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Introduction

Solving nonlinear differential equations analytically without resorting to
perturbation, linearization or discretization is no trivial task. Some methods
(VIM, ADM, HAM) have been developed to tackle these problems in an
iterative manner. In this work we propose a new method which is based on
extending the theory of Green functions to the nonlinear domain. Earlier work
on this topic (1; 2) has resulted in a powerful theory for boundary value
problems in ordinary differential equations (ODEs). Here we extend the theory
to partial differential equations (PDEs) where the initial condition assumes the
role of a source. Three examples are studied.

BLUES function methods for PDEs

Consider a (nonlinear) PDE with an initial condition φ, which can be written
as an external source containing a delta function at e.g. t = 0 i.e.,

Nu = δ(t)φ = ψ (1)

and an associated linear operator with the same initial condition

Lu = δ(t)φ = ψ (2)

Assume that the solution to (1) can be written in the form of a convolution of
a Green function G with an associated source ξ

u = (G ∗ ξ) (3)

where G is the solution of the linear DE with a Dirac delta source at t = s

LG = δ(t − s) (4)

Now define a residual operator as the difference between the linear (2) and
nonlinear (1) operators, i.e., Ru = Lu −Nu. Apply to the solution u and
rearrange to find the associated source ξ, i.e.,

R(G ∗ ξ) = L(G ∗ ξ)−N (G ∗ ξ)

= ξ − ψ
ξ = ψ +R(G ∗ ξ) ,

(5)

which can be iterated in the Picard sense

ξ(0) = ψ

ξ(n+1) = ψ +R(G ∗ ξ(n)) n ≥ 0
(6)

The n−th order solution u of the nonlinear PDE (1) is consequently the
convolution of the Green function with the n−th order associated source (6),
i.e.,

u(0) = G ∗ ξ(0) = G ∗ ψ
u(n+1) = G ∗ ξ(n+1) = u(0) + G ∗ R(u(n)) n ≥ 0

(7)

Examples

1. Reaction-Diffusion-Convection equation (RDCE):

Nu = ut − uxx + uux + u(u + 2) = 0 (8)

with initial condition u(x, 0) = φ(x) = e−x .
Green function:

G(t, s) = e−2(t−s) (9)

Exact solution:
uex(x, t) = e−(x+t) (10)

2. Black-Scholes equation (BSE)

vτ −
σ̂2

σ2
(vxx − vx)− D(vx − v) = 0 (11)

with D > 0, σ > 0 and initial condition v(x, 0) = φ(x) = ex − 1. σ̂2 is
a nonlinear function of v , vx, vxx .
Green function:

G(t, s) = e−D(τ−s) (12)

Exact solution:
vex(x, t) = ex − e−Dτ (13)

3. Porous medium equation with growth/decay (PME):

Nw = wt −∆(wm)− βw = 0 (14)

with m > 1, β ∈ R and initial condition w(x, 0) = φ(x) = x .
Green function:

G(t, s) = eβ(t−s) (15)

Exact solution (m = 2):

wex(x, t) = xeβt +
2

β
e2βt −

2

β
eβt , (16)

Other iterative methods:

• Variational Iteration Method (VIM)

• Variational Iteration Method + Green function (GVIM)

• Adomian Decomposition Method (ADM)

Results

Reaction-Diffusion-Convection PDE (8):

u0(x, t) = e−2t−x

u1(x, t) = e−2t−x + e−2t−xt

u2(x, t) = e−2t−x + e−2t−xt + e−2t−x t
2

2!
...

un(x, t) = e−2t−x
n∑

i=0

t i

i!

⇓
u(x, t) = lim

n→∞
un(x, t) = e−(x+t)

uex(1,t)

uVIMADM
(4)(1,t)

uGVIM
(4)(1,t)

uBLUES
(4)(1,t)
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Figure 1: Exact solution (10) of the RDCE (8) (red line)
and the approximants of order n = 10 for the four
methods, at x = 1.

Black-Scholes PDE (11):

v0(x, τ ) = −e−Dτ + ex−Dτ

v1(x, τ ) = −e−Dτ + ex−Dτ + ex−DτDτ
v2(x, τ ) = −e−Dτ + ex−Dτ + ex−DτDτ

+ ex−DτD
2τ 2

2!
...

vn(x, τ ) = −e−Dτ + ex−Dτ
n∑

i=0

(Dτ )i

i!

⇓
v(x, t) = lim

n→∞
vn(x, t) = ex − e−Dτ

vex(1,τ )

vVIMADM
(10)(1,τ )

vGVIM
(10)(1,τ )

vBLUES
(10)(1,τ )
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Figure 2: Exact solution (13) of the BSE (11) (red line)
and the approximants of order n = 10 for the four
methods, at x = 1. Parameter values are σ = 1 and
D = 1/2.

Porous Medium PDE (14):

w0(x, t) = eβtx

w1(x, t) = xeβt +
2

β
e2βt −

2

β
eβt

w2(x, t) = xeβt +
2

β
e2βt −

2

β
eβt

...

wn(x, t) = xeβt +
2

β
e2βt −

2

β
eβt

⇓

w(x, t) = xeβt +
2

β
e2βt −

2

β
eβt
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Figure 3: Exact solution (16) of the PME (14) (red
line) and the approximants of order n = 1 for the four
methods, at x = 1. The BLUES method generates the
exact solution.
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Figure 4: Error between the exact
solution (10) of the RDCE (8) and
the approximant of order n = 10 for
the four methods, at x = 1.
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Figure 5: Error between the exact
solution (13) of the BSE (11) and
the approximant of order n = 10 for
the four methods, at x = 1.
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Figure 6: Error between the exact
solution (16) of the PME (14) and
the approximant of order n = 1 for
the four methods, at x = 1.

Conclusions

The BLUES function method can efficiently generate iterative solutions for highly nonlinear PDEs
without the need for linearization or smallness arguments. Comparison with other well-established
methods shows that the BLUES method is more efficient in some cases.
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