 140

5.4 Related Work 143

5.4.1
5.4.2
5.4.3

Threat Elicitation Tool Support 143
Other Threat Modeling Approaches 144
Risk Assessment and Prioritization 145

5.5 Conclusion 146

Conclusion 149

6.1 Summary 149
6.2 Applicability 151
6.3 Future work 153

6.4 Concluding remarks 156

A Application Case Descriptions 161
A.1 SecureDrop 161

A.1.1 Data Flow Diagram 162
A.1.2 Solutions 163

A.1.3 Assumptions 163

A.1.4 Assigned values for risk-driven prioritization 165
A.2 Patient Monitoring System 165

A.2.1 Personal Data Types 167

A.2.2 Assigned values for risk-driven prioritization 167
A.3 WebRTC 168

A.3.1 Data Flow Diagram 169

Bibliography 171

List of Figures

2.1 Overview of the three dimensions of security needs. 14
2.2 Data Flow Diagram (DFD) Legend 16

2.3 Overview of the FAIR Risk Components 25

2.4 Simple Meta-Modeling Example 27

2.5 Four-layer example (UML Infrastructure Specification) 27

2.6 Mapping of Background Sections to Chapters 29

3.1 WebRTc Data Flow Diagram 33

3.2 Microsoft Threat Modeling Tool Data Flow Properties 34
3.3 Example Threat Modeling Tool Flaw 35

3.4 Threat Modeling Tool HTTPS data flow 36

3.5 Threat Modeling Tool Tampering Threat Template 42
3.6 Threat Pattern from Berger et al. 42

3.7 DFD Meta-Model 44

3.8 DFD Extensions Meta-Model 46

3.9 DFD Decomposition Example 46

3.10 Security and Privacy Solution Meta-Model 48

3.11 Example instantiation of the secure pipe solution 50

4.1 Element- and Interaction-Based Elicitation Differences 76

4.2 Illustration of a DFD with xss &5

Xix

4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1

Al
A2
A3
A4
A5

Overview of the Risk Assessment Model 89
SecureDrop DFD model 102
Threat Distribution by Potential Risk 104

SPARTA Approach Overview 119

SPARTA Modeling Support 121

SPARTA Modeling Support Screenshots 122
SPARTA Threat Elicitation Components 128
SPARTA Threat Prioritization Components 126
Impact of the estimate parameters 128

Impact of the Sample Sizes 129

Risk Composition from the Distribution 131
Patient Monitoring System Data Flow Diagram 134
Heatmaps of data subject type risks 135
SPARTA Components 136

SPARTA Prototype Screenshot 138

Twin Peaks Model 156

SecureDrop Diagram 162

SecureDrop DFD model 164

Patient Monitoring System Data Flow Diagram 166
Patient Monitoring System with Personal Data Types 166
Webrrc Data Flow Diagram 168

List of Tables

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5

5.1

STRIDE-per-element and LINDDUN-per-element. 21
Mapping of STRIDE threats to security goals 22
Illustration of the Structure of the Bug Bar 24

Element-based LINDDUN Mapping Table Template 71
Interaction-based LINDDUN Threat Type Mapping 74
Interaction-based LINDDUN examples 75

Flaw catalog of Malamas and Hosseini [MH17, THMS19] 79

Differences between Interaction- and Element-Based 98

Excerpt of individual risk assessment results across the
five parameters 133

xxi

List of Snippets

4.1 Design Flaw 15: Insecure Data Exposure 80
4.2 Insecure Data Exposure Design Flaw 81

4.3 Insecure Data Exposure Pattern Pseudocode 81
4.4 Xss Pattern Description 85

5.1 Threat Modeling Elicitation Steps 124
5.2 VIATRA Interaction Pattern 124

xxiii

Chapter 1 Outline
1.1 The Context of Security and Privacy before and by Design 4
1.2 The Role of Automation 6
1.3 Research Goal and Questions 7
1.4 Approach 10
1.5 Contributions 10

1.6 Overview 11

Introduction

No one writes anything that is worth writing,
unless he writes entirely for the sake of his subject.

— Arthur Schopenhauer [Sch91]
The Art of Literature

Security and privacy are important and century old concerns. Long
before the existence of computers, such concerns translated to physical
security mechanisms such as locks and vaults, to early applications
of cryptography [Ker83a, Ker83b] to protect information. Similarly,
privacy as a right has already been formulated in the 19th century in
the influential article of Warren and Brandeis [WB90], triggered by
the advent of photography. With the increasing ubiquity of computers
and software, and especially the networking of these systems, security
and privacy have become critical, as the operating environment is so
different compared to traditional physical security. While a physical
lock or safe only needs to defend against attackers present in front of
the lock, networked systems can be attacked from all over the globe.

It is exactly the sharing of early computer systems between multiple
users and the networking of these systems that introduced such security
concerns in the 70s [SS75]. Over the years, great strides have been made
in ensuring secure software implementations with improvements such
as memory safe languages, embedded systems security [NVBM*17],
secure compilation [PAC19], program verification [JSP*11], security
testing [FBJ*16], static and dynamic code analysis, etc.

However, practically all these security improvements focus on the
implementation-level security aspects of the software systems under
consideration. Design-level security does not get nearly as much
attention, despite the recognition of the importance of design in
traditional software engineering activities [GHIJV94, BCK12]. This
is unfortunate, given that design errors can be costlier to diagnose and
correct [CFH'76]. An example of such a high-impact design flaw is
the one in Microsoft Active Directory [Micl5, JAS15b, JAS15a], which
took Microsoft over a year to resolve because of the re-engineering
effort involved in fixing the problem [JAS15b]. Therefore, it is desirable
to build security in from the start [McGO6] to detect and avoid these
flaws, thereby realizing a Security by Design (sbD) approach.

A by design approach is not only important for security, it is also
relevant for privacy. In addition to end users’ growing awareness
of privacy concerns due to increasingly impactful data breaches, the
importance of considering privacy during the design is also exemplified
by the introduction of legislations and guidelines such as the EU’s
General Data Protection Regulation (GDPR) [Eurl6], the OECD’s
Privacy Guidelines [OEC80, OEC13], the Generally Accepted Privacy
Principles (GAPP) [AC09], and Cavoukian’s Global Privacy Standard
(aps) [Cav06]. The GDPR even imposes a by design and by default
approach, formulated as Data Protection by Design (DPbD) [Eurl6].
This can be understood as a migrating away from privacy by policy
approaches to privacy by architecture approaches in the terminology of
Spiekermann and Cranor [SC09]. The impact of design decisions on
privacy can be illustrated with the bitcoin cryptocurrency. As strong
anonymity was not a primary design goal, it is possible to associate
multiple public keys of a user with each other and link them with
external information to identify users [RH13].

A final example to illustrate the usefulness of design representations
can be found completely outside of the realm of software. A frequently
used, and fruitful (see Alexander et al.’s [AIST77] influence on design
patterns [GHJV94]), analogy is that of physical buildings. Construction
is a sector with highly standardized materials. One could ask why
some constructions fail and others do not, despite making use of the
same materials. The answer lies in the fact that not only the materials

[y

that are used matter, but also how these materials are composed in
the resulting structure. Numerous occurrences on collapsing bridges
illustrate the importance of analyzing the entire structure to prevent
adverse events such as collapses due to resonance.! To complete the
analogy, building codes could also be devised for the construction of
software systems [Lan13], analogously to physical building codes.

Not only do design-based analyses support the uncovering of security
flaws that are not visible in implementation artifacts. Examples of this
are the previously mentioned Active Directory design flaw [JAS15b,
JAS15a, Micl5] and the design flaw in the Zoom web conferencing
software [CVE19b, Leil9] that allows remotely enabling the webcam
of a website visitor. It can also be cost effective, as the initial modeling
effort can be reused and leveraged in other types of analyses. Consider,
for example, how the initial investment in modeling the system for doing
a design analysis can also support additional analysis activities such
as a Data Protection Impact Assessment (DPIA) in which the system
description could be reused for: the compliance assessment, description
of processing operations, and the description of the provided security
and privacy countermeasures [SDVL*19] for protecting personal data.

Regardless of the type of analysis activity, a design-level representation
of the system under consideration is required to support performing
design-based security and privacy assessments of the system. One
common, high-level, and accessible representation is that of Data Flow
Diagrams (DFDs) [DeM79, GS79]. The notation is simple, comprising
of only four element types: processes, denoting processing operations;
external entities, denoting parties external to the system being modeled,
data stores, representing stored information in files and data bases; and
data flows, representing transfers of information between the above
three elements. Additionally, it has already been applied several times
in industrial contexts for security analysis [HL06, Sho08, Dhill].

One of the most common examples of this is the widespread video of the Tacoma
Narrows Bridge which collapsed in 1940. However, there is some debate on whether
it was actually resonance that caused the collapse [OWH15]. Such discussions also
result from ambiguous interpretations of resonance and the fundamental differences
between these interpretations [BS91]. This is an excellent analogy to illustrate the
need for precise design representations to reason about the effect(s) of security and
privacy countermeasures and avoid terminological ambiguities [And08].

11 The Context of Security and Privacy before
and by Design

There are strong arguments to address security and privacy re-
quirements, needs, and solutions in an earlier stage of the software
development process (before implementing and testing the software).
This raises a number of challenging questions, including (i) when to
spend efforts on security and privacy by design, (ii) which artifacts to
analyze, and (iii) how to incorporate security and privacy solutions.

This work anticipates on the generally and well-known notion of
iterative software development processes [LB03]. Many researchers and
practitioners have observed the fact that a given refinement or iteration
on the design of a software systems can be analyzed or assessed, and
subsequently be improved based on the findings of such an analytical
effort. Repeating this effort leads in principle to an iterative process,
This iterative process applies to security and privacy analysis as well.

One can wonder when the first security and privacy analysis will take
place: this is preferably delivered early, in fact when requirements
are articulated—during the so called Requirements Engineering (RE)
process or RE phase. Additional iterations can subsequently be applied
during the definition of software architecture, high-level design and
later on, more detailed design. There is no quantitative limitation for
the efforts one can spend in delivering the security and privacy analysis,
yet the cost-benefit analysis should not be ignored. A key concern in
this context is to maximize automation and support traceability.

At all of the stages listed above—and without going into the details
of each of these stages—the software, security, and privacy engineers
can be expected to have an accurate description of the system being
incepted, designed, or built. Indeed, even during the RE process one has
to consider (at least) a high-level structural description of the systems.
In this respect, our work aligns with the view that considers security
requirements to be part of the Twin Peaks [Nus01] that represent an
interplay between requirements on the one hand, and architecture and
system description on the other hand [Nus01, HYS*11].

In summary, analysis of security and privacy concerns can potentially
occur at any early stage of the software development process, from
requirements level to relatively detailed design. In all of these stages,
we use the term security and privacy analysis as the activity that
identifies and models the security and privacy challenges that come
with a specific design-level definition of the system created. The second
question then is which artifacts to utilize when conducting security and
privacy analysis. Multiple options exist and we do not argue in favor
of specific models. The starting point of this dissertation is to connect
to a relatively popular notation that can indeed span multiple stages
of the early half of a software development process, and that has been
practically applied in the context of security and privacy engineering.
We therefore start from DFDs. This starting point is of a pragmatic
nature and as such not the result of a deep and broad study. Yet, the
relevance of DFDs is confirmed by significant investments and research
efforts in the community [SMC74, YCT75, DeM79, YC79, GS79, KG99,
SS04, Tor05, HL06, HLOS06, Sho08, DWS*11, Shol4, Wuy15]. While
there are numerous notations to expand upon,2 necessarily an initial
choice has to be made. This does not, however, preclude the translation
of those improvements to other relevant modeling languages.

The outcome of a security and privacy analysis can be twofold: (i) at
least a number of security and privacy requirements are articulated, and
(i) solutions (often threat mitigations) that address these requirements
are identified. In principle, such solutions can be modelled as extensions
and refinements to the existing design artifacts.

The minimal and essential results are the security and privacy
requirements (or needs) imposed by the initial or evolved design of
the software system under consideration. One important (and widely
applied) family of security and privacy requirements is threats [HLOSO06,
DWS*11, Shol4, Wuy15]. In the remainder of this work, we will focus
on security and privacy analysis based on threat elicitation with DFDs.
This starting point limits the scope of our work, yet it has maximized
the feasibility of the overall research trajectory.

Another candidate could be the Unified Modeling Language (UML), on which already
some extensions have been built in the past such as, for example, UMLsec [Jiir05].
However, it is not at all that frequently used in practice [Pet13]. UML’s complexity
is a recurring reason for this lack of usage [Pet14].

In other words, while our generic goal is to enable powerful and
efficient security and privacy analysis in the early stages of the software
engineering process, the initial boundary conditions of our work have
been to focus on threat modeling starting from DFDs.

1.2 The Role of Automation

The previous section already touched upon how the cost-benefit balance
of performing security and privacy analyses should not be ignored.
Indeed, performing these types of analyses relies on security and privacy
experts, who possess the relevant background knowledge and expertise.
Additionally, the exhaustive nature of threat elicitation implies that it
is time-consuming and requires substantial effort. The reliance on these
scarce resources further increases the cost for this essential activity in
the development lifecycle.

Combining these scarce resources with the application of these
analyses in the context of contemporary iterative development practices
precludes a single up front investment to adress the security and privacy
concerns. Previously made design decisions may need to be revisited
and modified as the design further materializes.

Both the required cost and the increasing need for frequent re-
assessment are key drivers for increasing automation to support these
security and privacy analysis activities. In addition to the cost reduction
and reduced reliance on experts,3 it offers a number of compelling
benefits: (i) reproducibility: a more automated threat analysis enables
more reproducible results regardless of which user performs the analysis;
(ii) explainability: for example, by being able to retro-actively query a
threat model to find out why specific threats were considered relevant
(or not); (iii) evaluation of alternatives: alternatives can be constructed
and efficiently re-evaluated to guide in decision-making; and (iv) what-if
analyses: in which changes to the properties of security and privacy
solutions can be considered to quickly assess the impact of, for example,

Reduced reliance as the application of automation does not replace the experts,
but aims to employ them more efficiently. They still encode the relevant knowledge
in tool support, provide expert estimates to assist in the prioritization, etc.

countermeasures that no longer sufficient protection due to a newly
discovered vulnerability.

1.3 Research Goal and Questions

The main goal of this dissertation is to investigate the application of
automation to provide support for systematic, security and privacy
threat analysis using DFDs. This requires semantic support for
representing security and privacy solutions, and analysis activities
relying on these extensions to identify security and privacy threats.

Automated security and privacy threat analysis

The manual application of a rigorous and systematic security and
privacy analysis of the modeled system is time-consuming and tedious.
A manual threat elicitation takes considerable effort. After performing
such an analysis, the threat modeler still has to process the resulting
list of threats to prioritize them in order to be able to address the
most important threats first. Furthermore, the manual steps make
it hard to impossible to reuse this effort when modifying the system.
This makes it difficult to evaluate the impact of design alternatives.
To improve and support these activities, a shorter feedback loop is
required which can be realized in tool support by continuously re-
assessing the modeled system for security and privacy threats. Such a
tool solution requires the integration of both (i) extensive support for
modeling security and privacy solutions in the design and (ii) elicitation
of security and privacy threats from the design and analysis of these
identified threats for prioritizing the threats. The support for modeling
solutions is essential for automated analysis activities to be able to
take the security and privacy effects of these solutions into account
while eliciting the threats. Furthermore, all the information on the
threat, the system context, and any potentially involved security or
privacy solutions needs to be taken into account to determine to which
degree a threat is mitigated. This way, the security and privacy analysis
feedback loop during system design and improvement can be drastically

shortened, and continuous security and privacy feedback on the system
design can be provided.

Semantic support for security and privacy solutions

Despite the use of models such as DFDs in the context of threat model-
ing [KG99, SS04, HL06, Sho08, Dhill, Shol4], the representations used
here are completely agnostic of security or privacy design information
such as the instantiation of security and privacy solutions in the system.
For example, the decision to rely on TLS, to protect the confidentiality
and integrity of transmitted information and to provide authentication
of the server, is not present in these diagrams and, therefore, the effect
of this solution cannot be taken into account when analyzing these
models later on, which can lead to duplicated or wasted effort.

Not only is this problematic from an analysis perspective, the
documentation of this information is important as well and is even
required by maturity models such as the Building Security in Maturity
Model (BSIMM) [MMW18] and OWASP’s Software Assurance Maturity
Model (opensaMM) [OWA17b]. These maturity models explicitly
require annotating threat models with compensating controls for
attaining the highest maturity level. They are thus a key activity
in Secure Development Life Cycles (sprLcs) [HL06, McGO0G).

Existing approaches [Micl6, BSK16] to include such information
indirectly by recording the effects as properties on the model elements
introduce a number of serious drawbacks such as the lack of traceability
to the original solutions, the inconsistent recording of the effects, the
strong dependency from threat knowledge bases on the properties that
they have to whitelist, and the difficulty in capturing complex solutions.
Furthermore, the information on security and privacy solutions should
be captured in a generic way to ensure an updatable solution catalog.
This way, the expert knowledge can be captured, reused, updated, and
consistently applied in DFD models. The aforementioned problems
trigger the following research question:

RQ1: How can the DFD-based modeling representation be extended to
support a first-class representation of security and privacy solutions?

Supporting model-based security and privacy analysis

The modeling of security and privacy solutions as discussed above is not
only useful from a knowledge management perspective. Indeed, this
information can be leveraged in automated analyses of the security and
privacy of a design to ensure a very systematic assessment. There are
two key problems in the context of design analysis: the identification
and the prioritization of security and privacy threats.

First, current analysis approaches detect security and privacy threats
at a low-level of granularity, which lacks a lot of contextual information
that cannot be taken into account to determine the applicability of
threats. Consider, for example, stored cross site scripting (Xss) attacks.
Detecting the presence of this threat requires analyzing a more complex
path through the system instead of looking at a single element.

Second, systematically analyzing a design for security and privacy
threats leads to a large list of threats. In order to improve the usefulness
of the results, support is needed for prioritizing the identified security
and privacy threats by taking into account the impact of these threats,
as well as the effectiveness of the involved security and privacy solutions
that mitigate them (either partially or fully). Such a prioritization
assessment requires additional information on the strength of security
and privacy countermeasures, as well as an attacker model that captures
the capability of the attacker and the projected frequency of attacks.
Furthermore, this information is not static in nature. The strengths of
countermeasures may change over time as vulnerabilities are discovered,
while attackers may increase their frequency of attack attempts as
targets become more value. Therefore, this information should be
recorded explicitly to enable revisiting these parameters over time.

RQ2: How can security and privacy solution information be leveraged
in the design analysis to more precisely identify threats and prioritize
them according to their impact and the effectiveness of the solutions?

1.4 Approach

The ultimate goal is to demonstrate the effectiveness of the proposed
techniques by delivering tool support that relies on solid automation
and that can effectively reuse existing knowledge. The realization of this
tool support requires addressing two key challenges: (i) representing
security and privacy solutions in DFDs, and (ii) the model-based security
and privacy analysis of these DFDs.

The first challenge is addressed with the creation of an extended DFD
meta-model to address the lack of support for representing security and
privacy solutions. Additionally, the meta-model is extended to support
a reusable and extensible representation of threat types to incorporate
the existing STRIDE knowledge bases [HLO06, Shol4, Mic16] in order to
make this threat knowledge available and reusable in later analyses.

For addressing the second challenge, two analysis activities are
provided: the querying of the constructed models using patterns to
elicit security and privacy threats, and an automated risk assessment
for prioritizing each of the identified threats. These extensions are
subsequently evaluated on the real-world whistle-blower submission
system SecureDrop [Frel8a, Frel8b] to assess whether the prioritization
resulting from the threat analysis is consistent with the security and
privacy countermeasures implemented by the developers.

Finally, the solutions to these two challenges are subsequently combined
in a tool prototype to support their automated application.

1.5 Contributions

This dissertation provides the following three contributions.

1. We provide a design-level representation of security and privacy
concerns in DFDs for use in threat modeling contexts, showing
positive improvements in terms of semantic quality, traceability,
separation of concerns, and dynamism, respectively due to the

instantiation of security and privacy solutions, the traceability
of their effects, the independent evolution of security and
privacy solution catalogs, and impact analysis of architecture-level
security and privacy decision making support.

2. We propose a pattern-based threat elicitation approach to support
the elicitation of more complex security and privacy threats,
combined with a security and privacy risk model for the risk
assessment of these elicited threats that leverages the provided
model extensions to integrate and automate the elicitation and
risk-driven threat prioritization in a threat modeling approach.

3. We present SPARTA, a threat modeling tool that integrates the
presented extensions to: capture security and privacy design
decisions in DFDs, provide continuous threat elicitation based
on this abstraction, and conduct risk analysis to prioritize the
elicited security and privacy threats.

1.6 Overview

This dissertation is structured as follows. First, Chapter 2 provides
some background information, consisting of the three dimensions of
security needs (design, threats, and goals) [Tirl7] in which the DFD
representation for threat modeling is introduced and a primer on meta-
modeling, and closes with a brief summary.

After that, Chapter 3 presents the first contribution on the meta-models
for modeling security and privacy solutions in DFDs in support of threat
modeling activities. Following the representations, Chapter 4 introduces
the second contribution on the two analysis aspects: the security
and privacy threat elicitation and the risk-driven threat prioritization.
Then, Chapter 5 combines the previous two contributions for the third
contribution in the SPARTA tool for continuous threat modeling.

Finally, Chapter 6 concludes this dissertation and provides a number
of directions for future research.

Chapter 2 Outline

2.1 Model Representations 15

2.2 STRIDE & LINDDUN Threat Knowledge 17

2.3 Threat Modeling 18
2.3.1 Modeling the System 19
2.3.2 Eliciting Security and Privacy Threats 20
2.3.3 Mitigating the Elicited Threats 21

2.4 A Note on Security Goals 21

2.5 Risk Analysis and Threat Prioritization 22
2.5.1 DREAD 23
2.5.2 Bug bar 23
2.5.3 Factor Analysis for Information Risk (FAIR) 24
2.5.4 Other Risk Approaches 25

2.6 Meta-Models 25
2.6.1 Modeling Supporting using Meta-Models 26
2.6.2 UML Meta-Model Hierarchy 28

2.7 Summary 28

Backgroundad

For Knowledge is grateful to the
Understanding, as Light to the Eyes

— John Locke [Loc12]
Some Thoughts Concerning Education

This chapter elaborates on the interplay between security requirements
(threats and goals) and security architecture and design, as introduced
in the introduction above. Its main purpose is to summarize the
essential background research and information to enable a smooth
interpretation and reading of Chapters 3 to 5 which present the main
contributions. The interplay between requirements and design has been
discussed (amongst others) by Tiirpe [Tiirl7] and we leverage upon his
description (visualized in Figure 2.1 together with the relevant sections)
to navigate the background knowledge presented here.

The information presented here constitutes the background knowledge
to aid in the understanding of the contributions presented later. It
does not cover all the related work. Instead, the related work for the
different contributions will be discussed separately in the following
chapters together with the contributions they pertain to.

We briefly explain the different dimensions from Tiirpe [Tiirl7]: design,
threats, and goals, to illustrate the structure of this chapter. Figure 2.1
shows these three dimensions and is followed counterclockwise. The
diagram is navigated starting with design in the top right for which

13

Security
Needs

Figure 2.1: Overview of the three dimensions of security needs.
This figure shows Tiirpe’s [Tir17] three dimensions of security needs and indicates
which background sections cover the three dimensions and their intersections.

Section 2.1 elaborates on the current modeling support for security
analyses. This section introduces the Data Flow Diagram (DFD) design
representation for modeling systems which is necessary for explaining
the contributions presented in Chapters 3 and 5.

After that, Section 2.2 discusses threat knowledge on the different
types of security or privacy threats. This dimension focuses on the
threat knowledge itself. These are part of the inputs into the analyses
presented in Chapter 4 and realized in Chapter 5.

Section 2.3 focuses on the intersection of the previous two dimensions
on design and threats and covers the analysis activities that enable the
identification of the threats in software designs. This section introduces
threat modeling to enable the systematic elicitation of threats based on
design descriptions of the system. This is the analysis approach which
is extended and presented in the first part of Chapter 4 and realized in
the SPARTA tool support presented in Chapter 5.

At the bottom of Figure 2.1 is the goal dimension. This dimension
covers security requirements, but phrased as desired properties from a

positive perspective. This dimension is not the primary focus of this
dissertation, but its intersection with the threat dimension is relevant.
Section 2.4 provides some background information on this dimension
and also addresses the intersection with design to cover the security
and privacy patterns to realize these requirements in design models.

Finally, the intersection of the threats and goals dimensions covers the
prioritization of threats using risk assessment. Section 2.5 provides the
relevant background information in support of the risk-driven threat
prioritization presented in Chapter 4 and realized in Chapter 5.

Underlying any modeling support for security or privacy is a meta-
model that defines the different the concepts that can be used in user
models. For the readers interested in how meta-modeling techniques can
be leveraged to create more expressive modeling support, Section 2.6
provides a primer on meta-modeling. Meta-models can provide support
in all the above dimensions: more expressive design models, structuring
threat knowledge, and representing goals.

21 Model Representations

Chapter 1 highlighted the importance of performing design-based
analysis for assessing the security and privacy properties of software
systems. Such analysis activities require model representations of the
design to be analyzed. This section provides some background on
the DFD model representations that can be used for the security and
privacy analysis of software systems.

The DFD modeling notation originates from the structured charts
representation for modeling and analyzing programs, resulting from
more than ten years of Constantine’s research, presented by Stevens
et al. [SMCT74] in 1974. In the following years, multiple authors have
further revised and refined the notation [YC75, YC79, DeM79, GS79]
resulting in the current notation which has remained stable over a very
long time and is still in use today, also because of the design excellence
of DeMarco’s visual representation [Moo09].

External Entity

Data Store Data Flow

Figure 2.2: Data Flow Diagram (DFD) Legend

This diagram shows the four different DFD element types for modeling systems and
how data flows between the elements. The trust boundary at the right-hand side
can be drawn around the other DFD elements to delineate different trust zones.

The DFD modeling notation consists of the following five element types,
which are also displayed in Figure 2.2: (i) external entity, (ii) data
store, (iii) process, (iv) data flow, and (v) trust boundary. The latter
element type has been added later when DFDs were used in the context
of threat modeling [SS04, HL0OG]. The different DFD element types have
the following meaning:

External Entity represents any entity (both human and code) that
is external to the system and outside its control.

Data Store represents any kind of data storage system such as a local
file or database. However, it should only represent the storage
itself. For a database system, for example, there would be a
process in front to perform the translation of SQL queries.

Process represents any kind of processing operation. The processes
can describe the system at different abstraction levels depending
on the required level of detail for subsequent analyses.

Data Flow represents the communication of data between processes,
external entities, and data stores.

Trust Boundary represent differences in trust between the elements
in a system and are used to group elements of the same trust.

A key problem with these system representations when using them
for security and privacy analyses is their lack of support for the
representation of security and privacy solutions. This missing support

requires any subsequent analysis to rely on a manual knowledge of the
analyst in order to take these into account. There are a number of
proposals in the literature that attempt to resolve this knowledge gap
by including some support for representing this information.

These are shortly outlined below. Chapter 3 discusses them in
more detail while presenting the extensions for a richer, first-class
representation of security and privacy solutions in DFD models.

Microsoft Threat Modeling Tool [Mic16] To take into account
existing security and countermeasures in the STRIDE security threat
elicitation, the Microsoft Threat Modeling Tool extends existing DFD
elements with attributes. These attributes can be used to represent
the security effects of existing solutions such as, for example, ‘provides
confidentiality’ for an encryption solution. These element attributes
are taken into account during threat elicitation.

Berger et al. [BSK16] Berger et al. apply a similar approach. They
provide a number of property extensions to different DFD elements
which again express the effect of security solutions to consider while
checking for the applicability of certain security flaws.

2.2 STRIDE & LINDDUN Threat Knowledge

The identification of security and privacy threats requires information
on the types of threats to identify. Threat modeling relies on high-level
‘categories’ of security [HLOS06] or privacy [DWS*11] threats, which
can contain multiple subtypes of threats in a tree structure. The
term ‘categories’ is sub-optimal here as they are merely meant as a
mnemonic to assist in recalling the main threat types. The categories
are not disjunct groups under which all the different threats types
can be unambiguously placed. Instead, there are several overlaps and
dependencies between the different threat types. For example, spoofing
an administrator can lead to elevation of privilege. Each of the security
and privacy threat categories is explained below.

Spoofing Impersonating an entity in interactions with a system.

Tampering Performing unauthorized modifications to data (whether
in storage or transferred over the network) or running processes.

Repudiation Denying having taken an action.

Information Disclosure Unauthorized disclosure of information.

Denial of Service Making a service unavailable to legitimate users.

Elevation of Privilege Performing actions for which the entity
performing the actions does not have the privileges.

Linkability Being able to link multiple items of interest on a data
subject. It can lead to identifiability.

Identifiability Being able to identify a data subject.

Non-repudiation Not being able to deny having taken an action.

Detectability Being able to detect the presence of an item of interest.

(Disclosure of Information) The security category from above.

Unawareness The data subject being unaware of the data processing
operations on its personal data.

Non-Compliance Data processing operations that are non-compliant
with privacy regulations.

There are a number of more detailed threat type descriptions available
as threat trees [HLO6, Shol4, DWS*11, Wuyl5] and implemented
in tool support [Micl6, Mic20]. Besides the threat modeling threat
types, there are number of other knowledge sources on security and
privacy issues at differing levels of abstraction. These range from
low-level vulnerabilities in concrete software products, described in the
CVE catalog [CVE19a], to architectural weaknesses [CWE20, STM17],
design flaws [ADD*14, MH17, THMS19], and attack patterns [CAP18].

2.3 Threat Modeling

Threat modeling is situated at the intersection of the Threats and
Design dimensions of Tirpe. While there are numerous design
approaches, the focus here is explicitly on the STRIDE threat modeling
approach as outlined by Shostack [Shol4]. The related work in
Section 3.6 discusses alternative approaches, while the excellent survey
by Tuma et al. [TCS18] provides a very comprehensive overview.

Threat modeling [KG99, SS04, HL06, Sho08, Shol4, DWS*11, Wuy15]
is a design-based system analysis activity that starts from DFD
description of the system under consideration and has been applied
several times since, in real-world industrial contexts [Tor05, Sho08,
Dhill]. It provides a methodology for analyzing a system’s DFD design
systematically in order to identify security [SS04, HL06, Sho08] or
privacy [DWS*11, Wuy15] threats. In subsequent activities these
threats can be analyzed to determine the priorities for resolving them.

Shostack succinctly summarizes the threat modeling approach as a
combination of the following four key questions [Shold]|: 1. What are
you building? 2. What can go wrong? 8. What should you do about
those things that can go wrong? 4. Did you do a decent job of analysis?

This section follows that same structure by elaborating on each of first
three steps by addressing: 1. modeling, 2. eliciting, 3. mitigating.

2.31 Modeling the System

The first step in threat modeling involves the creation of a DFD-based
representation of the system under consideration, using the concepts
offered by the DFD notation and explained in Section 2.1.

This system description can be modeled at various levels of abstraction.
The threat modeling approaches do not impose a specific level of detail.
An analysis can start from a DFD context diagram, after which the
system processes can be further decomposed as desired in order to
include additional details in the model description. Depending on the
support of the used modeling framework, details on already present
security or privacy solutions could also be added so that the effect of
these solutions can be incorporated in the subsequent analysis activities.

Constraints for Sound DFD Models Listed below are common criteria
for valid DFD models. Not all these criteria need to be applied strictly,
although the lack of, for example, outgoing data flows from a data
store may be an indication that the system functionality that uses this
data is not modeled and, hence, will not be considered in the analysis.

o No direct data flows between two data stores [Sholj]. Data stores
are passive elements. They cannot directly communicate with
one another. The data is moved by a process.

e No direct data flows between external entities. Communication
between external entities is out of scope.

e No direct data flows between external entities and data stores.
There needs to be a process in between to handle the storage of
the data in a data store.

e No data stores with only outgoing data flows (i.e. no data sources).
Data has to originate from somewhere. There had to be some
process that put the data in the data store in the first place.

e No data stores with only incoming data flows (i.e. no data
sinks) [Shol4]. Data is stored for a reason. There has to be
a process that reads and uses the data being stored.

e No DFD elements without incoming or outgoing flows. Completely
disconnected elements cannot perform any function.

2.3.2 Eliciting Security and Privacy Threats

This threat modeling step involves a systematic analysis of the
previously created DFD model of the system to identify security and
privacy threats. There are two main ways of iterating over the system
design to elicit threats: element-based threat elicitation, in which
every element of the system is considered; and interaction-based threat
elicitation, in which every interaction (i.e. data flow) is considered.

The element-based elicitation offers the benefit of simplicity. It only
requires considering the concrete element types to determine whether
a threat is applicable (see Table 2.1). The interaction-based elicitation
is more complex, as an interaction also involves the sending and
receiving element types, but it provides additional context information
for eliciting threats that are more specific.

Every threat is subsequently documented to enable further analyses
such as a risk analysis or prioritization of the identified threats. The
documentation of the threat instances consists of the threat category
(from STRIDE or LINDDUN), the specific threat type, the context (element

Element Type S T R | D E L 1 N D U N
External Entity X X X X

Process X X X X X X X X X X X
Data Flow X X X X X X X X
Data Store X 7 X X X X X X X

Table 2.1: STRIDE-per-element and LINDDUN-per-element.

The STRIDE-per-element table from Shostack [Shol}] combined with the LINDDUN-
per-element table from Deng et al. [DWS*11]. It shows which of the STRIDE and
LINDDUN threat types are applicable for each DFD element type. Note that the second
D (Disclosure of Information) from LINDDUN is omitted here because it equals the I
(Information Disclosure) from STRIDE.

or interaction), a concrete description of the threat, and any relevant
assumptions used when considering the threat’s applicability [WJ15].

2.3.3 Mitigating the Elicited Threats

The third step involves addressing the identified security and privacy
threats by: (i) implementing security or privacy countermeasures,
(ii) changing the system or some of its functionality, (iii) transferring
them by relying on someone or something else (e.g., user decision or
operating system controls), and (iv) accepting the risk. [Shol4]

2.4, A Note on Security Goals

The third main dimension from Tiirpe’s diagram (Figure 2.1) of security
needs are the security goals which express the desired protection of a
system in a specific environment [Tiir17]. These goals can be expressed
independently as protection or compliance conditions, regardless of
the design of the system or its threats. However, these goals are
closely related to the security threats discussed in Section 2.2. Indeed,
Hernan et al. [HLOS06] have provided a mapping of the STRIDE
threat types to the security goals (properties in their terminology)
they threaten. This overview is displayed in Table 2.2. Similar as

Threat Goal

Spoofing Authentication
Tampering Integrity
Repudiation Non-repudiation
Information Disclosure Confidentiality
Denial of Service Availability

Elevation of Privilege Authorization

Table 2.2: Mapping of STRIDE threats to security goals
This table from Hernan et al. [HLOSO06] shows the mapping from the STRIDE security
threat types (left-hand side) to the security goals (right-hand side) they threaten.

with the security threats, more extensive and detailed taxonomies on
security requirements exist [Fir04, ALRL04, VM02, McG06, PP03].

Finally, the intersection of the goals and the design dimension
involves the design process of realizing the relevant security goals
through multiple design decisions such as the instantiation of security
countermeasures, patterns [YHSJ06, Sch03, SFBH*06, FB13, SNL05],
and principles [SS75].

Security requirements frameworks such as that of Haley et al. [HLMNOS]
can assist in the realizing the security goals in an iterative fashion, in
line with the twin peaks model [Nus01, HYS*11].

2.5 Risk Analysis and Threat Prioritization

After identifying the relevant security or privacy threats in the system
under consideration, these threats still have to be triaged and prioritized.
None of the existing threat modeling approaches provides an explicit
prioritization scheme, other than explicitly mentioning this as an
additional activity in the threat modeling process that has to be
performed after the elicitation of the threats.

The purpose of this section is to explore the application of risk analysis
in support of prioritizing the elicited security and privacy threats. It
is not the intent to attain full coverage of the complete risk analysis

domain, which is out of scope and for which we refer the reader to the
literature on the topic [Vos08, Hai05, NIS12, GJF06, NIS19b, FJ14].

In its essence, risk is defined as a function of (i) the adverse impact if
an event occurs and (ii) the likelihood of occurrence [NIS12, GJF06]:

Risk = impact X likelihood

Each of the following threat prioritization approaches try, in some
shape or form, to assist in estimating one or both of these factors by
breaking them down in components that are easier to estimate or rank.

2.51 DREAD

The DREAD [LeB07] approach for assessing the risk of identified threats
uses the following subcomponents:

Damage provides an indication of the impact or size of the problem

Reliability specifies how reliably a threat can be realized by an
adversary

Exploitability expresses the difficulty of exploiting the attack ranging
from simple scripts to requiring high-level access to a system

Affected users to specify how many users are affected

Discoverability to indicate whether the attack is publicly known or
requires intimate knowledge of the system

The damage and affected users focus on assisting in estimating the
impact, while the other DREAD components focus on the estimation
of the likelihood. Each of these categories requires a rating between
1 and 10. These ratings are then combined to obtain an overall risk
score for the threat. However, “DREAD is fairly subjective and leads to
odd results in many circumstances. Therefore, as of 2010, DREAD is
no longer recommended for use by the Microsoft SDL team.” [Shol4]

2.5.2 Bug bar

The bug bar [Micl8] is used quite extensively at Microsoft [HLOG,
Shol4] to prioritize identified threats. The bug bar provides, for each

Server

Critical Elevation of Privilege: description of criteria

Important Denial of service:
Elevation of Privilege:

Moderate

Low

Client
Critical

Table 2.3: Illustration of the Structure of the Bug Bar
This table illustrates the structure of the bug bar [Mic18]. For every criticality level
it provides the criteria for the STRIDE threat types to be assigned that level.

level of criticality, a detailed description of the criteria for a threat type
to be assigned that level of criticality. For example, when discovering
an Flevation of Privilege threat in a server software product, one can
look up whether it meets the criteria for: a critical threat; if not critical,
an important threat; if not important, a moderate threat; and so on.
Table 2.3 provides a high-level overview of the structure of such a bug
bar, based on the SDL example provided by Microsoft [Mic18].

2.5.3 Factor Analysis for Information Risk (FAIR)

The final risk analysis approach is the FAIR method from Freund and
Jones [FJ14]. The FAIR method provides a detailed decomposition
of risk into its underlying factors. Figure 2.3 provides an overview
of the FAIR risk decomposition. Given the finer granularity of these
underlying risk components, they can be easier to provide an expert
estimate for instead of providing just the likelihood X impact assessment
for risk. Furthermore, FAIR implies a numerical approach instead of
low /medium/high risk categories which enables automating the risk
assessment in tool support.

Risk

/\

LossEvent- Loss
Frequency Magnitude

/\

ThreatEvent- Vulnerability
Frequency

/\/\

Probability Contact Threat Strength
of Action Frequency Capability

Figure 2.3: Overview of the FAIR Risk Components
The above figure illustrates how the risk is decomposed into sub-components.

The FAIR components are independent from the methodology used
to determine the threats requiring the risk calculation, they do not
impose a specific methodology such as threat modeling. While the FAIR
model does not depend on such a specific methodology, the created
DFD models can be used as a source of information for assessing the
different risk components. The reliance on threat modeling artifacts to
provide inputs into the risk assessment is covered in Chapter 4.

2.5.4 Other Risk Approaches

The focus of this section has been on the most relevant risk assessment
methods in the context of threat modeling. There is, however, a
large range of other security risk assessment methods such as, for
example, CORAS [LSS10], ocTAVE [ABPW99, ADSWO03], fault tree
analysis [IEC06], and failure modes and effects analysis [IECO0S].

2.6 Meta-Models

This section discusses the meta-modeling support separate from the
three dimensions from Tiirpe, because meta-modeling represents more
fundamental and cross-cutting background knowledge in support of

the other dimensions. Indeed, meta-modeling support can actually be
leveraged in each of these dimensions by: modeling the system itself
(design dimension), modeling the knowledge on the different threat
types and how they relate to one another (threats dimension), and
modeling different security goals and the relations between them (goals
dimension). Furthermore, the meta-modeling support is also relevant
for the intersections of these dimensions (e.g., risk models).

This section starts with a generic discussion on meta-models to illustrate
how they support the creation of modeling languages. Next, some more
background is provided on the meta-models of the Unified Modeling
Language (UML).

2.6a4 Modeling Supporting using Meta-Models

A meta-model is a model that describes other models. Every object
in these other models is an instance of an object in the meta-model.
Figure 2.4 shows a simple example of a meta-model to support modeling
books and their authors. The meta-model provides: two concepts Book
and Person, two attributes title and name, and two relations author
and cites. With these elements provided by the meta-model, concrete
models such as the one at the bottom of Figure 2.4 can be created. This
example models two books and three authors. The meta-model also
imposes some constraints for valid models. In this case, a book needs
to have at least one author. Any model not meeting these constraints
is not a valid model. Since the meta-model does not provide additional
attributes such as subtitle or year of publication, it is not possible to
represent this information in the model.

The above example illustrated how models contain instances of objects
in the meta-model. This relation also applies to the meta-models.
A meta-model has a meta-meta-model which describes the concepts
that are available for creating meta-models and every object in the
meta-model is an instance of an object in the meta-meta-model.

2.6 - META-MODELS | 27

Meta-model
cites
Book

«instanceOf» Person | _ __ __

cTTTTTT title:String author [name:String I
T 1.* T
- |
[\l'/«instanceOf» \l'/«instanceOf» |
| .
Model ! 2Book author aPerson : «instanceOf»
: title="Threat Modeling" name="Adam Shostack" :' ---=9
l Vv :
! cites author P 2
: anotherBook name-"la:r:;:‘;r\:viderski" :
L >| title="Threat Modeling" :
aPerson3 <
name="Window Snyder"

Figure 2.4: Simple Meta-Modeling Example
This figure shows a simple example meta-model for modeling books and their authors
(top) and illustrates the use for creating a concrete model (bottom).

TR N
«instanc€Of» | «instanceOf»
7

~

| «instanceOf» ~
7 | ~ -
7
7 | ~ ~
Z ~

Attribute| | Class |
A - s N

I «instancgOf» ; !
M1 (User model) / ple «msta/npéOf» :«instanceOf»

// «instanceOf»”

M2 (UML)

/

/ Book :Book
+ title:String title = "Threat Modeling"
NS
“instanceOf»

MO (Run-time instances)

Figure 2.5: Four-layer example (UML Infrastructure Specification)
This diagram shows a modified example in the four-layer meta-model hierarchy
from Figure 7.8 in the UML Infrastructure Specification [ISO12a].

2.6.2 UML Meta-Model Hierarchy

The UML also has such a meta-model hierarchy, in which the highest
layer is reflective; meaning it describes itself and, thus, does not require
any additional layers [ISO12a].

Figure 2.5 contains the example from the UML infrastructure
specification [ISO12a] and illustrates the UML meta-model hierarchy.
The top layer (M3) provides the meta-meta-model which provides
the class concept that is used to specify the UML concepts on layer
M2 to support modeling classes, their attributes, and instances.
Layer M1 shows a concrete UML user model which uses the UML
concepts to specify a Book class with an attribute and a :Book
instance. This mechanism of providing an Instance concept in the
meta-model enables the end-user to also model instances of the other
created concepts (such as Book in the example), instead of having to
move down another layer in order to create instances of the modeled
concepts. For a full in-depth discussion, we refer to reader to the UML
infrastructure specification [ISO12al, the Eclipse Modeling Framework
(EMF) [SBMPO08] and the literature [AK03].

Chapter 3 provides the full details on how these mechanisms are
leveraged to enable the representation of security and privacy solutions
in DFD models to support analyses incorporating this information.

2.7 Summary

This chapter provided some contextual background information to
help understand and situate the contributions in the next chapters.
Figure 2.6 shows a schematic overview of the following chapters together
with the relevant background sections presented above.

In support of the modeling contributions presented in Chapter 3, we
introduced the DFD design representation with the process, data flow,
data store, and external entity element types in Section 2.1.

To support the threat elicitation and prioritization in Chapter 4,

Chapter 3: Modeling C Section 21) ()
S ”
((Section 2.2) \
Chapter 4: Analysis C Section 2.3)
(Section 2.5) §
N 1%
(<]
(C Section 21) 1)
(Section 2.2)
Chapter 5: Tool support C Section 23)
(Section 2.5) __
L J

Figure 2.6: Mapping of Background Sections to Chapters
This diagram provides an overview of how the different background sections map
to the following three contribution chapters.

we introduced the relevant background knowledge on the STRIDE
and LINDDUN security and privacy threat types (Section 2.2), threat
elicitation (Section 2.3), and threat prioritization (Section 2.5).

For the tool support chapter, the background on the DFD representation
(Section 2.1), threat types (Section 2.2), threat elicitation (Section 2.3),
and threat prioritization (Section 2.5).

Finally, meta-modeling (presented in Section 2.6) underpins the
contributions presented in all the chapters as the modeling of solutions,
threat elicitation and analysis, and implementation in tool support rely
on extensive modeling support provided by a rich meta-model.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Chapter 3 Outline

Running Example 33

Quality analysis 36

3.2.1 Expressiveness 36

3.2.2 Traceability 38

3.2.3 Separation of concerns 40
3.2.4 Support for dynamism 42

Meta-Model 44

3.3.1 DFD Meta-Model 45

3.3.2 Security and Privacy Solution Meta-Model 48
3.3.3 Impact on Threat Elicitation Process 50

Evaluation 51

3.4.1 Expressiveness 51

3.4.2 Traceability 52

3.4.3 Separation of Concerns 53
3.4.4 Support for dynamism 55
3.4.5 Summary 57

Discussion 57

Related Work 59

3.6.1 Security and Privacy Threat Modeling 60

3.6.2 DFD Extensions 61

3.6.3 Non-DFD-Based Modeling Approaches 62

3.6.4 Solution and Threat Knowledge 63

3.6.5 Other Security and Privacy Analysis Techniques 64

Conclusion 64

Modeling Security and
Privacy Concerns

All models are wrong
but some are useful.

— George Box [BoxT9]
Robustness in Statistics

This chapter is an extended version of the originally published article:

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter Joosen.
Solution-aware Data Flow Diagrams for Security Threat Modelling. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC
’18, page 1425-1432, New York, NY, USA, 2018. Association for Computing
Machinery

Security by Design (sbD) and Privacy by Design (PbD) are principles
that are increasingly recognized as essential to deal pro-actively
and effectively with design flaws that can compromise security or
privacy [AS16]. Their application is even required by the EU-wide
General Data Protection Regulation (GDPR) [Eurl6], as it imposes an
approach embodying Data Protection by Design (DPbD) and by default
for all systems that involve the processing of personal data. Systematic
security [HLO6, Shol4] and privacy [DWS*11, Wuy15] threat modeling
approaches strongly contribute to the implementation of these by design
principles because of their methodical and rigorous nature.

31

Data Flow Diagrams (DFDs) [DeMT79] are the core artifacts used to
support these design-based analysis activities. Since they are system-
level abstractions that represent the system using four simple element
types (see Section 2.1), they are in fact architectural views [BCK12,
ISO11] that are relatively easy to create and comprehend. Furthermore,
a DFD-based view of the system under design is strongly suited for
focusing on the security- and privacy-relevant parts of the system
(which are often centered around data items, and the locations where
these are processed or stored). DFDs are used so frequently for this
purpose that they are sometimes called ‘threat model diagrams’ [Shol4].

However, threat modeling based on DFDs is not an activity that happens
in total isolation. Indeed, the system under analysis could be an
already-existing system embedded in a context in which certain security
decisions and assumptions were already made. DFDs do not provide
a way to capture this information as they do not support expressing
any security- or privacy-related architectural decisions, i.e. the applied
security and privacy solutions and assumptions, in a structured way.

This is problematic, because the lack of security- and privacy-relevant
information can lead to the elicitation of threats that are (i) already
resolved in the system but for which the corresponding countermeasures
are not reflected in the DFD model or (ii) left undiscovered because
the countermeasures that would trigger them (e.g., the confidentiality
of cryptographic keys or the privacy impact of certificates containing
personal information as attributes) are not considered in the analysis.
To address the lack of solutions, existing approaches [Mic16, BSK16]
add properties to DFD elements to capture the effects of these solutions.

In this chapter, we argue why properties are insufficient and present
improved modeling support for capturing security and privacy solutions
in DFDs by (i) identifying and discussing four desired qualities that
emerge from the ability to express security and privacy solutions,
related to semantics, traceability, separation of concerns, and dynamic
and continuous threat assessment; (ii) presenting a meta-model that
supports these qualities by enriching DFDs with security and privacy
solutions to take into account during threat modeling and to enable
exploratory change impact analysis; and (iii) validate the framework in
the context of a STRIDE analysis of a WebRTC reference architecture.

B-Signaling

A-Signaling

Signaling
Server

| UserA I

A

User A-HrowserA
UserB-HrowserB

DTLS+SRTP

BrowserA BrowserB

A-idpY
A:X JS-APIL B-Y.JS-ARL

ipdX-dsX ipdY-dsY

Y Y
DataStoreX DataStoreY

Figure 3.1: WebrrcC Data Flow Diagram
Simplified DFD representation of the WebRTC reference architecture [Gool7].
Bidirectional flows are modeled as two separate flows in opposite directions.

31 Running Example

The concepts introduced in this chapter are illustrated using the web-
RTC-based collaboration system [Gool7]. A systematic threat analysis
with STRIDE [Shol4] is used to assess the security of this architecture.
Such a threat analysis starts with the construction of a DFD model
of the system (Figure 3.1). This WebRTC DFD contains 7 processes
(circles), 2 external entities (rectangles), 2 data stores (two parallel
lines), 4 trust border boundaries (the red dashed lines) and 28 data
flows (bidirectional flows are modeled internally as two separate flows).

The Microsoft Threat Modeling Tool (TMT) [Mic16] is the most well-
known and readily available tool for STRIDE threat elicitation and
provides a good illustration of the properties-based approach for
including security information in DFD models (also employed by other
approaches in the literature such as, for example, Berger et al. [BSK16]).

34 | CHAPTER 3 -+ MODELING SECURITY AND PRIVACY CONCERNS

Element Properties q

HTTPS
Name DataFlow] |
Out Of Scope O

Reason For Qut Of Scope

Predefined Static
Attributes

Destination Authenticated Yes

Provides Confidentiality Yes

Provides Integrity Yes

Configurable Attributes

As Generic Data Flow

Physical Netwaork Mot Selected -
Source Authenticated Mot Selected -

Figure 3.2: Microsoft Threat Modeling Tool Data Flow Properties
This screenshot of the Microsoft Threat Modeling Tool shows the attributes that
can be set for a data flow and how the HTTPS subtype of a data flow already fizes a
number of these attributes up-front to capture the effects of this solution.

To support the augmentation of DFD models with security-related
information, the TMT provides a set of customizable enum-like
properties to are attached to DFD elements. For example, a data
flow has the property ‘provides confidentiality’, which can take the
value ‘Yes’ or ‘No’. Figure 3.2 shows a set of properties for a data flow in
the T™MT. In addition to the element properties, the TMT also subtypes
several DFD element types. For example, the data flow type has an
HTTPS subtype which constrains the ‘confidentiality’, ‘integrity’, and
‘destination authentication’ properties to ‘Yes’ Figure 3.2 illustrates
the three predefined properties for an HTTPS data flow. This can only
approximate solutions that affect a single element, since subtypes can
only constrain the properties of the element they replace. Setting these
properties, either manually or through subtyping, leads to an initial
elimination of approximately 20% of the threats in the webRTC case,
reducing the amount of threats that require further examination.

BrowserB

DTLS + SRTP (A->B) !
DTLS + SRTP (B->A) i

Figure 3.3: Example Threat Modeling Tool Flaw
This DFD shows the part of the diagram for which the TMT matches the threat:
“Potential Lack of Input Validation for [destination] ”, with [destination] = BrowserB.

To analyze the system for threats, the TMT comes with a catalog
of 41 threat templates, which will later be analyzed in detail in
Section 3.2. These templates contain a number of parameters (e.g.,
source, target, and flow) which are filled in with concrete elements
during the threat elicitation phase. In the webRTC example, STRIDE
threat elicitation yields 236 threats. An example of such a threat is:
“Potential Lack of Input Validation for BrowserB”, which applies for
the flow “DTLS+SRTP” from BrowserA to BrowserB (see Figure 3.3).

However, there are four main problems with this approach for
representing security and privacy solutions. First, a single decision of
using HTTPS for both sending and receiving data between two processes
leads to, in total, six property constraints on two distinct data flows.
Hence, the decision is scattered over multiple elements which makes it
harder to assess its impact. Second, because of the nature of security as
a moving target, earlier solutions may need to be revised in light of new
information on their effectiveness (e.g., newly discovered vulnerabilities).
Re-evaluating solutions becomes a complex endeavor when they do not
comprise of a single element to replace or modify but, instead, consist of
a combination of multiple element subtypes with property constraints
and manually set properties scattered over multiple elements in the
DFD while avoiding interference with other solutions. Third, the lack
of a single representation may hamper auditing or compliance checking
activities as solutions will have to be reconstructed from the effects
in the diagram or by relying on separate documentation describing
them but potentially inconsistent with the design. Fourth and finally,
security and privacy expertise are scarce resources that rely on an
extensive body of knowledge. Security and privacy solutions are prime
candidates to provide in a reusable and extendable catalog to support
consistency and reuse of these solutions across different models.

Figure 3.4: Threat Modeling Tool HTTPS data flow

This example illustrates the use of the HTTPS data flow subtype in the Microsoft
TMT [Mic16] to model a data flow which provides confidentiality, integrity, and
destination authentication. Because of the asymmetry of the HTTPS data flow, using
this subtype causes the browser to become authenticated in the return flow.

3.2 Quality analysis

This section presents four desired qualities of security and privacy
solution representations to support threat modeling activities. For each
quality, it provides a discussion of the degree to which the quality is
supported in state-of-practice tools or state-of-the-art approaches.

3.214 Expressiveness

A DFD model should support a first-class representation of security and
privacy solutions, to enable verifying the correct application of these
solutions and prevent ambiguity in interpreting their effects.

Security and privacy are text-book examples of cross-cutting quality
concerns. The instantiation of security and privacy solution to address
such cross-cutting concerns can impact multiple elements. This has
the several implications when representing these solutions in a model:
(i) because of the cross-cutting nature of security and privacy, their
solution representations should capture which elements are affected by
them, (ii) the representations should also capture in what capacity DFD
elements take part in a solution, and finally (iii) the representations
should facilitate the correct instantiation of these security and privacy
solutions in a concrete design.

Example

The webRTC architecture is used to analyze this quality in the context
of a concrete example: the communications between the Browser and
the SignalingServer, which are protected by HTTP over TLS, a common
solution for the protection of web traffic.

State-of-the-art

The TMT offers the HTTPS data flow subtype, to represent this security
solution (Figure 3.4). This subtype is part of the built-in set of types
available in the TMT. The HTTPS data flow element constrains the
following data flow properties: {provides confidentiality=true, provides
integrity=true, destination authentication=true}.

Berger et al. [BSK16] use a similar approach with a hierarchy of types
that specify annotations with the security effects, such as an HTTP
connection as a subtype of a data flow. These subtypes can contain
the necessary annotations such as isEncrypted.

Analysis

While the destination authentication property is a logical effect when
transmitting data to an HTTPS server, this does not hold for data that
is received from the server as clients are usually not authenticated
in this context. Indeed, it more often not the case as illustrated by
the large variety in application-level authentication mechanisms (e.g.,
username/password). However, the careless instantiation of the HTTPS
data flow for both the sending and receiving flows implies that the
client is also authenticated, causing threats for the client to be missed.
For example, the threat of spoofing the client may be falsely eliminated
based on the destination authentication attribute on the return flow.
This illustrates how the capturing of a security or privacy solution in a
DFD element subtype to constrain some of its properties is insufficient
to fully capture asymmetric solutions.

Furthermore, the representation of security and privacy solutions
as properties on DFD elements raises a number of interpretation
difficulties because of semantic ambiguities about: (i) the target
element of the property (the data flow itself or the connected element);
(ii) whether a property on an element holds for: all the data flows
connected to that element, only the data flows with the extra property
set, or all flows except those with a property set to exclude them;
(iii) whether a property on a data flow is implemented by the sending
element or receiving element (or both); (iv) keeping the previous
interpretations about the meaning, scope, and interpretation of these
properties consistent over time and over multiple different properties;
and (v) whether all the elements involved in a certain security or
privacy solution have their properties correctly set.

3.2.2 Traceability

Security and privacy effects should be traceable to the security and
privacy solutions that caused them. Similarly, solutions should be
traceable to the specific threat type(s) they aim to prevent.

Bosch and Jansen [JB05] described how software architectures can
be considered as a set of architectural design decisions. Managing
these decisions then becomes an architectural knowledge manage-
ment [BDLvV09] problem. This problem is also relevant for security
and privacy decisions. Indeed, keeping track of such information
is an essential requirement of the higher levels in security maturity
models [OWA17b, MMW18]. These decisions have to be captured to
understand the resulting system with its security solutions and the
threats those solutions are intended to resolve, also described by Ven et
al. [VINBO06] as bridging the gap between architecture and rationale.

By preserving the links between security and privacy effects (i.e.
preventing specific threat types) on the system elements and the security
and privacy solutions that provide these effects, these original solutions
remain present in the model and prevent later modification from
introducing conflicts because the knowledge on the original solutions
was lost. Furthermore, the link from the solutions to the specific threat

types they resolve should also be preserved as to record why (i.e. for
which threats) such a solution was introduced in the design. Capturing
this decision information with both the effects of security solutions and
the threats those solutions address, previous decisions can be revisited
later on and the resulting documentation can be used for compliance
assessment and auditing. For example, the model documented with
security and privacy solutions is a useful resource to collect all the
applicable solutions involved in the protection of the personal data.
This information is instrumental for assessing whether appropriate
countermeasures are applied to protect personal data (and meet the
obligations of the GDPR). Another example is the need to perform a
Data Protection Impact Assessment (DPIA), which considers factors
such as the type of processing and the sensitivity of the personal data.
The model with security and privacy solutions can assist in performing
such an assessment. Several of the DPIA checks can even be automated
by relying on the system model and its solutions combined with a
representation of the data processing activities [SDVL*19].

Example

Revisiting the example from Section 3.2.1, the model should capture
that HTTPS is used to achieve confidentiality and integrity of the data
flows between the Browser and the SignalingServer, and to authenticate
the SignalingServer. Hence, the solution is introduced to prevent:
(i) information disclosure and tampering of the data sent over these
flows, and (ii) spoofing of the SignalingServer.

State-of-the-art

The property-based approaches (TMT and Berger et al. [BSK16]) do
not have a first-class representation for including security and privacy
solutions in the model. They did not introduce the security and privacy
solutions as new elements in the model. Instead, these approaches
capture the effects of the solutions as properties on the model elements.
In the example from Figure 3.4, the decision can be reconstructed by
combining the two HTTPS flows, but there is no guarantee that the

correct elements are combined when revisiting security and privacy
decisions. These reconstruction problems can only be avoided when
the solution can be represented with a single element.

Analysis

Without a first-class representation for security and privacy solutions,
the effects on the model elements can be linked back to the solutions
that provide these effects. Similarly, the motivation as to why a solution
was introduced is also missing. Reconstructing this information from
the model requires, in the worst case, a review of the complete threat
template catalog to find out any threat type(s) that are actually affected
by the properties set in the model which is a very cumbersome and
labor-intensive effort.

3.2.3 Separation of concerns

The threat type catalogs and security and privacy solution catalogs
should be structured in a way to facilitate their independent evolution,
in order to limit the impact of adding, updating, or removing threat
types or security and privacy solutions.

The threat type and security and privacy solution catalogs address
separate concerns that should be able to evolve independently.
These catalogs should be structured to enable the introduction of
modifications in one catalog without requiring additional changes in
the other catalogs or artifacts.

Complete isolation of these artifacts is, however, not possible because
of the dependencies between threat types and the solutions trying to
prevent these threats. Because of the dynamic nature of security and
privacy, new flaws in existing, previously thought secure, solutions
will be discovered, requiring replacement of or modifications to these
solutions. Therefore, the solution catalogs should support this dynamic
aspect inherent to security and privacy, allowing changes to the security
and privacy solution catalogs without impact other artifacts involved

in the threat modeling process, to ensure that the solution catalog can
remain up-to-date and evolve independently.

Example

Revisiting the HTTPS example from Figure 3.3, consider the case
where a new TLS vulnerability is discovered (e.g., Heartbleed [CVE14],
POODLE [MDK14], DROWN [ASS*16b]). To be able to assess the impact
of such a vulnerability, a re-assessment is required that takes this new
information into account. This requires modifications to the solution in
the catalog to update its effectiveness value. Such an update should only
modify the effectiveness of the affected solution. Other solutions that
also provide confidentiality through encryption should not necessarily
be affected as they may rely on different mechanisms. Furthermore,
this update should not require changes to the threat type catalog.

State-of-the-art

In the Microsoft TMT [Micl6] and the DFD extension presented by
Berger et al. [BSK16], security solution information is embedded in the
threat types as exclusion conditions. The example tampering threat
in Figure 3.5 and information disclosure threat type in Figure 3.6
illustrate how, respectively, the ‘Ezclude’ or ‘AND NOT’ expressions
refer to properties set on model elements in order to determine whether
or not the threat is applicable for a specific DFD element. This is
solution-specific information that is specified in the threat catalog.

Analysis

Having the threat descriptions rely on information stored in the element
properties creates a strong dependency from the threat type catalog
to the effects of the security solutions. This dependency hinders the
independent evolution of the security and privacy solutions catalog,
as every newly introduced solution requires adding the appropriate
exceptions for its effects to all the relevant threat types. The overhead of

42 | CHAPTER 3 - MODELING SECURITY AND PRIVACY CONCERNS

Title:

Potential Lack of Input Validation for {target.[Name]}

Include:

(source is [Generic Process] or source is [Generic
External Interactor]) and target is [Generic Process]

and (flow crosses [Generic Trust Line Boundary]| or
flow crosses [Generic Trust Border Boundary])

Exclude:

flow .[Provides Confidentiality] is ’Yes’ and
flow .[Provides Integrity] is ’Yes’

Figure 3.5: Threat Modeling Tool Tampering Threat Template
Tampering threat type from the Microsoft TMT [Mic16] which shows the inclusion
criteria for determine the threats applicability, and the exclusion criteria which rely
on the element properties to determine whether the threat type is not applicable.

MATCH //ommitted

WHERE //ommitted

AND ANY (d IN flow.data WHERE d.IsConfidential)
AND NOT flow . IsEncrypted

Figure 3.6: Threat Pattern from Berger et al.
This threat pattern from Berger et al. [BSK16] illustrates how the pattern relies on
the IsEncrypted property of a data flow to determine the threat’s applicability.

these operations becomes even larger when modifying existing solutions
as now all threat types have to be checked for the exclusion criteria to
verify they are up-to-date and consistent with the modified solutions.

3.2.4 Support for dynamism

Threat modeling activities should support partial and lightweight archi-
tectural design efforts, continuous evolution, and frequent architectural
refactoring. Embedding threat modeling activities into agile development

processes requires novel approaches of dynamic and continuous threat
modeling, and co-evolution with the system under design.

Traditional threat modeling approaches assume a single-shot threat
modeling exercise, conducted in the early stages of development. This
is a consequence of the manual nature of the embodied threat modeling
process which involves considerable effort by the threat modeler. Such
a view, however, is in stark contrast with contemporary development
practices such as agile development and continuous integration/delivery.

Example

As this quality pertains to tooling infrastructure to support continuously
re-assessing a design, the example consists of a use case. The threat
modeling approach and tooling should support continuous assessment
to support the threat modeler in evaluating multiple design alternatives
to assess which of these has the best impact on the resulting threats.

State-of-the-art

Current approaches in the state-of-the-art do not provide support for
continuous assessment or trade-off analyses. The manual approach
embodied in these approaches and limited expressiveness in the
modeling reduces solutions to their effects on the model elements.
The currently available threat modeling tools [Mic16, OWA18, Conl8,
Res19, SR19], while being able to automatically elicit threats, require
the end-user to re-asses the list of results from the analysis to evaluate
the impact from instantiating countermeasures. To our knowledge, no
tools currently exist in the state-of-the-art or -practice that support
the lightweight continuous assessment of design alternatives.

Analysis

To support this requirement, threat modeling tools should support
embedding in lightweight software development activities by providing

«Metaclass»
DFDElement

-name:EString
«Metaclass»| _send sender «Metaclass» «Metaclass»

DataFlow 0.* 1..1 | DataFlowEntity DFDContainer
receive recipient

0..* 1.1 L‘% LF

«Metaclass» «Metaclass» «Metaclass» «Metaclass»
Process DataStore ExternalEntity TrustBoundary-
Container

0..* containedElements

Figure 3.7: DFD Meta-Model

Unified Modeling Language (UML) diagram of the DFD meta-model. It shows the four
main DFD elements: data flow, process, data store, and external entity. Elements
can further be grouped in Trust Boundaries. The meta-model enforces constraints
such as requiring every flow to have a single sender and recipient.

security and privacy design assistance such as: (i) raising awareness of
security and privacy threats as the architecture evolves by frequently
or continuously re-assessing the model while changes are being made,
(ii) providing suggestions of security and privacy solutions to the
architect to counter threats together with guidance to evaluate
alternative solutions, (iii) providing an architectural impact assessment
of these solutions (i.e. change impact analysis) by applying and
evaluating alternatives, and (iv) integrating with existing security and
privacy knowledge bases to incorporate changes in the effectiveness of
the security and privacy solutions by reflecting changes to solutions such
as the discovery of vulnerabilities back into the catalog of solutions.

3.3 Meta-Model

To improve the state-of-the-art in the four qualities defined above
in Section 3.2, we propose a new meta-model as a foundation for
threat modeling approaches. This meta-model consists of two parts.
The first part provides a meta-model for DFDs, as it is previously
largely used as a visual and informal notation [TK91] with multiple
graphical variants [YCT75, YC79, DeM79, GS79]. The second part

—_

extends upon the first one and introduces the necessary concepts for
modeling security and privacy solutions and using this information in
threat modeling contexts. It provides modeling support for: (i) threat
types and their catalog, (ii) security and privacy solutions and their
catalog, and (iii) instances of these security and privacy solutions to
insert in a concrete model.

3.31 DFD Meta-Model

Before information about security and privacy solutions can be
captured in a model, the underlying system representation needs to
be specified. The DFD representation used in threat modeling [HLOG,
Shol4, DWS*11, Wuy15] is mainly a visual notation that does not
precisely specify the elements and constraints. Tool support requires
a meta-model to be able to analyze these models as illustrated in
Sections 3.2.1 and 3.2.2. Such a meta-model can also assist in ensuring
that the constructed DFD models are sound. Figure 3.7 depicts the
meta-model that define the DFD element types and the relations between
these elements. It also provides support for trust boundaries (with the
TrustBoundaryContainer class), which are often used in the context of
threat modeling to group elements together with the same ‘trust level’,!
to allow the exclusion of certain threat types between elements within
the same trust boundary. For example, by assuming that machines
on an internal network do not tamper with each other’s traffic. When
using trust boundaries, threats are often elicited only on data flows
that actually cross over these trust boundaries.

Extensions to the DFD Meta-Model

Two major extensions are provided to the generic DFD formalism as
already used in existing security and privacy threat modeling context:
support for decompositions and support for modeling data types.

However, the meaning and implications of such a trust boundary are often implicit
and left open to interpretation with multiple different meanings [SYvdB*20] such as:
delineating trust or privilege, attacker assumptions, delineating between machines,
or the presence of countermeasures (e.g., enforcement of access control) [Sho20].

46 | CHAPTER 3 - MODELING SECURITY AND PRIVACY CONCERNS

«Metaclass»
DFDElement

-name:EString

T

0..* containedElements

[

«Metaclass»
FlowElement

+getDataFlow():DataFlow

1y

[send sender «Metaclass»
«Metaclass» 0.* 1.1 DataFlowEntity
«Interface» receive _recipient
SenderSpecifiable 0.. 1.1
ANA «Metaclass» Ly 0
1.1 ; « Ilnterface?v «Metaclass»
specifies- | RecipientSpecifiable Process
SenderOf |
! 4
e 11 0. data

specifiesRecipientOf

«Metaclass»

gender. DataFlow «Metaclass» 0.1 decKey
Specified- . . DataT 0..1 encKey
By recipientSpecifiedBy ataType T da
0.* 0.* sensitivity:boolean

«Metaclass» «Metaclass» %

«Interface» «Interface»

SenderSpecification RecipientSpecification «Metaclass»
DataTransformation

Figure 3.8: DFD Extensions Meta-Model

The extensions make the DFD modeling formalism more useful by allowing the
decomposition of processes, while ensuring data flow consistency with the parent.
The extension also supports modeling how data flows through the system.

Figure 3.9: DFD Decomposition Example

This example DFD decomposition contains a RecipientSpecification (circle on the
border) which specifies that the actual recipient of Flow 1 is Process Subi, and a
SenderSpecification which specifies that the sender of Flow 2 is Process Subz2.

Decompositions By supporting decompositions, larger systems can
be modeled at various abstraction levels, keeping the resulting DFD
models still manageable and comprehensible. Decomposing DFDs is
supported in the original notation [DeM79]. However, formalizing the
decomposition support in the meta-model ensures the construction of
consistent decompositions. The extension for decomposition changes
the process element into a container. This way, a process can
contain any number of sub-elements as required for modeling more
complex systems. The data flow mechanism is also extended with
SenderSpecifiable and RecipientSpecifiable classes. These classes specify
that there is a more specifc sub-process at the sender or receiver that
actually sends or receives the data. By convention, a decomposition
is complete in the sense that all data flows at the parent element
need to have a subprocess as sender or recipient. I.e. there should
be no hidden functionality remaining in the parent. Figure 3.9
illustrates the decomposition with a concrete example, in which the
SenderSpecification and the RecipientSpecification are visualized on the
border of the decomposed process. These specifications point to the
sub-processes that are the actual recipients or senders from the data
flows to ensure all data flows have a final source or destination process.

Data Types The second major extension to the DFD meta-model
involves the support for modeling data in the system [TSSY20]. The
extension supports the modeling of different data types, and where
these data types are transferred, processed, or stored in the system by
explicitly linking from a DFD element to the data type. For example, a
data flow can specify the different data types it transfers. Furthermore,
the relations between the different data types are modeled as well.
This enables the modeling of plain text and encryption pairs, and
which data serves as a key for encrypted data. These extensions enable
the detection of data-related security threats such as unprotected
sensitive data and improper key management [STY*19, TSSY20]. This
extension supports tracking how sensitive data can be transformed
(e.g., encrypted) and further processed. Other DFD data extensions in
the literature [TSWS17] support different scenarios such as tracking
the sources and destinations of data elements.

ThreatType- SolutionCatalog (reusable)

(Catalog) —— T.DFDElement | S—
reusable I «Metaclass»
«Melt?a(i.lass» Solution
«Metaclass» el les 0..*
ThreatType —’ro eSS —
0..1 binds .
0..* protection- 0..1 bindsTo 0..1 splution
RestrictedTo
ol* 0.*realizes | | ———____ _ .
T | T:DFDElement
mitigates Metacl s «Metaclass»
e o= Solutionlnstance
RoleBinding
—’
«Metaclass» roleBinding 0..
CounterMeasure ie
u Y Model (model-specific)

0..* countermeasures

Figure 3.10: Security and Privacy Solution Meta-Model

This figure shows the meta-model classes for representing security and privacy
solutions. The colors indicate the reusable solution catalog (green), the DFD model-
specific (blue), and the threat type catalog (red) elements.

3.3.2 Security and Privacy Solution Meta-Model

Generic DFDs do not support the representation of security and privacy
solutions in the model. While pragmatic extensions with properties
attached to DFD model elements can include some security or privacy
information, such solutions suffer from several problems as discussed
in Section 3.2. We therefore present a more extensive meta-model to
capture all the relevant details of security and privacy solutions.

Figure 3.10 depicts the meta-model for representing security and privacy
solutions in DFDs. The generic security and privacy solutions are
represented as Solutions in a catalog to enable sharing and reuse of
this knowledge across multiple DFD models. The catalog can be used
to capture existing sets of security and privacy solutions [YHSJ06,
FB13, SFBH'06]. These solutions can be subsequently instantiated in
a concrete DFD model using SolutionInstances.

A security or privacy solution is specified using the meta-model as

follows. A new Solution is created which contains a list of Roles
that are generic descriptions for the DFD elements involved in the
solution. These Roles are parameterized according to the type of the
DFD elements that can fulfill the role (e.g., Process or Data Flow). An
example of this is a Secure Pipe [YHSJ06] Solution which contains four
Roles, two Process Roles for the client and server, and two Data Flow
Roles for the sending and receiving flows between them.

A Role can realize a number of Countermeasures. Each Countermeasure
specifies against which threat types it protects and to which other
Roles the protection is limited (i.e. the scope of the countermeasure).
Contrary to the property, this provides additional information on
which solution provides the Countermeasure, what the scope of its
protection is, and it avoids conflicts when multiple solutions influence
the same properties. In the case of the Secure Pipe, the two data
flow Roles have Countermeasures against tampering and information
disclosure, while the server Role has an authentication Countermeasure
to protect against spoofing. The protection against spoofing is limited
to the two Data Flows in the solution. This is modeled by having
the authentication Countermeasure explicitly link to the roles that are
in scope (using the protectionRestrictedTo relation). Therefore, other
clients that communicate with the server outside of the Secure Pipe are
not protected against spoofing of the server. The generically modeled
Secure Pipe pattern illustrates how common solutions such as HTTPS
to protect web traffic can be modeled using the solution meta-model.

Finally, to be able to use these security and privacy solutions in concrete
DFD models, they have to be instantiated in these models. To instantiate
the solutions, the meta-model offers the SolutionInstance class, this
class represents a concrete instantiation of a Solution in a specific DFD
model. Analogously to the Solution’s Roles, the SolutionInstances
contain a list of RoleBindings. A RoleBinding links a Role from the
generic Solution to a concrete DFD element to specify which concrete
element in a DFD model fulfils that Role.

Figure 3.11 provides a schematic representation of how solutions can
be instantiated in a concrete DFD model. This is separate from any
visualization that may be implemented on top of the meta-model. The
right-hand side of Figure 3.11 shows the threat type catalog on top

Spoofing Tampering InformationDisclosure

IAuthN:Countermeasurel

WebBrowser WebServer

df2
W ‘ MAC:Countermeasurel ‘ Enc:Countermeasure l
| |
! ! ! !
] d }]
PETS | IR PTG B
SO0 TS FowzdiRodhingny o7 "
b Client-> \l— ‘ : Server-> \l Flow1:Role Client
\ WebBrowser B | ' WebServer E Role
\;RoleBlndmg,(.FLoerrEfE:Ecﬂe_Bu:@g, —\;RoIeBlndlnE, >
“..r—' ! Voo Flow2:Role
[-
e LT O . L L L L L L L __ 4
:Solutioninstance SecurePipe:Solution

Figure 3.11: Example instantiation of the secure pipe solution

The right-hand side shows (from top to bottom) the ThreatTypes, CounterMeasures,
and SecuritySolution containing 4 Roles. The left-hand side shows the DFD model
and (below that) the Solutionlnstance containing the 4 RoleBindings, linking
DFD model elements to the solution’s roles. The same color-coding is used as in
Figure 3.10. Note that the focus is on the model semantics, not the visualization.

and a single solution, SecurePipe at the bottom with four roles which
realize three countermeasures. The left-hand side of Figure 3.11 shows
a concrete DFD model, in which a single instance of the SecurePipe
solution is instantiated using four RoleBindings, which link each of the
Solution’s Roles on the right-hand side to concrete DFD elements.

3.3.3 Impact on Threat Elicitation Process

The usage of the solution-enriched DFDs is expected to have minimal
impact on existing threat elicitation activities. During threat elicitation,
the elicitation engine (or threat modeler in case of a manual threat
elicitation) iterates over the elements [HLO6, DWS*11, Shol4] or
interactions [Shol4, SWY*18] in the DFD and for each of these an
iteration over the ThreatType catalog is performed to verify whether the
considered ThreatType is applicable in that context. This verification
step involves checking whether the DFD element is not linked to a Role
that provides a Countermeasure against the considered ThreatType
(also taking into account the scope of the Countermeasure). It is
not necessary to know the details of the specific security or privacy

solution in question.? For example, the presence of an encryption
countermeasure can prevent an information disclosure threat on a data
flow. The threat elicitation engine does not need rely on ThreatTypes
specifying all potential countermeasures to know whether the threat
is prevented (due to, for example, a VPN or HTTPS) as it can extract
the necessary information from the solution catalog. This is an
advantageous property, because it ensures that the threat type catalog
remains independent from the solutions catalog.

3.4 Evaluation

This section provides a qualitative evaluation of the presented meta-
model using the four qualities presented in Section 3.2. The functional
validation of the meta-model is deferred to Chapter 5, which provides
a complete discussion of the implemented prototype SPARTA.

3.41 Expressiveness

The meta-model supports a first-class representation of security and
privacy solutions in DFD models by creating solution instances that
bind concrete DFD model elements to the solution’s roles. It is the
binding to the role with the countermeasure that determines whether a
specific threat type applies to an element. This generic representation
of security and privacy solutions in DFDs has the following advantages:
(i) asymmetric security and privacy solutions (recall, for example,
the HTTPS solution) can be expressed, as the effects are realized in
different roles; (ii) it avoids any ambiguity in interpreting the effect
of a countermeasure as it explicitly supports scoping the effect of a
countermeasure; and (iii) it does not lead to conflicts when multiple
security or privacy solutions affect the same element, as this would
just require multiple role bindings to the different security or privacy
solutions (while the specialization approach to DFD elements would

The expert encoding the security and privacy solutons in the catalog will need to
be aware of these particulars to appropriately capture the effects and scope of the
solutions and update their effectiveness as new vulnerabilities are discovered.

require the same DFD element to be replaced with multiple different
elements at the same time).

The following reasoning provides a qualitative argument as to why the
presented meta-model provides a strictly positive improvement with
regard to the semantic quality. The argument is two-fold: (A) the
presented meta-model is equally expressive as the property-based
approach, and (B) the presented meta-model can express solutions
that cannot be properly represented with the property-based approach.

A The meta-model be shown to be equally expressive as the property-
based approach by simulating it. Every possible property on a DFD
element can be represented as a very simple solution with a single role
that captures the effect of the property in the attached countermeasure.

B The example in Section 3.2 for Section 3.2.1 presents the
instantiation of HTTPS for the protection of the communication between
a client and server. This security solution is asymmetric in that it
provides authentication of the server to the client, but not the other
way around. So far, this solution can be expressed as a specialized
data flow element. However, consider that this flow is now used to
communicate signed and encrypted email messages (e.g., using S/MIME),
which also provides authentication of the sender. In the property-based
approach such a solution cannot be added, as there is already another
specialization of the data flow to represent the HTTPS solution. In
order to still capture the effects, a new data flow specialization would
have to be created to represent the combination of HTTPS and S/MIME,
or the effects would have to manually set via the properties (losing the
first-class representation, traceability, and allowing for inconsistencies
to be introduced). Either of these options is sub-optimal and does not
scale well when new or combinations of solutions are introduced.

3.4.2 Traceability

Traceability is a relevant quality when revisiting and evaluating
previously made security and privacy decisions. The property-
based approach can only offer traceability when the DFD element
specializations are used extensively. However, as the evaluation of

the semantics in Section 3.4.1 explained, this can lead to conflicting
element specializations to be required at the same time, otherwise the
designer will have to revert to a scattered set of effects on the different
elements. The explicit first-class representation for security and privacy
solutions allows for the explicit manifestation of every decision as a
solution in the DFD model. This makes the effects of these decisions
traceable to the security and privacy solutions that caused them.

Besides the traceability from security and privacy effects to the solutions
causing these effects, the security and privacy solutions expressed in
the meta-model also link to the corresponding threat types in the
catalog. This also enables traceability from the security and privacy
solutions to the different threat types they are intended to counter. In
the property-based approaches, the threat elicitation activity will need
to check for the presence of certain properties on the DFD elements
under consideration. To navigate from a property to the threat types
it is supposed to counter would then require checking all the defined
threat type conditions for mentions of that specific property.

The traceable link between security and privacy solutions and the threat
types they counter has a number of additional benefits: (i) threats
are not eliminated (included or excluded) but mitigated by one or
more security or privacy solution instance which allows looking up
which solutions mitigate a certain threat; (ii) the explicit link supports
additional analyses of a threat’s impact and likelihood, taking the
precise system context and relevant security and privacy solutions into
account (see Chapter 4 for more information on this); (iii) changes in
a solution’s effectiveness or countermeasures can easily be evaluated
over all instances of that solution (for example, when a solutions
countermeasure against information disclosure fails, modifying the
generic solution updates the effect of all its instances in a concrete DFD
model), thereby supporting the realization of Section 3.2.4.

3.4.3 Separation of Concerns

The separation of concerns quality is evaluated by comparing the
impact of change in: (i) changing security and privacy solutions (add,

modify, or remove), and (ii) changing threat types (add, modify, or
remove) in both the property-based and meta-model representations.

Changing Security and Privacy Solutions

Property-based Adding a new security or privacy solution requires:
new properties to be defined to capture the effects of the new solution,
optionally new element specializations to constrain these properties,
and updating the threat types that are prevented by the solution to
add the properties to the exclusion criteria.

Modifying or removing a solution requires the following changes: all the
threat type exclusion criteria have to be checked and updated to modify
or remove the corresponding properties, any specialization using the
modified properties has to be updated, and finally any existing models
that have manually set these properties have to be updated as well.
Changing security or privacy solutions thus introduces a ripple effect,
especially in the exclusion criteria and any manually set properties.

Meta-model Introducing a new security or privacy solution only
requires a change in the solution catalog to add: the solution, its roles,
and the countermeasures which link to the threat types they counter.
Modifying or removing a solution only impacts existing models when
the solution or any of its roles are removed. Other changes remain
limited to the catalog and will automatically be reflected in the models
using the solutions from that catalog.

As illustrated with the numerous vulnerabilities collected in vulnerabil-
ity databases [CVE19a, NIS19a], the effectiveness of existing solutions
can quickly change. The modeling approach should support the
modification of these solutions to reflect this reality without cascading
the required changes to other elements, in order to make the solution
catalog easier to maintain. Changing the solutions is quite problematic
for the property-based approaches as they require revisiting the threat
elicitation criteria. The meta-model-based approach is better equipped
to cope with such changes as the impact remains limited to the solution
catalog and, more specifically, the affected solutions.

Changing Threat Types

Property-based Adding, modifying, or removing threat types only
requires changes to the threat types themselves. No other changes
to the properties or element specializations are required, unless new
properties are introduced, or older unused properties are removed.
Otherwise, these remaining unused properties may cause confusion as
they imply a certain security or privacy effect, but the elicited threats
will remain unchanged.

Meta-model Adding or modifying threat types only requires changes
to the threat type catalog. Removing threat types, however, can impact
the solution catalog. Some solutions may prevent these threat types
that no longer exist and will have to be updated.

Both the property and meta-model approaches can limit the impact
of changing threat types to their respective catalogs, although the
property-based approaches can introduce some ripple effects as older
unused properties remain in the models and can introduce confusion.
When reusing existing properties, the property-based approach can
already take existing solutions into account. However, while this does
prevent the re-assessment of existing solutions, it can have unintended
consequences as the interpretation of the effect of a property may not
be unambiguous which can cause the unintentional omission of threats
that are not mitigated. By design, the meta-model solutions explicitly
refer to threat types to avoid these problems.

3.4.4 Support for dynamism

The final quality, support for dynamism, strongly depends on the
availability of appropriate tool support. Therefore, in this context,
the evaluation of this quality is limited to an assessment on how, and
to what extent, the presented meta-model provides the foundation
for enabling this quality in tool support. Later on, Chapter 5 will
discuss the realization of this quality in the SPARTA threat modeling

tool. The following four dimensions are considered in the assessment
of the dynamism quality: (i) threat evolution, (ii) suggesting solutions,
(iii) impact analysis, and (iv) knowledge base integration.

Threat Evolution Any approach relying on a system model that can
be dynamically re-queried for eliciting security and privacy threats
can support the threat evolution dimension. Given a model-based
representation, both property-based and model-based approaches
support this dimension of dynamism.

Solution Suggestion In order to support suggesting security and
privacy solutions for the elicited threats in a concrete DFD model,
traceability of the threat types and solutions is required. The
realization of this aspect requires the relations between the threat
types and corresponding solutions to be traversable. The relation
is not directly captured in the property-based approach, as every
solution that influences the properties that determine the applicability
of a threat type has to be considered. The solutions directly refer
to mitigated threat types and, therefore, make solution suggestions
relatively straightforward.

Impact Analysis A straightforward way to analyze the impact of
introducing new security or privacy solutions is to repeat the threat
elicitation and compare the results. Any approach that handles
threat evolution well can assess the solution impact this way. More
advanced solution impact analyses, such as the number of involved
elements or interactions with other solutions require first-class solution
representations that are lacking in property-based approaches.

Knowledge Base Updates The consolidation of security and privacy
solutions in a catalog forms a good foundation for a reusable design
security and privacy knowledge base. To further improve the relevance
of this resource, updating this resource with recent vulnerability and
flaw information from online resources can assist in dynamically re-
assessing the impact on a system. This requires a flexible and updatable

specification of solutions. Specializing DFD element types may prove
to be too inflexible to cope with frequent changes.

3.4.5 Summary

The four previous sections illustrated how the first-class representation
of security and privacy solutions in DFD models provides a number
of advantages in: (i) semantics, by increasing the expressiveness to
support representing complex solutions involving multiple elements;
(ii) traceability, by enabling bidirectionally tracing between solutions
and the threat types they counter; (iii) separation of concerns, by
avoiding changes outside the modified solutions and minimizing the
impact of changes to threat types; (iv) dynamism, by supporting
multiple dynamic use cases when relying on the first-class solution
representation in tool support.

3.5 Discussion

The discussion below considers some of the implications of using the
presented meta-model in threat modeling contexts and reviews some
additional extensions to further improve the representation of security
and privacy solutions along the aforementioned qualities.

Semantics of Trust Boundaries

The presented meta-model supports trust boundaries as a container
element that can contain other DFD elements. All the elements inside
the same container are within the same trust boundary. While this
does support nesting multiple levels of trust boundaries, it is not
possible to intersect trust boundaries so that they share only some
elements but not others. Supporting these models would require a
different kind of representation for trust boundaries. In current threat
modeling approaches [SS04, HL06, Shol4], trust boundaries influence
the applicability of a threat type only when there is a data flow that

crosses a trust boundary. When using rectangular (i.e. closed) trust
boundaries, data flows between elements in different intersecting trust
boundaries will always have a data flow crossing the trust boundary,
so this is not a severe limitation as it does not influence the threat
elicitation results. Only with trust boundaries consisting of a single
line (i.e. open trust boundaries) can the results differ, but these lines
can introduce inconsistencies in which some data flows between the
same DFD elements cross the trust boundary while others do not.

Introducing new Model Elements as Part of Solutions

In the current meta-model’s representation of security and privacy
solutions, a solution instance’s bindings require existing DFD elements
in the model to be bound to the solution’s roles. However, some
solutions may want to introduce new elements in the system that
would not exist separately outside of the solution they are a part of.
Currently such elements would have to be introduced manually and
would be indistinguishable from other system elements in the DFD.
Consider, for example, an encryption solution which could introduce a
local key store (as data store) or rely on an existing one in the system.
Hence, it is still possible to model and use these solutions with the
added effort of creating additional, for example, processes to fulfil the
extra roles of the solution. The main problem with the lack of support
for solution-specific elements is when they are replaced or removed.
Then, these additional elements introduced for specific solutions may
no longer be needed and have to be removed as well.

Decoupling Solutions and Threat Types

While the current representation of security solutions is already largely
decoupled from the threat types, there still is a reference from a
security solutions countermeasure to the threat type it prevents. When
threat types would be removed, these solutions would have to be
updated. If necessary, it is possible to further decouple them by
introducing an intermediary concept of a security or privacy effect.
Both security and privacy solutions and the threat types could refer

to these intermediary effects, allowing both of them to be changed
independently. This intermediary concept is currently not implemented
in the model because changes to the threat type catalog (which reflects
the existing STRIDE [HLOS06] and LINDDUN [DWS*11] threat types)
were deemed to be less frequent compared to the changes to security
and privacy solutions [YHSJ06, Sch03, SFBH*06, FB13].

Usability of the bindings

The richer expressiveness for including security and privacy solutions in
DFD models introduces some complexity when instantiating solutions
in concrete models. The solution representation provides some support
to ensure a correct instantiation of solution instances by: (i) providing
the complete set of roles that have to be fulfilled by elements in the
model and (ii) restricting those roles to specific types of DFD elements.
The user still has to bind the roles to the correct model elements. Tool
support can provide assistance by automatically instantiating solutions
to avoid user errors in the role assignments.

3.6 Related Work

This section discusses the related work. First, a number of existing
DFD extensions is covered together with threat modeling tool support
in which the discussion is primarily focused on the underlying modeling
support for security and privacy solutions. This discussion covers
both security and privacy threat modeling approaches and model
extensions. Next, a number of non-DFD-based modeling representations
are discussed to provide some insight into the support in other
modeling languages. Following that is a discussion on security and
privacy requirements elicitation approaches and to which degree those
approaches support relying on previously made security and privacy
design decisions. Finally, we end the discussion with other security
and privacy design analysis approaches that do not fit into the
aforementioned categories but that do systematically analyze a system
to identify security or privacy threats.

3.6.1 Security and Privacy Threat Modeling

A number of tools are available to support threat modeling activities.
The Microsoft Threat Modeling Tool [Micl6, Mic20] is the most
common and readily available tool support and provides properties
on the DFD elements to record the effects of security solutions in
combination with DFD element subtypes that force some of these
properties to appropriate values. Another publicly available tool
is owasP’s ThreatDragon [OWA18]. ThreatDragon also relies on
properties (e.g., IsEncrypted) to capture the effects of security. There
is, however, no automatic threat elicitation that takes these into account.
The Irius Risk tool from Continuum Security [Conl8] uses a different
approach than the above tools. The DFD in Irius Risk is an auxiliary
view generated from a list of elements. The next version of Irius
Risk will provide direct modeling support in a graphical editor. The
primary content driving the elicitation of threats is driven by a list of
components that is constructed by asking the user a number of questions
on the used technologies. Later on, different types of countermeasures
can be specified to mitigate the identified threats. There is thus no
separate first-class representation of the solutions in the design, nor
is it possible to capture a single solution affecting multiple elements.
The next threat modeling tool is OvvL [Res19, SR19], which similar to
the Microsoft TMT and OWASP’s ThreatDragon provides support for
creating DFD models where properties on the DFD elements can be set
(e.g., Authenticates itself) to indicate the effects of security solutions.
These can subsequently be considered during the elicitation. Finally,
there is the SecuriCAD tool from Foreseeti [For20]. SecuriCAD does
not rely on a DFD but instead uses a custom model which is more
focused towards infrastructure with support for elements such as hosts,
networks, routers, protocols. Models in SecuriCAD are analyzed with
attack simulations where a certain attacker profile traverses through
the system by exploiting weaknesses in intermediary hops. These attack
paths are very similar to attack tree analyses [Sch99].

With the increasing importance of privacy, threat modeling approaches
have been extended to elicit privacy threats [DWS*T11, Wuy15] in
support of privacy by design [AS16]. While privacy threat modeling
approaches are sufficiently similar for existing threat modeling tool

support to elicit privacy threats, there are current no threat modeling
tools available that do so. Incorporating such functionality in existing
tool support would rely on similar property-based mechanisms to
incorporate the effects of privacy solutions to prevent privacy threats.

3.6.2 DFD Extensions

In addition to threat modeling tool support, there are some DFD
extensions that incorporate additional information in the models to
take into account in subsequent analysis activities.

Dhillon [Dhill] describes the use of annotations on DFD model elements
(e.g., privilege levels, programming languages, authenticated data flows,
encrypted data flows). Developers receive guidance but the annotations
do not have a specific structure but are applied in an ad-hoc fashion,
which limits the use to manual threat elicitation activities.

Berger et al. [BSK13] present a meta-model for DFDs in which
the generic FElement type contains a list of annotations to express
information on different security measure. Contrary to Dhillon, these
annotations are specified systematically in the model and refer to the
threat types they prevent in order to support automated analysis.
While this does not pose a problem in their envisioned use case
of extracting the security architecture of existing applications, the
individual notations do not support expressing and reasoning about
more complex security solutions that affect multiple elements, nor do
they assist designers in ensuring that solutions are correctly applied.

In later work, the same authors [BSK16] introduce Extended Data
Flow Diagrams (EDFDs), which abstract away the DFD element types
to elements, channels for data flows, trust areas (i.e. trust boundaries),
and introduce data. Their approaches supports the creation of different
subtypes for these element types in order to set some of the properties
(e.g., Java Process implying a Process with the Java annotation, or
Credentials implying a Data type with the IsConfidential annotation).
These EDFDs are translated graphs for analysis on which patterns
created for different CWEs or CAPECs are matched (as illustrated in
Figure 3.6). While they briefly mention support for solutions, they

seem to be limited to subtypes (e.g., an SQL-based database) or reusable
model fragments to model common technical solutions.

A final DFD extension is the extended DFD notation of Tuma et
al. [TSWS17] which introduces a number of extensions for marking
assets. More specifically, the asset sources, targets, and their security
objectives, to support the end-to-end tracing of these assets through
the system. Their approach to asset-centric threat modeling has
been applied to automotive domain. Our extension, presented
in Section 3.3.1, focuses more on tracking data types and their
transformations (such as the ciphertext after encryption) in the model.

There are also DFD extensions specifically focused on privacy. Antignac
et al. [ASS16a] presented Privacy-Aware Data Flow Diagrams (PA-
DFDs) which contain a number of privacy-aware annotations to support
privacy concepts: data subject, data controller, data processor, and
purpose. Our presented meta-model does not introduce privacy-specific
annotations (e.g., data purpose), but, instead, relies on links to privacy
threats in the catalog to represent privacy solutions. This is focuses on
technical privacy threats, while the PA-DFD extension is very suitable
for compliance assessment exercises and can assist in bridging the gap
between software engineering views and legal views on the personal
data processing operations [SDVL*19].

Finally, there are some efforts towards more formal underpinnings for
DFD for functional correctness [TK91, Fra92], these do not specifically
target security analysis activities. For a more extensive discussion on
threat modeling and DFD-based analysis techniques, we refer the reader
to literature reviews on the topic [TCS18, XL19].

3.6.3 Non-DFD-Based Modeling Approaches

Moving away from DFD-based modeling notations, there are many
different security modeling notations, many of them based on UML.
Given our focus on DFD-based extensions, we briefly mention the most
important security modeling notations.

The UML-based modeling notations such as UMLsec [Jir05], Se-
cureUML [BDLO06], and Secure Object Flows [HSS12] rely on the existing
UML [ISO12a, ISO12b] extension mechanisms such as stereotypes to
include additional security-relevant information in the models. The
same approach is also applied for including privacy-relevant information
in UML models [ASRJ18]. These stereotype-based approaches are
quite similar to the annotation-based approaches [Dhill, BSK13] for
including security information in DFDs. Instead of threat modeling
the resulting diagrams, these approaches rely on their own UML-based
tool support to assess or prove whether certain security properties
can be met in the resulting system model [Jiir05] or to apply model
transformations to enforce the modeled access control policy [BDLOG).
For a full overview of other security modeling notations, we refer the
reader to the literature [vSYJ17, UFF12]

3.6.4 Solution and Threat Knowledge

In addition to the semantic support for representing security and privacy
solutions, there is also a need for knowledge bases containing security
and privacy solutions to be modeled and used in the resulting DFD
models. For this the existing literature on security and privacy pattern
can be consulted for security [Sch03, DGFRLP04, SNL05, YHSJO06,
SFBH*06, FB13] and privacy [CHH16, Pri20] patterns. The existing
pattern catalogs confirm the need for a first-class representation for
security and privacy solutions, as they have to rely on ad-hoc and
improvised notations to represent the solutions. Regardless of the
pattern knowledge source, a translation step will always be required to
convert the pattern information into a DFD representation.

In the current threat modeling approaches, the main source of the
threat knowledge information are the STRIDE [HLOS06, HL06, Shol4]
and LINDDUN [DWS*11, Wuy15] threat types and threat trees. The
knowledge sources can be expanded by relying on other collections
of knowledge on security and privacy threats [HLOS06, HL06, Shol4,
DWS*11, Wuyl5] vulnerabilities [CVE19a] and their impact on the
effectiveness of security and privacy solutions, weaknesses [CWE20,
STM17, ADD*14, OWA17a], and attack patterns [CAP18].

3.6.5 Other Security and Privacy Analysis Techniques

We close the discussion on the related work with some additional
security and privacy analysis approaches that do not operate from
a design description, such as DFD, from the system. One approach
closely related to threat modeling are attack trees [Sch99]. They start
from the perspective of an attacker that wants to realize a certain
attack on an system asset, and from there on explore the attacker’s
possibilities to achieve that goal and what possible countermeasures
can prevent it. Such an approach is more perpendicular, as it enables
an in-depth analysis of a particular threat and provides guidance in
choosing how to protect against that threat. Related to that are abuse
or misuse cases [MF99, SO05] which formulate undesired behavior from
a misuser that has to be prevented by the system. Other types of anti-
requirements are Abuse Frames [LNIT03]. To bring some systematicity
in the attack analyses, the existing attack pattern repositories such as
CAPEC [CAP18] can be leveraged [LPM™*16].

3.7 Conclusion

Integrating threat modeling activities in the software development
life cycle is a promising and effective way to implement the sbD and
PbD principles. Unfortunately, existing threat modeling approaches
that rely on plain DFDs lead to a combinatorial explosion of threats
to consider. To keep the resulting lists of threats manageable, they
require extensions to exclude certain threats from being raised.

However, the careless application of these extensions can lead important
security and privacy threats to be omitted because of the ambiguities in
properly capturing the effect of security and privacy solutions. In this
chapter, we introduced modeling support for capturing this security
and privacy information to limit and scope the threat elicitation space.

We have shown positive improvements in terms of semantic quality,
traceability, separation of concerns, and dynamism, respectively due
to: (i) the first-class representation of security and privacy solutions

in the system under design, (ii) traceability of security and privacy
effects to the solutions causing these effects, and thereby ensuring
that the decisions to apply these security and privacy solutions
remain documented, (iii) independent evolution of the security and
privacy solution catalog to stay on par with changes in the field, and
(iv) dynamic and continuous threat assessment by providing impact
analysis and architectural security and privacy decision making support.

We argue that the additional complexity introduced for representing
security and privacy solutions is manageable in practice with
appropriate tool support and provides a number of compelling
benefits in expressiveness, traceability, separation of concerns, and
support for dynamism. With tool support that better leverages
the available models, more advanced threat analysis activities are
possible that move away from a binary threat classification (i.e.
(not) applicable or (not) mitigated) to more probabilistic risk-based
assessments that better characterize to which degree a certain threat
may be mitigated by the presence of one or more security or privacy
solutions. Such a probabilistic assessment also enables more precise
and continuous re-assessments of threats and the effectiveness of
the provided countermeasures by incorporating information an new
vulnerabilities or changes in the effectiveness of the used security and
privacy solution. The next chapter will go into detail on these analyses.

4.1

4.2

4.3

4.4

4.5

Chapter 4 Outline

Automating Threat Elicitation 70

4.1.1 Analysis of Element-Based Elicitation 70
4.1.2 Interaction-Based LINDDUN 73

4.1.3 Beyond Interaction-Based Elicitation 78

Prioritizing Threats through Risk Indicators 86
4.2.1 Risk Assessment Model 87
4.2.2 Impact on Threat Modeling 93

Evaluation and Discussion 96

4.3.1 Evaluation of the Interaction-Based Elicitation 97
4.3.2 Evaluation of the Risk Assessment Model 100

4.3.3 Discussion on Interaction-Based Threat Elicitation 105
4.3.4 Discussion on the Risk Model 107

Related Work 109

4.4.1 Threat Elicitation 109
4.4.2 Design Flaw Detection 111
4.4.3 Threat Prioritization 112

Conclusion 115

Design-Level Analysis for
Security and Privacy
Threats

We must become more comfortable
with probability and uncertainty.

— Nate Silver [Sil12]
The Signal and the Noise

This chapter builds on content from the following previously published articles:
Laurens Sion, Kim Wuyts, Koen Yskout, Dimitri Van Landuyt, and Wouter
Joosen. Interaction-based privacy threat elicitation. In 2018 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pages 79-86.
IEEE, 2018

Laurens Sion, Katja Tuma, Koen Yskout, Riccardo Scandariato, and Wouter
Joosen. Towards automated security design flaw detection. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
Workshop (ASEW), SEAD ’19, pages 49-56, 2019

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter Joosen.
Risk-based design security analysis. In Proceedings of the 1st International
Workshop on Security Awareness from Design to Deployment, SEAD ’18,
page 11-18, New York, NY, USA, 2018. Association for Computing Machinery
Laurens Sion, Dimitri Van Landuyt, Kim Wuyts, and Wouter Joosen. Privacy
risk assessment for data subject-aware threat modeling. In 2019 IEEE Security
and Privacy Workshops (SPW), pages 64-71. IEEE, 2019

67

As discussed in the previous chapters, the realization of the Security
by Design (sbp) and Privacy by Design (PbD) principles requires
analyzing the design for its security and privacy properties. This
dissertation focuses on the application of security and privacy threat
modeling approaches [HL06, Shol4, DWS*11, Wuy15] to perform such
a systematic assessment. Chapter 3 presented and extended the Data
Flow Diagram (DFD) model of a system to represent the design and its
security and privacy solutions.

This chapter considers the next step in the approach: the analysis of
these design models in order to identify and prioritize security and
privacy threats. The analysis in this chapter is divided into two main
parts: (i) the eliciting security and privacy threats using DFD models;
and (ii) the prioritization of these previously elicited security and
privacy threats by applying risk analysis.

Identifying security and privacy threats. There is no clear consensus
on the most appropriate abstraction level for threat elicitation.
Originally, threat modeling approaches performed an element-based
threat elicitation by exhaustively iterating over the individual DFD
elements [SS04, HL0O6, DWS*11, Wuy15]. More recent approaches,
however, perform interaction-based threat elicitation [Shol4, Mic20,
SWY*18], in which a systematic iteration over the interactions in
the model (i.e. ‘sender-flow-recipient’-combinations) is performed.
There are other more formal approaches [TSB19] which rely on some
additional extensions to the DFD model (discussed in Section 4.4).

In this chapter, we provide a detailed and in-depth analysis of
the shortcomings in element-based threat elicitation and argue how
interaction-based elicitation resolves these shortcomings by including
more system context information (i.e. not just a single element, but
a data flow and the element types it connects) into account when
considering its applicability. Next, the interaction-based variant of
LINDDUN is presented as to enable interaction-based privacy threat
elicitation. Afterwards, we discuss how evolving beyond interactions
allows even more advanced threat applicability assessments that take
more system context into account beyond the narrow scope a single
interaction between two DFD elements. While the additional available

information and increased elicitation complexity may not help the
user [TS18], automated elicitation does not suffer from these problems.
Indeed, it can very systematically and consistently apply the criteria
regardless of the size of the system.

Threat prioritization. Even with more detailed threat applicability
conditions that take more context into account (e.g., the interaction
and its connected element types), the systematic elicitation of security
and privacy threats leads to the problem of threat explosion [SYVJ18c,
WVHI18] in which too many (less relevant) threats are raised and
negatively impact the overall effectiveness of the threat modeling
activities. Such large lists of security and privacy threats also
complicate the assessment to determine their relevance (e.g., based on
likelihood and impact). Existing threat modeling methodologies assume
a very coarse-grained and manual classification of the threats (i.e.
applicable/not applicable or high/medium/low). Such an assessment
does not take into account: (i) which threats have a critical impact on
the system or the assets it processes or stores, (ii) the types of attackers
and how capable they are, and (iii) how well existing security and
privacy countermeasures protect against those types of attackers. While
the application of risk analysis approaches [LSS10, FJ14] in conjunction
with threat modeling can ameliorate some of these disadvantages, their
application would require a substantial manual effort for each elicited
threat, which would not scale well and worsen the impact of the threat
explosion problem.

To address these problems in a threat modeling context, we present a
security and privacy risk assessment approach for estimating a threat’s
risk to enable subsequent prioritization of the elicited threats. This
approach is based on the FAIR [FJ14] risk model and explicitly supports
uncertainty in the inputs to the risk analysis. Integrating risk analysis
into the threat modeling context enables a more nuanced assessment of
a threat’s relevance. The integration of the approaches in a single design
analysis activity achieves the following benefits: (i) it provides guidance
in triaging threats and focusing on the most important, high-risk threats
first, (ii) it supports the consideration of the strength of existing security
and privacy measures in protecting against threats, (iii) it replaces the

binary or categorical (high/medium/low) classification of threats with
a more nuanced view based on the calculated risk, and (iv) it allows
for measuring risk reduction progress over multiple design iterations.

41 Automating Threat Elicitation

This section elaborates on extending the threat elicitation. First, an
analysis of element-based threat elicitation discusses the problems with
this approach because of the limited information on the system context
(i.e. only a single element) that is considered during the elicitation.
These problems are partially resolved with interaction-based security
threat elicitation [Shol4, Mic20], but not for privacy threat elicitation.
Hence, the second part will introduce the interaction-based elicitation
for the LINDDUN privacy threat types in order to support considering
a more extensive system context (i.e. the data flow and the sending
and receiving elements) when eliciting privacy threats. Finally, the last
part moves beyond the interaction-based elicitation with an approach
to incorporate an even broader system context by looking at more
elaborate configurations of DFD elements to identify design flaws.

411 Analysis of Element-Based Elicitation

This section discusses the advantages and disadvantages of the
application of element-based threat elicitation. The element-based
LINDDUN threat type mapping template (Table 4.1) is used throughout
this section to illustrate the limitations of the element-based elicitation.

The main advantage of the element-based threat elicitation approach
is its simplicity. A single, small mapping table template (Table 4.1)
suffices for guiding the elicitation and determining a threat type’s
applicability. This mapping table template details for each DFD element
of a specific type (listed in the rows), which corresponding LINDDUN
categories (in the columns) have to be considered (X) or can be omitted
(—). Applying the element-based elicitation in practice therefore simply
involves iterating over every DFD element and eliciting the applicable

Table 4.1: Element-based LINDDUN Mapping Table Template

Element Type L I N D D U N
Process X X X X X - X
Data Store X X X X X = X
External Entity X x — — — X —
Data Flow X X X X X — X

LINDDUN threats following the template. This makes the element-based
elicitation particularly well-suited for manual execution.

However, the main disadvantage of such an element-based approach
is the fact that it is completely agnostic to the local DFD context of
the element. The element-based approach does not take into account
contextual information such as whether the element sends/receives or
the type of the other element it communicates with (e.g., an external
entity). The lack of this contextual information during threat elicitation
may lead to: (i) the omission of relevant threats (false negatives), (ii) the
elicitation of threats that are not applicable (false positives), and
(iii) redundancies in the documented threats. Each of these problems
are discussed in more detail below.

Omitting Threats (False Negatives)

Element-based threat elicitation can lead to threats being omitted
when a single element is involved in multiple interactions with other
elements. When there are multiple incoming or outgoing data flows
connected to an element, that element may be threatened in different
ways over each of those flows. If those different types of interactions
are not taken into account by instead focusing only on the element
itself, some threats may remain undiscovered as the context of the
different types of interactions is unknown by the threat modeler.

For example, the insufficient minimization of results from a data store
(e.g., a database) can cause identifiability threats because it could be
possible to read or derive the identity of a data subject in the data

store. However, queries to a database can also reveal information about
the user performing those queries. Therefore, it is necessary to consider
the different roles the database plays in all the other interactions
it is involved in. Another example involves the application of data
minimization techniques (to prevent identifiability) when storing data
in a data store. These protections would not automatically hold for
any other process that saves data to that data store. Instead, this
depends on how and where the countermeasure is applied. If this is
only considered on the element-level at the data store, identifiability
threats resulting from other processes storing data would be incorrectly
omitted because these other processes are not considered.

Eliciting Inapplicable Threats (False Positives)

As the —’s in Table 4.1 illustrate, not all threat types always apply.
However, determining whether a threat type applies depends on more
than the DFD element type. It can also depend on the direction of
the data flow. For example, a detectability threat at the level of
the process is only applicable when the process is sending data, not
when receiving. This cannot be captured in the element-based threat
template (Table 4.1), as there has to be an X to ensure detectability
threats are elicited for the sending case, which can lead to wasted
analysis effort in trying to elicit a threat in the receiving case when
it was not even applicable. Therefore, more fine-grained applicability
conditions support the elimination of these inapplicable cases based on
the context information.

Consider the following example. A data store in a system may be
susceptible to a detectability threat for user records when their existence
is acknowledged with, for example, an access denied error. However,
such a threat would only be applicable when there is a returning data
flow from the data store to the requesting process. If the data store
does not respond to any request (not even reporting on success or
failure), then it cannot reveal the presence of any existing records and
the detectability threat is not applicable. Eliciting threats without
taking a broader context into account can lead to threats that will
have to be removed later on.

Eliciting Redundant Threats

Observations on the application of STRIDE element-based threat
elicitation in an industrial context have indicated that the element-
based threat elicitation is more time-consuming and redundant [Dhill,
p. 43]. Without taking into account the interactions and their directions,
element-based threat elicitation can lead to threat duplication (at the
source, the data flow itself, and the destination). This duplication is
caused by the lack of a clear distinction between the different roles of
the DFD elements involved in single interaction.

41.2 Interaction-Based LINDDUN

This section first introduces the construction and resulting mapping
table of the interaction-based privacy threat elicitation variant of
LINDDUN. Hereafter, the differences in the application of element-based
and interaction-based threat elicitation are explained in further detail.
Finally, the section concludes with a discussion on how the context
information can be further expanded with pattern-based elicitation.

Construction of the Interaction-Based Mapping

The creation of the interaction-based mapping template starts with
listing all the DFD element interaction combinations, taking into account
the three different elements that are part of an interaction (i.e. source,
data flow, and destination), leading to a table with 105 combinations
that have to be considered. To avoid interpretation ambiguities because
the interpretation of the threat types differs slightly from the element-
based approach, a completely empty mapping is used as the starting
point. This table is subsequently evaluated for each privacy threat type
to determine the applicability of the threat type given the involved
DFD element types. This initial table was created at the basis of expert
knowledge (with the involvement of the creators of LINDDUN) and
guided by example threats for each of the combinations [SWY*18].
Table 4.2 shows the resulting interaction-based mapping table.

Table 4.2: Interaction-based LINDDUN Threat Type Mapping

Source Destination L I N D D U N
Process X X X X X — X

DataStore X X X X X — X

E ExternalEntity X X X X X — X

Process X X X X X — X

Process X X X X X X -

Process X X X = = — X
DataStore X X X - = — X
ExternalEntity E X X X — — — X
Process X X X — X — X
Process X X X — — X X
Process Process X X X X X = =
Process DataStore X X X X X — -
Process ExternalEntity X X X X X — —
DataStore Process X X X X X — -
ExternalEntity Process X X X X X = =

The elements in the first three columns highlight the element to which the
privacy threat is associated (using a notation). Note
that invalid DFD element combinations (such as DataStore-flow-DataStore or
ExternalEntity-flow- ExternalEntity) are not included in this table.

"AT9AT100dS0I S)UOUIS[O UWOTYRUTISOP PUR 9DINOS dY) 0} I9Jo1 sojdurexo
oYy ur suoljejouue () pue (S) 9y, 'g'T'F UOI09g woly suonuygop oY) Sursn ‘(uoryejou pozisnydis pun paLojod
e Sursn) poajeroosse st jeary) Aoearrd oY) yYOIYm 07 Juewd[d oY) IYSIYSIY SUWN[0D 99IY) ISIY O} Ul SJUSWS[D O T,

| 75

‘ot oty S ‘wopwonnuIos - . <
- — w0 pogrus orv wywp-viour (ouyeas yu) Jo oomopran porjon B ¥IVD 3 e Auy S Ay
s homos aopereg | SM08 WD Jo womoaraa o 0 AERAS DO e w vyep elquynuopt ouy Susn sy Suptury g
“quedwoo-uon ‘(@) soned APGUIIOP STV “ojur umo
St oM P YA TP syuonoxd (1) Arred parg clysopliept S IIA 91 QUIQUIOD 0}
- - () Aared payy e oy ojur d

fyred pang e jo Supreys jo oreameun v 03 spioons nonovaoqur (L) FhEE et smol (q) Avd pargy
I eyep Surreyg st o0lqus-vreq Tosn (g) Suprag LAPBRUSPE (8) BUPUOS 1 coiopr () Supuog

() uoneziAuoue (@) (pordfsousun “Ayriqeiuep ojqusned Suruoped Amvcwwm_u “(a) woneziuAuoue

Juoneznuunm [- syuanaid suopor 10 wopeznmIT G (] d
" ! 70) oFe103s oamdesu] © : o1 In0qe ojur [2aAGI ezt £
uarynsuy (5) wosn (@) Fuissor ., T AT IS eyep JuapynSU] |
o X . . “saotatos 2
:_a_:.sfﬂ_z_v._wﬁu “somyeusis (eysip iwﬂwﬂm_.“w.ﬁ ,hwwﬁnﬁ somu synomanom E -
) Surssooos - - T Suppe (q) sse00ad v o0 VS e dnugyg () «S1oST Uil weo (a) I
() Buissooo1g o (@) 0SS v dn-usis 0
siseq [nyave| [“(8) aq woy “uoissos Tosn o[FuIS
oYM Byep Iosn - - = suoe A.,n: ,nm..:ﬂ“a, "P woneuojur olqegnuepr ut (5) Aogsi (e Syuy 7 sa
() Butssooorg PP s v 30 () rerowpoy (1) sseooud a0smoiq Y
. . “saotatos
Eo_:.mmmwm_ﬁwh QanjeuSis [epSIp uwwmmww_mmﬂ,__mw_uw%mhm sso10e sjudLIRAO , a
" - - - Suppe () sseooxd y JF IHIATIY g (8) .stosn yuip wes (1) C
() Sumssooo1g o () Oss v dnuds 8 e v
“(a) “(a) . 8 .
W pareys Sutaq “(§) woy wyEp uo130a30p 10§ pasn oq (e L0 "5 0) . (@
t N 5 8 > suopnes -oxd oM (@) o eyep Anpquuy oy peoy wed
— SIejEp UONW MOY AU} PAWDAI O} POZLIOINE UED (§) 3 (19J9U0IB[00E e S . Td
10 oIYM Jo dremeun 0u st ((1) $89001] £8+9) s10suBs T e 1 (5) upuos ¥ s
~ P2 et o wois v i (5) opuos (s) supros
= . (@ . (yeuo ULO “F0) ‘() pomnwkuoue-op
= s g oy oot asop) (@) 01 swpo Sproge OV MIO 150) s (o) (@) porm oq o (5))
= MOIM BIEP SPUSS - T PI0201 © JeT) [€oADT WD P e ML €q w vivp pozmAuone sa
= o 101 () det ueo foxyuos ssoow SO T BEIOE T pqeruep oqusneid g ut erep pozimAuoue rarougne; £
= oy (g) seqeyep y S 4 u sey (g) 1opuag Apuepyynsuy
= “stsuq “oAt0901 “sxosn (e MO “50) “woryeoyUApL “eyEp uMO YiIM !
= [myave] 3noyIm 03 pozLIOYINE JOU §,31 IMOK JO UOHOPIOP S[qEUS suopnes -oid JNOYILM joolqus-esep (1) 3t uil 03 () Ared payy 2
= (1) Avred pangy T (g) ssoooid woy eyep (@) sorred panys oy Aypiqeruop ofqisnerd Ayred paryy so[qeud ojul © mo[[e ueo sossoippe A 2 d
[© yim () Butreys soaa () Ared payy q1d (8) Sunestunuimop ou sey (g) wpusg d[qeynuLpl (§) Sueys rews () Suneys |
< g 8 . g
] sisuq nyave (spromssed “-o) szt 90UDISIXD (veyp HILO “50)) (030 ‘ouren Bury a[qeorpord
) Junooow speasss suopnen -oxd noyjim 1y “-o1) oyeoyID 10 (ayeayraa0
not By 1950 = 29 LUPINOUS WM () 1,4 promssed joa1100u1 qerap ofqisnerd ae (s) “g0) stogruopr O d
(3) Surssov01g aa o1 erep (8) Sunipm ! Hqst £ ! '
Burmoys (§) o31sqoM ou sey (g) 10pusg UOIRULIOJUL A[qEYIUSP] sosn (g) sso001g
) siseq [nyae| (@) E:SM&MMM éo_%ﬁ_wwwﬁmoﬁ% oyur Ayyuapr sEa| “sorAnOe ,300lqns-eiep
zZ wmon wywp dosm — ordpoor pozgomanEIn 03 o GO IO aoniop o (@) 23150oM © 03 wHo © yu e (5) wsmorq d
= (3) Burssovo1g eyep S[eosdt (§) ssa001g Spmous (5) orsaom o s (5 1opUsg amp (8) saesmo1q v 1y Aq Jues sa1j00)
=
z . oansopsiqy P —
° -uoN n uopyeurzopuy SHIGEAEEIET e 1yerpndoy-uoN 1Iqeyyuepy IqeuIT UOIJeU)SO(] 92INn0g
<

-

serdurexe NNAANIT Paseq-UOIORIAIUI] ¢'F 9[qe],

—>
UserA

DF2
Element-based Interaction-based
Iteration 1: Data Flow DF1
— DF1 threat(s) — DF1 threat(s)

— — UserA threat(s) (source)
— — Portal threat(s) (destination)
Iteration 2: Data Flow DF2

— DF2 threat(s) — DF2 threat(s)

— — UserA threat(s) (destination)
— — Portal threat(s) (source)
Iteration 3: External Entity UserA

— UserA threat(s) —

Iteration 4: Process Portal

— Portal threat(s) —

Figure 4.1: Element- and Interaction-Based Elicitation Differences

This diagram and table illustrate the differences in elicitation iterations between
the element-based and interaction-based elicitation approaches. It shows how the
interaction-based approach has fewer but more complex iterations that involve all
the roles in an interaction, while the element-based has more but simpler iterations.

After construction, the interaction-based table was compared with
the original element-based LINDDUN table to perform an in-depth
analysis of the differences. This analysis highlighted multiple differences
between the two tables (5 additions and 12 eliminations of X’s, or 16%
of the entries). These discrepancies mainly result from the lack of
semantics in the element-based approach to associate a threat type to a
specific participating element in an interaction. Therefore, the following
interpretations were used to unambiguously specify whether the threat
should be located at the source, the data flow, or the destination:

Source The threat arises at the level of the element that shares or
communicates data where the sharing of the data can cause a privacy
threat. An example of this is a browser that retransmits cookies or
other linkable identifiers to each recipient.

Data Flow The threat arises at the level of the data flow, i.e., when
the data (both contextual, i.e., meta-data, and transactional, i.e., the
content itself) are in transit. For example, contextual data about the
source and destination can be used to link multiple data flows, or to
identify the parties involved in the communication.

Destination The threat arises at the level of the element that receives
the data where the data can be processed or stored in a way that causes
a privacy threat. An example of this is insecure storage or insufficient
minimization of the data upon storing.

Applying Interaction-Based Elicitation

Figure 4.1 illustrates the differences between the interaction-based and
element-based elicitation approaches with a trace of the elicitation
iterations in the two approaches on a small DFD fragment. Instead
of iterating over each DFD element, the interaction-based elicitation
approach iterates over the data flows in the model (in which threats
are elicited for the source, the flow itself, and the destination of that
data flow). Because of this, different threat types have to be specified

for these three roles of an interaction. Each of these correspond with
the outer rows in Table 4.2, from top to bottom respectively source,
destination, and flow.

Table 4.3 provides an overview of privacy threat examples for each of
the X’s in the interaction-based threat table (Table 4.2). This table
can assist the human threat modeler in understanding and interpreting
the different privacy threat types and serves as a key knowledge asset
during threat modeling brainstorming sessions. Obviously, such a
table of examples is always incomplete, as there are multiple privacy
threat types possible for each individual cell. Nonetheless, such a
table is invaluable for concretization and brainstorming purposes.
Existing privacy threat knowledge sources such as privacy threat
trees [WJ15] can be used in conjunction with this table to complement
this knowledge.

41.3 Beyond Interaction-Based Elicitation

Traditional threat modeling approaches support a rigorous and
systematic assessment of the system under consideration. The threats
that can be discovered using their element-based or interaction-based
elicitation approaches remain limited to those that can be identified
with the system context as it is available during threat elicitation.
Some security or privacy design flaws, however, are more elaborate and
involve multiple elements and interactions. Therefore, these flaws are
harder to find when focusing on a single element or interaction.

As the complexity of the design flaws to detect increases, a systematic
assessment of every possible combination of larger sets of DFD elements
and their interconnections is no longer tractable. Instead, approaches
can rely on catalogs of security and privacy design flaws in order
to uncover these flaws in concrete DFD models. Numerous different
catalogs of design flaws have been published [CVE19a, CWE20, CAP18,
ADD*14, SPM*17, OWA17a, MH17, THMS19] that provide extensive
sets of flaws for which systems can be analyzed. However, the
application of this knowledge to find these flaws in DFDs remains

Table 4.4: Flaw catalog of Malamas and Hosseini [MH17, THMS19]

Flaw Name

1 Missing authentication
2 Authentication bypass
3 Relying on single factor authentication
4 Insufficient session management
5 Downgrade authentication
6 Insufficient crypto key management
7 Missing authorization
8 Missing access control
9 No re-authentication
10 Unmonitored execution
11 No context when authorizing
12 Not revoking authorization
13 Insecure data storage
14 Insufficient credentials management
15 Insecure data exposure
16 Use of custom/weak encryption
17 Not validating input/data
18 Insufficient auditing
19 Uncontrolled resource consumption

a difficult challenge, as the catalogs only contain textual descriptions of
these flaws which need to be correctly recognized in a concrete design.

Security & Privacy Design Flaws

To determine the modeling requirements for detecting design flaws, we
start from an existing catalog of security design flaws [MH17, THMS19].
This catalog contains 19 common architectural security design flaws
concerning authentication, access control, authorization, resource
availability, integrity, confidentiality. To illustrate the application
of this knowledge for detecting flaws in concrete systems, the “Insecure
Data Ezrposure” flaw is used as an example. Snippet 4.1 shows the

80 | CHAPTER 4 - DESIGN-LEVEL ANALYSIS FOR SECURITY AND PRIVACY THREATS

Security Design Flaw 15: Insecure Data Exposure

Description Data is not transferred in a secure way. For
example a web application uses the HTTP instead
of HTTPS. This leaves the channel vulnerable to
eavesdropping, Man In The Middle (MITM) attacks etc.

Detection

e Locate the valuable information in the model.
e Track them through the architecture to determine where
and how they are transferred.
e At each step examine the following:
— Is the reuse of packets prevented (Replay attacks)?
— Is there any form of timestamping, message
sequencing or checksum in the exchanged packages?
— Is the traffic over an encrypted channel (SSL/TLS)?

Snippet 4.1: Design Flaw 15: Insecure Data Exposure
Description and inspection rules of security design flaw 15: insecure data exposure,
from the security design flaw catalog of Malamas and Hosseini [MH17, THMS19].

catalog entry which consists of: (i) a name, (ii) a brief description, and
(iii) a series of detection rules, i.e. closed questions to determine the
flaw’s applicability.

Manual detection. Considering the “Insecure Data Exposure” secu-
rity design flaw, listed in Snippet 4.1, as an example, this flaw is present
when data is not transferred securely. This flaw’s description illustrates
that the manual assessment for the presence of this flaw is non-trivial.
It involves: (i) systematically exploring the model to find and track the
flow of valuable information through the system, and (ii) evaluating
several criteria at every point where this information is present. To
support such analysis activities, the automated detection of these flaws
can ensure a systematic and comprehensive assessment of the system.

Detection concepts. For the automated detection, the concepts used
in the flaws’ detection rules need to be identified in the architectural
design models. The following five concept types were derived from

41 - AUTOMATING THREAT ELICITATION | 81

Insecure Data Exposure Design Flaw

Detection
e locate valuable information in the model — [action:
traverse model for [data: sensitive]]
e track them — [action: track all elements [data: sensitive]]
o At each step examine the following:
— ...prevented — [countermeasure: tampering]

— any form of ... — [countermeasure: tampering]
— encrypted channel — [countermeasure: information
disclosure]

Snippet 4.2: Insecure Data Exposure Design Flaw

Mapping of the textual description of the security design flaw to model elements.
The snippet shows how the textual elements from the Insecure Data Fxposure design
flaw (shown in Snippet 4.1) can be mapped to model elements from a DFD model.

Insecure Data Exposure Pseudocode

for (DFDElement e : DFDModel. elements) {
for (DataType d : e.dataTypes) {
if (d.isSensitive ()) {
if (le.solution.protects(d,tampering)
|| 'e.solution.protects(d,infoDiscl)) {
triggerDesignFlawl5b ();
133}

Snippet 4.3: Insecure Data Exposure Pattern Pseudocode

Conversion of the model element criteria to pattern pseudo-code. The pseudocode
shows how the iteration over the model elements and the data types they process to
verify whether an appropriate solution is present. The pseudocode here assumes
a single solution for simplicity. In practice however, all solutions affecting the
considered element should be checked for protection against the specified threat type.

a study of the complete catalog of design flaws [MH17, THMS19]:
information, operations, countermeasures, attacks, and actions. Some
of these concepts refer to information that needs to be present in the
model (e.g., information), others refer to the type analyses that have
to be performed on the model (e.g., actions).

Information Some flaws require the presence of certain types of
information: sensitive information, encrypted data, credentials, or
cryptographic keys. These information types should be retrievable
from the model. The example in Snippet 4.2 relies on model elements
which have data attached to them with the sensitivity property set.

Operations Some flaws rely on additional information on the types
of operations that processes perform. Flaw 9 (“No re-authentication”),
for example, relies on this information to detect whether a user is
re-authenticated before a process performs security-critical operations.

Countermeasures Some flaws depend on the presence or absence of
countermeasures. In order to detect these flaws, the system models
should support the representation of security and privacy solutions. The
encrypted channel criterion in Snippet 4.1 corresponds with the presence
of a security solution that protects against information disclosure
threats on a specific communication channel.

Attacks Instead of relying on countermeasures, some flaw descriptions
refer to whether or not certain types of attacks are possible. These
types of criteria can be resolved analogously to the countermeasure
case by relying on the presence of countermeasures to defend against
the attacks specified in the flaw descriptions.

Actions Finally, the flaws’ detection rules specify different types of
actions (e.g., locating, tracking, finding). Contrary to the previous
concepts, actions do not represent new types of information that have
to be captured in the model, but instead refer to types of analyses that

have to be performed on the model. For the example in Snippet 4.1,
the action “track (valuable information)” requires retrieving all the
elements that handle (i.e. process, transfer, or store) sensitive data.

Modeling Support

This section considers how the existing modeling support for threat
elicitation can be leveraged for design flaw analysis. To optimize the
efficiency of security and privacy analyses, additional complementary
analysis activities should reuse existing modeling artifacts as much
as possible. The conceptual requirements for detecting the design
flaws outline above, show that this is possible to a large extent. For
each of the concepts introduced above, we outline how the information
can be extracted from system models expressed using the meta-model
presented earlier in Chapter 3.

Information and Operations Representing information is directly
supported by the meta-model, which allows the representation of
different data types and which DFD elements transfer or process
information of those types. Security-related information can also
be derived by relying on naming conventions for identifying keys or
credentials. There is no explicit concept identifying security-critical
operations. While this could be modeled using an attribute of a
process, currently the easiest way to identify these types of processes is
by deriving a process as critical when sensitive data is being processed.
This approach for detecting security-critical operations requires no
additional extensions for detecting them in existing DFDs.

Countermeasures and Attacks These concepts can be grouped
together as the existing security and privacy solution modeling
support can be used for extracting this information from the models.
The solutions provide the relevant information on the presence of
countermeasures. Furthermore, these solutions refer to the specific
threat types they prevent and, hence, also provide the necessary
information on the attacks that are rendered impossible.

[y

Actions Finally, actions should be supported in the analysis. This
concept is not represented in the models but should be supported in
the analysis of the model. The interaction-based analysis is insufficient
for assessments such as tracking sensitive information across multiple
model elements. The next section will go into detail on how, by
expanding the system context from interactions to generic patterns,
the analysis of the DFD models can support the detection of complex
configurations of DFD elements, countermeasures, and data types.

Pattern-Based Elicitation

First, we explore how the existing element- or interaction-based threat
elicitation can support the detection of design flaws. Considering the
pseudo-code in Snippet 4.3, the example shows the localized flaws can
easily be detected by iterating over the elements in the DFD model and
verifying the necessary conditions for the flaw.

However, when considering a more complex flaw such as stored Xss,
described in ¢wE-79 [CWE19] from the CWE catalog [CWE20] and
ranked second in the top 25 most dangerous software errors [MIT19], it
becomes clear that the interaction-based elicitation is insufficient as this
flaw involves data being stored in a data store (with potentially multiple
processes in between) and later retrieved again when constructing a
web page for a user. Figure 4.2 shows a graphical representation of
this flaw in a DFD, with the relevant data flows marked in color.

Eliciting this flaw by focusing on only one of its interactions could
generate multiple false positives, as it is not always possible to determine
which interaction of the flaw is matched if there is a chain of multiple
linked data flows is used to detect the flaw. To precisely detect such
flaws, a more extensive system context needs to be taken into account.
Figure 4.2 can also be expressed with the following regex-like pattern:!

|:|—>(O—>)+=—>(Q—>)+|:|

Legend of the pattern elements: =: External Entity, O: Process, =: Data Store,
—: Data Flow, and (x)*: at least one x.

4.1 - AUTOMATING THREAT ELICITATION 85

External Entity
| UserA | | UserB |
Process A Process B
Data Store
Data Flow
Database

Figure 4.2: Illustration of a DFD with XSS

This Data Flow Diagram shows the path of a stored XSS attack through the system.
This illustrates how the interaction-based approach is sub-optimal to detect this flaw
as there are several data flows involved which can lead to multiple false positives.

pattern xssflaw () {
ExternalEntity (el);
ExternalEntity (e2);
DataStore(ds);
Process(pl);

find communication(el,df,pl);

neg find mitigation(pl,df," Tampering");
find FlowTo+(pl,ds);

find FlowTo+(ds,e2);

Snippet 4.4: Xss Pattern Description

This snippet shows the VIATRA pattern description for the Xss flaw. It constrains the
types of the elements, their connections via one or more data flows, and whether a
matigation against tampering is present on the incoming flow from el.

In order to support more complex configurations and to verify the
presence of security and privacy solutions, a pattern query language,
such as VIATRA,? can be used to efficiently query models. Snippet 4.4
shows the pattern for the xss flaw, which also checks for the presence
of a countermeasure against tampering on the incoming data flow.
This pattern can be further extended with more checks for additional
countermeasures to enable a comprehensive assessment of the flaw’s
applicability. We have provided a complete description of the approach
to translate design flaws to model queries [STY*19].

4.2 Prioritizing Threats through Risk Indicators

Complementary to the security and privacy threat elicitation discussed
above, this section covers the prioritization of these threats through
the use of risk indicators. The prioritization of security and privacy
threats consists of two main parts: (i) the extension of the FAIR [FJ14]
risk model to enable its application in a threat modeling context to
enable the prioritization of the elicited threats, and (ii) the impact
of this additional analysis step in the threat modeling process itself,
as multiple parameters of the risk model need to be considered to
calculate the risk of each elicited security and privacy threat. The
prioritization of threats is applied in the context of interaction-based
threat elicitation as described above in Section 4.1.2, as it provides
a consistent system context (two elements and the connecting data
flow) to determine the impact as part of the risk assessment. The
prioritization can also be applied on patterns described in Section 4.1.3,
but, given the wide range of possible patterns and elements involved
in them, this requires additional information. For example, which of
the elements involved in the pattern contain or process the threatened
assets for determining the impact in the risk analysis.

2 https://www.eclipse.org/viatra/

4.21 Risk Assessment Model

The section presents a security and privacy risk assessment model to
support the prioritization of security and privacy threats. This model
is inspired by the FAIR [FJ14] risk assessment model, but extends it
to support its application in a threat modeling context and expands
it with privacy and data subject risk factors in order to enable the
risk assessment of the LINDDUN privacy threats. Figure 4.3 shows the
complete decomposition of risk into its underlying components.

The FAIR approach (explained in Section 2.5) was chosen as the base
risk model because: (i) it provides more granular assessment than
high-level categorization (e.g., high/medium/low); (ii) the numerical
inputs supports automation for prioritizing elicited threats; (iii) the
information for the risk components are providable by the threat
modeling inputs (e.g., DFD model, threat catalog); and (iv) it supports
expressing uncertainty in its inputs to cope with the difficulty of
assigning precise values for risk inputs.

This risk model unifies: (i) technical risk originating from the system
context and its security and privacy countermeasures, (ii) data subject
risk incorporating data subject types and their data types, and
(iii) organizational risk both by scaling the impact according to the
number of data subjects and data records involved and by incorporating
the impact of security threats on assets being processed or stored.

Below, each of the risk sub-components are explained, following the
structure of the risk decomposition as presented in Figure 4.3.

Risk

The risk is comprised of two parts: (i) the Loss Event Frequency, which
represents the estimated frequency of successful attacks or privacy
incidents; and (ii) the Loss Magnitude, which represents the damage
to assets for security threats and the impact on the data subject(s) for
privacy threats. These two factors are multiplied for the overall risk.

Risk = LM x LEF

Loss Event Frequency (LEF)

The first risk component is the Loss Event Frequency. It represents the
total frequency of successful attacks or privacy incidents. It is obtained
by combining the frequency of the attempts (TEF) with the probability
of a successful attack or incident (V). For privacy threats, the attempt
frequency is combined with the retention period (RP) which represents
how long the data is processed or stored on the same time scale as the
frequencies (LEF and TEF). The LEF is calculated as follows:

LEF = TEF XV x RP

Threat Event Frequency (TEF) The Threat Event Frequency represents
the frequency of threat attempts. These attempts are not necessarily
successful. The Threat Event Frequency (TEF) is further decomposed
into: (i) the probability of action (PoA), indicating the likelihood of
an attempt, and (ii) the contact frequency (CF), representing how
frequently the threat actor3 comes into contact with the system. The
TEF is obtained by multiplying these factors:

TEF = PoA x CF

Probability of Action (PoA) The Probability of Action specifies the
likelihood that a threat actor will perform an attempt. This probability
varies between different types of adversaries (and is influenced by their
incentives, capabilities, and opportunities). For example, an external
attacker in a different legal jurisdiction may be very likely to attempt an
attack when coming into contact with the system as any repercussions
are unlikely. An insider such as an employee, however, may be less likely
to act if there are strict monitoring controls imposed and repercussions
on discovery; while a system administrator may be able to bypass all
these controls to evade detection and, hence, be more likely to attempt
something compared to the regular employee. Multiple attacker profiles
are needed to capture these differences in the risk analysis.

This threat actor can be an external attacker (in the context of security threat
modeling), but it can also be the organization for the privacy threats. For example,
an organization can collect and process data of which the user is unaware.

ys14 s, 2dfi) a3150ddo 2Y) buSSISSD UYM JUNOIID 0JUL UIYD] JOU 4D SIUIUOAULOD 2SIY [, "L0]0D UL PIYLDUL 4D §1D34Y) fiovard
40 f19241038 07 01102ds 24D DY) SIUUOAULOY) *SIUIUOAULOD-QNS 0JUL PISOAULOIIP ST YU Y] MOY §IDUISN) L 24nbL 2009D 2],

[OPOJA JUQUISSISSY ST 9} JO MIIAIOA(Q) :€'F oISBI]

PIsps ~ SAN
s123[qng eleq jo “AqN

PpISps ~ 1Sda

adA] 109lqng ejeq
PISp>s ~ Ad
anjepAoenld

PISPIs ~ YN PISPROs ~ INT
SpJo23y Jo UqN spniiuge|psso
195 ~ AY
anje)19ss
PIpos ~ sS1a ISV
AnnisusgadA | ereq 115p‘de
PpIspos ~ dy 7395 ~
de'ss ~ | || de'ss ~ g) polRquoIIURIRY 1Sty
Japisu| passedAg sinseswsiunod)
de‘130s ~ A
1105 ~ g Ajigessuinp
y13uai1g de‘120s ~ 437

de‘11'0s ~ QD

pa31esjs =4nseswialuno) %UC&:UGLH_HC0>m_mwO|_

de‘12'0s ~ |
Ajiqede) 3eaay e
Aousnbai4 10e3U0D)
deos ~ 431
Aouanbaiqiuangieal
de‘os ~ yod A o
uondy Jo Aujiqeqoid

Contact Frequency (CF) The Contact Frequency specifies how
frequently a threat actor interacts with the system. This factor again
varies tween different attacker profiles in order to support distinguishing
between, for example, external adversaries, insiders, or regular users.

Vulnerability (V) The Vulnerability factor specifies the probability of a
successful manifestation of a security or privacy threat. This takes into
account the type of the attacker, the system, and the countermeasures
protecting against the considered threat. The vulnerability is calculated
as the maximum of: (i) the countermeasure being defeated (CD), and
(ii) the countermeasure being bypassed (CB).

V = max (CD, CB)

Countermeasure Defeated (CD) The Countermeasure Defeated
indicates whether a certain security or privacy countermeasure can be
defeated by an adversary. This factor is calculated by comparing:

Threat Capability (TC) expressing the ‘strength’ of an ad-
versary in being able to defeat certain security or privacy
countermeasures; with the
Strength (S) indicating the strength of the countermeasure in
being able to resist the adversary.

The Countermeasure Defeated (CD) value is calculated as follows:

1 x>y

CD = f(TC,S) with f(x,y) = {0 K<y

The result will be binary for a single calculation. However, when doing
multiple calculations, the results can be averaged to obtain a fraction
to represent the probability of the countermeasure being defeated.

Countermeasure Bypassed (CB) The countermeasure Bypassed
value indicates whether a certain adversary is able to bypass a security
or privacy countermeasure, regardless of the capability of the adversary
or the strength of the countermeasure. This factor supports the

incorporation of insiders in the risk assessment without having to grant
these insiders extraordinary capabilities to model their ability to bypass,
for example, strong cryptography countermeasures aimed at external
users of a system. While the most straightforward representation of this
value is binary, a fraction could also be used to specify the likelihood
of the adversary in being able to bypass a countermeasure.

Retention Period (RP) The Retention Period represents how long
personal data is stored or processed. This factor indicates the time
framing during which privacy threats can occur, as personal data must
be present for an adversary to be able to exploit it. The Retention
Period (RP) supports making the distinction between long-running data
processing operations that pose a higher risk to data subjects compared
to short-lived transactions which do not retain the data longer than
required by the operation. Such short operations can limit the time
window during which a successful threat can occur.

Loss Magnitude (LM)

The Loss Magnitude represents the impact of a security or privacy
threat. It is comprised of two parts: (i) the asset value for the
organization to indicate the damage of a security threat, and (ii) the
privacy value for the data subjects to indicate the damage of a privacy
threat. Since for most threats the security and privacy categories are
mutually exclusive, only one of them needs to be taken into account.
For threats that are part of both categorizations (e.g., information
disclosure), both values need to be added together.

LM = AV + PV

Asset Value (AV) The asset value is used to specify the loss of or
damage to the organization in a case of successful attack. While such
numbers are most naturally expressed as a currency in a risk context,
it is also possible to assign numbers, for example, on an ordinal scale
in order to enable a relative ranking of the resulting risk values.

Privacy Value (PV) The privacy value represents the impact on the
data subject type and is composed of the following parts: (i) Data Type
Sensitivity, (ii) Nbr. of Records, (iii) Data Subject Type, and (iv) Nbr.
of Data Subjects. By combining these parts, both the sensitivity of the
data and the type of data subject (e.g., minors) are taken into account.
The privacy value can be obtained by multiplying them all together:

PV =DTS x NR x DST x NDS

Data Type Sensitivity (DTS) The Data Type Sensitivity component
incorporates the sensitivity of the data types being processed into the
impact of privacy threat types. The sensitivity values can be assigned
on a numerical scale to make the distinction between different types
of sensitive data ranging from, for example, to medical information,
contact information (e.g., home address), or non-personal information.

Number of Records (NR) This factor scales the impact of a privacy
threat along the number of records that are processed or stored. This
factor can be used for modeling two types of cases. (i) Scaling the
privacy impact when multiple records of the same data type are being
processed or collected. (ii) Scaling the impact down when data of a
certain type is only present for a fraction of the data subjects.

Data Subject Type (DST) The Data Subject Type specifies the risk
inherent to the type of data subject whose data is being processed. It
is used to consider vulnerable data subject types (e.g., children).

Number of Data Subjects (NDS) The Number of Data Subjects is
a scaling factor, analogous to the Number of Records (NR), to scale the
impact of a privacy threat to the number of involved data subjects.

4.2.2 Impact on Threat Modeling

The impact of the risk model on the threat modeling process starts
with an overview of the parameters that influence the presented risk
factor values. Afterwards, this section discusses the inclusion of the risk
information in the DFD model. Capturing this information in the model
supports the automated threat prioritization using risk indicators.

Parameters

The presented risk components in Section 4.2.1 do not directly map
to single DFD elements. Instead, they are influenced by a number
of different elements from the threat modeling inputs. Below, each
of the five parameters that influence the risk components are listed.
Figure 4.3 shows, for each risk component, the relevant parameters.

System Context (SC) The first parameter is the system context
which expresses the system design information that is taken into account
in the risk assessment. It includes information on the element types
affected by the threat, the security and privacy solutions that are
present, and the values of any assets involved.

Threat Type (TT) The second parameter is the considered threat
type. The presence of security or privacy threats depends on their type
and the system context. An explicit threat type parameter also enables
aggregations over threat type categories (i.e. STRIDE and LINDDUN).
This aggregation can provide insight into which threat types are the
most problematic in the system under consideration.

Attacker Profile (AP) Third, to perform a risk assessment that incor-
porates the effectiveness of the security and privacy countermeasures
against different attacker types, the analysis needs to consider additional
information on the attacker capabilities in manifesting different threat
types. Furthermore, the parameterization of attacker profiles enables

several analyses such as assessing the impact against a single profile
or decomposing risk into the different profiles for comparison. This
enables evaluating which type of attacker would pose the highest risk.

Data Subject Type (DST) Fourth is the data subject type. The
risk of privacy threats needs to take into account the type of the data
subject being threatened. As parameters in the risk assessment, the
risk value can be decomposed in order to analyze the system’s privacy
risk from the perspective of different data subjects.

Data Type (DT) Finally, the privacy risk is also influenced by the
data types being processed, which also depends on the data subject
those data belong to. For invalid combinations (i.e. data types that
are unrelated to data subject type being considered), the risk is zero.
This is explicitly different from the Data Type Sensitivity (DTS), which
is just one risk component that is influenced by the data type. This
is again a parameter that can be used in the risk analysis in order to
compare and evaluate how high the risk is for the different data types
that are being processed.

In order to calculate the total risk of the system, the risk values for each
combination of the above five parameters are combined. Other types
of aggregations, as mentioned in the individual parameter descriptions,
are also possible in order to enable different types of risk analyses.

DFD Resources and Model Enrichments

In order to obtain the required risk information inputs for performing
the risk assessment, this information needs to be represented in the
modeling inputs for the threat elicitation and analysis. This ensures
the risk information is stored close to the elements they pertain to and
it ensures that the information is readily available during the threat
elicitation and the analysis of the elicited threats. This section will
go into detail on which existing threat modeling artifacts (e.g., DFD
model elements, security or privacy solutions) need to be enriched

with additional information to support the risk analysis. These model
enrichments are not discussed in Chapter 3, which focuses on modeling
the system as-is without the complementary risk analysis information.

Since the required information for the risk assessment is often impossible
to determine with absolute certainty (e.g., the effectiveness of a
countermeasure which degrades over time). Our approach has therefore
been designed to explicitly support uncertainty in the risk inputs.
More specifically, all the required numerical properties are expressed
as estimates. Chapter 5 will go into detail how these estimates are
used in the risk calculation while taking into account the uncertainties
expressed in the input values.

Attacker Models Since the risk analysis includes an assessment to
which degree the countermeasures present in the model are sufficient
to resist a certain type of attacker, the risk analysis needs to be
performed in the context of a certain attacker profile. The attacker
profile information is included in the threat elicitation activity in the
form of a set of attacker models. Such an attacker model provides three
properties for the risk analysis: (i) the capability of the attacker (Threat
Capability (Tc)), (ii) the probability of action (Probability of Action
(PoA)), and (iii) the frequency of contact (Contact Frequency (CF)).
A final risk component influenced by the attacker profile is whether
or not the attacker is an insider. This information is represented as
a mapping from the attacker profile to a set of DFD elements, and
indicates for these elements whether the attacker is able to bypass the
countermeasures. To reduce the required effort in constructing multiple
different attacker profiles, a set of common profiles can be provided
and reused across multiple models and analyses. Only the insider
link will have to be constructed for each individual model, although
heuristics could be applied to facilitate this by, for example, adding all
the elements inside a trust boundary to the list of the attacker profile.

Security and Privacy Solutions In order to obtain information about
the effectiveness of the security and privacy solutions in the model, the
strength of the solution’s individual countermeasures has to be taken
into account during risk assessment. This way, the differences in the

effectiveness of the countermeasures can be captured. For example, the
application of TLS with large public keys but a weak encryption cipher
may provide strong authentication guarantees but weak confidentiality
guarantees. To extract this information from the model, the security
countermeasures are enriched with a strength estimate to use for the
risk assessment.

DFD Model Asset Values In order to assess the damage of security
threats, asset value information is required for the risk assessment.
This information can be obtained from the DFD model by enriched the
DFD model elements with value estimates that quantify the potential
damage. Because the damage to an asset may vary depending on the
type of the threat, it possible to assign different value estimates for
different threats types. This granular value specification supports the
modeling of, for example, scenarios in which a denial of service threat
inflicts a lower damage than an information disclosure threat on a
certain data store.

Data Types and Data Subject The final source of information that is
required for assessing the impact of privacy threats, is the information
on the data subjects and the data types of their data. This information
is not present in a traditional DFD used in threat modeling. To obtain
this information, the complementary data protection model [SDVL*19]
can be used. This model captures all the data processing activities,
data types, and data subject types; all of which are linked to the
corresponding DFD elements. By navigating the links between these
two models, the necessary data type and data subject type information
can be gathered for privacy risk analysis.

4.3 Evaluation and Discussion

The first part of this section provides the evaluation of the interaction-
based elicitation in Section 4.3.1 and the evaluation of the risk
prioritization applied in the context of a real-world application for

whistleblower submissions to journalists (Section 4.3.2). The second
part discusses the interaction-based threat elicitation (Section 4.3.3)
and the risk model (Section 4.3.4).

4.31 Evaluation of the Interaction-Based Elicitation

We qualitatively assess the interaction-based LINDDUN approach
through a direct comparison with the element-based LINDDUN variant.
The assessment considers the following aspects: (i) the expressivity
of the interaction-based approach; (ii) the a-priori elimination of
inapplicable privacy threats; (iii) the prevention of undiscovered threats;
and (iv) the effort-precision trade-off.

Expressivity

First, we assess whether the interaction-based table for considering
a threat’s applicability is at least as expressive as the element-based
table. More specifically, that there are no threats resulting from the
element-based elicitation that the interaction-based elicitation cannot
uncover. The construction of the backwards-compatible interaction-
based table from the element-based one for the comparison explicitly
confirms the fact that every element-based threat type condition can
be captured in the interaction-based table. Not only is the interaction-
based representation at least equally expressive as the element-based
one, it can also be used to express semantically different threat types
that are associated to the source, data flow, or destination elements
involved in an interaction. Table 4.5 illustrates these differences. Any
cell that differs for an element depending on its role as sender or
recipient in an interaction cannot be represented in the element-based
table as this table does not support making a distinction based on
the element’s role in the interaction. We argue that this leads to the
identification of more precise and fine-grained threats as the threat
elicitation can explicitly consider this contextual information.

98 | CHAPTER 4 - DESIGN-LEVEL ANALYSIS FOR SECURITY AND PRIVACY THREATS

Table 4.5: Differences between Interaction- and Element-Based

Source Destination L I N D D U N
Process Process X X X X X - X
Process DataStore X X X X X — X
Process % ExternalEntity X X X X X — X
DataStore Process X X X X X — X
ExternalEntity Process X X X =
Process Process X X X = = - X
DataStore Process X X X = = - X
ExternalEntity E Process x x x B B - x
Process DataStore X X X = X — X
Process ExternalEntity X X - - X
Process Process X X X X X - =
Process DataStore X X X X X = =
Process o ExternalEntity X X X X X — =
DataStore Process x X x x x - B
ExternalEntity Process X x x x x = [

The elements in the first three columns highlight the element to which the
privacy threat is associated (using a colored and emphasized notation). Note
that invalid DFD element combinations (such as DataStore-flow-DataStore or
EzternalEntity-flow- ExternalEntity) are not included in this table. Colored cells
are used to mark the differences (e.g., =) from the element-based table.

Elimination of inapplicable threats

The detectability threat is an example of a threat which only applies
for element as the sender of interaction, but not as the recipient.
The interaction-based threat type table encodes this applicability
information, which allows for the up-front elimination of this threat
in the contexts where it is not applicable. Since the element-based
table does not support making this distinction, a threat modeler could
spent significant effort on trying to elicit this threat when it was not
applicable in the first place. We argue that the up-front elimination
of inapplicable threats in specific interactions improves the overall
efficiency of the threat modeling activities as it reduces the number of
threats that have to be analyzed and prioritized after the elicitation.

Undiscovered threats

If the threat modeler focuses on a single type of role (e.g., sender)
during the threat elicitations, certain threats corresponding to other
potential roles of the considered elements may remain undiscovered.
The interaction-based elicitation avoids this problem by explicitly
forcing the threat modeler to systematically consider every applicable
role of the element under consideration to ensure the inclusion of the
other applicable threat types. Hence, the more fine-grained level of
granularity leads to better guidance during the elicitation.

Effort-Precision Trade-off

Instead of specifying the applicability of threat types at the level of DFD
element types, the interaction-based approach specifies the applicability
at the level of a ‘source-data flow-destination’ configuration in which
the threat is located on one of the elements. Figure 4.1 illustrates the
difference between the element-based and interaction-based elicitation
approaches. It shows how interact-based approach reduced the total
number of iterations from 10, the number of DFD elements, to 6, the
number of data flows. However, each of the remaining 6 iterations
requires more effort because the three different roles involved in that

interaction have to be considered, depending on the applicability as
specified in the interaction table (Table 4.2). While the interaction-
based approach increases the effort required in a single iteration, we
argue that it provides an efficiency gain because it encodes and reuses
expertise (i.e. the fine-grained determination of a threat’s applicability
in the context of a specific interaction), instead of having to rely on a
human expert to know and apply this knowledge.

Applying any threat elicitation approach with an increased amount of
contextual information in the consideration of a threat’s applicability
involves an inherent trade-off between the time and effort spent during
the analysis of the threats afterwards versus the precision and efficiency
of the threat elicitation. Dhillon [Dhill] described positive experience
of this trade-off in the application of interaction-based STRIDE for
eliciting security threats in an industrial context.

4.3.2 Evaluation of the Risk Assessment Model

We evaluate the threat risk assessment model by applying it on
the SecureDrop whistleblower submission system [Frel8a], a real-
world application which allows whistleblowers to anonymously contact
journalists and submit documents to them and which has strict security
requirements in order to protect the identity of the whistleblowers.

The evaluation assesses whether the risk-based prioritization of the
elicited threats is effective in identifying the most important threats.
For the evaluation, a threat’s importance is determined by the presence
of security countermeasures in the SecureDrop documentation or
implementation. Hence, the evaluation relies on the assumption that
solutions have been implemented for the most critical threats.

The SecureDrop application was chosen for evaluation purposes because:
(i) it is an open-source system enabling inspection of the source code for
security and privacy countermeasures, (ii) it has a publicly available DFD
model, (iii) it has detailed documentation on the security assumptions
and the attacker capabilities that are considered [Frel8b], and (iv) it
has strong security and privacy requirements.

The following SecureDrop sources are used in the evaluation to
determine the presence of solutions: (i) the threat modeling
documentation with their DFD [Frel8b]; (ii) the user, administration,
and developer documentation; (iii) the source code; and (iv) the
documentation of other components explicitly referred to by the other
documentation or source code (for example, the recommended hardware
firewall or software libraries used for authentication).

Figure 4.4 shows the SecureDrop DFD used for the evaluation. This
DFD contains 81 elements (8 trust boundaries, 6 external entities, 17
processes, 7 data stores, and 43 data flows).* As part of the evaluation,
the DFD model is enriched with 36 security solutions and assumptions.®
These assumptions contain security-relevant information that does not
reflect in specific solutions in the system or is external to the system.
An example of this is how the media organizations communicate the
URL of the SecureDrop instance to potential whistleblowers.

Methodology

Assignment of value estimates To minimize any bias in assigning
the values, we use the following static value assignment scheme which
considers the importance of protecting the identities and data of the
involved users: 3 if the data of a whistleblower is involved, 2 if the
data of an administrator is involved, 1 if the data of a journalist is
involved. Each estimate has the same deviation of +1 and a default
confidence of 4. The values are combined when multiple user types are
involved. These values are used exclusively for the Asset Value (Av)
for the prioritization of the security threats.

Adding security Solutions All the security solutions and assumptions
from the threat model [Frel8b], documentation, and source code are
encoded in the SecureDrop DFD model as solutions in the meta-model
from Chapter 3. We assign a generic countermeasure strength to the

Appendix A.1 provides a detailed account on the construction of the SecureDrop
DFD model.

These are not necessarily separate solutions. Some solutions (e.g., a firewall) are
instantiated multiple times in the model between different pairs of elements.

THREATS

AND PRIVACY

ANALYSIS FOR SECURITY

DESIGN-LEVEL

CHAPTER 4 -

102

Aoyt oven
) oiend foyorendpeaY

oISsIGNSPaIdAI0agRs0

oznues
pue UOISSILANS
10A1990

uoissiwgng pardhiosg

uossangpaIdAiougpea]

uoisswans poidAiou

pardouzenM

pardhiou3 peay

Y34V ONIM3IA Q3ddVOUIY

—_—— e

() 2owmaquajsueiLolbiepeidhiongarm
() 39inoqsojsupit wosseqpaIdhiougpesy

| |

(i) dsas sup uow

L dsal sup o

sNa
0 bos supf b ———

(1) ba sup dde

() s chu vow

() dso dju dde

() bos 0 bos chu ade
o1
) () dsofde vouw

Kioysodas

() dsau 1de dde

d1ws) eo1nies ew X
@ 4d4/munqn/JoL.

[« Borae ade|

(SNO/JLN/Ldv)
ey

SO Bunoyuop

() puss s

(SNQ/dLN/LaY)
Sa0AIS SO
Jansaguonealddy,

Y

fay 21and vojssiwang.

@iegafooy

(o025 UpPIK
JoL pareanuawiny)

e ddeHss

(101, pore

43AY3S NOILYOfiddY JO¥AIUNOIS

10001075

uoneayddy
doigainoss

snswirpLddyas

(0omiag uappi
sy,

eoepu)

1sjewnor

(i) woissiuqngeaunogoyesmolg

g 00aQ Jojsuely ¥ 901aQ Jajsuel]

uoneaand
10} uonesedosy

901A3Q2JSURIL IO IUOISSILGNSPAAAIB0PERY

V3YY ONIHSI8Nd

(1) Jonsapddyabeuew

(s1f) s05m01g o,

NOLLVASYHOM LSIYNYNOr

(i) 8Beguorsswanoounos,
(215) Josmog Jop

) o1goLsesfnosg

N
|

|
|

|
!

|
!
l |
y |
!) smasgososs |

SecureDrop DFD model
The model is largely based on the SecureDrop threat modeling document. Since the

threat modeling document refers to an earlier version, any inconsistencies were

Figure 4.4:

resolved by referring to the latest version of the documentation and source code.

different solutions, as only the presence of a countermeasure is relevant
for the evaluation and not the actual strength of the countermeasure.

Risk Analysis & Data Collection We ran the interaction-based
STRIDE [Shol4] threat elicitation and risk analysis on the modeled
SecureDrop DFD to obtain the risk scores per elicited threat. The
evaluation records two elements of data for each threat: (i) the
calculated risk using the above risk model, and (ii) whether any type
of countermeasure is present (to indicate the importance of the threat
according to the SecureDrop developers).

Relating Mitigation Status and Potential Risk We evaluated the
effectiveness of the resulting threats’ risks as follows. The presence of
security countermeasures or assumptions for a specific threat indicates
that the threat is considered important enough by the developers
to spend effort on providing the countermeasure or recording the
assumption in the design documentation. Hence, to assess whether
important threats are assigned higher risk scores we evaluate whether
the threats with elevated risk scores have actual countermeasures or
assumptions present in SecureDrop or its threat model documentation.
Focused threat mitigation efforts by the developers of the system would
thus result in a high coverage of the high-risk threats and, given the
limited resources available, a lower coverage of low-risk threats. The
opposite results would indicate that either the risk analysis information
is a sub-optimal predictor of the importance of threats, or that the
project misdirected its security efforts towards unimportant threats.

Results

Figure 4.5 shows the results of the threat elicitation on risk analysis
of the SecureDrop DFD. The figure shows the density plot of
mitigated (top) and unmitigated (bottom) threats by their potential
risk. These density plot illustrates how the high-risk threats at
the right-hand side of the plot are often explicitly mitigated in
SecureDrop by security countermeasures or explicit assumptions in

0- \/
Mitigated

Z -5

2 H‘(es
o)

0 -10- No

0.0 0.2 0.4 0.6
Potential risk

Figure 4.5: Threat Distribution by Potential Risk

The threats are grouped by the presence or absence of security solutions in
SecureDrop that mitigate them. The distributions show a high mitigation-rate
for the high-risk threats, indicating the estimated high-risk threats are considered
important enough to counter them, and a lower mitigation-rate for low-risk threats.

the design documentation, while the lower-risk threats at the left-
hand side of the plot are less frequently mitigated. Assuming that
the SecureDrop developers are serious about the project’s security,
which is corroborated by the extensive security design documentation
of the project, our results—even with the simple value assignment
scheme used above—provide strong indications that the risk-based
threat prioritization generated with the risk assessment model is able
to identify the most important threats.

Threats to Validity

While the evaluation is limited to a single application, the risk model
(FAIR) applied in the threat modeling context is a pre-existing risk
decomposition which already found use in other application contexts.
The current applications show that, with a reasonable set of asset value
assignments, the application of this risk model in a threat modeling
context can lead to realistic prioritization of security threats. This
result does rely on the important assumption that the SecureDrop
developers mitigated the important threats. This, however, is not an
unreasonable assumption given the security-sensitive nature of the
application and the extensive amount of threat modeling, security and
attacker assumption documentation that are made available by the

project. Furthermore, the fact that the mitigations rely on the presence
of implemented countermeasures or explicitly documented assumptions
provides strong evidence that these threats were actually considered
by the developers.

4.3.3 Discussion on Interaction-Based Threat Elicitation

As previously mentioned in the interaction-based elicitation section,
the interaction-based approach addresses several problems with the
element-based threat elicitation. Here we provide a discussion on
the lessons learned and future work in this space, covering: (i) the
semantics and ambiguities of threat types; (ii) the role that knowledge
representations, such as threat trees, can have in this context; and
(iii) whether the current system abstraction is the most appropriate
for all threat types.

Semantics and Ambiguities of Threat Types

Multiple elaborate discussions on the semantics of threats accompanied
the construction of the interaction-based LINDDUN mapping table.
More specifically, many conflicting views concerned ambiguities in the
interpretation of what specific privacy threat on specific element type
entails. Most of these revolved around the distinction between the
location of a threat (i.e. where a threat would manifest itself), where
it would be elicited (as applicability conditions in the table), and the
target of a threat (what or who is threatened).

Especially for privacy threats, delineating these properties is a non-
trivial endeavor, as they differ fundamentally from the more traditional
interpretations in security threat modeling. Security threat modeling
performs its analysis from the point of view of a deliberate malicious
actor that targets a specific element of the system. Such an actor does
not need to be present for a privacy threat to manifest itself. Indeed,
the processing of personal data without user consent is an example
of such a threat that does not have a malicious adversary unless the
owner of the system is considered to be the adversary. Furthermore,

the threatened entity is in all cases one or more data subjects, i.e. the
person whose data the system processes. This threatened entity is not
necessarily involved in the considered interaction when eliciting privacy
threats. Indeed, this entity does not even have to be present in the
model at all. To complicate matters even further, it is also not a single
element that is attacked to manifest a privacy threat, but it can be
a combination of multiple elements together that realize the privacy
threat. For example, a system with a database with insufficiently
anonymized data that shares this data with third parties poses a
privacy threat, without the data subject being involved.

The interaction-based privacy threat elicitation table resolves these
ambiguities by codifying the expert consensus in the privacy threat
table. However, as the complexity of the threat types for which to
analyze the system increases, these ambiguities will reappear, as larger
configurations of involved DFD elements make it even harder to locate
and assign a threat to a single element.

To resolve this problem, future approaches can move away from the
manual systematic assessment of the system and, instead, rely on
automation to do comprehensive assessment of the system for more
complex configurations or patterns of DFD elements to determine the
applicability of more complex threat types or design flaws. In such
scenarios, to concrete ‘location’ of a threat is no longer an issue, as the
approach no longer relies on a systematic iteration over these potential
‘locations’ in order to uncover the security and privacy threats.

Threat Trees

The existing security and privacy threat trees reflect the structured
followed by the approach when eliciting threats. More specifically, the
structure of the tree follows the DFD element types to closely align with
the element-based elicitation approach. Since the interaction-based
threat elicitation approach structures the applicability of the threat
types in a more fine-grained manner to take the system’s interaction
context into account, these threat knowledge base structures will have
to be refactored in order to support the representation of these updated
threat types. We expect these knowledge structures to migrate away

from trees in order to facilitate the incorporation of more complex
applicability conditions that make the causal relations between threat
types explicit such as, for example, linkability leading to identifiability.

Granularity for Threat Elicitation

We argued how the context of an interaction is better suited than
individual elements for the elicitation of LINDDUN privacy threats.
However, the pattern-based elicitation section illustrates how even the
interaction context is insufficient for the detection of more complex
design flaws. Arguably, these threats cannot be discovered with a
plain element- or interaction-based threat analysis. They indicate a
complex trade-off exercise between the systematicity of the approaches
that iterate over the all the model elements to ensure a comprehensive
assessment versus approaches that are more reliant on the extensiveness
of their knowledge bases but, in return, can detect more complex flaw
patterns in the system under analysis.

4.3.4, Discussion on the Risk Model

In this section we discuss open issues and planned future extensions to
our risk-based threat elicitation approach.

Risk component units

To evaluate whether an attacker can defeat a countermeasure, the
comparison of their strength and capability values requires them to
use the same scale. However, there is no reusable absolute scale
with clearly defined units to measure the strength of solutions and
capabilities of attackers. To overcome this problem, they can be
assigned relative values on an abstract scale. With these relative
values, the risk assessment can compare their relative strengths and
incorporate the effectiveness of the countermeasures in the analysis.
The downside of this approach is that with an increasing number of
solutions and attacker profiles, it can become harder to assign new

values and ensure they make sense in relation to all the previously
assigned values.

The impact of this problem can be reduced by providing an extensive
catalog of security and privacy solutions and attacker profiles in which
properly verified relative strength values are already assigned.

Effort trade-off between adding information and prioritizing threats

After performing automated threat elicitation, the manual processing
of the (often) large lists of threats requires considerable effort. The
inclusion of a risk analysis activity in the threat elicitation context
can reduce the amount of post-processing effort required in filtering
and prioritizing the threat list. Such a risk analysis activity, however,
requires some additional information to be present, as illustrated by
the risk decomposition in Figure 4.3. While the integration of the risk
analysis can reduce the overhead of separate isolated risk assessment
activities, the threat modeler still must provide this information.
This information requirement introduces a trade-off exercise between
enriching the threat model with more information for the risk analysis
and afterwards manually performing a prioritization assessment of the
resulting threats. The integration of the required risk inputs provides
some additional benefits beyond the integrated risk assessment, it
also documents the input information in the same model instead of
relying on separate (or even implicit) information for assessing the risk.
While this does impose some extra effort on the threat modeler, some
optimizations or heuristics can reduce this effort such as, for example,
the value assignment scheme used in the evaluation (Section 4.3.2).

Difficulty in determining the risk component estimates

An issue closely related to the effort in adding the risk input information
to the model, is the difficulty in determining these values. The
easiest solution for obtaining this information is by relying on business
stakeholders to provide this information. Otherwise, the threat modeler
will have to assign estimates for the model values. The presented

risk model purposefully uses estimates specifically for supporting
this uncertainty in determining the values for the risk model. The
aforementioned optimizations can assist in this context as well to
systematically assign values to all the model elements for providing
impact information for risk analysis.

4.4, Related Work

In this section, we discuss the related work in three parts. First,
the elicitation of threats, especially on the context of privacy threat
elicitation, is discussed in light of the presented extension on interaction-
based privacy threat elicitation. Next, expanding the context of the
elicitation further, generic design flaw detection is covered. Finally,
different approaches to threat prioritization and risk assessment are
discussed to assist in triaging the identified security and privacy threats.

4.4 Threat Elicitation

The broader field of privacy engineering focuses on systematically iden-
tifying and addressing privacy threats [GGD11, GTD15], but also the
development of design strategies and architectural patterns [CHH16],
Privacy-Enhancing Technologies (PETs), and cryptographic enablers.

Methods and approaches that involve systematic threat modeling
represent a suitable candidate for implementing the end-to-end risk-
based privacy analysis demanded by the General Data Protection
Regulation (GDPR) [Eurl6]. These methods can be considered the
technical component (complementary to the legal, organizational,
and business-oriented measures) of the Privacy Impact Assessment
(p1a) which involves estimating and resolving the overall privacy risks
identified in the system.

Microsoft originally introduced the STRIDE threat modeling approach
as part of its spL [HL06, SS04]. Originally, this approach involves
element-based threat elicitation. More recently, STRIDE has evolved
towards interaction-based threat elicitation [Shol4], also in tool

support [Mic16, Mic20]. Tuma and Scandariato [TS18] empirically
evaluated the difference between the element-based and interaction-
based threat elicitation performed by human analysts. They observe
slightly lower productivity and a lower recall for the interaction-based
elicitation, which could be explained by the complexity of the elicitation
procedure. Automated application of interaction-based elicitation can
avoid these productivity issues and elicitation errors by human analysts.

In addition to the LINDDUN methodology [DWS*11, Wuy15] that was
extended above, other initiatives to privacy by design are noteworthy.
Priam [DL16] is a framework for conducting a systematic privacy risk
assessment, not at the level of technical architecture but at the level of
data catalogs. It uses harm trees to link privacy weaknesses and risk
sources to known harms. Oliver [Olil4] proposes an approach based on
data flow modeling that is enriched with ontologies and classifications
to annotate and describe information flows. This approach is element-
based in nature. Tuma et al. [TSB19] presented a more formal end-to-
end analysis which also relies on DFDs but does not elicit the STRIDE
threats. Instead, they focus on data integrity and confidentiality
objectives. Oetzel and Spiekermann [OS14] propose a step-by-step P1A
starting from legal requirements (privacy targets), leading to a list
of control recommendations. This approach does not systematically
zoom in on a technical architecture. Shapiro [Shal6] introduced the
System-Theoretic Process Analysis for privacy engineering process
(sTPA-Priv), which is similar to STPA-Sec, an earlier adaptation of
such approach focused on security [YL14]. These approaches do not
involve eliciting threats at the level of a technical architecture, but at
the more coarse-grained level of a blackbox system and its context.
Finally, Shapiro [Shal7] also introduced STECA-Priv which instantiates
Systematic-Theory Early Concept Analysis in a privacy engineering
domain. Contrary to the STPA-Priv or threat modeling, it does not yet
require a system design, but instead starts from the system specification
to infer a privacy control structure [Shal7].

4.4.2 Design Flaw Detection

The identification of problematic areas in design-level representations
of a system with architectural smells [GPEM09, MCKX15, BLP09,
TL18] or anti-patterns [NCFS17, MCK*19] has previously been used
to identify software engineering issues, such as maintainability, and to
assist in refactoring. For example, Garcia et al. [GPEMO09] introduce
a catalog of architectural bad smells specified with UML diagrams.
Similarly, Bouhours et al. [BLP09] contribute with a catalog of 23
“spoiled patterns” or architectural design anti-patterns. Yet, the existing
literature about architectural design flaws [GPEMO09, BLP09, TL18,
MCK*19, NCFS17] lacks a systematized knowledge base about security-
relevant architectural design flaws in support of automated assessment.

Targeting security specifically, the report of the IEEE Center for Secure
Design [ADD%14] provides a set of 10 key security design flaws to
avoid. A similar goal is pursued by the owasp Top 10 Application
Security Risks [OWA17a]. A more extensive collection can be found in
the Common Architectural Weakness Enumeration (CAWE) catalog by
Santos et al. [SPM*17], constructed by extracting the architecturally
relevant weaknesses from the CWE database by MITRE [CWE20] and
assessing their impact on security tactics [BCK12]. Another resource
from MITRE is CAPEC [CAP18] which provides this information from an
attacker perspective. Finally, the observation that these catalogs
contain similar flaws have led Tuma et al. [THMS19] to do a re-
evaluation of the security catalog and they suggest several improvements
to reduce overlap between the flaws. While the above catalogs provide
an extensive set of weaknesses to identify, applying that knowledge a
concrete application’s design model requires translating this knowledge
to practical detection rules, linked to a suitable system description that
supports automatic assessment. None of these catalogs are currently
amenable to that level of automation.

The approach of Berger et al. [BSK16] leverages Microsoft’s threat
modeling approach [SS04, HLOS06] to detect architectural flaws
by translating cwe [CWE20] and cAPEC [CAP18] entries to graph
queries, relying upon element attributes. Chapter 3 discussed the
benefits of explicitly representing complete solutions [SYVJ18c] in

order to ensure the effect of complex solutions on multiple elements are
correctly and consistently incorporated into the model, showing positive
improvements in terms of semantic quality, traceability, separation of
concerns, and dynamism.

Almorsy et al. [AGI13] presented an approach for formalizing attack
scenarios and security metrics in OCL and validated the approach by
translating NIST security principles [SHF01] and attack scenarios from
CAPEC [CAP18] in ocCL signatures. For the analysis, they rely on a
system description model in UML, together with a security specification
model to capture security objectives, requirements, architecture, and
controls. This contrasts with our approach which relies on DFDs.

A final common class of design-level analysis approaches for security is
of course threat modeling, which starts from a DFD-based abstraction of
the system to elicit security [HL06, Shol4] or privacy [DWS*11, Wuy15]
threats. Both the security and privacy threat modeling approaches
support a systematic analysis of the system under consideration by
iterating over every element (element-based [HL06, Shol4, DWS*11])
or interaction (interaction-based [Shol4, SWY*18]). The knowledge-
bases used in these approaches can also be extended for detecting
additional threat types, but the element- or interaction-based approach
limits the complexity of the criteria to assess as they remain limited
to a single element or interaction. The security design flaws from the
catalog, however, can involve multiple interactions as sensitive data
traverses through the system, and can verify the presence of multiple
required solutions together to ensure the absence of a single security
design flaw. While such an approach loses the systematicity of threat
modeling, it does enable identifying more complex design flaws.

4.4.3 Threat Prioritization

Tirpe [Tiirl7] discussed how security needs arise from the interactions
of three dimensions: design, goals, and threats, and observed how
many efforts focus only on a single dimension. We structure this
section according to the threat—design interactions and the threat—

goal interactions, as threat modeling and risk analysis focus on the
interactions between these dimensions.

In existing approaches and applications [SS04, Tor05, HLOS06, HLO6,
Sho08, Micl6], data flow diagrams remain largely security and privacy
agnostic models, with only minor, and often ad-hoc, additions for
security or privacy. However, recently there have been several
proposals for extensions to these data flow diagrams in order to have
a more systematic representation of security- and privacy-relevant
information in order to elicit the most relevant security and/or privacy
threats [ASS16a, TSWS17, SYVJ18c, BSK16]. However, thus far, the
influence of these solutions in the resulting threats is only binary. This
means that, while the solutions can eliminate certain threats, they do
not assist in prioritizing the threats that do remain. Any assessment
to do so must be manually performed afterwards.

Risk analysis, on the other hand, focuses the threat—goal interactions.
Risk analysis approaches elicit security requirements starting from
security goals, anti-goals, such as in CORAS [LSS10], or attack
trees [Sch99], and can be used in a complementary fashion to threat
modeling [RKK16]. Instead of conducting such analyses in isolation,
we presented an integrated approach that includes the risk information
in the DFD model used for threat modeling, thereby integrating both
activities and enabling them to reinforce each other’s results.

A related approach that applies risk analysis in the context of threat
modeling is Process for Attack Simulation and Threat Analysis
(pasTA) [UM15]. It starts with the definition of business objectives
and scope, and it includes attack tree modeling and risk analysis steps
at the end. It supports the use of existing threat modeling tools, such
as the Microsoft Threat Modeling Tool [Mic20], as part of its process.
The risk analysis phase is numerical, but assigns only a limited set
values (i.e. 90%, 50%, and 10%) to the risk parameters according to
the low, medium, or high options offered for them. The percentages are
averaged to determine the threat probability, which is used together
with vulnerability, impact, and countermeasures to calculate the risk.
Our approach collects this information in the model up-front to enable
its reuse across multiple threats for the risk-driven prioritization.

Beckers [Bec12] compared multiple privacy requirements engineering
approaches. None of the considered approaches support the notion of
risk, despite being explicitly required by privacy regulations [Eurl6].

Heckle and Holden’s [HHO6] findings suggest that neither privacy
impact assessments nor classic risk analysis models are sufficient for
privacy risk assessment in the context of voting systems. Abu-Nimeh
and Mead [AMO09] propose combining them by the IRS PIA [Int96] in
Security Quality Requirements Engineering (SQUARE) [MS05]. While
such a PIA [Int96] supports a detailed assessment of the realization of
privacy-by-policy in the framework of Spiekermann and Cranor [SC09]
given its focus on assessing compliance with privacy principles, a
set of questions may not be the best approach. Alshammari and
Simpson [AS18] make the case for a model-based approach for
privacy compliance checking. The incorporated data protection
view [SDVL*19] supports such a model-based compliance assessment.
Furthermore, its integration in the risk assessment provides support for
assessing the risk of privacy threats such as identifiability and linkability,
supporting the realization of privacy-by-architecture [SC09].

Priam [DL16] provides a very detailed description of information that
needs to be collected for privacy risk assessment. The risk assessment
itself requires the construction of harm trees, in which the risk is
assessed with the combination of privacy weaknesses and risk sources
for feared events which can lead to the harm at the top of the tree. Our
approach can be considered a kind of instantiation of this approach,
but explicitly requires the assignment of numerical estimates for the
risk factors. By requiring such numerical assignments, a completely
automated assessment can be performed.

Hong et al. [HNLLO4] presented a privacy risk model specifically
developed for ubiquitous computing systems, focusing on the selective
disclosure of personal information (personal privacy). Similar as the
IRS PIA [Int96], a set of questions is used for the privacy risk analysis,
after which the risks are prioritized.

4.5 Conclusion

Element-based threat elicitation involves iterating over all the elements
in a DFD model without considering the system context. In this chapter
we: (i) argued why this approach sub-optimal for eliciting threats,
(ii) extended the LINDDUN privacy threat modeling framework to take
the interaction context into account in the threat elicitation, and
(iii) show the further expansion of the architectural context for the
detection of more complex design flaws.

After the elicitation of the security and privacy threats, we considered
the lacking support for prioritizing the elicited threats which would
require additional overhead before being able to obtain actionable
results and would happen in a disconnect from the concrete system the
threats originated from.

To address this problem, we presented a risk model to prioritize the
elicited security and privacy threats, grounded in concrete data on the
system, its security and privacy solutions, and the relevant attacker
profiles. The risk analysis embedded in a threat modeling approaches
resolves the disconnect by directly relying on the DFD model elements
enriched with relevant risk information, enabling the on-the-fly per-
threat risk assessment. From this risk-enhanced threat elicitation, the
resulting list of threats can be triaged according to their calculated
risk to support mitigation efforts on the most important and high-risk
threats first.

Furthermore, by measuring the risk of all the elicited threats
automatically, the total risk reduction progress can be measured and
managed. In the future work, we will explore how the effectiveness of
the countermeasures in these security and privacy solution catalogs
can be dynamically updated with information on newly discovered
vulnerabilities to enable continuous reassessments of existing models
in light of this new information.

Chapter 5 Outline
5.1 Approach 119

5.2 Solution 120
5.2.1 Modeling 121
5.2.2 Elicitation 123
5.2.3 Prioritization 126
5.2.4 SPARTA Meta-Model 135
5.2.5 Using SPARTA 136

5.3 Evaluation and Discussion 137
5.3.1 Assessment of the Objectives 137
5.3.2 Validation of the Risk Model 139
5.3.3 Discussion 140

5.4 Related Work 143
5.4.1 Threat Elicitation Tool Support 143
5.4.2 Other Threat Modeling Approaches 144
5.4.3 Risk Assessment and Prioritization 145

5.5 Conclusion 146

Advanced Tool Support

“Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?” [...]
I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

— Charles Babbage [Bab64]
Passages from the Life of a Philosopher

This chapter is an extended version of the originally published article:

Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter Joosen.
SPARTA: Security & privacy architecture through risk-driven threat
assessment. In 2018 IEEFE International Conference on Software Architecture
Companion (ICSA-C), pages 89-92. IEEE, 2018

The previous chapters presented the contributions to support an in-
depth and rigorous security and privacy threat assessment (Section 4.1)
and risk analysis (Section 4.2) to elicit and prioritize security and
privacy threats in solution-enriched Data Flow Diagram (DFD) models
(Chapter 3). This chapter targets the disconnect between these analysis
activities by combining them together in integrated tool support. The
tool implementation aims to achieve the following objectives.

Automation. A key goal of the tool support prototype is to provide
proof of concept implementation for the automated elicitation and
prioritization of security and privacy threats. The automated threat

117

elicitation and prioritization does not require additional end-user inputs
other than the enriched DFD model that captures the information on
the software system to analyze, its security and privacy solutions, and
the relevant asset values. Automation is also key to ensure that the
threat elicitation and analysis renders reproducible results regardless
of the threat modeler performing the analysis.

Fine-grained threat applicability. Traditional threat modeling ap-
proaches rely on binary assessment of a threat’s applicability. However,
not every security or privacy solutions is equally effective at preventing
a certain threat type. Security and privacy threat elicitation tools
should therefore support a more nuanced assessments of a threat’s
applicability by taking into account the effectiveness of existing security
and privacy countermeasures.

Reuse of security and privacy knowledge. Security and privacy
threat modeling approaches rely on a common set of knowledge on the
types of security and privacy threats that are relevant for specific DFD
elements. However, this knowledge may be modified and adapted to
the end-user’s organizational context. Automated tool support should
explicitly capture this knowledge and enable its reuse across multiple
analyses. Other relevant security and privacy knowledge is that on
security and privacy solutions. Tool support should also capture this
knowledge explicitly and support reuse across multiple models.

Immediate modeling feedback. Since the main goal of threat
modeling tool support is to assist the threat modeler in analyzing
the system to identify and mitigate security and privacy threats,
immediate analysis feedback during the modeling is very useful. Such
feedback enables the end-user to perform what-if analyses by modeling
alternative design and evaluate the impact of these designs on the
elicited security and privacy threats.

Measuring progress. Finally, given the large amount of security and
privacy threats that can be elicited from system descriptions, managing

Diagram Prioritize

R-s =

T . Plot
ext Model Elicitation Threatlist
-
-
Code Knowledge Query Patterns Export

Figure 5.1: SPARTA Approach Overview

High-level overview of the SPARTA approach with the three key activities in the
center and potential input and outputs on the left- and right-hand side. The grayed-
out items show potential extensions of the approach such as relying on different
types of inputs (e.g., a textual DFD representation), new types of analysis, and
future exports based on the analysis results.

these results to keep track of the progress in mitigating the identified
threats is an essential part of tool support.

The following sections will elaborate on the different components of
the prototype to discuss the design and implementation of the goals
in the tool. Section 5.1 first outlines the approach. Section 5.2 then
discusses the concrete implementation of the prototype. After that,
Section 5.3 provides the evaluation and discussion. Section 5.4 presents
the related work. Finally, Section 5.5 concludes the chapter.

5.1 Approach

This section provides a high-level overview of the approach followed in
the implementation of the SPARTA prototype.

The key idea in the SPARTA approach is to (i) rely on a model-based
representation of the system, (ii) analyze this representation to identify
security and privacy threats, and (iii) capture the security and privacy

solutions in response to these results back in the model to verify that
the identified threats have been correctly resolved.

Figure 5.1 graphically represents the approach with the three main
steps in the center: model, analysis, and the results. The resulting
identified security and privacy threats subsequently lead to the inclusion
of new security and privacy solutions in the model.

This approach is intended to be extendable in each dimension. It relies
on a model representation of the system, but there may be multiple
different ways to populate such a model. The straightforward way is
to rely on a graphical diagram editor to construct this model. Other
ways to construct the model-based representation could be a text-based
representation of the model, or reconstructing it from the source code
or source-code annotations [Thrl19].

The analysis in the approach relies on a knowledge base on the threat
types to identify. These knowledge bases could be further extended,
but the approach also supports the inclusion of completely new analysis
activities to perform on the input models.

Finally, there are a number of extensions possible on processing and
presenting the analysis results to the end-users. These can range from
the initial presentation of the resulting threat list to more advanced
graphical representations such as different plots or overlays to situate
the high-risk areas on a diagram model of the system.

The following section will go into detail on how these three main parts
are implemented in the SPARTA prototype.

5.2 Solution

This section discusses the implementation of the SPARTA prototype in
the following parts: (i) the graphical modeling support, (ii) the threat
elicitation and the risk-based threat prioritization, (iii) the underlying
meta-model, and, finally, (iv) using the SPARTA prototype.

Graphical Model Editor [Threat Elicitation Threat Prioritization
I Jj |l

VIATRA Extended FAIR Model]

I Eclipse Modeling Framework

Meta-Model
I

Figure 5.2: SPARTA Modeling Support
This figure highlights the SPARTA components for graphical modeling support.

5.21 Modeling

Figure 5.2 shows the components from SPARTA that provide graphical
modeling support. The graphical support in SPARTA is focused
exclusively on the modeling of DFDs. All the other information in
the models is accessible through a tree-based model editor view but
there is no graphical visualization of this information. The existing
DFD visualization can be extended in the future to support multiple
different visualizations of security and privacy solutions. The next
parts first discuss the graphical model editor, after which the creation
and editing of the catalogs in the tree-based editor is discussed.

Graphical Model Editor On top of the meta-model specified in the
Eclipse Modeling Framework (EMF), is the DFD viewpoint specification
created in Sirius. This viewpoint enables the creation of basic DFD
models containing processes, external entities, data stores, data flows,
and trust boundaries. Since security and privacy solutions do not
have any a DFD-based visualization, the graphical DFD editor does
not yet support their instantiation. The regular tree-based model
editor can add these solutions to the models. In addition to the
constraints that are enforced by the meta-model, the DFD model editor
can support a number of additional soundness checks on the created
models as outlined in Section 3.3.1 to assist users during the creation or
modification of models in the graphical editor. These criteria for sound
models, both warnings and errors, are expressed in the AQL model
constraints. Some examples of these checks are: (i) direct connections

122 CHAPTER 5 + ADVANCED TOOL SUPPORI

SPARTA PatientMonitoringSystem/PMS securitycfd - SPARTA
File Edit Disgiom Nevigate Sesch Project Run Window Help Bl Edt Nevigste Seych Project Securtyefddtor Run Window Help

Q- B ey |

Qoig BBl
=0 5 & newDRDdiagam | (@ PM
e olaviBlensax%lssra-mld-k & & Resource st

< (&) pltiorm/resource/PatientMonitorngSystem PMS securitydfd
~ 4 DFD Model
% ExtemalEntiy Sensor
 Exteraal Enity GP

+ Dats (6P -> GP Porta)
4 patientData (GP Portal > GP)

<% Solution
4 platforms/resource/PatienthMonitoringSystem/PMS DPMcmi

Selecton|Parent | List Tree| Table] Tree with Columns,

[T Properties 53 [£ Problems o =0 [] Properties 53 [£] Problems. = -}4 §=
+ Data Store Patient Data Property Value
oand
Main Send ® - . Descrption =5
| 4 retreveConfig (atient Data -> cii Dfdelementannotation Data Subject Type Patient
e PO
Style T | Receve igUpdates (Data Sync -> Sensor)
= « - S
%
= @ "4 storeData (Clinical Risk Assessmer
o
&
1l o
vt g ke O iy S
(a) DFD Model Editor (b) Model Tree

Figure 5.3: SPARTA Modeling Support Screenshots

The above screenshots illustrate the modeling support of the SPARTA prototype.
Figure 5.3a shows the graphical support for creating DFD models, while Figure 5.3b
shows the model tree editor that is available for creating and editing both the DFD
models and the catalogs of security and privacy solutions and threat types.

between data stores, (i) empty trust boundaries, (iii) data store sinks,
(iv) completely disconnected elements.

Catalogs To support the modeling and analysis, there are two types
of catalogs available. These do not have a visualization, but the base
DFD model loads them so that they can be used in the model itself and
leveraged in the subsequent analyses performed on the model.

The first catalog is the security and privacy threat types catalog. This
catalog contains all the threat types that need to be detected in the
created DFD models. Instead of relying on some specific version of tool
support, the models explicitly refer to the threat type catalog on the
threats to elicit to ensure reproducible results.

Sirius

{Graphical Model Editor Threat Elicitation Threat Prioritization
l I l

VIATRA Extended FAIR Model]

Meta-Model
I

I Eclipse Modeling Framework

Figure 5.4: SPARTA Threat Elicitation Components
Focus on the threat elicitation components in SPARTA.

The second catalog is the security and privacy solutions catalog. This
catalog provides a reusable resource on security and privacy solutions
that can be instantiated in the DFD models and can be reused across
multiple models. The effects of these solutions are taken into account
in the subsequent threat elicitation step. Multiple different solution
catalogs can be used together.

5.2.2 Elicitation

The threat elicitation analysis in SPARTA (Figure 5.4) relies on the user
model complemented with the used solution catalogs and threat type
catalogs. The SPARTA tool uses VIATRA query patterns to query the
user model to find the threats. In the case of the classical interaction-
based threat elicitation, this involves querying the different types of
interactions and using the threat type catalog to lookup whether a
threat type is applicable for the specific interactions. Though, given
the flexibility of the VIATRA pattern query language, more complex
design flaws can also be discovered with the appropriate patterns (as
elaborated upon in Section 4.1.3). SPARTA currently relies on fixed
set of interaction-based query patterns to do the threat elicitation.
However, VIATRA supports dynamically loading new patterns. Future
extensions could load user-created pattern catalogs for the elicitation.

The threat elicitation steps followed in the manual threat modeling
approach [Shol4] are outlined in Snippet 5.1, which shows both the
element-based and interaction-based elicitation. SPARTA uses a different
approach to elicit the threats: Instead of mechanistically iterating

124 CHAPTER 5 -+ ADVANCED TOOL SUPPORI

public void elicitPerElement (DFDModel m) {
for (DFDElement e : m.elements()) {
for (Threat t : threatTypes) {
if (t.isApplicable(e)) {
// threat is triggered
333}
public void elicitPerInteraction (DFDModel m) {
for (DataFlow e : m.dataflows()) {
for (Threat t : threatTypes) {
if (t.isApplicable(e.from (), e, e.to())) {
// threat is triggered
333}

Snippet 5.1: Threat Modeling Elicitation Steps
This snippet shows the threat elicitation steps for both the element-based and
interaction-based threat elicitation approaches with the meta-model from Chapter 3.

pattern processToProcess(threatened:Process, p2:
Process, df:DataFlow, t:ThreatType, ts:
ThreatSpecification, mitigationStatus:EString)

// check if threat type applies

find threatApplicable(threatened ,ht,ts,
"ProcessToProcess");

// check if threatened and p2 communicate

find communication(threatened ,df,p2);

// check if mitigated in context of df

find mitigation(threatened ,df,t,
mitigationStatus);

Snippet 5.2: VIATRA Interaction Pattern

This snippet shows the VIATRA pattern description for detecting threats on
interactions between two processes. The mitigationStatus parameter can be used to
separately query for mitigated or unmitigated threats. However, because a pattern
match is binary, finding partially mitigated threats requires matching regardless of
the mitigation status and using the risk-based analysis to incorporate the strength
of countermeasures when assessing the vulnerability to the considered threat type.

over all model elements or interactions, the SPARTA approach involves
modeling the applicability conditions as VIATRA patterns for which
the DFD model is queried. Snippet 5.2 shows an example of such a
VIATRA model query pattern for interactions between two processes.
The pattern checks the types of the involved elements (in the pattern
signature), whether the threat type is applicable (according to the
dynamically loaded threat type pattern catalog), whether the elements
communicate in the required configuration, and whether any mitigations
are present to protect against the considered threat type.

This approach offers a number of benefits over the traditional iteration-
based assessments. First, expressing the threat type applicability
conditions as separate patterns enables reuse of these expressions
across multiple threat types preventing the need to replicate this
knowledge multiple times. Second, it improves the maintainability of
these patterns as there is only a single location where these patterns
need to be updated. Third, it enables efficient assessments of DFD
models by relying on the VIATRA model query engine to automatically
trigger multiple threat types for the matched patterns.

However, there are a number of downsides to this approach as well.
First, the impact of changes to these patterns is harder to assess. There
may be multiple different threat types that rely on a specific pattern
for detection and these are all impacted by changes to the pattern
description. This is not a problem for the interaction-based threat
elicitation because all the conditions are very similar (i.e. the type of the
sending element, the data flow, and the type of the receiving element).
For the pattern-based design flaws, assessing the impact may become
more complex as multiple flaws could be affected when modifying the
pattern. Second, if a pattern also requires some threat type-specific
exclusion criteria, these can become more complex as they have to
be expressed generically. This is illustrated with the find mitigation
condition in Snippet 5.2, which is parameterized with the threat type,
instead of referring to a specific type such as, for example, tampering.
To avoid the up-front specification of excluded threats, the exclusion
criteria have to be written generically in the pattern. Furthermore, the
threat elicitation in SPARTA avoids up-front exclusion of security or
privacy threats (unless theoretically impossible), but, instead, relies

Threat Prioritization

Extended FAIR Model

‘ Meta-Model
I I

Threat Elicitation
(VIATRA]

l Sirius

Graphical Model Editor
I

Eclipse Modeling Framework

Figure 5.5: SPARTA Threat Prioritization Components
Focus on the threat prioritization components in SPARTA.

on the risk-driven prioritization to determine to which extent the
application is vulnerable. This avoids the up-front elimination of
threats that may increase in relevance when the threatened assets
change in their valuation.

5.2.3 Prioritization

For the risk assessment (Figure 5.5), SPARTA implements the risk model
as presented in Chapter 4. SPARTA uses some additional statistical
libraries to sample and aggregate the results. The attacker profiles
used in the risk assessment are provided as fixed list to choose from in
the analysis. Ideally, these are also modeled as a user-editable resource
that is loaded in the base user-model.

Performing the risk assessment of the elicited threats requires several
inputs. Supplying this information is not always easy, as there may be
considerable uncertainty in these values. The SPARTA risk assessment
model’s design specifically supports expressing this uncertainty in its
inputs by relying on estimates to capture the uncertainty about the
values used for the risk assessment (explained in Section 4.2.1).

Estimates

To explicitly support uncertainty in the risk input values, these inputs
are described as estimates. An estimate for the risk input has four
input values: (i) minimum, (ii) most probable (mode), (iii) maximum,

and (iv) confidence (of the most probable value). These four estimate
values are the parameters of a modified-PERT distribution [Vos08] and
support expressing a wide range of uncertain values. Figure 5.6 shows
the impact of different parameter values on the resulting distributions.

SPARTA samples these different distributions for the risk components
and calculates the risk using these samples. This calculation results in
number of risk values equal to the sample size. The set of risk values
can then be processed to obtain the lower and upper bounds for the
risk values as well as the most probable value.

Estimating the Risk

This section revisits the risk model from Chapter 4 to show how
these estimates are combined to calculate the final risk score. All risk
calculations are performed on vectors of length .S, which corresponds
with the sampling size that is used in the calculations.

Choosing an appropriate sampling size involves a trade-off between
the computational effort for performing the risk assessment and the
accuracy of how closely the results match the distribution. Figure 5.7
shows the distributions for a number of different sample sizes to
illustrate the impact of the sampling sizes on the results. SPARTA uses a
default sampling size of 2000. Given SPARTA’s context of continuous risk
assessment, future optimizations could involve continuously increasing
the sample size after the initial set of threats is elicited and as long
as no changes are being made that trigger changes in the threats lists.
This enables gradually increasing the accuracy of the threat results
while still providing early results for the threat modeler to act upon.

Below, the breakdown of a single threat’s complete risk calculation
using the estimates is provided. Figure 5.8 visualizes this calculation
by showing how the different distributions for a single elicited threat
are combined in a single Risk distribution.

SPARTA calculates the risk with the entrywise product! of the Loss
Magnitude (LM) and the Loss Event Frequency (LEF) vectors.

1 Also called Hadamard product

CHAPTER 5 -+ ADVANCED TOOL SUPPORI

128
Estimates(min=10,mode=50,max=90,conf=0-32
0.06 onfidence
30
& 0.04-
iz 20
A 0.024
10
000- T T T T T
0 25 50 75 100 0
Estimate
Estimates(min=10-40,mode=50,max=90-60,conf=4)
Max—Min
80
%().075- 70
G;Vj 0.0501 gg
A 0.0251] \\ 10
0.0004) AN ; 50
0 25 50 75 100 20
Estimate
Estimates(min=10,mode=50-90,max=90,conf=4)
Mode
90
% 0.04 %0
4
A 0.021 70
60
000- T T T T T
0 25 50 75 100 50
Estimate

Figure 5.6: Impact of the estimate parameters

The above three modified-PERT distribution plots illustrate the impact of setting
different, respectively, confidence, minimum and mazimum, and most probable
(mode) values. The parameters can be used to express a wide range of uncertainty.

Estimates(min=10,mode=50,max=90,conf=4)

0.03 - SampleSize
= 10
7 0.02 100
< 1000
A
ot || 10000
0.00- [] 1e+05
0 25 50 75 100
Estimate

Figure 5.7: Impact of the Sample Sizes

This graph shows the density plots of different sample sizes to illustrate the impact
of the sample size on the resulting density plots. From more than 1000 samples,
the differences in the density plots become small.

Risk =LM O LEF

=[LM,X LEF,,LMyX LEF,,...,LM¢x LEF]

The LM is calculated by combining the Asset Value (Av) and the Privacy
Value (PV).

LM = AV + PV

The pv follows from the entrywise product of its subcomponents: Data
Type Sensitivity (DTS), Number of Records (NR), Data Subject Type
(DsT), and Number of Data Subjects (NDS).

PV =DTSONROGDSTONDS
= [PVI’PVZ’ ,PVS]

PV, = DTS, x NR, x DST; x NDS;

The LEF vector is calculate by multiplying the entrywise product of
the Retention Period (RP) and the Threat Event Frequency (TEF) with

the Vulnerability (V).
LEF =V -(RP © TEF)

The TEF follows from the entrywise multiplication of the Probability
of Action (PoA) with the Contact Frequency (CF).

TEF = PoAGCF
= [POA] X CFI,POAz X CFz, ,POAS X CFs]

The v scalar is calculated as the maximum of the Countermeasure
Defeated (¢D) and the Countermeasure Bypassed (CB) parameters, as
one of these factors is sufficient to be vulnerable.

V = max (CD, CB)

While the CB is a binary value in its easiest form, i.e. the adversary
is either able to bypass the countermeasure or not, it is also possible
to express a likelihood as a fraction which will be taken into account
against the vulnerability because of the countermeasure being defeated.

The ¢CD is a fraction that is calculated by performing S attack
simulations that the countermeasure under consideration has to resist.
The ¢D value represents the fraction of successful attacks.

S
— Zi:1 CD[

CD
S

Each individual attack attempt CD; is a binary value obtained by
comparing a sample of the Threat Capability (TC) of the adversary
and the Strength (S) of the countermeasures.

. I x>y
CD,; = f(TC,;,S;) with f(x,y) = {
0 x<y

The ¢D is calculated as a single value. However, instead of using the
fraction of successful attacks, the set of attempts can be considered
as a series of Bernoulli trials for which a confidence interval can be

131

I'TON

<31

5.2

3

[V

o)

vod

UOWNQLIPSIP YSIL (DU 2Y] 0JUL PIULQULOD DUD SIUIUOAULOD YSIL JUILILLp 9Y] MOY Smoys ydvib sy T,

uonNqLIISI(T oY} wolj uoryisoduro)) STy :8°G oIS

A4L

ki

7

oL

A
ticig

d4

s

AV

UN £Lsd SAN

SLd

WT

Ad

calculated. SPARTA calculates the Clopper-Pearson 95% confidence
interval to obtain the lower and upper bounds. When the number of
successes (x) equals either 0 or the sample size S, the interval is:

x=0 <0,1—<%>%)

Otherwise, the interval is calculated with, respectively, the % and 1 — %
quantiles of the beta distribution for the lower and upper boundary.

(Beta(%;x,S —x+ 1) ,Beta<1 - Jix+ 1S —x))
The above formulas provide a lower and upper boundary of the cD
value, which can also be used in the calculation of v to obtain its lower
and upper boundaries.

The result of the risk calculation process is still a vector of sample size
S. An individual threat’s risk is calculated as the median value:

Risk = median (Risk)

Using the aforementioned lower and upper boundaries of v, the lower
and upper boundaries of the risk value can also be calculated if desired.

Granularity of the Calculations

A final aspect of the risk assessment in SPARTA is the granularity of
the risk calculations. SPARTA calculates the risk values at a very fine-
grained level and keeps track of these fine-grained risk values in a large
risk matrix. The risk results are individually for every combination
of: (i) threatened DFD element, (ii) the threat type, (iii) the attacker
profile, (iv) the data subject type, and (v) the data type. Table 5.1
shows a small excerpt of what such a table looks like for the patient
monitoring system shown in Figure 5.9.

ys14 fiovagad 27 07 $409NQLLIUO0D
159661qQ 2y7 94D S4220WDLDA YorYym 03ur SIYbISUL UIDE 0 SUOISUIWIP JULILIP Y] §S040D PaDboubbD 2q UDD §I14JUD ISIY],
‘sadfiy vgop ¥ puvp ‘sadfiy 102[qns DIpp Z ‘sapfoud 4ayoDYD G ‘sadfiy pauyl 9 ‘spudwWd g 91 Ym waisfis v 40,

(papwo smos g6L9) "

ey 0 s[erpuapal) I2UOT10RI] [RISUSY) ‘810 “*deo ‘pojeArjoy A11qe3oaraq E)
Ge0'0 [0A9] MSsTY jueryed — @oAkordure pa[junissi(q A1Iqe)oera ©)R([OASLIISI
¥80°'T [oA9] AT jyueryed arqedes ‘pajeanoly Aymqes{ury BIR(OAPLIFOL

99'¢ ‘eanseowr dwey Apog uaryed istungrodd ojuy jo ‘[osIq ejeqjualyed
60%°0T1 [9AS] MSTY juareJ ystunyroddo A9111q030939(] e)R(]9103S
€99 [9A9] HSTY yuened ‘ded wiy ‘peyeAltoN A3I[IqRYIIUSPL eledo101s
F4 20 JueWLINSBIN HDH juaryed *ded ‘wiy ‘pareAro|N Ayrpiqesurg ©)R(]9109S
STy odAT, wye@ odAJ, 300lqng e S[goIJ I9¥0®} Iy odAT, yeoayJ, (@A) yxejuo) weysLg

s1ojourered 9ATJ o} SSOIDE S}NSOI JUSWISSISSe NSLI [eNPIATPUL Jo 1dI00XA :T°C 9[qR],

Clinical
Risk

Assessment

Patient Data
> GP
I GP I‘ (Portal

<

Figure 5.9: Patient Monitoring System Data Flow Diagram
Simplified DFD representation of the Patient Monitoring System. This model is
further enriched with the data subject types and their personal data types.

After the data in Table 5.1 is calculated, it can be aggregated in
multiple different ways to enable interesting insights into the impact of
various parameters on the distribution of the risk in the application.
This can support analysis activities by pinpointing which parameters
are the biggest contributors to the overall risk of the system.

Figure 5.10 visualizes the distribution of the risk aggregated per system
element (column 1 in Table 5.1) and data subject type (column 4 in
Table 5.1) by adding the risk values for every combination of these two
parameters. This distribution visualization provides an overview of
where the risk is the highest for every combination of system context and
data subject type. The visualization of this aggregated information in
a heatmap makes it easily detectable where the highest risk associated
with a data subject type is situated in the system. These types of
visualizations can also be created for other parameter combinations to
gain insight into the impact of the different parameter combinations
on the risk distributions.

5.2 . SOLUTION 135

sendData Clinical Risk
Assessment
retrieveconfigUpdates

sendData Chn':sk
— T\ A

Data Sync

patientData

patientData

(a) Patient Risk Heatmap (b) General Practitioner Risk Heatmap

Figure 5.10: Heatmaps of data subject type risks

The two images illustrate the distribution of risk in the DFD for different data
subject types. The heatmaps are constructed by overlaying a 2D density plot on
top of the DFD. Figure 5.10a shows the distribution of the patient risk. Note that
the sendData and sendSensorData data flows in this diagram do have a small, but
non-zero risk value. Figure 5.10b shows the distribution of risk from the perspective
of the General Practitioner (GP).

5.2.4 SPARTA Meta-Model

The SPARTA meta-model provides the foundation for the previous three
components on modeling, elicitation, and risk-driven prioritization
(Figure 5.11). Whereas, the full details on the meta-model itself are
provided in Chapter 3, this section focuses on the implementation in
the EMF and on how the different models are combined in SPARTA.

SPARTA makes use of four types of models (all separate files): (i) the user
model, (ii) the security and privacy solution catalog, (iii) the security
and privacy threat catalog, and (iv) an optional threat specification
catalog to specify deviations from the standard threat catalog. All
the meta-model classes from Chapter 3 are implemented as EClasses
in Eclipse Ecore. Because every model file requires a root object
containing the elements, SPARTA introduces three catalog types to

Sirius VIATRA Extended FAIR Model I

{Graphical Model Editor Threat Elicitation Threat Prioritization
l Il J

(Eclipse Modeling Framework

Meta-Model
I

Figure 5.11: SPARTA Components

Overview of the main components that comprise the SPARTA prototype: the graphical
model editor, the threat elicitation engine, and the risk-based threat prioritization.
All the above components are built on top of the meta-model, which is realized in
the Eclipse Modeling Framework (highlighted at the bottom,).

contain all the relevant model elements: (i) a DF'D Model type for
containing the user model, (ii) a solution catalog type for the security
and privacy solutions, and (iii) a threat catalog type for the threat
types and the optional threat specifications.

A single DFD Model loads the security and privacy solution catalog(s)
and threat type catalog(s) it needs, allowing an end-user to combine
multiple different solution catalogs and threat types catalogs as desired.

5.2.5 Using SPARTA

This section briefly elaborates on the usage scenarios of the SPARTA
tool prototype.

The first step is the modeling of the system under consideration in a
DFD. The SPARTA tool provides two main views for the creation of
the DFD system model. The first view is the graphical model editor,
displayed in Figure 5.12, which allows graphically modeling the system
under analysis. All changes made in the graphical editor are reflected
in an underlying model, shown earlier in Figure 5.3b. This tree view
can used for more advanced editing operations such as loading in a
different threat type catalog.

After or even during the creation of the model, it can be analyzed
by SPARTA for security and privacy threats. This analysis happens

completely in the background, and does not require any additional
inputs or feedback from the threat modeler.

SPARTA presents the results of threat analysis in a table of threats in
the threat analysis view (right-hand side of Figure 5.12). This view
provides the full details on the elicited threats and will be automatically
updated as changes are being made to the underlying model. The
threats in this table are color-coded according to their current risk
score. The scale ranges from o to the highest potential risk, i.e. the
highest risk given no countermeasures are present. For each elicited
threat, SPARTA included some additional information from the risk
analysis: (i) the current risk (and upper and lower bounds), (ii) the
damage of a single loss event, (iii) the vulnerability (to assess the
effectiveness of the countermeasures). Besides the threat list, SPARTA
also provides an overview of the total risk reduction progress. This
supports the monitoring and keeping track of the global aggregated
risk value when adding or modifying countermeasures. The SPARTA
tool performs the analysis of the user model continuously, updating the
resulting threat list on-the-fly as changes to the user model are made.

5.3 Evaluation and Discussion

This section first revisits the objectives from the introduction with a
qualitative assessment of how they are realized in the SPARTA prototype.
This is followed by the validation of the implemented risk model. Finally,
a discussion is provided on the components in SPARTA and how its
approach can be extended and leveraged in other types of analysis
activities.

5.31 Assessment of the Objectives

Automation. After construction of the solution-enriched DFD model,
SPARTA supports fully automated security and privacy threat elicitation
and prioritization.

138 | CHAPTER 5 -+ ADVANCED TOOL SUPPORT

|
o
x

File Edt Diagam Navigate Sear

=h]

ct Run Window Help
o Q s
52§ PMSsecuritydfd = 8 P ThreatAnalysis 33 =8
~M-f|av@Blew e N X% BIA-A|S-|

Clinical Risk
™\ Assessment
e

§
>

patientData

[Properties 53 [2] Problems mg=n

+ Data Store Patient Data

] — x
Main == @ [retieveConfig (Patent Data > CI
Semantic 4 retreveDeta (Patient Data > GP P
Sty
Appearance

|

S

©

< >

feeee @[3 soreDats (Clnical sk Assessmer|
4 request (GP Portl > Patient Data

||

i gz
i EF
g
g

x
<

Synchronized diagram

Figure 5.12: SPARTA Prototype Screenshot

The above screenshot shows the model editor next to the threat analysis view. This
view shows the overall risk reduction progress at the top, followed by the ordered
elicited threat list based on the risk analysis of the identified threats.

Fine-grained threat applicability. Contrary to existing security and
privacy threat elicitation approaches, the applicability of a security
or privacy threat types is no longer a binary notion. SPARTA
elicits every theoretically possible security or privacy threat. While
the final risk score is used the prioritize the elicited threats, the
intermediary wvulnerability value provides a granular indication of
a threat’s applicability between [0,1] by taking into account the
contextual information on security and privacy solutions. This avoids
an elicitation step where threats that were deemed inapplicable are
eliminated and ‘forgotten’ By still including these threats with the
appropriate risk scores, SPARTA ensures that they are reconsidered when
the assumptions that would have caused their elimination change over
time. For example, a partially mitigated threat can become relevant
again when the value of the threatened assets increases later on.

Reuse of security and privacy knowledge. The post-processing of
elicited threats to determine their applicability and priority is a process
that involves making architectural security and privacy decisions.
Performing this activity as a separate isolated activity after the threat
elicitation causes that knowledge to be separately, if at all, recorded and
potentially out of sync with the system design and its corresponding
threats. The integration of threat elicitation and assessment, paired
with the approach of continuously re-eliciting and re-assessing threats,
forces the collection of these architectural design decisions into the
supporting models. This ensures that the elicited security and privacy
threats and their corresponding risks are consistent with the decisions.

Immediate feedback. The SPARTA prototype provides immediate
modeling feedback to the end-user by re-assessing changes to the model
and automatically updating the corresponding security and privacy
threat list. This allows the end-user to perform what-if analyses by
evaluating the impact of different design alternatives, through modeling
the changes and verifying the impact on the resulting threat list.

Measuring progress. The risk integrations in SPARTA provide two
main benefits. First, the integrated risk assessment enables the
aggregation of the threat-specific risk scores in order to track the overall
risk reduction process across multiple design revisions. This provides a
useful metric to assist in choosing the most appropriate security and
privacy solution to efficiently reduce the risk. Second, the support
for fine-grained risk calculation enables a number of different analysis
scenarios where the risk can be aggregated across different dimensions
such as the attacker profiles, the element types, specific threats, etc. to
gain insight into the risk distribution for these parameters.

5.3.2 Validation of the Risk Model

The evaluate the practical feasibility of a continuous threat specific
risk assessment using Monte Carlo simulations to calculate the risk, we
conducted an initial performance evaluation of the SPARTA prototype

by running a security threat and risk analysis on the webRTC [Gool7]
reference architecture as presented in Figure 3.1. The DFD of this
reference architecture contains 42 DFD elements and triggers 194 threats
(when using STRIDE per interaction).

The total analysis time in SPARTA is 3.35s averaged over 10 runs. This
total analysis time includes loading the model (including threat type
catalog and solution catalog), the query engine, performing the threat
elicitation, the risk analysis, and presenting the results to the users.
Running the threat elicitation and risk analysis in isolation results for
100 runs results in an analysis time of 842 ms (95% CI: 718 ms—966 ms).
These results were obtained with a distribution sampling size of 2000
from an implementation without any performance optimizations.

The qualitative evaluation of the modeling support for security solutions
in SPARTA was already covered in Section 3.4 with a comparison of
the property-based solution representations (such as the Microsoft
Threat Modeling Tool 2016 [Mic16]), indicating positive improvements
in terms of semantic quality, traceability, separation of concerns and
dynamism [SYVJ18c]. The evaluation of the risk-based prioritization
for the security threats was discussed in Section 4.3, where the
prioritization was applied on the open source SecureDrop whistleblower
submission system [Frel8a], showing correspondences between provided
security countermeasures by the developers and the associated risk
score assigned by SPARTA [SYVJ18b].

5.3.3 Discussion

This section briefly discusses the SPARTA prototype in two main parts.
The first three sections discuss the use of SPARTA with the estimates
for the prioritization, the possibility to extend SPARTA with different
prioritization methods, and the visualization of the analysis results.
The last three sections cover more elaborate extensions: leveraging the
framework in the context of data protection by design, reconstructing
the DFD models from code, and the visualization of security and privacy
solutions in the graphical models.

Providing estimates for the prioritization

As mentioned in the discussion on the risk model in Section 4.3.4,
the risk-driven threat prioritization requires the specification of a
number of input values in the model. This involves an effort trade-off
between providing additional information in the input model versus
requiring additional effort afterwards in prioritizing the identified
threats. There are number of opportunities to reduce the up-front
overhead of introducing additional information: (i) specifying this
information up-front enables its reuse across multiple analysis activities,
while changes in the resulting threat list makes it harder to reuse these
results; (ii) the input for the different security and privacy solution
strengths and attacker profiles only have to be provided once and
can be re-used across analyses and applications; and (iii) to reduce
the effort in assigning the values of the assets, simple schemes can be
used to assign values to the elements as applied in the evaluation in
Section 4.3.2. Tool support such as SPARTA can assist the user with
assigning values on the model elements.

Different Threat Prioritization Methods

The current implementation of the threat prioritization in SPARTA relies
on the extended FAIR risk assessment model presented in Chapter 4.
However, the elicitation and risk assessment logic in SPARTA is not
specific for the presented risk assessment model. The SPARTA threat
types could be extended to use a different risk assessment model for
prioritization. The only constraint SPARTA enforces on this risk model
is that it should be able to provide a sortable value to enable ranking
the elicited threats in the threat results view.

Visualizing Threat Analysis Results

The results of the threat risk assessment in SPARTA are current presented
as a sorted and color-coded list according to the magnitude of the
threat’s risk. However, as Figure 5.10 illustrated with heatmaps, a
number of different graphical visualizations are possible of these risk

results. The benefits of these alternative visualizations is that they
enable the exploration of the impact of different parameters (e.g., the
type of adversary or the type of data subject) on the distribution of
the risk in the application. SPARTA is currently limited to the color-
coded list, but future extensions could support provide more dynamic
visualizations to explore this risk space interactively.

Reconstructing Models from Code

Any analysis of a software system in SPARTA requires the construction
of that application’s DFD model in SPARTA. This requires both initial
effort in constructing the model and modeling effort to ensure the
model remains consistent with the source code of the system.

To reduce the up-front modeling effort in constructing these models,
software architecture reconstruction techniques [DP09] could be applied
to enable the reconstruction of a DFD-based representation of the system.
Initial attempts to aid the construction of these model can rely on
source-code based annotations, such as used in ThreatSpec [Thrl9].
These annotations still require the manual effort of constructing the
model but, because of their close proximity to the code, can simplify
the effort in maintaining a model that is consistent with the code.

Visualizing Solutions

Finally, in addition to the semantic support for representing security
and privacy solutions which enables tool support to leverage this
information in subsequent analyses, is the graphical syntax of these
solutions for communicating this information to the human-end users.
Constructing graphical representations for solutions involves a number
of challenges to find appropriate visualizations that meet the different
criteria for effective visual notations [Moo09] such as: one-to-one
mapping between concepts and graphical representations, semantically
transparent representations that suggest their meaning, etc.

5.4 Related Work

Threat modeling was introduced by Microsoft as part of its security
development life cycle [SS04, Tor05, HLOS06, HL06, Sho08] and
has proven popular since with multiple real-world applications in
industry [Tor05, Sho08, Dhill]. In this section, we revisit the state
of existing threat modeling tool support to discuss to which degree
the existing threat modeling tools support the solution-aware and
risk-driven prioritization of security and privacy threats.

5.41 Threat Elicitation Tool Support

The Microsoft Threat Modeling Tool [Micl6, Mic20] is the most
common and readily available tool that can automatically elicit security
threats based on the data flow diagram drawn in the tool. The effect of
security properties in the diagram is binary. They influence whether a
threat is generated or not. There is no way to partially take into account
the effect of solutions for assessing the severity of the elicited threats.
Any prioritization in the resulting threat list has to be performed
manually by the user. Another publicly available tool is OWASP’s
ThreatDragon [OWA18]. ThreatDragon does not allow any automatic
threat elicitation. The identification and subsequent prioritization
of threats has to be performed manually. The Irius Risk tool from
Continuum Security [Conl8] does support the automatic elicitation of
threats based on the information provided about the components (e.g.,
used technological components, sensitivity of the data). The reduction
in the risk of the threats elicited by Irius Risk is not derived from the
combined strength of the countermeasures and the capability of an
attacker profile. Instead, the threat specification (risk pattern in Irius
Risk terminology) contains a list of the relevant countermeasures with
the percentage reduction they provide. The next threat modeling tool
is ovvL [Res19, SR19], which supports the elicitation of threats. There
is, however, no support for prioritizing them. This again has to be
manually performed by the user. Finally, there is the SecuriCAD tool
from Foreseeti [For20]. It runs attack simulations on a custom model.
The results of these attack simulations are presented in a prioritized

list according to the amount of affected high-value assets. Because of
the current lack of tool support for privacy threat elicitation, there is
also no automated support to prioritize the elicited privacy threats.

5.4.2 Other Threat Modeling Approaches

In addition to these DFD-based threat elicitation tools, a number of
different threat modeling tools are relevant in this context. The next
two tools are both more focused on code, either as annotations or by
representing the models in code. The third tool comes from a security
and privacy requirements context and has been extended into threat
modeling.

The first tool is ThreatSpec [Thr19], which provides a set of source code
annotations that have to be applied by the developers in code comments.
ThreatSpec analyzes the application source code with these annotations
in order to extract a DFD, a list of threats, and a list of countermeasures.
This approach does not support automated analysis of the source code
for eliciting threats, as these have to be manually added; it does,
however, enable the specification of this security information close to
the threatened code or provided countermeasures.

The second tool is PyTM [Tar20]. PyTM does not use source code
annotations but, instead, represents the DFD model as code, to enable
this information to be stored with the source code as well. PyTM does
support the elicitation of threats based on the model.

CaIris [Fail8] is the tool that accompanies the IRIS (Integrating
Requirements and Information Security) approach. CAIRIS focuses
mainly on usability and security requirements, but has recently been
extended with support for DFDs. It does not directly model these
with a graphical DFD editor, but, similarly to ThreatSpec and PyTM,
generates a graphical view of the DFD. CAIRIS does not automatically
elicit threats, but they can be manually documented.

5.4.3 Risk Assessment and Prioritization

In addition to the threat prioritization in the context of threat modeling,
there are also separate risk analysis approaches changethat are more
decoupled from threat modeling activities. These approaches, however,
lack any integration with threat modeling activities: (i) they do not
use the same concepts at the same abstraction level, which can require
multiple translation steps to reuse the elicited threats in the risk
assessment context; (ii) vice versa, the results of the risk assessment
may not translate back to enable the prioritization of the elicited
threats; (iii) they require considerable re-assessment effort when the
threat results or the system change.

The first risk analysis framework is cOrAs [LSS10]. The CORAS
approach relies on a number of graphical models of the asset, threat,
risk, and treatment diagrams to support a risk analysis exercise, which
involves a number of analysis activities: preparation, determining the
target and scope, refining the target and assets, risk identification, risk
estimation, risk evaluation, and risk treatment. The construction of the
different diagrams to create an overview of threat (agents), scenarios,
vulnerabilities, and unwanted incidents is similar to the creation of
attack trees but instead of the primary node being the attack to realize,
it is more asset-centered by focusing on the unwanted incidents that
harm the assets initially the determined. The CORAS approach focuses
mainly on analyses of 150 to 300 man-hours. This makes the approach
unsuitable for lightweight and continuous re-assessment in the context
threat modeling activities.

There are a number of tree-based risk analysis techniques from safety
engineering which are closely related. A common technique and
international standard in the safety domain is Fault Tree Analysis
(FTA) [IECO06], which relies on the construction of a fault tree. The
root of the tree is the failure that has to be prevented. the tree is
constructed using multiple logic gates that represent how combinations
of faults in different systems can lead to the undesired event at the root.
Another related technique is Failure Mode and Effects Analysis (FMEA),
which performs in the analysis in the opposite direction by investigating
the impact of the failure of single component. The difference between

the above two approaches is that the first one is deductive (starting
from a failure to find out which elements most likely contributed to
that failure) versus inductive (assuming a failed element to determine
its effect on the system) [VGRHS1].

For assessing privacy risk, the PR1AM [DL16] methodology can be used.
Similar to the attack trees, PRIAM employs harm trees to assess the
risk. A harm tree has a specific harm as root node, followed by a
number of feared events combined through AND/OR nodes, and, finally,
at the bottom weaknesses and risk sources. As is the case for CORAS,
the manual construction of the harm trees hinders the continuous
re-assessment in the context of privacy threat modeling. Our approach
can be considered an instantiation of this approach, but with an explicit
assignment of numerical estimates for the risk factors to support the
completely automated assessment.

Hong et al. [HNLLO04] developed a privacy risk model for ubiquitous
computing systems, focusing on the selective disclosure of personal
information (personal privacy). Similar to the 1Rs Privacy Impact
Assessment (P1A) [Int96], it relies on a set of questions as part of the
privacy risk analysis, after which the identified risks are prioritized.

Abu-Nimeh and Mead [AMO9] propose the combination of privacy risk
assessment with the IRS PIA [Int96] in Security Quality Requirements
Engineering (SQUARE) [MS05]. While such a PIA [Int96] supports
a detailed assessment of the realization of privacy-by-policy in the
framework of Spiekermann and Cranor [SC09], its question-based
assessment is less suited for frequent automated re-assessment.

5.5 Conclusion

There is a dichotomy between threat modeling approaches to identify
security and privacy threats and risk analysis approaches to support
triaging and prioritizing the identified threats. The makes the results
from the risk assessment quickly outdated as the identified threats may
be irrelevant due to changes to the system while other newly identified
threats lack a risk score to prioritize them.

The SPARTA tool resolves this disconnect by combining these two
analysis activities in a single framework, enabling the integration of
the threat elicitation and risk assessment activities. This integration
enables the risk assessment to use the risk input information directly
from the relevant concrete elements in the DFD model, supporting the
construction of the prioritized list of threats directly from the model
data.

The approach embodied in SPARTA provides a non-binary assessment
of a threat’s applicability, which corresponds more closely with the
real-world context of the system under design in which nothing is
perfectly secure but many countermeasures do aid in reducing the risk
of security threats. Additionally, the integration of this information
in the threat list supports a number of threat management activities
such as keeping track of the overall risk reduction process.

In future extensions, the integration of security and privacy solution
catalogs with existing vulnerability and weaknesses resources can
support automated updates of the effectiveness of these solutions
to dynamically reassessing existing systems as new information on
the effectiveness of existing solution is released, thereby taking an
important step towards continuous security and privacy assessment.

6.1

6.2

6.3

6.4

Chapter 6 Outline
Summary 149
Applicability 151
Future work 153

Concluding remarks 156

Conclusion

“The only people who see the whole picture,” he
murmured, “are the ones who step out of the frame.”

— Salman Rushdie [Rus99]
The Ground Beneath Her Feet

This chapter concludes the dissertation with a summary of contributions
presented in the previous chapters. This is followed by a discussion
of the applicability of the SPARTA approach and framework in other
contexts such as data protection by design and a summary of the
accomplished contributions in this complementary research area. After
that, the opportunities for future work are presented. Finally, the
chapter closes the dissertation with some concluding remarks.

61 Summary

Security and privacy are critical properties of today’s software systems.
While there is considerable effort and focus spent on the implementation-
level security, this is not the case for design-level security. Design-level
security and privacy flaws get considerably less attention despite their
high impact and costly resolution. These flaws require solutions that
should be incorporate at design time to address often re-occurring
problems that demand design decisions and choices in an early stage
of the software development process. A comprehensive assessment of

149

the security and privacy of a system can therefore only be achieved by
analyzing the security and privacy properties of the design.

This dissertation examines the application and extension of security
and privacy threat modeling for the design-level analysis of software
systems, which illustrated its potential with the multiple practical
applications in industry [Sho08, Dhill]. Threat modeling for design
analysis is improved by extending modeling support for a richer system
representation, expanding the elicitation analysis, and integrating
the comprehensive risk assessment of the identified threats. Threat
modelling can be applied as part of the requirements engineering stage,
and can be re-applied when assessing the design of the software system
to determine: (i) whether previously identified threats are properly
mitigated, and (ii) whether new threats are introduced as a result
of design decisions. This dissertation provided the following three
contributions:

1. Semantic support for representing security and privacy
solutions. We provide explicit modeling support for the first-
class representation of security and privacy solutions in Data
Flow Diagram (DFD) models. This enables: (i) the explicit
representation and thus documentation of previously made
security and privacy design decisions (traceability), (ii) an
extensive representation of applied solutions taking into account
their effects, but also their limitations in, for example, scope,
(iii) separating the security and privacy solution concepts from
system concepts, allowing for independent evolution (separation of
concerns), and (iv) future dynamic updates to these solutions for
scenarios such as continuous threat assessment and re-evaluation
in light of changes in effectiveness of existing, already-applied,
security solutions. Furthermore, the model representation
provides the necessary inputs for the subsequent analysis and
risk assessment activities.

2. Supporting model-based security and privacy analysis
activities. To counteract the problems with manual threat
elicitation, we provide an approach for automating the security
and privacy threat elicitation using patterns, which allows further

extending the supporting security and privacy threat knowledge
bases with more advanced threat types and design flaws that can
be automatically detected. Furthermore, to avoid the manual
prioritization effort commonly required in traditional threat
elicitation approaches, an integrated security and privacy threat
risk assessment model is proposed. This risk assessment model
leverages the security and privacy information embedded in
the supporting DFD model, reusing this information in the risk
analysis and supporting a wide range of risk analysis activities.

3. Tool support implementing the above two contributions
in a threat modeling framework. We presented SPARTA:
Security and Privacy Architecture through Risk-driven Threat
Assessment, a prototype implementation of the threat modeling
framework that integrates the modeling of security and privacy
solutions, and the automated threat elicitation and risk assess-
ment to support comprehensive and automated design analysis
for security and privacy.

6.2 Applicability

This section revisits the contributions presented earlier and discusses
their relevance and applicability beyond the immediate context of
security and privacy threat modeling.

Applying the security and privacy solution extension
mechanisms to other model representations

Chapter 3 presented modeling support for representing security and
privacy solutions in DFD models. While the extensions are applied and
illustrated in the context of DFDs, they do not have strong dependencies
on DFD concepts. Technically, the only dependency on DFDs is used in
the ability to limit the binding of a security and privacy solution’s roles
to DFD elements of a specific type. This mechanism is very generic and
can be reused when leveraging the solution representation support in

other modeling languages. For example, instead of scoping a solution’s
roles to, for example, DFD processes, these limitations can also be
applied in, for example, a Unified Modeling Language (UML) modeling
context by limiting bindings to UML element types (e.g., components,
classes, lifelines). Combining the solution support with appropriate
threat type knowledge would enable the use of these other modeling
languages for threat elicitation.

Threat prioritization alternatives

The threat prioritization presented in Section 4.2.1 leveraged the
extended FAIR-based risk model. The approach embodied in SPARTA
supports the application of other threat prioritization approaches.
Every elicited security or privacy threat provides the threat type and
includes a reference to the relevant DFD elements indicating where
the threat occurs. This information can be used by other threat
prioritization approaches to determine a score to sort the elicited
threats.

Leveraging the SPARTA framework for other analyses

Generically, SPARTA provides a compelling framework for analyzing
problems in different application domains by: (i) constructing a
model-based representation; (ii) analyzing this model for a number
of problematic patterns; (iii) analyzing the identified problems to
assess their severity; and (iv) presenting the results. Indeed, a similar
approach is useful in the context of data protection by design where the
data processing operations can be modeled [SDVL*19, SDVL*]| and
analyzed to assist in performing data protection impact assessments.

We have successfully leveraged the SPARTA approach in the context
of data protection by design [SDVL*19, SDVL*]. To enable data
protection analyses in support of meeting the obligations imposed
by the General Data Protection Regulation (GDPR), we provided
modeling support for creating data protection models. These data
protection models represent the data processing operations in the

system using relevant concepts from the GDPR such as: collection,
processing, controllership, data subject type, personal data type, etc.
These concepts provide the necessary information for analyzing the
data processing operations from a legal compliance perspective.

The analysis of the data protection models involves the automated
application of a number of legal assessments to identify problematic
data processing operations that are incompatible with the GDPR. The
identified problematic situations can subsequently be analyzed to
prioritize them and present them to the user to resolve them.

6.3 Future work

The exploration and development of the contributions in this
dissertation are fertile ground for new research ideas and opportunities.
This section highlights a subset of these opportunities.

Empirical studies

Advanced threat modeling tool enables a number of complex automated
analyses, but it comes at the cost of some additional modeling effort
such as the instantiation of security and privacy solutions and the
assigning the values for the risk-driven threat prioritization. With the
SPARTA tool, these cost-benefit trade-offs can be evaluated: (i) the
additional effort for adding the risk inputs to the models versus the
manual prioritization of the threats afterwards; (ii) whether users
correctly create and instantiate solutions and what the impact is of
incorrect solutions and instantiations on the resulting threats; and
(iii) how users make the trade-off between alternative solutions.

Structuring Threat Knowledge

The current interaction-based security and privacy threat elicitation
approach as described in Chapters 3 and 4 relies on a practical

representation of the STRIDE and LINDDUN threat knowledge. There
is, however, a lot of information in these threat knowledge bases
that is currently not used in threat elicitation approaches because
this information is not available in a structured and reusable form.
Future extensions would involve the construction of a meta-model
for representing security and privacy threat knowledge, including the
relations between different threat types. By capturing such knowledge
in a structured and reusable format, threat elicitation approaches
can leverage this knowledge for more advanced and defense-in-depth
analysis scenarios such as evaluating the impact of existing threats on
other threats (i.e. how combinations of different threats can be used
to realize other threats deeper down in the system). For example, a
spoofing threat when accessing the system can subsequently lead to
an information disclosure threat. The information disclosed in this
threat may then again be used to spoof a different user. By spoofing
this user, some other information can be modified, thereby realizing
another tampering threat. Reasoning about these chains of causation
requires modeling the relations between the different threat types.

Visualization

Visualization in the context of threat modeling has two main dimensions.
First, the communication of information on security and privacy
solutions to the user and providing an effective visual representation
for this information. Second, the communication of the analysis results
and enabling the end-user to navigate and interpret the results.

Visual Syntax for the Model Extensions. Besides the tool support
used for analyzing the system DFD models, human designers are also
users of these models. To improve the communication of the relevant
information on the system’s security and privacy solutions, different
graphical representations of this information can be explored in order
to discover the most optimal representations for communicating this
information to designers. These representations are complementary to
the semantic representation of these solutions in the underlying models
as presented in Chapter 3.

Visual Representations of the Analysis Results. Not only the repre-
sentation of the system and its security and privacy solutions need
to be communicated to human designers. The results of the security
and privacy analyses also have to be communicated and visualized
to the analysts to enable them to act on this information. Different
visualizations of this analysis information can be explored such as
the risk heatmaps that were used as an illustration in Figure 5.10 to
evaluate which visualizations of analysis results are the most effective.
Furthermore, interactive visualizations could support a user in exploring
the impact of different parameters (e.g., attacker strength, data type
sensitivity). These visualizations can aid in the decision-making.

Decision Trade-Off Analysis Support

While the contributions presented in the previous chapters support
the evaluation of the impact of instantiating different countermeasures
in a design by the continuous re-assessment of the threats and their
corresponding risks, the exploration of all the potential alternative
solutions for mitigating the identified threats represents a very large
solution space. This problem of identifying appropriate solutions can be
considered as a search problem that can be addressed by systematically
generating and evaluating different design variants to explore and
navigate this design space. Future extensions can leverage the existing
SPARTA tool support infrastructure to evaluate these generated variants
and guide the user in making the trade-off decisions between different
suggested design alternatives.

Source Code as Input to Threat Modeling

In order to uncover design-level structural flaws in a system, a design
representation of the system is required. While user-friendly tool
support can provide considerable assistance in the construction of
these design-level representations, they do not solve the problem of a
potential disconnect, or drift over time, of the design representation
of the system and its actual structure as expressed in the source
code. To resolve this problem, a number of different approaches can

Level of Detail

<
<

Requirements Architecture

Figure 6.1: Twin Peaks Model
Adapted view of the Twin Peaks model from Nuseibeh [Nus01] which shows the
iterative and progressive increase in detail in both requirements and architecture.

be explored ranging from code-level annotations [Thr19] to ensure
consistency between the design and the implementation, towards more
automated design reconstruction techniques that reverse engineer a
design representation of the system based on its implementation. These
approaches can significantly reduce the initial effort in constructing
the design representation and provide opportunities for automation in
the context of continuous integration by enabling automated analysis.

6.4 Concluding remarks

We close the dissertation with a number of concluding remarks.
Chapters 3 to 5 presented three contributions in advancement of the
modeling of systems, the analysis and prioritization of security and
privacy threats, and tool support that implements these in a security
and privacy threat modeling framework.

Revisiting Twin Peaks We started this dissertation with a discussion
on security and privacy by design and the application of these security
and privacy analysis techniques in the early phases of the development
lifecycle, aligning with the Twin Peaks [Nus01, HYS*11] model. Indeed,
the presented design analysis techniques fit into the iterative process

of co-developing requirements and architecture. The initial high-level
design description can be analyzed early on to identify security and
privacy threats. These threats provide relevant information to feed back
into the requirements process as they can be interpreted as requirements
formulating what is not allowed to happen. These can be translated into
security or privacy objectives. The analysis of the identified security
and privacy threats can then, in turn, lead to modifications and further
refinement of the overall system design and architecture (Figure 6.1).

Case Studies Throughout the dissertation, we have used a number
of case studies to illustrate, validate, and evaluate the contributions.
Next, we discuss a number of observations drawn from those cases.

First, there is very limited public documentation on the security and
privacy design aspects of software systems, due to the inherent sensitive
nature of such documentation. This makes it very challenging to rely
on a common baseline or ground truth (i.e. a thorough and well-
documented threat analysis which is carried by consensus among
experts) of existing software systems to use in evaluation of security
and privacy analysis techniques. In this regard, the thorough and
detailed documentation from the SecureDrop project is very welcome.
In future work, it would be particularly beneficial to deliberately create
exemplars and repositories of threat models to assist in the evaluation
of security and privacy analysis techniques with a common baseline.

Second, most solutions and assumptions encountered in the documenta-
tion of the applications were straightforward to model in the DFD with
the solution extension. There were some solutions, which are harder
to capture because the DFD notation itself provides limited support.
Examples of this are the types of solutions that rely on functionality
provided by the underlying 0S, and how that OS interacts with other
processes in the system. These solutions are hard to capture because
DFDs do not offer support to model the dependencies between these
different layers. More specifically, while a solution can capture the
effect (e.g., logging for some process), it does not capture the details
of how that mechanism is realized (e.g., a host intrusion detect client
that uses 0s logging functionality for monitoring some other process).

Third, the reuse of catalogs can greatly reduce the modeling efforts.
The threat type catalogs were created once and reused across all the
case studies. The catalogs on security or privacy solutions were not
elaborate or complete. As a result, a significant part of the modeling
efforts is spent on creating every newly encountered solution the catalog.
With more elaborate catalogs on security and privacy solutions, those
modeling efforts can be significantly reduced.

Fourth, a simple value assignment strategy was used for assigning the
Asset Values (Avs) in the SecureDrop model. This scheme reduces the
effort of determining the values for every element in the model.

Fifth, while the elicitation and prioritization of security and privacy
threats can be fully automated with SPARTA, the construction
of the initial DFD remains a manual task. The available of
design documentation simplifies the creation of the model. If such
documentation is not available, the creation of the model requires
significant investment in exploring the code and trying to reconstruct
the design to model.

Finally, while the graphical representation of DFDs is simple and
straightforward. There is no single format for exchanging these models.
To improve the reuse of case studies across multiple threat modeling
tools, a standard exchange format for DFD models is instrumental.

Documentation The presented DFD modeling extensions requires
some additional effort from the threat modeler to capture the security
and privacy solutions in the DFD models. However, the return of
this modeling effort can be improved, beyond the immediate benefits
in a threat modeling context highlighted in this dissertation, as the
captured information can serve multiple purposes. For example, the
GDPR imposes a number of obligations on organizations that process
personal data. Among those obligations are: (i) keeping track of
which types of personal data is processed and for which purpose(s),
and (ii) being able to provide appropriate documentation to national
supervisory authorities on the types of measures taken to protect the
personal data. Documentation on the security and privacy solutions

and the processed personal data types in the DFD models can thus
assist in meeting those obligations of the GDPR.

Automation The manual application of threat elicitation and analysis
techniques is effort-intensive and error-prone. Therefore, such a manual
analysis does not align well with contemporary iterative development
practices as it makes frequent re-assessments very costly.

To resolve these problems, this dissertation has presented three
contributions to support the automated application of security and
privacy threat elicitation and analysis techniques: (i) the modeling
support ensures security and privacy design decisions are recorded in the
models and consistently documented and this information is leveraged
in the threat analysis activities later on; (ii) the threat elicitation is
extended by further concretizing the system context that is considered
when determining a threat’s applicability and leveraging tool support
to avoid manual elicitation errors; and (iii) the integrated support
for risk-driven threat prioritization based on information captured in
the models to ensure the results can be explained from the inputs
and updated when the assumptions change. All these contributions
are implemented in tool support to enable automated and frequent
re-assessment of the models and provide a solid basis for further
extensions in populating the models from code, solution trade-off
analysis, etc. towards even more integrated design analysis activities
in better alignment with contemporary continuous integration and
deployment practices.

Appendix A Outline

A.1 SecureDrop 161
A.1.1 Data Flow Diagram 162
A.1.2 Solutions 163
A.1.3 Assumptions 163
A.1.4 Assigned values for risk-driven prioritization 165

A.2 Patient Monitoring System 165
A.2.1 Personal Data Types 167
A.2.2 Assigned values for risk-driven prioritization 167

A.3 WebRTC 168
A.3.1 Data Flow Diagram 169

Application Case
Descriptions

This appendix provides a more detailed description of the different case
studies used throughout this dissertation.

A1 SecureDrop

SecureDrop is an open source application developed by the Freedom
of the Press Foundation to support news organizations in enabling
whistleblowers to anonymously submit documents to the journalists.
The application is run by 35 news organizations worldwide.

The description of the application case starts with an overview of
the application as provided by the developers, followed by a detailed
description of how this case was modeled in SPARTA for the evaluation.

We start the case description with an overview of a SecureDrop
deployment provided by the developers [Frel8a, Frel8b].

The modeling of the SecureDrop application in SPARTA is presented
in the following parts: (i) construction of the Data Flow Diagram
(DFD) from the existing diagram depicted in Figure A.1, (ii) modeling
the different security countermeasures as solutions, (iii) modeling
the security-relevant assumptions of the developers as solutions, and
(iv) assigning element values in support of the prioritization.

161

162 CHAPTER A - APPLICATION CASE DESCRIPTIONS

St v)

(@ secureDrop pectited Hardvware Firewan |

|)

) SecurcDrop Application Server] @ SecureDrop Monitoring Server

OSSEC Server

External Services

Tor apt NTR SMTR SecureDrop 1.0.0 (2019-08-14)
repository. Server relay

Clearnet

Ubuntu apt -FPF apt I
-, T
repository. repository. or

USB/Local copy

Figure A.1: SecureDrop Diagram
This diagram shows the DFD from the SecureDrop documentation [Frel8b] and
serves as the primary input for the construction of the DFD in SPARTA.

A11 Data Flow Diagram

Modeling the SecureDrop application involves from the different element
types to the set DFD model elements. This mapping of the elements is
relatively straightforward. Figure A.1 shows the resulting DFD.

e every type of application, process, or OS service is mapped to
DFD processes;

o every type of storage (e.g., file, database, USB drive) is mapped
to DFD data stores;

o every external Internet service (e.g., application repositories, mail
servers) are mapped to external entities;

e the areas and physical devices are represented as DFD trust
boundaries, and

 the human end-users and external services (e.g., apt repositories)
are added as external entities.

Aa.2 Solutions

This section describes the list of security solutions that were modeled
in the SecureDrop case study. Some of these solutions are instantiated
multiple times in the system.

Tor Communication of the source, journalist, and administrator
happens over the Tor network.

Signed APT updates APT update services uses PGP signatures.

Encrypted Storage device The storage device is encrypted.

Firewall Firewalls are applied for communications with the source
(whistleblower), journalist, admin, monitoring, application
services, monitoring services.

File encryption Database file encryption.

Sumbission encryption The submissions are encrypted.

Submission sanitization Submissions are sanitized on the secure
viewing station of the journalist.

Session data signing Session data is signed to ensure its integrity.

XSS Protection XSS protection mechanisms.

Airgap Physical airgap for the viewing area.

Access control For source and journalist interfaces.

A1.3 Assumptions

In addition to the solutions outlined above, the model also includes
several assumptions that are explicitly documented by the developers
in the threat modeling documentation. These assumptions are also
modeled as ‘solutions’ in order to represent their effect in excluding
certain types of threats in certain locations of the system.

DESCRIPTIONS

ASE

APPLICATION (

CHAPTER A -

164

Aoyt oven
) oiend foyorendpeaY

oISsIGNSPaIdAI0agRs0

oznues
pue UOISSILANS
10A1990

uoissiwgng pardhiosg

uossangpaIdAiougpea]

uoisswans poidAiou

pardouzenM

pardhiou3 peay

Y34V ONIM3IA Q3ddVOUIY

—_—— e

() 2owmaquajsueiLolbiepeidhiongarm
() 39inoqsojsupit wosseqpaIdhiougpesy

| |

(i) dsas sup uow

L dsal sup o

sNa
0 bos supf b ———

(1) ba sup dde

() s chu vow

() dso dju dde

() bou df (i) bos dhu dde

o1
) () dsofde vouw

Kioysodas

() dsau 1de dde

d1ws) eo1nies ew X
@ 4d4/munqn/JoL.

[« Borae ade|

(SNO/JLN/Ldv)
ey

SO Bunoyuop

() puss s

(SNQ/dLN/LaY)
Sa0AIS SO
Jansaguonealddy,

Y

fay 21and vojssiwang.

@iegafooy

(o025 UpPIK
JoL pareanuawiny)

e ddeHss

43AY3S NOILYOfiddY JO¥AIUNOIS

(101, pore

10001075

uoneayddy
doigainoss

snswirpLddyas

(0omiag uappi
sy,

eoepu)

1sjewnor

(i) woissiuqngeaunogoyesmolg

g 00aQ Jojsuely ¥ 901aQ Jajsuel]

uoneaand
10} uonesedosy

901A3Q2JSURIL IO IUOISSILGNSPAAAIB0PERY

V3YY ONIHSI8Nd

(1) Jonsapddyabeuew

(s1f) s05m01g o,

NOLLVASYHOM LSIYNYNOr

(i) 36eguorsswanboninos__

(215) Josmog Jop

) o1goLsesfnosg

N
|

|
|

|
!

|
!
l |
y |
!) smasgososs |

SecureDrop DFD model
The model is largely based on the SecureDrop threat modeling document. Since the

threat modeling document refers to an earlier version, any inconsistencies were

Figure A.2:

resolved by referring to the latest version of the documentation and source code.

Authentication of the submission site Submission site URL is
shown on a news organization site with authentication.

Source follows usage guidelines The source follows the usage
guidelines when submitting documents.

Source repudiation not applicable Repudiation by the source is
explicitly considered to be inapplicable.

SQLite DB repudiation not applicable Repudiation by the sQLite
database is explicitly considered to be inapplicable.

Guidelines followed Administration, deployment setup, and isola-
tion guidelines followed. The system is not compromised.

A4 Assigned values for risk-driven prioritization

To support the prioritization of the identified threats on the SecureDrop
model, the DFD elements are assigned values. The assigned values
depend on the type of the involved users (whisltleblower, administrator,
or journalist). A static value assignment scheme is used in the
SecureDrop model:

o 3 if the data of a whistleblower is involved,
e 2 if the data of an administrator is involved, and
o 1 if the data of a journalist is involved.

These values can be combined when multiple user types are involved.
The focus in this model is exclusively on the Asset Value (Av) for the
prioritization of the security threats.

A.2 Patient Monitoring System

The Patient Monitoring System is an e-health system used for the
monitoring of patients with cardiovascular diseases. These patients are
equipped with wearable sensors and a smartphone application which
synchronizes the sensor data with the back-end system. The back-end
system stores the sensor data and performs a clinical risk assessment
in order to identify high-risk patients that require further follow-up or
medical intervention. The processed data and calculated clinical risk

sendData

Clinical
Risk
Assessment

retrieve
config-
receive Updates

send-

Sensor- config b retrieve-
Data updates stereDatg Config

Patient Data

retrieve-
request |
Data

J)atientData
[Gop 1" comuie | por
Consult- o\ Portal
Patient-
Data’

Figure A.3: Patient Monitoring System Data Flow Diagram
Simplified DFD representation a Patient Monitoring System. This model is further
enriched with information on the data subject types and their personal data types.

body temp.

Clinical
Risk
Assessment

Risk Level

P S

ECG

| GP

Figure A.4: Patient Monitoring System with Personal Data Types
This diagram extends DFD from Figure A.3 with the personal data types of the
patient. The data from the General Practitioner (GP) is limited to the GP’s
credentials that are transferred to the portal to retrieve the patient data.

levels are made available to the patients’ General Practitioners (GPs).
Figure A.3 shows the DFD model a strongly simplified instance of the
patient monitoring system. For more information on the context of
this system, we refer the reader to the literature [DBOV*16].

A.21 Personal Data Types

The support the elicitation and prioritization of privacy threats, the
DFD model of the Patient Monitoring System is extended with personal
data types of the patient and the general practitioners. These data
types are linked to the DFD elements which transfer or store the data.
Figure A.4 visualizes which data flows transfer personal data of the
patient. The data store Patient Data stores all the personal data types
of the patient, but this is not visualized on the diagram in Figure A.4.

A.2.2 Assigned values for risk-driven prioritization

Given the limited set of personal data types and data subject types,
each of them can be assigned a value individually and no assignment
scheme is needed as used in the previous case study (Appendix A.1).

The following assignments were used for the personal data types:

¢ Body temperature measurement: 1
e EcG measurement: 2

o Risk level: 3

e GP Credentials: 2

The following assignments were used for the data subject types:

o Patient: 2.5
e« GP: 15

A-Signaling B-Signaling

Signaling
Server

| UserA I

A

User A-HrowserA
UserB-HrowserB

DTLS+SRTP

BrowserA BrowserB

A-idpY

A-X JS-APIL B-Y.IS-ARI

ipdX-dsX ipdY-dsY

Y Y
DataStoreX DataStoreY

Figure A.5: Webrrc Data Flow Diagram
Simplified DFD representation of the WebRTC reference architecture [Gool7].
Bidirectional flows are modeled as two separate flows in opposite directions.

A.3 WebRTC

The third and final case study is the WebRTC case. The WebRTC case
was developed in the context of the PRO-FLOW research project. This
model does not represent a concrete software application or product.
Instead, a more generic model of the technology was constructed, which
can be instantiated in concrete applications afterwards. This enables
the up-front security threat analysis of this building block.

The webRTC model provides a moderately sized DFD, consisting of: 7
processes, 2 external entities, 2 data stores, 28 data flows, and 4 trust
boundaries (2 of them nested). The WebRTC DFD model was used to
test the practical feasibility of the threat elicitation mechanisms and to
demonstrate the limitations of the specialization-based representations
of security solutions. The webRTC model has already been reused as a
case study for other DFD-based analysis techniques [TSB19].

A.3a Data Flow Diagram

The webRTC DFD is highly symmetrical. Each side has: an external
entity for the user, a browser process for setting up the connection
and communicating with the other party, a STUN/TURN process to
assist in traversing NAT gateways, an identity provider, and the identity
provider’s data store. The only shared component is the signaling server
process to coordinate and assist in setting up the sessions between the
browser processes. Figure A.5 shows the resulting DFD model.

Bibliography

[ABPW99]

[AC09]

[ADD*14]

[ADSW03]

Christopher Alberts, Sandra Behrens, Richard Pethia,
and William Wilson. Operationally critical threat, asset,
and vulnerability evaluation (octave) framework, version
1.0. Technical Report CMU/SEI-99-TR-017, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1999.

American Institute of Certified Public Accountants
Inc. and Canadian Institute of Chartered Accountants.
Generally Accepted Privacy Principles. Technical
Report August, American Institute of Certified Public
Accountants, Inc. and Canadian Institute of Chartered
Accountants, 2009.

Ivan Arce, Neil Daswani, Jim Delgrosso, Danny Dhillon,
Christoph Kern, Tadayoshi Kohno, Carl Landwehr, Gary
Mcgraw, Brook Schoenfield, Margo Seltzer, Diomidis
Spinellis, Izar Tarandach, and Jacob West. Avoiding
the Top 10 Software Security Design Flaws. Technical
report, IEEE Center for Secure Design, 2014.

Christopher Alberts, Audrey Dorofee, James Stevens,
and Carol Woody. Introduction to the OCTAVE
Approach. Technical report, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA,
2003.

171

[AGI13]

[AIS*77]

[AK03]

[ALRLO4]

[AMO9]

[And08]

[AS16]

[AS18]

[ASRJ18]

Mohamed Almorsy, John Grundy, and Amani S Ibrahim.
Automated software architecture security risk analysis
using formalized signatures. In Proceedings of the 2013
International Conference on Software Engineering, pages

662-671. IEEE Press, 2013.

Christopher Alexander, Sara Ishikawa, Murray Sil-
verstein, Max Jacobson, Ingrid Fiksdahl-King, and
Shlomo Angel. A pattern language: towns, buildings,
construction. Oxford University Press, 1977.

Colin Atkinson and Thomas Kiihne. Model-driven
development: A metamodeling foundation. IEEFE
Software, 20(5):36-41, 2003.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11-33, jan 2004.

Saeed Abu-Nimeh and Nancy R. Mead. Privacy
risk assessment in privacy requirements engineering.
2009 2nd International Workshop on Requirements
Engineering and Law, RELAW 2009, pages 17-18, 2009.

Ross Anderson. Security Engineering. Wiley, 2nd edition,
2008.

Majed Alshammari and Andrew Simpson. Towards a
Principled Approach for Engineering Privacy by Design.
2016.

Majed Alshammari and Andrew Simpson. A
model-based approach to support privacy compliance.
Information & Computer Security, 2018.

Amir Shayan Ahmadian, Daniel Striiber, Volker
Riediger, and Jan Jiirjens. Supporting privacy impact
assessment by model-based privacy analysis. In
Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC ’18, pages 1467-1474, New

[ASS16a]

[ASS*16b]

[Bab64]

[BCK12]

[BDLO6]

[BDLvV09)

[Bec12]

[BLP09)]

York, NY, USA, 2018. Association for Computing
Machinery.

Thibaud Antignac, Riccardo Scandariato, and Gerardo
Schneider. A Privacy-Aware Conceptual Model for
Handling Personal Data, pages 942—-957. Springer, Cham,
2016.

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Késper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
Breaking TLS with SSLv2. In 25th USENIX Security
Symposium, August 2016.

Charles Babbage. Passages from the life of a philosopher,
1864.

Lenn Bass, Paul Clements, and Rick Kazman. Software
Architecture in Practice. Addison-Wesley, 2012.

David Basin, Jiirgen Doser, and Torsten Lodderstedst.
Model driven Security: From UML Models to Access
Control Infrastructures. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15(1):39-91,
2006.

Muhammad Ali Babar, Torgeir Dingsgyr, Patricia Lago,
and Hans van Vliet, editors. Software Architecture
Knowledge Management. Springer Berlin Heidelberg,
20009.

Kristian Beckers. Comparing privacy requirements
engineering approaches. Proceedings - 2012 7Tth
International Conference on Awvailability, Reliability and
Security, ARES 2012, pages 574-581, 2012.

Cédric Bouhours, Hervé Leblanc, and Christian
Percebois. Bad smells in design and design patterns.
The Journal of Object Technology, 8(3):43—-63, 2009.

[Box79]

[BSO1]

[BSK13]

[BSK16]

[CAP18]

[Cav06]

[CFH*76]

[CHH16]

[Conl8]

[CVE14]

George E.P. Box. Robustness in the Strategy of Scientific
Model Building. In Launer, Robert L. and Wilkinson,
Graham N."| editor, Robustness in Statistics, pages 201
— 236. Academic Press, 1979.

K. Yusuf Billah and Robert H. Scanlan. Resonance,
Tacoma Narrows bridge failure, and undergraduate
physics textbooks. American Journal of Physics,
59(2):118-124, February 1991.

Bernhard J. Berger, Karsten Sohr, and Rainer Koschke.
Extracting and analyzing the implemented security
architecture of business applications. Proceedings of
the Furopean Conference on Software Maintenance and
Reengineering, CSMR, pages 285-294, 2013.

Bernhard J. Berger, Karsten Sohr, and Rainer Koschke.
Automatically extracting threats from extended data
flow diagrams. Lecture Notes in Computer Science,
9639:56-71, 2016.

CAPEC - Common Attack Pattern Enumeration and
Classification. Available from MITRE, 2018.

Ann Cavoukian. Creation of a Global Privacy Standard.
pages 1-4, 2006.

G. R. Craig, L. E. Frey, W. L. Hetrick, M. Lipow, E. C.
Nelson, T. A. Thayer, J. A. Yoxtheimer, J. A. Whited,
and R. B. White. Software Reliability Study. Technical
report, TRW Defense & Space Systems Group, 1976.

M Colesky, J H Hoepman, and C Hillen. A Critical
Analysis of Privacy Design Strategies. In 2016 IEEE
Security and Privacy Workshops (SPW), pages 33—40,
may 2016.

Continuum Security. Irius Risk.
https://community.iriusrisk.com, 2018.

CVE-2014-0160. Available from MITRE, 2014.

[CVE19a]

[CVE19b)]
[CWEL9)

[CWE20]

[DBOV*16]

[DeM79]

[DGFRLP04]

[Dhil1]

[DL16]

[DP09)]

CVE - Common Vulnerabilities and Exposures. Available
from MITRE, 2019.

CVE-2019-13450. Available from MITRE, 2019.

CWE-79: Improper Neutralization of Input During Web
Page Generation (’Cross-site Scripting’). Available from
MITRE, 2019.

CWE - Common Weakness Enumeration. Available from
MITRE, 2020.

Femke De Backere, Femke Ongenae, Frederic Van-
nieuwenborg, Jan Van Ooteghem, Pieter Duysburgh,
Arne Jansen, Jeroen Hoebeke, Kim Wuyts, Jen Rossey,
Floris Van den Abeele, et al. The OCareCloudS project:
Toward organizing care through trusted cloud services.
Informatics for Health and Social Care, 41(2):159-176,
2016.

Tom DeMarco. Structured Analysis and System
Specification. Yourdon Press, 1979.

Nelly Delessy-Gassant, Eduardo B Fernandez, Sajeed
Rajput, and Maria M Larrondo-Petrie. Patterns for
application firewalls. In Proceedings of the Pattern
Languages of Programs (PLoP) Conference, 2004.

Danny Dhillon. Developer-Driven Threat Modeling:
Lessons Learned in the Trenches. IEEE Security Privacy,
9(4):41-47, jul 2011.

Sourya Joyee De and Daniel Le Métayer. PRIAM: A
privacy risk analysis methodology. Lecture Notes in
Computer Science, pages 221-229, 2016.

S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. IEEFE
Transactions on Software Engineering, 35(4):573-591,
July 2009.

[DWS+11]

[DWS*19]

[Eurl6]

[Fail8]

[FB13]

[FBJ*16]

[Fir04]

[FJ14]

[For20]

Mina Deng, Kim Wuyts, Riccardo Scandariato, Bart
Preneel, and Wouter Joosen. A privacy threat analysis
framework: supporting the elicitation and fulfillment of
privacy requirements. Requirements Engineering, 16(1),

2011.

Pierre Dewitte, Kim Wuyts, Laurens Sion, Dimitri
Van Landuyt, Ivo Emanuilov, Peggy Valcke, and Wouter
Joosen. A comparison of system description models
for data protection by design. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing,
SAC 19, page 1512-1515, New York, NY, USA, 2019.
Association for Computing Machinery.

European Union. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April
2016. Official Journal of the Furopean Union, 59(L
119):1-88, may 2016.

Shamal Faily. Designing Usable and Secure Software
with IRIS and CAIRIS. Springer, 2018.

Eduardo Fernandez-Buglioni. Security patterns in
practice: designing secure architectures using software
patterns. John Wiley & Sons, 2013.

Michael Felderer, Matthias Biichler, Martin Johns,
Achim D Brucker, Ruth Breu, and Alexander Pretschner.
Security Testing: A Survey. In Advances in Computers,
volume 101, pages 1-51. Elsevier, 2016.

Donald Firesmith. Specifying reusable security
requirements. Journal of Object Technology, 3(1):61—
75, 2004.

Jack Freund and Jack Jones. Measuring and managing
information risk: a FAIR approach. Butterworth-
Heinemann, 2014.

Foreseeti. SecuriCAD.
https://www.foreseeti.com/securicad/, 2020.

[Fra92]

[Frel8al

[Frel8b)

[FSS*20]

[GGD11]

[GHIV94]

[GJF06]

[GoolT]

[GPEMO09)

[GST9]

Robert B. France. Semantically Extended Data
Flow Diagrams: A Formal Specification Tool. IEEE
Transactions on Software Engineering, 18(4):329-346,
1992.

Freedom of the Press Foundation. SecureDrop | The
open-source whistleblower submission system, 2018.

Freedom of the Press Foundation. Threat Model —
SecureDrop 0.5.2 Documentation, 2018.

Shamal Faily, Riccardo Scandariato, Adam Shostack,
Laurens Sion, and Duncan Ki-Aries. Contextualisation
of data flow diagrams forsecurity analysis. In The
Seventh International Workshop on Graphical Models
for Security (GraMSec), 2020.

Seda Giirses, Carmela Gonzalez Troncoso, and Claudia
Diaz. Engineering privacy by design. In Proceedings
of the Conference on Computers, Privacy & Data
Protection (CPDP 2011), page 25, 2011.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software Addison-Wesley. Addison-Wesley,
1994.

Carlos M. Guitierrez, William Jeffrey, and Cita M.
Furlani. FIPS PUB 200: Minimum Security
Requirements for Federal Information and Information
Systems. FIPS Publication 200, (March), 2006.

Google. WebRTC Project. https://webrtc.org/,
November 2017.

Joshua Garcia, Daniel Popescu, George Edwards, and
Nenad Medvidovic. Toward a catalogue of architectural
bad smells. In International Conference on the Quality
of Software Architectures, pages 146-162. Springer, 2009.

Christopher Gane and Trish Sarson. Structured Systems
Analysis: Tools and Techniques. Prentice Hall Ptr, 1979.

[GTD15]

[Hai05]

[HHO6]

[HLO6]

[HLMNOS]

[HLOS06]

[HNLLO4]

[HSS12]

[HYS*11]

Seda Giirses, Carmela Troncoso, and Claudia Diaz.
Engineering Privacy by Design Reloaded. Amsterdam
Privacy Conference 2015, pages 1-21, 2015.

Yacov Y Haimes. Risk Modeling, Assessment, and
Management, volume 40. John Wiley & Sons, 2005.

Rosa R Heckle and Stephen H Holden. Analytical tools
for privacy risks: Assessing efficacy on vote verification
technologies. In Symposium On Usable Privacy and
Security, 2006.

Michael Howard and Steve Lipner. The Security
Development Lifecycle. Microsoft Press, 2006.

Charles B. Haley, Robin Laney, Jonathan D. Moffett,
and Bashar Nuseibeh. Security requirements engineering:
A framework for representation and analysis. [EEE
Transactions on Software Engineering, 34(1):133-153,
2008.

Shawn Hernan, Scott Lambert, Tomasz Ostwald, and
Adam Shostack. Threat Modeling: Uncover Security
Design Flaws Using The STRIDE Approach. MSDN
Magazine, 6, nov 2006.

Jason 1. Hong, Jennifer D. Ng, Scott Lederer, and
James A. Landay. Privacy risk models for designing
privacy-sensitive ubiquitous computing systems. Pro-
ceedings of the 2004 conference on Designing interactive
systems processes, practices, methods, and techniques -
DIS 04, page 91, 2004.

Bernhard Hoisl, Stefan Sobernig, and Mark Strembeck.
Modeling and enforcing secure object flows in process-
driven SOAs: an integrated model-driven approach.
Software € Systems Modeling, pages 1-36, 2012.

Thomas Heyman, Koen Yskout, Riccardo Scandariato,
Holger Schmidt, and Yijun Yu. The security twin
peaks. In ~ Ulfar Erlingsson, Roel Wieringa, and

[IECO6]

[IECO8]

[Int96]

[1SO11]

[ISO12a]

[1SO12b)]

[JAS15a]

[JAS15b]

Nicola Zannone, editors, Engineering Secure Software
and Systems, volume 6542 of Lecture Notes in Computer
Science, pages 167-180. Springer Berlin Heidelberg,
2011.

IEC. 61025:2006 fault tree analysis (FTA). Technical
report, 2006.

IEC. 60812:2008 failure modes and effects analysis
(FMEA and FMECA). Technical report, 2008.

Internal Revenue Service. Internal Revenue Service
Model Information Technology Privacy Impact Assess-
ment. Technical report, IRS, 1996.

ISO/IEC/IEEE. ISO/IEC/IEEE Systems and software
engineering — Architecture description. ISO/IEC/IEEE
42010:2011(E), 2011.

ISO/IEC. ISO/IEC 19505-1:2012 Information
technology - Object Management Group Unified
Modeling Language (OMG UML), Infrastructure.
Standard 19505-1:2012(E), ISO/IEC, April 2012.
http://www.omg.org/spec/UML/.

ISO/IEC. ISO/IEC 19505-2:2012 Information
technology - Object Management Group Unified
Modeling Language (OMG UML), Superstructure.
Standard 19505-2:2012(E), ISO/IEC, April 2012.
http://www.omg.org/spec/UML/.

JAS Global Advisors. JASBUG: Cutting
through the fear uncertainty and doubt (FUD).
https://www.jasadvisors.com/additonal-jasbug-
security-exploit-info/, 2015.

JAS Global Advisors. JASBUG fact sheet.
https://www.jasadvisors.com/about-jas/jasbug-
security-vulnerability-fact-sheet/, 2015.

https://www.jasadvisors.com/additonal-jasbug-security-exploit-info/
https://www.jasadvisors.com/additonal-jasbug-security-exploit-info/
https://www.jasadvisors.com/about-jas/jasbug-security-vulnerability-fact-sheet/
https://www.jasadvisors.com/about-jas/jasbug-security-vulnerability-fact-sheet/

[JB05]

[JSP*11]

[Jiir05)

[Ker83a)

[Ker83b]

[KG99]

[Lan13]

[LB03]

[LeBO7]
[Leil9]

A. Jansen and J. Bosch. Software Architecture
as a Set of Architectural Design Decisions. In
5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), pages 109-120. IEEE, 2005.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric
Vogels, Willem Penninckx, and Frank Piessens. Verifast:
A powerful, sound, predictable, fast verifier for ¢ and
java. In NASA Formal Methods Symposium, pages 41-55.
Springer, 2011.

Jan Jurjens. Secure Systems Development with UML.
Springer Berlin Heidelberg, 2005.

Auguste Kerckhoffs. La cryptographie militaire. Journal
des sciences militaires, 1X:5-38, Jan 1883.

Auguste Kerckhoffs. La cryptographie militaire. Journal
des sciences militaires, 1X:161-191, Feb 1883.

Loren Kohnfelder and Praerit Garg. The threats to our
products. Interface (Microsoft Corporation), 1999.

Carl E. Landwehr. A Building Code for Building Code:
Putting What We Know Works to Work. In Proceedings
of the 29th Annual Computer Security Applications
Conference, ACSAC 13, pages 139-147, New York, NY,
USA, 2013. ACM.

C. Larman and V. R. Basili. Iterative and incremental
developments. a brief history. Computer, 36(6):47-56,
June 2003.

David LeBlanc. Dreadful. 2007.

Jonathan Leitschuh. Zoom Zero Day: 4+ Million
Webcams & maybe an RCE? Just get them to visit your
website! https://medium.com/bugbountywriteup/
zoom-zero-day-4-million-webcams-maybe-an-rce-
just-get-them-to-visit-your-website-ac75c83f4ef5,
2019.

https://medium.com/bugbountywriteup/zoom-zero-day-4-million-webcams-maybe-an-rce-just-get-them-to-visit-your-website-ac75c83f4ef5
https://medium.com/bugbountywriteup/zoom-zero-day-4-million-webcams-maybe-an-rce-just-get-them-to-visit-your-website-ac75c83f4ef5
https://medium.com/bugbountywriteup/zoom-zero-day-4-million-webcams-maybe-an-rce-just-get-them-to-visit-your-website-ac75c83f4ef5

[LNI*03]

[Loc12]

[LPM*16]

[LSS10]

[McGO06)

[MCK*19]

[MCKX15]

[MDK14]

[MF99]

L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and
J. Moffett. Introducing abuse frames for analysing
security requirements. In Proceedings. 11th IEEE
International Requirements FEngineering Conference,

2003., pages 371-372, 2003.

John Locke. Some Thoughts concerning Education. A.
& J. Churchill, 1712.

Tong Li, Elda Paja, John Mylopoulos, Jennifer Horkoff,
and Kristian Beckers. Security attack analysis using
attack patterns. Proceedings - International Conference

on Research Challenges in Information Science, 2016-
Augus, 2016.

Mass Soldal Lund, Bjgrnar Solhaug, and Ketil Stglen.
Model-driven risk analysis: the CORAS approach.
Springer Science & Business Media, 2010.

Gary McGraw. Software Security: Building Security In.
Addison-Wesley, 2006.

Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and
Qiong Feng. Architecture anti-patterns: Automatically
detectable violations of design principles. IEEE
Transactions on Software Engineering, 2019.

R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot
patterns: The formal definition and automatic detection
of architecture smells. In 2015 12th Working IEEE/IFIP
Conference on Software Architecture, May 2015.

Bodo Méller, Thai Duong, and Krzysztof Kotowicz. This
poodle bites: exploiting the ssl 3.0 fallback. Security
Adwvisory, 2014.

J. McDermott and C. Fox. Using abuse case models
for security requirements analysis. In Proceedings
15th Annual Computer Security Applications Conference
(ACSAC’99), pages 55-64, 1999.

[MH17]

[Mic15]

[Mic16)

[Mic18]

[Mic20]

[MIT19)]

[MMW18]

[Moo09]

[MS05]

[NCFS17]

[NIS12]

Kyriakos Malamas and Danial Hosseini. Design flaws as
security threats. Master’s thesis, 2017.

Microsoft Corporation. Microsoft security bulletin ms15-
011 - critical:. https://docs.microsoft.com/en-us/
security-updates/SecurityBulletins/2015/ms15-011,
2015.

Microsoft Corporation. Microsoft Threat Modeling Tool
2016. http://aka.ms/tmt2016, 2016.

Microsoft Corporation. Sdl security bug bar (sam-
ple). https://docs.microsoft.com/en-us/security/sdl/
security-bug-bar-sample, 2018.

Microsoft Corporation. Microsoft Threat Modeling Tool
7. http://aka.ms/tmt, 2020.

MITRE. 2019 CWE Top 25 Most Dangerous Software
Errors, 2019.

Gary McGraw, Sammy Migues, and Jacob West.
BSIMM9. Technical report, 2018.

Daniel L. Moody. The “Physics” of Notations: Toward
a Scientific Basis for Constructing Visual Notations in
Software Engineering. IEEE Transactions on Software
Engineering, 35(6):756-779, nov 2009.

Nancy R Mead and Ted Stehney. Security Quality
Requirements Engineering (SQUARE) Methodology.
SIGSOFT Softw. Eng. Notes, 2005.

Tayyaba Nafees, Natalie Coull, Ian Ferguson, and Adam
Sampson. Vulnerability anti-patterns: a timeless way
to capture poor software practices (vulnerabilities). In
Proceedings of the 24th Conference on Pattern Languages
of Programs, page 23. The Hillside Group, 2017.

NIST. Guide for Conducting Risk Assessments. NIST
special publication, (800-30 Rev.1), 2012.

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-011
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-011
https://docs.microsoft.com/en-us/security/sdl/security-bug-bar-sample
https://docs.microsoft.com/en-us/security/sdl/security-bug-bar-sample

[NIS19a]
INIS19b]

[Nus01]

[NVBM+17]

[OECS0]

[OEC13]

(Oli14]

[0S14]

[OWA17a)
[OWA17b]

[OWA18]

[OWH15]

NIST. National Vulnerability Database (NVD), 2019.

NIST. NIST Privacy Risk Assessment Methodology
(PRAM), February 2019.

B. Nuseibeh. Weaving together requirements and
architectures. Computer, 34(3):115-119, 2001.

Job Noorman, Jo Van Bulck, Tobias Miihlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid
Verbauwhede, Johannes Gotzfried, Tilo Miiller, and Felix
Freiling. Sancus 2.0: A low-cost security architecture for

iot devices. ACM Transactions on Privacy and Security,
20(3):1-7, 9 2017.

OECD. OECD Guidelines on the Protection of Privacy
and Transborder Flows of Personal Data. OFECD, 1980.

OECD. The OECD Privacy Framework. Organisation
for Economic Co-Operation and Development, pages
1-154, 2013.

ITan Oliver. Privacy engineering: A dataflow
and ontological approach. CreateSpace Independent
Publishing Platform, 2014.

Marie Caroline Oetzel and Sarah Spiekermann. A
systematic methodology for privacy impact assessments:
A design science approach. Furopean Journal of
Information Systems, 23(2):126-150, 2014.

OWASP Top Ten Project, 2017.

OWASP. Software Assurance Maturity Model Version
1.5. Technical report, OWASP, 2017.

OWASP. OWASP Threat Dragon. https://www.owasp.
org/index.php/OWASP_ Threat_ Dragon, 2018.

Donald W. Olson, Steven F. Wolf, and Joseph M. Hook.
The tacoma narrows bridge collapse. Physics Today,
68(11):64-65, November 2015.

https://www.owasp.org/index.php/OWASP_Threat_Dragon
https://www.owasp.org/index.php/OWASP_Threat_Dragon

[PAC19]

[Pet13]

[Pet14]

[PPO3]

[Pri20]
[Res19]

[RH13]

[RKK16]

[Rus99]

[SBMPO0S]

Marco Patrignani, Amal Ahmed, and Dave Clarke.
Formal Approaches to Secure Compilation: A Survey of
Fully Abstract Compilation and Related Work. ACM
Comput. Surv., 51(6):125:1-125:36, February 2019.

Marian Petre. UML in practice. In 2013 35th
International Conference on Software Engineering
(ICSE), pages 722-731, May 2013.

Marian Petre. “no shit” or “oh, shit!”: responses to
observations on the use of uml in professional practice.
Software € Systems Modeling, 13(4):1225-1235, Oct
2014.

Charles P. Pfleeger and Shari Lawrence Pfleeger. Security
in Computing. Prentice Hall, 3rd edition, 2003.

PrivacyPatterns.org, 2020.

Tobias Reski. Conception and development of a threat
modeling tool. Bachelor thesis, Hochschule Offenburg,
Feb 2019.

Fergal Reid and Martin Harrigan. An analysis of
anonymity in the bitcoin system. In Security and privacy
in social networks, pages 197-223. Springer, 2013.

Tobias Rauter, Nermin Kajtazovic, and Christian
Kreiner. Asset-Centric Security Risk Assessment of
Software Components. 2nd International Workshop on
MILS: Architecture and Assurance for Secure Systems,
2016.

Salman Rushdie. The Ground Beneath Her Feet. Henry
Holt & Company, 1999.

Dave Steinberg, Frank Budinsky, Ed Merks, and
Marcelo Paternostro. EMF: Eclipse Modeling Framework.
Pearson Education, 2008.

[SCO9]

[Scho1]

[Sch99]
[Sch03]

[SDVL*]

[SDVL*19]

[SFBH*06]

[Shal6)

[Shal7]

[SHFO1]

Sarah Spiekermann and Lorrie F Cranor. Engineering
privacy. IEEFE Transactions on Software Engineering,
35(1):67-82, 20009.

Arthur Schopenhauer. The Art of Literature. Swan
Sonnenschein & Co., Limited, 1891.

Bruce Schneier. Attack trees. 1999.

Markus Schumacher. Firewall patterns. In FuroPLoP,
pages 417-430, 2003.

Laurens Sion, Pierre Dewitte, Dimitri Van Landuyt,
Kim Wuyts, Peggy Valcke, and Wouter Joosen.
DPMEF: A Modeling Framework for Data Protection by
Design. Enterprise Modelling and Information Systems
Architectures (EMISAJ). (accepted).

Laurens Sion, Pierre Dewitte, Dimitri Van Landuyt,
Kim Wuyts, Ivo Emanuilov, Peggy Valcke, and Wouter
Joosen. An architectural view for data protection by
design. In 2019 IEEE International Conference on
Software Architecture (ICSA), pages 11-20. IEEE, 2019.

Markus Schumacher, Eduardo Fernandez-Buglioni,
Duane Hybertson, Frank Buschmann, and Peter
Sommerlad. Security Patterns. Wiley, 2006.

Stuart S. Shapiro. Privacy Risk Analysis Based on
System Control Structures: Adapting System-Theoretic
Process Analysis for Privacy Engineering. In 2016 IEEE
Security and Privacy Workshops (SPW), pages 17-24,
may 2016.

Stuart S. Shapiro. Addressing Early Life Cycle Privacy
Risk. 1In 2017 International Workshop on Privacy
Engineering - IWPE’17, 2017.

Gary Stoneburner, Clark Hayden, and Alexis Feringa.
Nist sp 800-27 engineering principles for information
technology security (a baseline for achieving security).
Technical report, NIST, 2001.

[Sho08]

[Shol4]

[Sho20]

[Sil12)

[SMC74]

[SNLO5]

[S005]

[SPM*17]

[SR19]

Adam Shostack. Experiences threat modeling at
microsoft. In Modeling Security Workshop. Dept. of
Computing, Lancaster University, UK, 2008.

Adam Shostack. Threat Modeling: Designing for
Security. John Wiley & Sons, Indianapolis, Indiana,
2014.

Adam Shostack. Personal communication/feedback from
Adam Shostack on the EnCyCriS2020 paper: Security
Threat Modeling: Are Data Flow Diagrams Enough?,
2020.

Nate Silver. The Signal and the Noise. Penguin Books,
2012.

W P Stevens, G J Myers, and L L Constantine.
Structured design. IBM Systems Journal, 13(2):115—
139, 1974.

Christopher Steel, Ramesh Nagappan, and Ray Lai. Core
Security Patterns: Best Pratices and Strategies for J2EE,
Web Services, and Identity Management. Prentice Hall
Ptr, 2005.

Guttorm Sindre and Andreas L. Opdahl. Eliciting
security requirements with misuse cases. Requirements
Engineering, 10(1):34-44, 2005.

J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galstery,
J. V. Vidal, and A. Sejfia. Understanding software
vulnerabilities related to architectural security tactics:
An empirical investigation of chromium, php and
thunderbird. In International Conference on Software
Architecture, 2017.

Andreas Schaad and Tobias Reski. “Open Weakness
and Vulnerability Modeler” (OVVL): An Updated
Approach to Threat Modeling. In Proceedings of the
16th International Joint Conference on e-Business and

[SS75]

SS04]

[STM17]

[STY*+19]

[SVLJ20]

[SVLJAJ16]

[SVLWJ19a]

Telecommunications - Volume 2: SECRYPT,, pages 417—
424. INSTICC, SciTePress, 2019.

J.H. Saltzer and M.D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEF, 63(9):1278-1308, 1975.

Frank Swiderski and Window Snyder. Threat modeling.
Microsoft Press, 2004.

J. C. S. Santos, K. Tarrit, and M. Mirakhorli. A
catalog of security architecture weaknesses. In 2017
IEEF International Conference on Software Architecture
Workshops (ICSAW), pages 220-223, April 2017.

Laurens Sion, Katja Tuma, Koen Yskout, Riccardo
Scandariato, and Wouter Joosen. Towards automated
security design flaw detection. In 2019 34th
IEFEE/ACM International Conference on Automated
Software Engineering Workshop (ASEW), SEAD ’19,
pages 49-56, 2019.

Laurens Sion, Dimitri Van Landuyt, and Wouter
Joosen. The Never-Ending Story: On the Need for
Continuous Privacy Impact Assessment. In 2020 IEEE
Security and Privacy Workshops (SPW). IEEE, 2020.

Laurens Sion, Dimitri Van Landuyt, Wouter Joosen,
and Gjalt de Jong. Systematic Quality Trade-off Support
in the Software Product-line Configuration Process.
In Proceedings of the 20th International Systems and
Software Product Line Conference, SPLC ’16, page
164-173, New York, NY, USA, 2016. Association for
Computing Machinery.

Laurens Sion, Dimitri Van Landuyt, Kim Wuyts, and
Wouter Joosen. Poster: Privacy risk assessment for data
subject-aware threat modeling. 40th IEEE Symposium
on Security and Privacy, 2019.

[SVLWJ19b] Laurens Sion, Dimitri Van Landuyt, Kim Wuyts, and

[SVLYJ16]

[SVLYJ18]

[SWY*18]

[SYSJ17]

[SYvdB*15]

Wouter Joosen. Privacy risk assessment for data subject-
aware threat modeling. In 2019 IEEE Security and
Privacy Workshops (SPW), pages 64-71. IEEE, 2019.

Laurens Sion, Dimitri Van Landuyt, Koen Yskout,
and Wouter Joosen. Towards systematically addressing
security variability in software product lines. In
Proceedings of the 20th International Systems and
Software Product Line Conference, SPLC ’16, pages
342-343, New York, NY, USA, 2016. Association for
Computing Machinery.

Laurens Sion, Dimitri Van Landuyt, Koen Yskout,
and Wouter Joosen. SPARTA: Security & privacy
architecture through risk-driven threat assessment.
In 2018 IEEE International Conference on Software
Architecture Companion (ICSA-C), pages 89-92. IEEE,
2018.

Laurens Sion, Kim Wuyts, Koen Yskout, Dimitri
Van Landuyt, and Wouter Joosen. Interaction-based
privacy threat elicitation. In 2018 IEEE FEuropean
Symposium on Security and Privacy Workshops (Eu-
roSEPW), pages 79-86. IEEE, 2018.

Laurens Sion, Koen Yskout, Riccardo Scandariato,
and Wouter Joosen. A modular meta-model for security
solutions. In Companion to the first International
Conference on the Art, Science and FEngineering of
Programming, Programming 17, pages 1-5, New York,
NY, USA, 2017. Association for Computing Machinery.

Laurens Sion, Koen Yskout, Alexander van den
Berghe, Riccardo Scandariato, and Wouter Joosen.
MASC: Modelling Architectural Security Concerns. In
Proceedings of the Seventh International Workshop on
Modeling in Software Engineering, MiSE 15, pages 36—
41. IEEE Press, 2015.

[SYvdB+20]

[SYVJ18a]

[SYVJ18b]

[SYVJ18]

[Tar20]

[TCS18]

[THMS19]

Laurens Sion, Koen Yskout, Alexander van den Berghe,
Dimitri Van Landuyt, and Wouter Joosen. Security
Threat Modeling: Are Data Flow Diagrams Enough?
In EnCyCris ’20: Proceedings of the First International
Workshop on Engineering and Cybersecurity of Critical
Systems (EnCyCriS). IEEE, 2020.

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and
Wouter Joosen. Poster: Knowledge-enriched Security
and Privacy Threat Modeling. In 2018 IEEE/ACM
40th International Conference on Software Engineering
Companion (ICSE-C), pages 290-291, May 2018.

Laurens Sion, Koen Yskout, Dimitri Van Landuyt,
and Wouter Joosen. Risk-based design security analysis.
In Proceedings of the 1st International Workshop on
Security Awareness from Design to Deployment, SEAD
'18, page 11-18, New York, NY, USA, 2018. Association
for Computing Machinery.

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and
Wouter Joosen. Solution-aware Data Flow Diagrams
for Security Threat Modelling. In Proceedings of the
83rd Annual ACM Symposium on Applied Computing,
SAC 18, page 1425-1432, New York, NY, USA, 2018.
Association for Computing Machinery.

Izar Tarandach. PyTM. https://github.com/izar/
pytm, 2020.

K Tuma, G Calikli, and R Scandariato. Threat analysis
of software systems: A systematic literature review.
Journal of Systems and Software, 144:275-294, 2018.

Katja Tuma, Danial Hosseini, Kyriakos Malamas, and
Riccardo Scandariato. Inspection guidelines to identify
security design flaws. In Proceedings of the 13th
European Conference on Software Architecture - Volume

2, ECSA 19, pages 116122, New York, NY, USA,

https://github.com/izar/pytm
https://github.com/izar/pytm

[Thr19]

[TK91]

[TL18]

[Tor05]

[TS18]

[TSB19]

[TSSY20]

[TSWS17]

2019. Association for Computing Machinery. https:
//doi.org/10.1145/3344948.3344995.

ThreatSpec. ThreatSpec. https://threatspec.org/,
2019.

Yonglei Tao and Chenho Kung. Formal definition and
verification of data flow diagrams. The Journal of
Systems and Software, 16(1):29-36, 1991.

Davide Taibi and Valentina Lenarduzzi. On the
definition of microservice bad smells. IEEE software,
35(3):56-62, 2018.

Peter Torr. Demystifying the threat modeling process.
IEEE Security € Privacy Magazine, 3:66—70, 2005.

Katja Tuma and Riccardo Scandariato. Two
Architectural Threat Analysis Techniques Compared.
In Carlos E. Cuesta, David Garlan, and Jennifer Pérez,
editors, Software Architecture, pages 347-363, Cham,
2018. Springer International Publishing.

K. Tuma, R. Scandariato, and M. Balliu. Flaws in flows:
Unveiling design flaws via information flow analysis.
In 2019 IEEE International Conference on Software
Architecture (ICSA), pages 191-200, March 2019.

Katja Tuma, Laurens Sion, Riccardo Scandariato,
and Koen Yskout. Automating the Early Detection of
Security Design Flaws. In 23rd International Conference
on Model Driven Engineering Languages and Systems
(MODELS), 2020.

Katja Tuma, Riccardo Scandariato, Mathias Widman,
and Christian Sandberg. Towards security threats
that matter. In 3rd Workshop On The Security Of
Industrial Control Systems € Of Cyber-Physical Systems
(CyberICPS 2017), 2017.

https://doi.org/10.1145/3344948.3344995
https://doi.org/10.1145/3344948.3344995
https://threatspec.org/

[Tiir17]

[UFF12]

[UM15]

[VGRHS!]

[VINBOG]

[VLSVJ19]

[VMO02]

[Vos08]

Sven Tirpe. The Trouble With Security Requirements.
25th IEEE International Requirements FEngineering
Conference, 2017.

Anton V. Uzunov, Eduardo B. Fernandez, and Katrina
Falkner. Engineering Security into Distributed Systems:
A Survey of Methodologies. Journal of Universal
Computer Science, 18(20):2920-3006, 2012.

Tony UcedaVelez and Marco M Morana. Risk Centric
Threat Modeling. Wiley, 2015.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, and
D. F. Haasl. Fault Tree Handbook (NUREG-0492). U.S.
Nuclear Regulatory Commission, 1981.

Jan Salvador Ven, Anton G J Jansen, Jos A G Nijhuis,
and Jan Bosch. Design Decisions: The Bridge between
Rationale and Architecture. In AllenH. Dutoit, Raymond
McCall, Ivan Mistrik, and Barbara Paech, editors,
Rationale Management in Software Engineering, pages
329-348. Springer Berlin Heidelberg, 2006.

Dimitri Van Landuyt, Laurens Sion, Emiel Vandeloo,
and Wouter Joosen. On the applicability of security and
privacy threat modeling for blockchain applications. In
Sokratis Katsikas, Frédéric Cuppens, Nora Cuppens,
Costas Lambrinoudakis, Christos Kalloniatis, John
Mylopoulos, Annie Antén, Stefanos Gritzalis, Frank
Pallas, Jorg Pohle, Angela Sasse, Weizhi Meng, Steven
Furnell, and Joaquin Garcia-Alfaro, editors, Computer
Security. CyberICPS 2019, SECPRE 2019, SPOSE 2019,
ADIoT 2019, pages 195-203. Springer International
Publishing, 2019.

John Viega and Gary McGraw. Building secure software:
how to avoid security problems the right way. Addison-
Wesley, Boston, MA, USA, 1st edition, September 2002.

David Vose. Risk analysis: a quantitative guide. John
Wiley & Sons, 2008.

[vSYJ17]

[WB90]

[WJ15]

[WSJ20]

[WSVLJ19]

[Wuy15]

[WVHJ1g]

[XL19]

[YC75]

[YC79]

Alexander van den Berghe, Riccardo Scandariato, Koen
Yskout, and Wouter Joosen. Design notations for secure
software: A systematic literature review. Software €
Systems Modeling, 16(3):809-831, 2017.

Samuel D. Warren and Louis D. Brandeis. Right to
Privacy. Harvard Law Review, 4(5):193-220, 1890.

Kim Wuyts and Wouter Joosen. LINDDUN privacy
threat modeling: a tutorial. 2015.

Kim Wuyts, Laurens Sion, and Wouter Joosen.
LINDDUN GO: A Lightweight Approach to Privacy
Threat Modeling. In 2020 IEEE Security and Privacy
Workshops (SPW). IEEE, 2020.

Kim Wuyts, Laurens Sion, Dimitri Van Landuyt, and
Wouter Joosen. Knowledge is power: Systematic reuse of
privacy knowledge for threat elicitation. In 2019 IEEE
Security and Privacy Workshops (SPW), pages 80-83.
IEEE, 2019.

Kim Wuyts. Privacy Threats in Software Architectures.
PhD thesis, KU Leuven, Jan 2015.

Kim Wuyts, Dimitri Van Landuyt, Aram Hovsepyan,
and Wouter Joosen. Effective and Efficient Privacy
Threat Modeling through Domain Refinements. In
SAC2018: 1st track on Privacy by Design (PbD), 2018.

Wenjun Xiong and Robert Lagerstrom. Threat modeling
— A systematic literature review. Computers & Security,
84:53-69, July 2019.

Edward Yourdon and Larry Constantine. Structured
Design. 1975.

Edward Yourdon and Larry L Constantine. Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1st edition, 1979.

[YHSJO06]

[YHVL*20]

[YL14]

Koen Yskout, Thomas Heyman, Riccardo Scandariato,
and Wouter Joosen. A system of security patterns.
Report CW 469, Department of Computer Science,
KULeuven, December 2006.

Koen Yskout, Thomas Heyman, Dimitri Van Landuyt,
Laurens Sion, Kim Wuyts, and Wouter Joosen. Threat
modeling: from infancy to maturity. In 2020 IEEE/ACM
42nd International Conference on Software Engineering:
New Ideas and Emerging Technologies Results (ICSE-
NIER). IEEE, 2020.

William Young and Nancy G Leveson. An Integrated
Approach to Safety and Security Based on Systems
Theory. Communications of the ACM, 57(2):31-35, feb
2014.

List of Publications

Journal papers

e Laurens Sion, Pierre Dewitte, Dimitri Van Landuyt, Kim
Wuyts, Peggy Valcke, and Wouter Joosen. DPMF: A Modeling
Framework for Data Protection by Design. Enterprise Modelling
and Information Systems Architectures (EMISAJ). (accepted)

International conference and workshop papers

e Dimitri Van Landuyt, Laurens Sion, Pierre Dewitte, and
Wouter Joosen. The Bigger Picture: Approaches to an Inter-
Organizational Perspective on Data Protection In SPOSE: Work-
shop on Security, Privacy, Organizations, and Systems Engineer-
ing, 2020.

o Katja Tuma, Laurens Sion, Riccardo Scandariato, and Koen
Yskout. Automating the Early Detection of Security Design Flaws.
In 23rd International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2020

e Laurens Sion, Dimitri Van Landuyt, and Wouter Joosen. The
Never-Ending Story: On the Need for Continuous Privacy Impact
Assessment. In 2020 IEEE Security and Privacy Workshops
(SPW). IEEE, 2020

195

Kim Wuyts, Laurens Sion, and Wouter Joosen. LINDDUN
GO: A Lightweight Approach to Privacy Threat Modeling. In
2020 IEEE Security and Privacy Workshops (SPW). IEEE, 2020

Laurens Sion, Koen Yskout, Alexander van den Berghe,
Dimitri Van Landuyt, and Wouter Joosen. Security Threat
Modeling: Are Data Flow Diagrams Enough? In EnCyCris ’20:
Proceedings of the First International Workshop on Engineering
and Cybersecurity of Critical Systems (EnCyCriS). IEEE, 2020

Koen Yskout, Thomas Heyman, Dimitri Van Landuyt, Laurens
Sion, Kim Wuyts, and Wouter Joosen. Threat modeling: from
infancy to maturity. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: New Ideas and Emerging
Technologies Results (ICSE-NIER). IEEE, 2020

Shamal Faily, Riccardo Scandariato, Adam Shostack, Laurens
Sion, and Duncan Ki-Aries. Contextualisation of data flow
diagrams forsecurity analysis. In The Seventh International
Workshop on Graphical Models for Security (GraMSec), 2020

Laurens Sion, Katja Tuma, Koen Yskout, Riccardo Scandariato,
and Wouter Joosen. Towards automated security design flaw
detection. In 2019 84th IEEE/ACM International Conference on
Automated Software Engineering Workshop (ASEW), SEAD 19,
pages 49-56, 2019

Dimitri Van Landuyt, Laurens Sion, Emiel Vandeloo, and
Wouter Joosen. On the applicability of security and privacy
threat modeling for blockchain applications. In Sokratis Katsikas,
Frédéric Cuppens, Nora Cuppens, Costas Lambrinoudakis,
Christos Kalloniatis, John Mylopoulos, Annie Antén, Stefanos
Gritzalis, Frank Pallas, Jorg Pohle, Angela Sasse, Weizhi Meng,
Steven Furnell, and Joaquin Garcia-Alfaro, editors, Computer
Security. CyberICPS 2019, SECPRE 2019, SPOSE 2019, ADIoT
2019, pages 195-203. Springer International Publishing, 2019

Laurens Sion, Dimitri Van Landuyt, Kim Wuyts, and Wouter
Joosen. Privacy risk assessment for data subject-aware threat

modeling. In 2019 IEEE Security and Privacy Workshops (SPW),
pages 64-71. IEEE, 2019

Kim Wuyts, Laurens Sion, Dimitri Van Landuyt, and Wouter
Joosen. Knowledge is power: Systematic reuse of privacy
knowledge for threat elicitation. In 2019 IEEE Security and
Privacy Workshops (SPW), pages 80-83. IEEE, 2019

Laurens Sion, Pierre Dewitte, Dimitri Van Landuyt, Kim
Wuyts, Ivo Emanuilov, Peggy Valcke, and Wouter Joosen. An
architectural view for data protection by design. In 2019 IEEE
International Conference on Software Architecture (ICSA), pages
11-20. IEEE, 2019

Pierre Dewitte, Kim Wuyts, Laurens Sion, Dimitri Van Lan-
duyt, Ivo Emanuilov, Peggy Valcke, and Wouter Joosen. A
comparison of system description models for data protection by
design. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, page 1512-1515, New York, NY,
USA, 2019. Association for Computing Machinery

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter
Joosen. Risk-based design security analysis. In Proceedings of the
1st International Workshop on Security Awareness from Design
to Deployment, SEAD ’18, page 11-18, New York, NY, USA,
2018. Association for Computing Machinery

Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter
Joosen. SPARTA: Security & privacy architecture through risk-
driven threat assessment. In 2018 IEEFE International Conference
on Software Architecture Companion (ICSA-C), pages 89-92.
IEEE, 2018

Laurens Sion, Kim Wuyts, Koen Yskout, Dimitri Van Landuyt,
and Wouter Joosen. Interaction-based privacy threat elicitation.
In 2018 IEEE European Symposium on Security and Privacy
Workshops (FEuroS&PW), pages 79-86. IEEE, 2018

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter
Joosen. Solution-aware Data Flow Diagrams for Security Threat

Modelling. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, SAC 18, page 1425-1432, New York, NY,
USA, 2018. Association for Computing Machinery

e Laurens Sion, Koen Yskout, Riccardo Scandariato, and Wouter
Joosen. A modular meta-model for security solutions. In
Companion to the first International Conference on the Art,
Science and Engineering of Programming, Programming 17,
pages 1-5, New York, NY, USA, 2017. Association for Computing
Machinery

e Laurens Sion, Dimitri Van Landuyt, Wouter Joosen, and Gjalt
de Jong. Systematic Quality Trade-off Support in the Software
Product-line Configuration Process. In Proceedings of the 20th
International Systems and Software Product Line Conference,
SPLC 16, page 164-173, New York, NY, USA, 2016. Association
for Computing Machinery

e Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter
Joosen. Towards systematically addressing security variability in
software product lines. In Proceedings of the 20th International
Systems and Software Product Line Conference, SPLC 16, pages
342-343, New York, NY, USA, 2016. Association for Computing
Machinery

e Laurens Sion, Koen Yskout, Alexander van den Berghe,
Riccardo Scandariato, and Wouter Joosen. MASC: Modelling
Architectural Security Concerns. In Proceedings of the Seventh
International Workshop on Modeling in Software Engineering,
MiSE ’15, pages 36—41. IEEE Press, 2015

International abstracts/presentations/posters

e Laurens Sion, Dimitri Van Landuyt, Kim Wuyts, and Wouter
Joosen. Poster: Privacy risk assessment for data subject-aware
threat modeling. 40th IEEE Symposium on Security and Privacy,
2019

e Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter
Joosen. Poster: Knowledge-enriched Security and Privacy Threat
Modeling. In 2018 IEEE/ACM 40th International Conference
on Software Engineering Companion (ICSE-C), pages 290-291,
May 2018

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
IMEC-DISTRINET

Celestijnenlaan 200A box 2402

B-3001 Leuven
Laurens.Sion@cs.kuleuven.be
https://distrinet.cs.kuleuven.be

	Introduction
	The Context of Security and Privacy before and by Design
	The Role of Automation
	Research Goal and Questions
	Approach
	Contributions
	Overview

	Background
	Model Representations
	STRIDE & LINDDUN Threat Knowledge
	Threat Modeling
	Modeling the System
	Eliciting Security and Privacy Threats
	Mitigating the Elicited Threats

	A Note on Security Goals
	Risk Analysis and Threat Prioritization
	DREAD
	Bug bar
	Factor Analysis for Information Risk (FAIR)
	Other Risk Approaches

	Meta-Models
	Modeling Supporting using Meta-Models
	UML Meta-Model Hierarchy

	Summary

	Modeling Security and Privacy Concerns
	Running Example
	Quality analysis
	Expressiveness
	Example
	State-of-the-art
	Analysis

	Traceability
	Example
	State-of-the-art
	Analysis

	Separation of concerns
	Example
	State-of-the-art
	Analysis

	Support for dynamism
	Example
	State-of-the-art
	Analysis

	Meta-Model
	DFD Meta-Model
	Extensions to the DFD Meta-Model

	Security and Privacy Solution Meta-Model
	Impact on Threat Elicitation Process

	Evaluation
	Expressiveness
	Traceability
	Separation of Concerns
	Changing Security and Privacy Solutions
	Changing Threat Types

	Support for dynamism
	Summary

	Discussion
	Related Work
	Security and Privacy Threat Modeling
	DFD Extensions
	Non-DFD-Based Modeling Approaches
	Solution and Threat Knowledge
	Other Security and Privacy Analysis Techniques

	Conclusion

	Design-Level Analysis for Security and Privacy Threats
	Automating Threat Elicitation
	Analysis of Element-Based Elicitation
	Omitting Threats (False Negatives)
	Eliciting Inapplicable Threats (False Positives)
	Eliciting Redundant Threats

	Interaction-Based LINDDUN
	Construction of the Interaction-Based Mapping
	Applying Interaction-Based Elicitation

	Beyond Interaction-Based Elicitation
	Security & Privacy Design Flaws
	Modeling Support
	Pattern-Based Elicitation

	Prioritizing Threats through Risk Indicators
	Risk Assessment Model
	Risk
	Loss Event Frequency (LEF)
	Loss Magnitude (LM)

	Impact on Threat Modeling
	Parameters
	DFD Resources and Model Enrichments

	Evaluation and Discussion
	Evaluation of the Interaction-Based Elicitation
	Expressivity
	Elimination of inapplicable threats
	Undiscovered threats
	Effort-Precision Trade-off

	Evaluation of the Risk Assessment Model
	Methodology
	Results
	Threats to Validity

	Discussion on Interaction-Based Threat Elicitation
	Semantics and Ambiguities of Threat Types
	Threat Trees
	Granularity for Threat Elicitation

	Discussion on the Risk Model
	Risk component units
	Effort trade-off between adding information and prioritizing threats
	Difficulty in determining the risk component estimates

	Related Work
	Threat Elicitation
	Design Flaw Detection
	Threat Prioritization

	Conclusion

	Advanced Tool Support
	Approach
	Solution
	Modeling
	Elicitation
	Prioritization
	Estimates
	Estimating the Risk
	Granularity of the Calculations

	SPARTA Meta-Model
	Using SPARTA

	Evaluation and Discussion
	Assessment of the Objectives
	Validation of the Risk Model
	Discussion
	Providing estimates for the prioritization
	Different Threat Prioritization Methods
	Visualizing Threat Analysis Results
	Reconstructing Models from Code
	Visualizing Solutions

	Related Work
	Threat Elicitation Tool Support
	Other Threat Modeling Approaches
	Risk Assessment and Prioritization

	Conclusion

	Conclusion
	Summary
	Applicability
	Future work
	Concluding remarks

	Application Case Descriptions
	SecureDrop
	Data Flow Diagram
	Solutions
	Assumptions
	Assigned values for risk-driven prioritization

	Patient Monitoring System
	Personal Data Types
	Assigned values for risk-driven prioritization

	WebRTC
	Data Flow Diagram

	Bibliography

