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c Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMT - Laboratoire de Mécanique et Technologie, France

Abstract

Imprecise random fields consider both, aleatory and epistemic uncertainties. In this paper, spatially varying

material parameters representing the constitutive parameters of a damage model for concrete are defined as

imprecise random fields by assuming an interval valued correlation length. For each correlation length value,

the corresponding random field is discretized by Karhunen-Loève expansion. In a first study, the effect of

the series truncation is discussed as well as the resulting variance error on the probability box (p-box) that

represents uncertainty on the damage in a concrete beam as a result of the imprecise random field. It is

shown that a certain awareness for the influence of the truncation order on the local field variance is needed

when the series is truncated according to a fixed mean variance error.

In the following case study, the main investigation is on the propagation of imprecise random fields in

the context of non-linear finite element problems, i.e. quasi-brittle damage of a four-point bended concrete

beam. The global and local damage as the quantities of interest are described by a p-box. The influence

of several imprecise random field input parameters to the resulting p-boxes is studied. Furthermore, it is

examined whether correlation length values located within the interval, so-called intermediate values, affect

the p-box bounds. It is shown that, from the engineering point of view, a pure vertex analysis of the

correlation length intervals is sufficient to determine the p-box in this context.

Keywords: Uncertainty quantification, imprecise random fields, interval valued correlation length,

Karhunen-Loève expansion, non-linear stochastic finite element method, probability box approach

1. Introduction

Uncertainties are unavoidable in engineering practice, e.g. in terms of material, geometry or loading

parameters. In conventional design, uncertainties are usually considered by safety or knock-down factors,

however this may result in conservative and therefore more expensive designs. To enable resource-conserving
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but reliable designs, high research efforts are made to investigate sophisticated approaches including the5

required uncertainty quantification.

The first step to quantify uncertainties is to consider different origins. Distinction is typically made be-

tween aleatory (stochastic) and epistemic uncertainties [1]. While the first are due to the natural randomness

of a phenomenon and can be handled by probabilistic methods, the latter are caused by a lack of knowledge

or data. Therefore, stochastic parameters cannot be reliably quantified and possibilistic approaches such10

as interval [2] or fuzzy [3] theory are required. However, in reality uncertainties are usually neither purely

aleatory nor purely epistemic but of mixed nature [4, 5], which is also referred to as polymorphic or deep

uncertainties by some authors [6, 7]. Those mixed uncertain input parameters demand for appropriate

approaches, as e.g. evidence theory [8], fuzzy probability theory [9] or probability bounds analysis [10].

Over the last years, several highly efficient approaches to propagate imprecise probabilities have been intro-15

duced in literature. For instance, in reference [11], a linear programming method is presented to compute

bounds on the probability of failure of structures subjected to imprecise probabilistic uncertainty. Other

approaches include the application of variants of the Sobol-Hoeffding decomposition (also known as high

dimensional model representation or HDMR) in combination with extended Monte Carlo simulation [12]

or line sampling [13]. In reference [14], a method is introduced to propagate imprecise probabilities by20

combining Improved Interval Analysis via Extra Unitary Interval in combination with classical probabilistic

analysis. Also several surrogate modelling schemes for the propagation of imprecise probabilities have been

introduced in literature, based on e.g., polynomial chaos expansions [15] or Interval Predictor Models [16].

Within this paper, mixed aleatory and epistemic uncertain material properties are considered in the

context of non-linear finite element models. The non-linearity of the problem results from a brittle damage25

law. As material properties can vary within a component it is often reasonable to describe them as random

fields. This means that they vary not only on chance from one sample to the next but also spatially within

the sample itself. Random fields are classically aleatory uncertainties and described by a Karhunen-Loève

expansion [17] based on a mean value and standard deviation of the field as well as a certain correlation

structure. For many usual correlation functions the correlation length describes the correlation of two30

arbitrary values within the parameter field. Usually, mean value and standard deviation can be determined

by experiments, while the correlation length is difficult to determine experimentally. However, as it impacts

both the modelled variance of the field as well as its numerical discretization, the correlation length is as

such a crucial factor that governs the modelling and simulation of the random field [18]. For these reasons,

it is proposed to be described by an interval in this paper to acknowledge any epistemic uncertainty that is35

present in its definition.

This special mixed uncertain properties are then called imprecise random fields and have been inves-

tigated in several settings. In terms of material parameters, the mean value and standard deviation are

considered interval valued in [19], while interval and fuzzy valued correlation lengths are explored by [20].
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Recent applications of imprecise random fields were presented in [7] for geometric imperfections and in [21]40

to propagate imprecise stochastic loads through linear dynamical models.

The imprecise random field material parameters are propagated by a probability box approach in this

paper. Here, the probability is not defined by a certain value but by an upper and lower bound called proba-

bility box (p-box). A straightforward approach is to discretize the epistemic uncertainties [22]. However, for

non-linear finite element (FE) problems, this can become computational costly and it cannot be guaranteed45

that all crucial values within the interval are considered. In reference [23] a mathematical framework for the

description and propagation of imprecise random fields is provided. The authors also provide an optimiza-

tion approach to find the crucial values within the interval a-priori and studied the effect of these so-called

intermediate values. However, application of this concept is scarce in literature and the impact of inter-

mediate values in general engineering practice is as yet unclear. This paper therefore aims at investigating50

the influence of imprecise random field input parameters within concrete damage simulation. Such highly

non-linear FE analyses increase the computational cost of an individual realization notably. Considering

additional intermediate values besides a pure vertex analysis therefore can increase the cost of an imprecise

random field propagation significantly, especially when several input parameters are regarded as imprecise

random fields. For this reason, beside the influence of intermediate values, especially the sensitivity of several55

imprecise random field input parameters is studied. The question whether and how these interfere with each

other is inevitable to estimate the influence on the resulting p-box when making parameter assumptions.

For this purpose, the damage evolution of a four-point bending concrete beam is investigated considering

one and two material parameters as imprecise random fields.

This paper is structured as follows: Section 2 reviews two concepts to model spatial uncertainties, random60

fields for aleatory uncertainties and interval fields for epistemic uncertainties. Afterwards, a hybrid approach

is introduced to model both kinds of uncertainties mixed in terms of imprecise random fields in Section 3.

To apply this approach to a damage mechanics problem, the meaning of the underlying material model

and properties as well as the challenges in describing these by Karhunen-Loève expansion are discussed in

Section 4. Based on that, the influence of imprecise random fields on different quantities of interest of such65

a non-linear finite element problem is investigated in Section 5.

2. Modelling concepts for spatial uncertainty analysis

In terms of uncertainty quantification, often a distinction between two kinds of uncertainties is made

based on their respective source: those parameters that originate from the intrinsic randomness of a phe-

nomenon itself are classified as aleatory uncertain while those that follow from a lack of knowledge or data70

are called epistemic uncertain [1]. Uncertain parameters can furthermore depend on space or time. The
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modelling of these kinds of uncertainties requires special attention in terms of defining their autocorrelation

structure.

In this section, two strategies to deal with spatially uncertain properties are discussed: random fields to

model aleatory uncertainties and interval fields to model epistemic uncertainties. The appropriate selection75

of the modelling strategy depends largely on the nature of the uncertain quantity that is being modelled.

For instance, if the property is governed by pure aleatory uncertainty, e.g. considering wind loads or random

material properties, the framework of random field analysis has been shown to be highly effective [24], even

when non-Gaussian properties are considered under scarce data [25]. That is, at least when sufficient data are

available to quantify the appropriate random field model [26]. On the other hand, in case the model property80

is governed by pure epistemic uncertainty, the interval framework is better suited [27]. Spatial uncertainty

in this case is represented using interval fields [26]. This is for instance illustrated in case manufacturing-

related uncertainty on the thickness of a part produced via Additive Manufacturing is considered [28]. Also

other studies report the complementary nature of stochastic and interval approaches [29].

2.1. Aleatory uncertainty: random field analysis via the Karhunen-Loève expansion85

A finite-dimensional random field x(z, θ) describes a set of correlated random variables x(θ), which are

assigned to a countable number of locations z ∈ Ω in the model domain Ω ⊂ Rd with dimension d ∈ N.

Each random variable x(θ) : (Θ, ς, P ) 7→ R as such maps from a complete probability space to the real

domain, with θ ∈ Θ a coordinate in sample space Θ and ς the sigma-algebra. This condition holds as long as

x(z, θ) ∈ L2(Θ, P ), with L2(Θ, P ) the Hilbert space of second-order random variables (i.e., finite variance).90

For a given event θj ∈ Θ, the corresponding x(z, θj) is a realization of the random field. A random field is

considered Gaussian if the distribution of (x (z1, θ) , x (z2, θ) , . . . , x (zn, θ)) is jointly Gaussian ∀z ∈ Ω. In

this case, x(z, θ) is completely described by its mean function µx(z) : Ω 7→ R, its autocorrelation function

Γx(z, z′) : Ω × Ω 7→ [0, 1] and its covariance function σ2
x(z, z′) = σx(z)σx(z′)Γx(z, z′), where σx(z) is the

standard deviation of the random field [30]. In this paper we consider stationary problems including only95

constant standard deviations σx.

In an engineering context, applying random fields to model spatial aleatory uncertainty requires to

discretize the random field x(z, θ) over the physical domain Ω. As such, the continuous random field x(z, θ)

is represented by a finite set of T ∈ N+ correlated random variables, as well as a set of deterministic

functions that describe the spatial behaviour of the field. Usually, such discretization is obtained following100

a Karhunen-Loève (KL) series expansion [31]:

x(z, θ) = µx(z) + σx

∞∑
i=1

√
λiψi(z)ξi(θ), (1)

with ξi(θ), i = 1, . . . ,∞ uncorrelated random variables, which are determined according to:

ξi(θ) =
1√
λi

∫
Ω

[x(z, θ)− µx(z)]ψi(z) dz, (2)
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which can be shown to be independent standard normally distributed in the case of a Gaussian random

field. The quantities λi ∈ (0,∞) and ψi(z) : Ω 7→ R are respectively the eigenvalues and eigenfunctions

of the continuous, bounded, symmetric and positive (semi-)definite autocorrelation function Γx(z, z′), in105

accordance with Mercer’s theorem:

Γx(z, z′) =

∞∑
i=1

λiψi(z)ψi(z
′), (3)

which are in practice obtained by solving the homogeneous Fredholm integral equation of the second kind:∫
Ω

Γx(z, z′)ψi(z
′) dz′ = λiψi(z). (4)

Since Γx(z, z′) is bounded, symmetric and positive semi-definite, and furthermore in most practical cases

can be assumed positive definite, these eigenvalues λi are non-negative and the eigenfunctions ψi(z) satisfy

the following orthogonality condition:110

〈ψi(z),ψj(z)〉 =

∫
Ω

ψi(z)ψj(z) dz = δij (5)

with δij the Kronecker delta and 〈·, ·〉 : Ω×Ω 7→ R an inner product space. Hence, the eigenfunctions form

a complete orthogonal basis on an L2 Hilbert space. In this case, the series expansion in Eq. (3) can be

shown to be optimally convergent [31].

To limit the computational cost, the series expansion in Eq. (1) is usually truncated by retaining only

the T ∈ N+ largest eigenvalues and corresponding eigenfunctions of Γx(z, z′) [32], which yields an optimal115

series expansion with respect to the global mean squared error [33]. Formally, this is expressed as

x̃(z, θ) = µx(z) + σx

T∑
i=1

√
λiψi(z)ξi(θ). (6)

The variance of x̃(z, θ) can be expressed as:

σ2
x{x̃(z, θ)} = σ2

x

T∑
i=1

λiψ
2
i (z). (7)

As such, the error of the variance

ε(z) = 1− σ2
x{x̃(z, θ)}

σ2
x

(8)

is given by

ε(z) = 1−
T∑

i=1

λiψ
2
i (z), (9)

and the mean error of the variance is defined as120

ε̄(z) = 1− 1

|Ω|

T∑
i=1

λi

∫
Ω

ψ2
i (z), (10)
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with |Ω| ∈ R+
60 the size of the physical domain. From this equation, it is clear that the random field

representation following the truncated KL expansion inherently underestimates the actual variance of the

original random field. Furthermore, since the variance error varies over the model domain, the truncated

KL random field is only approximately homogeneous.

In this paper, the case of isotropic Gaussian random fields that are governed by an exponential autocor-125

relation kernel is considered:

Γx(z, z′) = exp

{
−|z − z

′|
L

}
, (11)

with L ∈ R+
60 the correlation length of the random field2. This quantity represents the decay of the autocor-

relation over distance. In the limit case of L → ∞ all points of the random field are perfectly correlated,

and the field reduces to a random variable. Conversely, when L → 0, an independent random variable is

defined for each location in Ω.130

In the particular case of Eq. (11), an exact analytic solution to the integral eigenvalue problem, introduced

in Eq. (4) exists [31]. Following this approach for a domain Ω ⊂ R1, the eigenvalues are given by:

λi =
2c

ω2
i + c2

, (12)

and

λ∗i =
2c

ω∗i
2 + c2

, (13)

where ωi for i odd and ω∗i for i even are solutions to the transcendental equations:

c− ω tan(ω|Ω|) = 0, (14)

and135

ω∗ + c tan(ω∗|Ω|) = 0, (15)

with |Ω| ∈ R+
60 the length of the 1-dimensional domain and c = 1/L. Similarly, the eigenfunctions can be

determined as:

ψi(z) =
cos(ωiz)√

|Ω|+ sin (2ωi|Ω|)
2ωi

, (16)

and

ψ∗i (z) =
sin(ω∗i z)√

|Ω| − sin (2ω∗
i |Ω|)

2ω∗
i

. (17)

For 2-dimensional rectangular problems with separable autocorrelation function the solution of Eq. (4) can

be determined from the 1-dimensional solutions [17]:140

λi = λ1D
i,z1λ

1D
i,z2 , (18)

2 These fields are also called Ornstein-Uhlenbeck processes.
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and

ψi(z) = ψ1D
i (z1)ψ1D

i (z2). (19)

Note that an analytic solution is only available for this special case. To gain an overview of numeric

solutions applicable in general, the reader is advised to the literature, e.g. [17] or [24]. Furthermore, it

should be noted that by introducing a regular exponential kernel, non-smooth sample paths are inherently

included in the analysis as a result of the non-differentiability of Eq. (11) at z = z′ [33]. Differentiable145

alternatives, e.g. the linear exponential, the squared exponential or the Whittle-Matérn autocorrelation

function, provide a faster convergence with less truncation terms T [34, 35]. For a recent study on the

autocorrelation function and the corresponding sample path smoothness affecting the results of a random

field analysis, the reader is referred to [35]. In this study however, the availability of analytic solutions to

Eq. (4) outweighs possible effects of the non-smoothness of the sample paths on the computations.150

2.2. Epistemic uncertainty: interval fields

Similar to a finite-dimensional random field, a finite-dimensional interval field xI(z) describes a set of

dependent intervals xI ∈ IRnb(zi). Here, IR is the space of real-valued intervals, which are assigned to a

countable number of locations z ∈ Ω in the spatial domain. Following the explicit formulation introduced

in [36], an interval field xI(z) : Ω× IRnb 7→ IR is specifically defined as:155

xI(z) =

nb∑
i=1

ψi(z)αI
i (20)

and can be interpreted as the superposition of i = 1, . . . , nb ∈ N base functions ψi(z) : Ω 7→ [0, 1]. Those

represent a set of spatial uncertainty patterns, scaled by independent interval scalars αI
i ∈ IR, which rep-

resent the magnitude of the uncertainty. Note that in general, these base functions are not orthogonal by

construction:

〈ψi(z),ψj(z)〉 =

∫
Ωe

ψi(z)ψj(z) 6= δij , (21)

which affects the modeling of the dependence between interval scalars [37]. Indeed, the dependence be-160

tween intervals xI ∈ IRnb(zi) at locations zi is controlled by the non-orthogonality of the base functions.

Furthermore, since the interval scalars αI
i remain fully independent, typically applied propagation schemes

for interval analysis still can be applied [38]. For a more complete overview of interval- and interval field

methods, the reader is kindly referred to a recent review paper [26].

3. Hybrid approaches to model mixed epistemic and aleatory uncertainties165

Naturally, also combinations of aleatory and epistemic uncertainty can be present in the description of

the uncertain property. One possibility to model mixed uncertain parameters is given by the probability

box (p-box) approach [4], the main idea of which is introduced in the following section.
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Considering uncertainty on the governing parameters of a random field, the p-box concept needs to be

extended. The resulting framework of imprecise random fields, introduced separately by the authors in [39]170

and [23], in this case proves to be a valuable tool. The approach is summarized in Section 3.2 and applied

in Section 5.

3.1. Probability box approach

A straightforward approach to capture mixed, aleatory and epistemic, uncertainties is given by a prob-

ability box (p-box). A p-box [F x, F x] is minimally defined by a left and right bound, F x(x) and F x(x)175

respectively, which is also denoted a distribution-free p-box. The p-box can be further described by the

quintuple
(
F x, F x, µ

I
x, σ

I
x,F

)
which has further information on, e.g. the confidence interval of the mean

value µI
x ∈ I holding

∞∫
−∞

xdF (x) ∈ µI
x, (22)

the confidence interval (σ2
x)I ∈ I of the variance such that ∞∫

−∞

x2 dF (x)

−
 ∞∫
−∞

x dF (x)

2

∈ (σ2
x)I (23)

or knowing the set of admissible probability functions F ⊂ F, which belongs to the class of probability180

functions F = {F | F : R 7→ [0, 1],∀x, y : x < y ⇐⇒ F (x) < F (y)}.

As indicated in Figure 1, the left and right bound F x(x) and F x(x) can be understood either as the upper

and lower probability bound [Fmax
x∗ , Fmin

x∗ ] := F I
x∗ corresponding to a specific quantity of interest x∗ (depicted

in red), or as the lower and upper bound of an interval valued quantity of interest [xmin
F∗ , xmax

F∗ ] := xIF∗ related

to a fixed probability F ∗ (depicted in blue).185

From the corresponding definition, the midpoint line F̂x representing the center of all intervals F I
x∗ and the

midpoint line x̂ representing the center of all intervals xIF∗ , depicted in dashed line3, can be determined.

To highlight the variation of the p-box, it is proposed to complement the classic p-box by two additional

graphs depicting the deviation ∆x = x− x̂ (left part) and ∆Fx = Fx − F̂x (bottom part) of the intervals to

their corresponding midpoint line.190

3.2. Imprecise random fields

In Section 2.1, random field analysis has been introduced as a rigorous method to model spatially

uncertain model properties in an aleatory framework. However, in a general engineering context, describing

the quantities that are required to represent a random field crisply is often non-trivial or even impossible,

3Although depicted in one line here for reasons of clarity, please note that F̂x is not necessarily equal to x̂.
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Fx(x)

x

F̂x, x̂

1

F ∗
x

x
∆Fx

xIF ∗

F I
x∗

∆x

Fx(x)

x∗

F xF x

Figure 1: P-box visualized classically (top right) and as the deviation ∆x = x− x̂ from the midpoint line x̂ of the interval xIF∗

(left) as well as the deviation ∆Fx = Fx − F̂x from the midpoint line F̂x of the interval F I
x∗ (bottom).

given the omnipresent constraints on data availability. This observation led to the so-called concept of195

imprecise random fields (see e.g., [40, 39, 20, 23]), which form a generalization of p-boxes towards tempo-

spatially uncertain quantities [4].

In the context of a random field x(z, θ), given epistemic uncertainty on (some of) its hyper-parameters,

the field becomes an imprecise random field [x](z, θ). Since a random field requires to define a correlation

function Γx(z, z′) next to its first two central moments and underlying distribution function, an imprecise200

random field is defined by the sextuplet (F , F , µI
x, σ

I
x,F , C), with C the set of admissible correlation functions.

In case a predefined correlation function is selected that is parameterized by an appropriate correlation

length L, the definition of an imprecise autocorrelation boils down to selecting appropriate bounds for L,

and the sextuplet becomes (F , F , µI
x, σ

I
x,F , LI). The truncated KL expansion of an imprecise random field

in this case reads:205

[x](z, θ) = µI
x(z) + σI

x

T∑
i=1

√
λIiψ

I
i (z)ξi(θ), (24)

with λIi ∈ IR+ a set of strictly positive interval valued eigenvalues and ψI
i (z) : Ω × IR 7→ IR interval

fields representing the bounds on the corresponding eigenfunctions. It can therefore be understood that an

imprecise random field describes a set of correlated p-boxes [x](θ) for each location z ∈ Ω. As such, when

considering a single location zj ∈ Ω, bounds for the cumulative distribution function (CDF) are locally

given. Similarly, for a given θj , also realizations [x](z, θj) are generated. The main difference with the210
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realizations of a regular random field is that in case θ is fixed to a value θj , the realizations become interval

field valued:

[x](z, θj) = µI
x(z) + σI

x

T∑
i=1

√
λIiψ

I
i (z)ξi(θj). (25)

Indeed, since epistemic uncertainty is present in the definition of µx, σx and L, a full admissible set of

realizations that are consistent with these intervals is provided. It should be noted that, in case F contains

also non-Gaussian distributions, the imprecise random field inherently also extends towards non-Gaussian215

random fields. Hence, the same considerations concerning the correlation and dependence of ξi have to be

made as for regular random fields. Specifically, Eq. (2) has to be solved in this case explicitly for each class

of non-Gaussian distribution functions in F . This, however, falls outside the scope of this paper.

Concerning the propagation of an imprecise random field [x](z, θ) with an autocorrelation function

Γx(z, z′ | L) through a monotonic model, the approach presented in [23] is applied. Let G(Ω, L) : Ω× L 7→

{λ,ψ(z)} denote the process of solving Eq. (4) for m eigenpairs of Γx given a crisp value. Then, those

values for L that yield extreme values in
√
λiψi(z) are determined following an optimization approach:

L∗i = arg min
G(L)

||
√
λiψi(z)||2, s.t. L ∈ LI (26a)

L
∗
i = arg max

G(L)

||
√
λiψi(z)||2, s.t. L ∈ LI (26b)

with i = 1, . . . , T . The underlying idea is to look for those L that correspond to extrema in the L2 norm of

the basis function in each random field mode. As such, a complete bounding set for the imprecise random field220

basis is obtained, while preserving all realizations of the base functions to be orthogonal. Furthermore, due

to the L2 norm being differentiable, the objective function yields a smooth, convex, non-linear optimization

problem in limited dimension. The at most 2T solutions are then concatenated in a single vertex set A:

A =
{
L∗1, L

∗
1, L
∗
2, L
∗
2, . . . L

∗
T , L

∗
T

}
, (27)

and the eigenpairs {λ,ψ(z)} are computed using Eq. (4) for each of these L ∈ A. The objective functions

of this optimization are visualized in Figure 2, where the eigenvalues λ1, ..., λ7 are depicted as a function of225

the correlation length L, both normalized by the domain length l. Except for λ1/l which converges to one,

the eigenvalues are not monotonically increasing but decay towards zero after reaching a maximum turning

point. As can be understood from Eq. (26), this procedure corresponds to a maximization of the variance

of the random field at the input side by actively looking for those combinations that bound the KL basis.

The values L∗i ∈ LI are called intermediate values in the following.230

Concerning the actual propagation of the imprecise random field, let M be a deterministic numerical

model that is used to approximate y ∈ Rds , which is the solution of a (set of) differential equations. The

operator works through a set of (usually) real-valued function operators g = {gi | i = 1, . . . , ds}:

M(x) : y = gi(x), gi : Rdi 7→ R, i = 1, . . . , ds, (28)
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(a) Convergence of λ1/l towards one while λi/l, i > 1 decays towards zero after reaching a maximum turning point.

(b) Intermediate correlation lengths L∗
i , i = 2, ..., 7 corresponding to the maximum turning point eigenvalue λi.

Figure 2: Eigenvalues λi, i = 1, ..., 7 as a function of the correlation length L, both normalized by domain length l.

with x ∈ F ⊂ Rdi the vector of model parameters and F the sub-domain of feasible parameters (e.g., non-

negative contact stiffness). Since each realization of a correlation length in A corresponds to a crisp random235

field, they can readily be propagated towards a probabilistic quantity of interest at the response side of the

model using typically available simulation methods such as Monte Carlo simulation, Subset Sampling [41],

Line Sampling [42] or in case of dynamical time domain problems, Directional Importance Sampling [43].

In this case, we are interested in determining the p-box on [y] = [F y(y), F y(y)]. In case the responses y

behave strictly monotonically with respect to the sample path realizations of [x](z, θj), the typically applied240

double-loop procedure, where the reliability problem has to be solved for each step of a global optimization

algorithm that actively looks for those {Li} that bound [y], can be replaced by a more simple propagation

scheme. Namely, in this case, the left bound of the p-box of the model response yk is defined as

F y(yk) = min
{Li}∈{A}

Fyk
(M(x(z, θj , Li))) , k = 1, ..., ny, (29)
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where the set A is determined a priori using Eq. (26). Fyk
denotes the CDF corresponding to the response

that results from propagating one realization of the imprecise random field [x](z, θ, L) - i.e., a random field245

x(z, θj , Li) - through the model M and nk is the number of responses of interest. The corresponding right

bound is defined as

F y(yk) = max
{Li}∈{A}

Fyk
(M(x(z, θj , Li))) , k = 1, ..., ny. (30)

Note that monotonicity with respect to sample path realizations is a rather stringent condition. For instance,

when considering an imprecise stochastic process load in a structural dynamics problem, the case could occur

where maximizing the variance at the input side does not lead to an extreme response, since in this case,250

also the dominant frequency of the load should match the natural frequencies of the structural model (see

e.g., [21] for an illustration of such a case). In more general cases, other propagation schemes for imprecise

probabilities, such as NISS [12, 13] or the more recently introduced Operator Norm framework [21] should

be applied. These methods, however, require further development aimed at estimating the full response

p-box rather than a single quantity of interest such as the probability of failure.255

4. Application to non-linear material behaviour: brittle damage of a concrete beam

The propagation of imprecise random fields using the optimization approach given by Eq. (26) has been

investigated in terms of linear problems in [23]. Solving non-linear differential equations with uncertain input

parameters, however, implies further challenges. One important non-linearity in FE analyses in structural

mechanics is material non-linearity, such as plasticity and damage. In concrete structures, consisting mostly260

of quasi-brittle material, continuum damage mechanics is often used to describe the decrease in load bearing

capacity of the structure leading to failure. Uncertainties in the continuum damage mechanics models are

also an important aspect as the models often rely on material properties which are not easily obtained. As

mean value and standard deviation of material parameters usually can be obtained by experiments, these

model parameters are thought of as an aleatory uncertainty within this paper. On the other hand, the265

correlation length of the correlation function can hardly be determined. For this reason, it is assumed to be

an epistemic uncertainty and modelled by an interval.

In this section, the mechanical model underlying the studies within this paper is introduced. Furthermore,

the difficulties occurring when propagating imprecise random fields within an FE analysis are discussed. This

concerns especially the truncation error resulting from different correlation lengths. Based on this section,270

the importance of intermediate correlation lengths is finally investigated in Section 5.

4.1. Model description

In order to investigate the impact of uncertainties in a structural mechanics problem, a four-point bending

test of a concrete beam is analyzed using a non-intrusive stochastic FE approach. The structure geometry is
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depicted in Figure 3, where the dimensions are taken as l = 10 m and h = 1 m. The model is discretized by275

80×8 linear four-node elements and loaded by two forces of each F = 4000 kN at z1 = 3.5 m and z1 = 6.5 m,

respectively. The model is two-dimensional and a plane strain assumption is used. The elastic properties of

the model are supposed to be deterministic, with the Young’s modulus E = 30 kN
mm2 and the Poisson’s ratio

ν = 0.2. The uncertain material parameters are assumed to be wholly on the continuum damage model

parameters.

F F

z1

z2

A B

l

h

Figure 3: FE four point bending model, defining the point A (z1 = 5 m, z2 = 0 m) and B (z1 = 5.5 m, z2 = 0 m) which are the

focus points of this study.

280

The loss of load bearing capacity of the model is given by a scalar damage parameter D which is here

taken as an isotropic, hence scalar, quantity. As the beam is subjected to increasing loads, micro-cracks and

voids start to develop in the material. This physical phenomenon is here represented by the scalar damage

parameter. Therefore, as this parameter increases with the increasing loads, the stiffness of the beam is

decreased. This material model can be represented by the following Helmholtz free energy function ψ,285

ρψ =
1

2
(1− cD) ε : C : ε, (31)

where ρ is the density, c represents a closure parameter, ε is the second order strain tensor and C the fourth

order elasticity tensor. By this, with σ the second order stress tensor, the constitutive equation, of the

model can be written as

σ = (1− cD) C : ε. (32)

The closure parameter

c =


hc if tr ε < 0,

1 if tr ε ≥ 0.

(33)

is introduced in order to distinguish the behaviour of concrete in tension and compression, since under290

compression a part of the cracks close again and therefore a part of the stiffness is recovered. In Eq. (32),

it is clear how an increased damage reduces the material response by reducing the elastic properties of the

material.

Many different elastic damage laws have been developed over the last three decades for diverse applica-

tions and materials [44, 45, 46]. Here, a quasi-brittle damage model based on threshold YD of the energy295
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release rate Y is implemented [47, 44]. The simplicity of this model allows for a comprehensive interpretation

of the material parameters involved and fits well with the goal of this work to analyze imprecise random

fields for a non-linear mechanical problem. The damage model for monotonically increasing loads used here

is given by

D =

(
Ymax − YD

r

)s

, when Ymax > YD, (34)

where 1/r controls the intensity of the damage rate. The material parameters r, s and YD are determined300

experimentally. In Eq. (34), Ymax is the maximum of the energy release rate Y throughout the load history,

Y =
c

2
ε : C : ε. (35)

The material parameters s and hc are assumed as deterministic and taken as s = 1 and hc = 0.057,

respectively, as provided in [44]. The other two parameters, YD and r, affect the solution space by defining

starting point and intensity of the damage. Therefore, they are assumed as uncertain and described as305

imprecise random fields. For each interval bound and intermediate correlation length value, the random

fields are discretizend by KL expansion, using the analytic solution given in Eq. (18) and Eq. (19).

4.2. Sensitivity to damage parameters

To asses the outcome of the damage distribution on the beam in the presence of both random fields,

YD and r, a sensitivity analysis of all uncertain material parameters is performed to accurately investigate310

the output distributions. The sensitivity analysis of the uncertain material parameters is carried out on the

evolution of the damage function in Eq. (34) as a function of a load factor to the force F given in Section 4.1.

In Figure 4, the damage evolution for each random variable independently and for both random variables

combined are displayed. The influence of the threshold YD for damage to occur on the damage evolution

curve is limited to the load at which damage begins to evolve. On the other hand, the intensity 1/r of the315

damage rate Ẏ affects the solution space much more.

In the sensitivity analysis, the damage evolution of 1000 random samples were calculated for both

random quantities, r and YD. Furthermore, the combination of both quantities is sampled with 2000

random variables. The statistics of the final damage value, i.e. the quantity of interest, were computed with

Monte Carlo simulation and are also displayed in Figure 4. From the results presented, it is evident that the320

randomness of the parameter r has a larger influence on the final damage level than YD. However, although

the distribution of the quantity of interest for two random variables simultaneously is mainly affected by r,

adding YD as second random input slightly increases the standard deviation of the distribution, see Table 1.

The results presented here should be kept in mind when analyzing the CDFs of Section 5.1.
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Figure 4: Sensitivity of the damage D to the input random variables r and YD, as well as the interference of both, sampled

using 1000 Monte Carlo samples for one random variable input and 2000 Monte Carlo samples for two random variable inputs.

Table 1: Influence of r and YD on the distribution of the damage evolution.

Mean value Standard deviation

One random variable r µD = 0.1286 σD = 0.0158

One random variable YD µD = 0.1261 σD = 0.0051

Two random variables r and YD µD = 0.1277 σD = 0.0166

4.3. Truncation error of the KLE325

In order to propagate random fields based on different correlation lengths it is necessary to understand

the impact of the KL series expansion truncation T in Eq. (6) on the corresponding variance. For this

purpose, the parameters of the imprecise random fields used in Section 5 are already reported in Table 2.

In a first simulation S1 two imprecise random fields [YD] and [r] are considered, both implying an interval

valued correlation length LI
• ∈ [2, 16]m to model a large epistemic uncertainty. In this case, the intermediate330

value L∗•,2 = 2.80 m is acquired by Eq. (26) under this interval constraint. The second simulation S2

considers the imprecise random field [r] to be the only uncertain parameter. Here, the interval LI
r ∈ [1, 2]m

considers a small epistemic uncertainty and is chosen such that the intermediate value L∗r,3 = 1.48 m is

located effectively near the midpoint of the interval. Note that the interval LI
r ∈ [1, 2]m actually contains a

second intermediate value L∗•,4 = 1.0075 m. It is, however, very close to the lower interval bound Lr = 1 m335

and is neglected for the purpose of investigating the influence of an intermediate value located in the middle

of an interval.
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Table 2: Material parameters described by imprecise random fields

Mean value Standard deviation Correlation length

Interval Intermediate value

S1
[YD] µYD

= 0.02 MPa σYD
= 0.004 MPa

LI
• ∈ [2, 16]m L∗• = 2.80 m

[r] µr = 0.5 MPa σr = 0.1 MPa

S2 [r] µr = 0.5 MPa σr = 0.1 MPa LI
r ∈ [1, 2]m L∗r = 1.48 m

In Figure 5 the mean variance error ε̄(z), determined by Eq. (10), of a 2-dimensional random field is

depicted as a function of the truncation order T for the correlation length ratios L/l of interest.

Figure 5: Mean variance error ε̄(z) of the chosen correlation lengths depending on the truncation order T .

As it can be seen, the error converges much faster towards zero for large correlation length ratios but slower340

for ratios L/l � 1. To ensure that the p-box is not attributed to a differing precision of the variance, the

truncation is chosen corresponding to a constant mean variance error. For this, the following considerations

are taken into account:

1. To keep S1 and S2 comparable, the mean variance error is chosen to be the same for both simulations.

2. The truncation order T has to be chosen as to reduce the stochastic dimension, while maintaining a345

reasonably low fluctuation of the local variance.

Note that considering two random fields, the stochastic dimension is twice the truncation order. For this

reason, the mean variance error is chosen to be ε̄(z) = 8 % with regard to the computational expense. This
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value can be changed arbitrarily based on the available computational resources. The truncation orders

corresponding to a 2-dimensional random field with the chosen error are listed in Table 3 for the chosen350

ratios L/l.

Table 3: Truncation orders corresponding to the chosen variance error ε̄(z) = 8 %

Correlation length L/l = 0.1 L∗/l = 0.148 L/l = 0.2 L∗/l = 0.280 L/l = 1.6

Truncation order T = 1162 T = 544 T = 301 T = 159 T = 8

In Figure 6a, the variance σ2
x distributions along the beam length l are depicted corresponding to the chosen

truncation orders. It can be seen that fulfilling the second demand on the chosen truncation error becomes

impossible for large correlation length intervals: although the mean variance error is the same for each L/l,

the local variation of the variance corresponding to L/l = 1.6 is very high compared to smaller ratios. This355

is a challenge that is inherently related to applications with large correlation length intervals, i.e. cases with

different orders of magnitudes between the interval bounds. The effect is mirrored within the distribution of

the locations where the maximum damage Dmax occurs within a simulation using nMC = 20000 realizations,

as visualized in Figure 6b. The color plot depicts the mean damage distribution D determined statistically

from all realizations. It can be seen for both the largest and the smallest chosen ratios L/l of S1 that360

damage occurs in the region of maximum tension, meaning in the region between the forces at the bottom

of the beam. Considering a sufficiently large sample size, it can be assumed by physical reasoning that the

maximum damage Dmax occurs equally distributed within this pure bending region as the bending moment

there is constant. The red circles visualize by their size how frequently Dmax is located at a certain point.

Regarding the small ratio L/l = 0.2, Dmax is mostly located - as expected - at the bottom of the beam and365

equivalently distributed within the region of the constant maximal bending moment. For the large ratio

L/l = 1.6, however, the maximum damage is clustering much more in the regions of the maximum local

variance.
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(a) Variance of the chosen correlation lengths corresponding to its truncation order leading

to a mean variance error ε̄(z) = 8 %.

(b) Distribution of maximum damage Dmax occurrence over the mean damage field, using

nMC = 20000 samples.

Figure 6: Influence of the local variance error ε(z) on the occurrence of the maximum damage.

For large correlation length intervals, gaining both (i) the same mean variance and (ii) a comparable

local variance for each correlation length is only possible when the truncation order is increased such that370

both errors decay to zero. This however leads to stochastic dimensions that have to be balanced against the

computational cost. Therefore, while studying the influence of an interval valued correlation length, artifact

effects due to a local or global variance error should be carefully considered and thoroughly analyzed. In

this paper, the mean variance error is chosen to be equal for all correlation lengths, as the quantities of

interest are more affected by the global variance field than by local artifacts.375
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5. Effect of imprecise random fields on the structural damage p-box

Performing a stochastic FE analysis considering several imprecise random fields becomes computationally

challenging, as all combinations of correlation lengths must be considered. Determining the crucial interme-

diate correlation lengths a-priori already reduces the computational cost by avoiding the need of discretizing

the intervals, as it has been done in a similar study before [22]. In the following studies, the influence of380

imprecise random fields on the propagation through a non-linear material framework is investigated using

the optimized intermediate correlation lengths, acquired from Eq. (26). The results are compared to a pure

vertex analysis in terms of conservativeness and computational cost.

Considering the artificial clustering of the maximum damage for large correlation lengths as discussed

in Section 4.3, Dmax is not an appropriate quantity of interest here. Instead, the global damage DA is385

investigated, which is obtained for each realization by integrating the damage over the whole domain Ω:

DA =

∫
Ω
D dΩ∫

Ω
dΩ

. (36)

This way, the artifacts due to a locally varying variance error are smoothed out and DA can be connected

to the mean variance error ε̄(z), which is the same for all chosen correlation lengths by choosing a different

truncation order.

As a second quantity of interest, the local damage D is investigated at two points A and B, both located at390

the bottom (z2 = 0 m) of the beam, see Figure 3. While point A is chosen at the center (z1 = 5 m) of the

beam, point B is chosen at z1 = 5.5 m where the local variances of all correlation length ratios are as similar

as possible, see Figure 6a. However, note that D depends on the whole strain field (compare Eq. (34) and

Eq. (35)) and therefore incorporates the whole variance field. The quantities of interest are each determined

and depicted as a p-box complemented by the deviations of the midpoint line, as proposed with Figure 1.395

In the following sections, two simulations are investigated. In Section 5.1, the influence of the intermediate

correlations lengths is investigated from an engineering point of view. As the epistemic uncertainty of a

correlation length is usually high, a large interval LI
• ∈ [2, 16]m is chosen for both imprecise random fields

[YD](z, θ) and [r](z, θ). To ensure that the observed phenomena are not due to other reasons such as a lack

of convergence or an interference of the two imprecise random fields, in Section 5.2 the study is adjusted400

such that the only uncertain parameter is the imprecise random field [r](z, θ) whose correlation length

interval LI
r ∈ [1, 2]m is relatively narrow. Here, the intermediate value L∗r = 1.48 m lies central within LI

r .

Furthermore, the standard normal distributed random variables ξi(θ), i = 1, ..., T , to be inserted in Eq. (24),

are sampled using the same seed.

5.1. Simulation 1: Two imprecise random fields containing a large epistemic uncertainty405

Within this study, two imprecise random fields [YD](z, θ) and [r](z, θ) are considered affecting the non-

linear damage evolution. Both random fields are imprecise due to an interval valued correlation length
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LI
• = [2, 16]m caused by a large epistemic uncertainty. The simulation is performed by Monte Carlo method

using nMC = 40000 samples in case both imprecise random fields are considered and nMC = 20000 if there

is only one imprecise random field input.410

5.1.1. Sensitivity of the global damage to the imprecise random field input parameters

In Figure 7, the CDFs of the global damage for all correlation length combinations are compared to the

simulations of using one imprecise random field only. For convenience, the results of the interval vertices

are depicted in different colors while the CDFs containing intermediate correlation lengths are given in a

grey dashed line. The mean µDA
and the standard deviation σDA

corresponding to the CDFs resulting from415

each correlation length (combination) are further given in Table 4. In there, the results of all correlation

length combinations considering both imprecise random fields [r] and [YD] are given in the top left 3 × 3

entries. The right column contains the results assuming r = µr to be deterministic with [YD] being an

imprecise random field, while it is the other way round in the bottom row (both emphasized by a double

bar separation). The global damage DA of a deterministic simulation with r = µr and YD = µYD
is given420

in the right bottom cell for comparison. To quantify the effect of the correlation length to the mean µDA

and standard deviation σDA
, the maximum deviation of each quantity with respect to the mean quantity is

obtained by

δ(•) =
max(•)−min(•)

mean(•)
. (37)

Note that the mean(•) is computed specifically for each simulation.

(a) Input: only [r] (b) Input: [r] and [YD] (c) Input: only [YD]

Figure 7: CDFs of the global damage DA, resulting from simulations including one or two imprecise random field inputs.

It can be seen that the the correlation length has hardly an impact on the mean value - δ[r](µDA
) = 2.8 %,425

δ[YD](µDA
) = 0.0 % and δ[r],[YD](µDA

) = 2.8 % - although the mean µDA
slightly exceeds the global damage

Ddet
A = 0.0068 resulting from a deterministic simulation. On the other hand, the standard deviation of DA
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is highly dependent on the correlation length. Here, the maximum deviation of the standard deviation with

respect to the mean of all standard deviations is δ[r](σDA
) = 41.9 % and δ[YD](σDA

) = 20.7 % in case only

one imprecise random field is considered and δ[r],[YD](σDA
) = 39.4 % if both imprecise random fields are430

combined. The larger the correlation length is the larger the standard deviation becomes. Furthermore, it

is observed that [r], depicted in Figure 7a, has a higher influence on the standard deviation than [YD], given

in Figure 7c, and especially affects the right tail. Although [r] has a higher influence than [YD], combining

both imprecise random fields increases the standard deviation of DA further, compared to the simulation

using only [r] as imprecise random field input, as can be seen in Table 4. These findings are in line with435

the results for the mean value and standard deviation of the damage evolution discussed with Table 1 in

Section 4.2.

Table 4: Mean value µDA
and standard deviation σDA

of the global damage DA of the simulations including each correlation

length combination of two imprecise random fields [r] and [YD] (top left 3 × 3 entries) as well as only one imprecise random

field [r], where YD = µYD
is deterministic, (bottom row) or [YD], where r = µr is deterministic, (right column) and the purely

deterministic result assuming r = µr and YD = µYD
.

[r] deterministic r

L•/l 0.2 0.28 1.6 -

[YD]

0.2
µDA

= 0.0071 µDA
= 0.0071 µDA

= 0.0072 µDA
= 0.0069

σDA
= 0.0015 σDA

= 0.0016 σDA
= 0.0020 σDA

= 0.0009

0.28
µDA

= 0.0071 µDA
= 0.0071 µDA

= 0.0073 µDA
= 0.0069

σDA
= 0.0015 σDA

= 0.0016 σDA
= 0.0021 σDA

= 0.0009

1.6
µDA

= 0.0071 µDA
= 0.0071 µDA

= 0.0072 µDA
= 0.0069

σDA
= 0.0017 σDA

= 0.0018 σDA
= 0.0022 σDA

= 0.0011

deterministic
-

µDA
= 0.0070 µDA

= 0.0070 µDA
= 0.0072 Ddet

A = 0.0068

YD σDA
= 0.0012 σDA

= 0.0013 σDA
= 0.0018 (deterministic)

5.1.2. Influence of the intermediate values on the global damage p-box

The p-box resulting from all CDFs of each correlation length combination is depicted for the global

damage DA in the top right of Figure 8. To its left and bottom, the deviations ∆DA = DA − D̂A and440

∆FDA
= FDA

−F̂DA
of each individual CDF to the corresponding midpoint line •̂ of the p-box are visualized,

as defined in Figure 1. Those CDFs associated to a correlation length combination of the interval bounds

are depicted in an individual color while those containing an intermediate correlation length are depicted

in a gray dashed line. This way, the deviation plots clearly show, whether or not a simulation based on an

intermediate correlation length falls outside the CDFs gained by the interval vertex.445
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Figure 8: Resulting p-box (top right) of the global damage DA complemented by the deviation plots, ∆DA (left) and ∆FD

(bottom), acquired with two imprecise random field input parameters, [r] and [YD].

As the different correlation lengths mainly affect the standard deviation but rarely the mean of the global

damage, the p-box is very narrow around its mean and more pronounced towards its tails. As the latter are

crucial within a reliability analysis, this underlines the importance of acknowledging epistemic uncertainties

in the quantification of imprecise random fields. However, as can be seen from the deviation plots, the

p-box of the global damage DA is affected by the interval vertex simulations only, the simulations including450

intermediate values can be neglected. Furthermore, the value of the global damage p-box is small as the

main part of the beam remains undamaged. Still, the system can fail when the damage becomes too high

locally. For this reason, the local damage D is investigated in the following.

5.1.3. Influence of the intermediate values on the local damage p-box

Regarding the deviation plots of Figure 9 (point A) and Figure 10 (point B) the results of the local455

damage are much more noisy than those of the global damage. However, as the latter is an average value
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Figure 9: Resulting p-box (top right) of the local damage D at point A complemented by the deviation plots, ∆D (left) and

∆FD (bottom), acquired with two imprecise random field input parameters, [r] and [YD].

of the whole structure it can be expected to be smoother than the local damage at a certain point entailing

a higher variation. Furthermore, it can be seen that there are grey dashed lines outside the interval vertex

results. This means that the p-box bounds are determined partly by intermediate values of the correlation

length interval. However, compared to the range of D, the resulting p-boxes are very narrow. In the context460

of this problem, the correlation length seems not to affect the p-box of the local damage significantly from

an engineering point of view.

23



Figure 10: Resulting p-box (top right) of the local damage D at point B complemented by the deviation plots, ∆D (left) and

∆FD (bottom), acquired with two imprecise random field input parameters, [r] and [YD].
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5.1.4. Discussion of S1

From the engineering point of view, as the correlation length is hard to estimate, it is appropriate to

assume a large epistemic uncertainty, as done in this example. It has been found that the intermediate value465

affects the p-box bounds at least in terms of the local damage. However, the following three issues remain

to be investigated more carefully:

1. The intermediate value L∗• = 2.80 m is located close to the lower bounds of each interval valued

correlation length LI
• = [2, 16]m. For this reason, it is not clear whether it affects the bounds only by

its proximity. So this example is not sound enough to estimate the general meaning of intermediate470

values for interval valued correlation lengths independent of where they are located in the interval.

2. The interval bounds have the main impact on the p-box bounds. There are only small parts where

the intermediate values determine the results. Those parts might be caused by an interference of the

two imprecise random field inputs.

3. Comparing the results of the local damage with those of the global damage, it can be found that475

the latter are much smoother. This leads to the question, whether the local results are rather an

artifact of the sampling than of the correlation length influence. The convergence of the mean value

and standard deviation of the global and the local damage at point A are depicted in Figure 11 and

Figure 12, respectively. Regarding the standard deviation, the global damage results of Figure 11b

indeed converge much faster than the standard deviation of the local damage given in Figure 12b.480

To examine those three issues, a second simulation is investigated in the following section.

(a) Mean value µDA (b) Standard deviation σDA

Figure 11: Mean value and the standard deviation of the global damage DA converging with increasing number of Monte Carlo

samples nMC.
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(a) Mean value µD (b) Standard deviation σD

Figure 12: Mean value and the standard deviation of the local damage D and point A converging with increasing number of

Monte Carlo samples nMC.

5.2. Simulation 2: One imprecise random field using the same seed

In this section, the effect of an interval valued correlation length that contains an intermediate value

in its center is studied. For this purpose, the interval L = [1, 2]m is chosen such that it encloses the

intermediate value L∗3 = 1.48 m. By using only a small interval, the influence on the variance resulting485

from different correlation lengths is much smaller. Furthermore, in order to exclude interfering effects of

two imprecise random fields, [r](z, θ) is considered as the only uncertain input parameter. According to

Section 4.2, r influences the quantity of interest much more than YD. To ensure that the results are not

affected by convergence issues, the pseudo-random sampling of the standard normal distributed random

variables describing the random field, see Eq. (24), is performed using the same seed. This means that490

the realizations of each correlation length simulation are created with the same values ξi(θ) than those

of the other correlation lengths. The simulation is performed using Monte Carlo simulation with a set of

nMC = 20000 samples.

5.2.1. Influence of the central intermediate value on the global damage p-box

The p-box and its corresponding deviation plots of the global damage DA are depicted in Figure 13. The495

effect of the interval valued correlation length on the p-box is qualitatively the same as before. The width

∆DA of the p-box is much smaller which can be traced back to the smaller correlation length interval.

The CDF of the intermediate value is located centred within the p-box. This can be concluded from the

deviation plots, where the gray dashed line runs close to zero compared to the ones corresponding to the

interval bounds. This correlates to the fact that the intermediate correlation length is situated centered500

within the correlation length interval. Furthermore, around the mean value, the intermediate correlation
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Figure 13: Resulting p-box (top right) of the global damage DA complemented by the deviation plots, ∆DA (left) and ∆FD

(bottom), acquired with one imprecise random field input parameter [r].

length falls outside the interval bounds. Still, as the tails are more interesting in terms of reliability analysis,

from the engineering point of view this can be neglected.

5.2.2. Influence of the central intermediate value on the local damage p-box

Regarding the local damage D at the points A and B in Figure 14 and Figure 15, respectively, the p-box505

is even less pronounced than in S1. As the interval of the correlation length is much smaller than within

the first simulation, this could be expected. However, although the intermediate value is in the center of

the interval, the corresponding CDF varies significantly from the center of the p-box. It even falls outside

the interval results at several points what means that the p-box is - strictly spoken - depending on the

intermediate value. Although the p-box of the local damage is not very pronounced and therefore negligible510

from an engineering point of view, the dependency on intermediate values can be shown theoretically. It
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cannot be ruled out that intermediate values have a much more important impact regarding other uncertain

input parameters, quantities of interest or application fields.

Figure 14: Resulting p-box (top right) of the local damage D at point A complemented by the deviation plots, ∆D (left) and

∆FD (bottom), acquired with one imprecise random field input parameter [r].

5.2.3. Discussion of S2

To investigate the open issues of Section 5.1, a second example has been constructed in this section.515

Only one imprecise random field [r] has been considered. The interval valued correlation length has been

regarded much smaller to preempt significant differences in the local variance. Furthermore, the interval has

been chosen such that it encloses an intermediate value in its center. For each correlation length simulation,

the realizations of the random field have been determined using the same random variables.

The simulation S2 supports the findings of the first simulation. Although the intermediate value is situ-520

ated in the center of the interval valued correlation length, it can be shown that it determines - theoretically

- the p-box bounds. As only one imprecise random field has been used it can be excluded that this is due
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Figure 15: Resulting p-box (top right) of the local damage D at point B complemented by the deviation plots, ∆D (left) and

∆FD (bottom), acquired with one imprecise random field input parameter [r].

to an interference of several fields. As the sampling has been performed using the same seed, it can further

be assured that this not due to sampling or convergence issues.

Still, as the p-box of the local damage is not pronounced, the influence of intermediate values to the525

p-box bounds can only be shown theoretically. From an engineering point of view, the effort of a simulation

including imprecise random fields can only be justified if the global damage is of interest. In this case, a pure

vertex analysis has been shown to be sufficient. It should be noted that intermediate values are expected to

be much more significant for non-monotonic problems.

6. Conclusion530

Spatial properties containing both aleatory and epistemic uncertain aspects can be modelled by imprecise

random fields. Considering such input parameters in a finite element analysis means that the quantity of

interest is described by a probability box (p-box). Regarding interval valued correlation lengths, intermediate
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values can become crucial for the p-box bounds due to a possible non-monotonic relation between the

correlation length and the bounds on the responses of the model. The intermediate values can be found535

a-priori by an optimization algorithm.

In this paper, the influence of one and two imprecise random field inputs within a non-linear finite

element model has been examined for a brittle damage problem. For this purpose, the damage evolution of

a concrete four-point bending beam has been simulated in a p-box framework using Monte Carlo simulation

in combination with a vertex analysis on the epistemic uncertainty. As quantities of interest, the global540

damage of the beam as well as the local damage at two points of the beam have been considered.

It could be shown that an interval valued correlation length can highly affect the p-box of the quantity

of interest, especially by influencing the standard deviation. As the correlation length is often difficult to

determine, acknowledging this lack of knowledge can be crucial for the sensitive but important tails within

a reliability analysis.545

Furthermore, the importance of the intermediate correlation lengths to the p-box bounds has been

investigated. By the results presented in this paper it could be shown that, speaking from an engineering

point of view, for this application case the bounds of the p-box are defined by the bounds of the interval. This

way, the computational cost to propagate imprecise random fields can be reduced significantly by performing

only a vertex analysis of the interval bounds. Technically speaking, some bounds of the p-box are defined550

by the intermediate values (e.g., the local damage in points A and B in simulation S1). However, in this

case the effect could be shown to be negligible, and hence, the additional computational cost of (i) finding

the intermediate values and (ii) propagating the corresponding random fields, is not justified. Globally, the

change of the correlation length changes the variance of the mean, which causes the change of the CDFs

depicted in Figure 7. Therefore, these two arguments could explain why little influence of the intermediate555

correlation lengths was observed. For an other problem, intermediate values could be much more relevant

than the present problem, but this is a topic for future research. Of course, one should keep in mind that

the intermediate values only provide bounds in case strict monotonicity with respect to the sample path

realizations is maintained within the analysis. This is for instance generally not true in structural dynamics.
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[18] D. C. Charmpis, G. I. Schuëller, M. F. Pellissetti, The need for linking micromechanics of materials with stochastic finite605

elements: a challenge for materials science, Computational Materials Science 41 (1) (2007) 27–37.

31

http://dx.doi.org/https://doi.org/10.1016/j.strusafe.2008.06.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.ymssp.2013.01.024
http://dx.doi.org/https://doi.org/10.1016/j.ress.2010.11.010
http://dx.doi.org/10.1016/j.strusafe.2019.101894
http://dx.doi.org/10.1016/j.strusafe.2019.101894
http://dx.doi.org/10.1016/j.strusafe.2019.101894
http://dx.doi.org/10.1016/j.ress.2004.03.025
http://dx.doi.org/10.1016/j.compstruc.2018.07.003
http://dx.doi.org/10.1016/j.probengmech.2020.103020
http://dx.doi.org/10.1016/j.probengmech.2020.103020
http://dx.doi.org/10.1016/j.probengmech.2020.103020
http://dx.doi.org/https://doi.org/10.1016/j.ress.2018.11.021
http://dx.doi.org/https://doi.org/10.1016/j.ress.2018.11.021
http://dx.doi.org/https://doi.org/10.1016/j.ress.2018.11.021
http://dx.doi.org/https://doi.org/10.1016/j.strusafe.2019.101889


[19] D. M. Do, W. Gao, C. Song, Stochastic finite element analysis of structures in the presence of multiple imprecise random

field parameters, Computer Methods in Applied Mechanics and Engineering 300 (2016) 657 – 688.

[20] F. N. Schietzold, A. Schmidt, M. M. Dannert, A. Fau, R. M. Fleury, W. Graf, M. Kaliske, C. Könke, T. Lahmer, U. Nack-

enhorst, Development of fuzzy probability based random fields for the numerical structural design, GAMM Mitteilungen610

42 (1) (2019) 1–19. doi:10.1002/gamm.201900004.

[21] M. Faes, M. A. Valdebenito, D. Moens, M. Beer, Bounding the first excursion probability of linear structures subjected

to imprecise stochastic loading, Computers and Structures (2020) 106320.

[22] M. M. Dannert, R. M. Fleury, A. Fau, U. Nackenhorst, Non-linear finite element analysis under mixed epistemic and

aleatory uncertain random field input, in: M. Beer, E. Zio (Eds.), Proceedings of the 29th European Safety and Reliability615

Conference, 2019, pp. 2693–2698.

[23] M. Faes, D. Moens, Imprecise random field analysis with parametrized kernel functions, Mechanical Systems and Signal

Processing 134 (2019) 106334. doi:10.1016/j.ymssp.2019.106334.

[24] W. Betz, I. Papaioannou, D. Straub, Numerical methods for the discretization of random fields by means of the Karhunen-
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