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Introduction Results

Solving nonlinear differential equations analytically without resorting to Reaction-Diffusion-Convection PDE (8):
perturbation, linearization or discretization is no trivial task. Some methods

(VIM, ADM, HAM) have been developed to tackle these problems in an
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iterative manner. In this work we propose a new method which is based on to(x, t) = e , , o
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extending the theory of Green functions to the nonlinear domain. Earlier work u(x,t) =e “+e “t 090
on this topic (1; 2) has resulted in a powerful theory for boundary value ua(x, 1) = o2-x 4 g-2-xp | e—2t—xt_2 0.25 oy (1.1)
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Consider a (nonlinear) PDE with an initial condition ¢, which can be written u(x, t) = ,,'520 un(x,t) = e t

Figure 1: Exact solution (10) of the RDCE (8) (red line)
and the approximants of order n = 10 for the four

Nu= 0(t)op = Y (1) methods, at x = 1.
Black-Scholes PDE (11):

as an external source containing a delta function ate.g. t = 0 i.e,,

and an associated linear operator with the same initial condition

Lu=0(t)p =1 (2)
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Assume that the solution to (1) can be written in the form of a convolution of w(x,7)=—e 7"+ :
a Green function G with an associated source & vi(x,7) = —e P74+ e PT 4L & PTDr
u= (G * &) (3) vo(x,7) = —e P 4+ e PT 4 & P"Dr Vex(1.7)
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where G is the solution of the linear DE with a Dirac delta source at t = s 4+ eX—DTD P = vem(.7)
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Now define a residual operator as the difference between the linear (2) and n (D)
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nonlinear (1) operators, i.e., Ru = Lu — N u. Apply to the solution u and Va(x,T) = —e + e Z T
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The n—.th order solution u of.the n.onlinear PDE (1) is conse.quently the wo(x,t) = eBtx s
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1. Reaction-Diffusion-Convection equation (RDCE): w(x, t) = xeft 4+ 36251—“ _ Eeﬂt (16)t 14,
. . Figure 3: Exact solution of the PME red
Nu = Up = Uoc + Ulx + u(u T 2) =0 (8) line) and the approximants of order n = 1 for the four
with initial condition u(x,0) = ¢(x) = e™*. methods, at x = 1. The BLUES method generates the
Green function: exact solution.
G(t,s) = e 2(t=9) (9)
Exact solution: Errors
Uex(x, t) = e~ (xF1) (10)
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with D > 0, o > 0 and initial condition v(x,0) = ¢(x) = eX — 1. 6% is iy S D Y o
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Green function: | | t
G(t, 5) — o D(r—s9) (12) Flgur.e 4: Error between the exact Figure 5: Error between the exact Figure 6: Error between the exact
c ution: solution (10) of the RDCE (8) and  solution (13) of the BSE (11) and  solution (16) of the PME (14) and
&8s Eel e N D the approximant of order n = 10 for the approximant of order n = 10 for the approximant of order n = 1 for
VeX(X, t) =€ —e (13) the four methods, at x = 1. the four methods, at x = 1. the four methods, at x = 1.

3. Porous medium equation with growth /decay (PME):
Nw=w; — A(w") —Bw =0 (14)

with m > 1, B € R and initial condition w(x, 0) = ¢(x) = x.
Green function:

Conclusions

The BLUES function method can efficiently generate iterative solutions for highly nonlinear PDEs
without the need for linearization or smallness arguments. Comparison with other well-established

G(t,s) = oB(t—s) (15) methods shows that the BLUES method is more efficient in some cases.
Exact solution (m = 2):
2 2
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