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A Szegő theory for rational functions

A. Bultheel
P. González-Vera
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23 Further convergence results and asymptotic behaviour 77

24 Conclusion 79

2



1 Introduction

The particularly rich and fascinating theory of polynomials orthogonal on the unit circle needs no
advertising. These polynomials are named after Szegő since his pioneering work on them. His book
on orthogonal polynomials [78] was first published in 1939 but the ideas were already published in
several papers in the twenties. It is also in Szegő’s book that the notion of a reproducing kernel is
clearly introduced. The Szegő polynomials were studied by several authors. For example they play
an important role in books by Geronimus [39], Freud [36], Grenander and Szegő [42] and many
more modern books on orthogonal polynomials.

Szegő’s interest in these polynomials was inspired by the investigation of the eigenvalue dis-
tribution of Toeplitz forms, an even older subject which was related to coefficient problems as
initiated by Carathéodory [19, 20] and Carathéodory and Fejér [21] and further discussed by F.
Riesz [70, 71], Gronwall [43], Schur [75, 76, 77], Hamel [44] and many others. The papers by Schur
contained a continued fraction like algorithm to actually check if the given coefficients (moments)
correspond to a bounded analytic function. The algorithm produces some coefficients (Schur coeffi-
cients) that turned out later to be exactly the complex conjugates of the coefficients that appeared
in the recurrence relation for the orthogonal polynomials as formulated by Szegő.

It was Pick who first considered an interpolation problem as a generalization of the coefficient
problems of Carathéodory [65, 66, 67]. Nevanlinna was not aware of Pick’s work when he developed
the same theory in a long memoir in 1919 [59]. See also his later work [60, 61, 62]. Nevanlinna also
gave an algorithm which directly generalized the algorithm given by Schur.

Since then, these problems and a myriad of generalizations played an important role in several
books, like in Akhiezer [6], Krĕın and Nudel’man [52], Walsh [79] and more recently in Donoghue
[29], Garnett [37], Rosenblum and Rovnyak [72] etc.

Some of the more recent interest in this subject was stimulated by the the work of Adamyan,
Arov and Krĕın [2, 3] and most of all by their fundamental papers [4, 5]. We should also mention
Sarason’s paper [74] which had great influence on some developments made in later publications.
These results relate the theory to operator theoretic methods for Hankel and Toeplitz operators.

Besides this, there is also a long history where the same theory is approached from several
application fields. Grenander and Szegő themselves discussed the application in the theory of prob-
ability and statistics [42]. But you find also the applications in the prediction theory of stationary
stochastic processes in work by Kolmogorov [51] and Wiener [80]. Some benchmark papers on this
topic are collected in [50]. The book by Wiener contained a reprint from Levinson’s celebrated
paper [54], which is in fact a reformulation of the Szegő recursions. Other engineering applications
are network theory (see e.g. Belevitch [10] and Youla and Saito [81]), spectral estimation (see Pa-
poulis [64] for an excellent survey), maximum entropy analysis as formulated by Burg [18] (see the
survey paper [53]), transmission lines and scattering theory as studied by Arov, Redheffer [69] and
Dewilde and Dym [24, 26], digital filtering (see the survey of Kailath [49]), speech processing (see
[56] or the tutorial paper by Makhoul [55]), etc.

It is from these engineering applications that emerged also methods for inverting and factorizing
Toeplitz or related matrices (see [45]) and people are now even using these ideas for designing
systolic arrays for the solution of a number of linear algebra problems [11]. The linear algebra
literature in this connection has a complete history of its own, which we shall not mention here.
Most of it was devoted to Toeplitz and Hankel matrices or related matrices which appear in relation
with a theory of Schur-Szegő. It is however only recently that people are starting to look at matrices
that are related to interpolation problems.

We could go on like this and probably be never complete in summing up all the application fields
and this is without ever touching all the related generalizations of this theory that were obtained
recently or the analog theory that has been developed for the complex half-plane instead of the
unit circle or the continuous analog of Wiener-Hopf factorization. We just stop here by referring to
a survey paper on the applications of Pick-Nevanlinna theory by Delsarte, Genin and Kamp [22].

In all this theory and application papers, the approach of the Nevanlinna-Pick theory from the
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point of view of the orthogonal functions has not been fully put forward. We try to give in this
paper an approach to the theory which is an immediate generalization of the theory of Szegő for
orthogonal polynomials. This theory is supposed to be related to the interpolation theory of Pick
and Nevanlinna like the Szegő theory was related to the Schur and Carathéodory-Fejér coefficient
problems.

Note that at any point in the discussion we can replace all the interpolation points αk by zero
and recover at any moment the corresponding result of the polynomial case. In this respect it is a
natural generalization of the Szegő theory.

The outline of the paper is as follows. In section 2, we start with some general definitions and
properties from complex analysis that we shall need in the sequel of the paper. Similarly, section 3
contains some properties of reproducing kernels. These reproducing kernels, or evaluating kernels,
played an important role in the Szegő theory of orthogonal polynomials, they will be even more
important in our development. Section 4 gives some generalities on positive real functions, i.e.,
analytic functions in the unit disk with positive real part, also known as Carathéodory functions
since they appeared in the Carathéodory-Fejér problem. We give also the relation with the bounded
analytic functions or Schur functions because it was Schur who used these functions in his algorithm
to solve the Carathéodory-Fejér problem. A last important tool in our analysis are the J-contractive
matrices studied by Potapov. They are introduced in section 5. It is then time to be more specific
and we then introduce the fundamental spaces of rational functions which will generalize the spaces
of polynomials of finite degree as they feature in the Szegő theory. They are defined in section 6
and some useful calculation techniques in these spaces are discussed in section 7. The latter
computational properties will be used on almost every page to follow. Rather than starting with
the orthogonal functions themselves, it will turn out to be easier to start with the reproducing
kernels. These kernels feature in the solutions of some extremal problems in the rational function
spaces (section 8). So their appearance is somehow natural when discussing the solution of the
Szegő extremal problem (see section 22). In connection with this problem and other convergence
results, it is important to know whether these rational functions are a complete system in Lp or
Hp. Some of these completeness problems are discussed in section 9. The relations between the
kernels and the orthogonal functions are the Christoffel-Darboux relations. These are derived in
section 10. We then obtain a recurrence relation for the reproducing kernels (section 11) and we
also give a normalized version (section 12). The latter has the advantage that the recursion can be
described with a J-unitary matrix. It will become clear in section 13, when we give the recurrence
for the orthogonal functions, that they are somewhat less simple to handle, since they can not be
simply described in terms of a J-unitary recursion. It is however possible to get some recurrence
that generalizes the Szegő relations and one can also define functions of the second kind (section
14). Like in Szegő’s theory, they appear as another independent solution of the recurrence for the
orthogonal functions, exactly like the Szegő polynomials of the second kind. These second kind
functions appear in the expression for the positive real interpolant of the positive real function that
can be related to the measure defining the orthogonality. Before we discuss these interpolating
properties, we give first some generalities on the relation that exist between the equality of the
inner product in the rational function spaces for different measures and corresponding interpolation
properties for the associated positive real functions (section 15) and the relation between orthogonal
functions and quadrature (section 16). We then turn to the interpolation properties of the kernels
(section 17) and the orthogonal functions (section 19) and the relation with the algorithm of Pick-
Nevanlinna (section 18). In section 20 we give some continued fractions that can be obtained from
the previously given recurrences and also the three-term recurrence that emerges from a contraction
of these continued fractions. Next, we prove some Favard type theorems which state that if there
is a recurrence relation then there is a measure for which you have orthogonality for the rational
functions, or for which the kernels are reproducing. These are proved in section 21. Finally, section
22 gives the generalization of the Szegő problem, as it can be solved as a limiting approximation
process in our rational function spaces. We could formulate it as finding the projection of z−1 onto
the space H2(µ), that is the space of polynomials closed in the L2(µ) metric. A crucial fact will then
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be to find out when the space H2(µ) is not only spanned by the polynomials, which is the original
Szegő approach, but it will also be spanned by the rational functions under certain conditions. All
this is related to convergence results of the previous theory. Some further convergence results are
discussed in section 23.
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2 Setting up the scenery

We shall be concerned with complex function theory on the unit circle. The complex number field
is denoted by C. We use the following notations for the unit circle, the open unit disc and its
complement :

T = {z : |z| = 1}, D = {z : |z| < 1}, E = {z : |z| > 1}.

The upper bar denotes complex conjugation when appropriate or closures when it concerns sets,
e.g., D = D ∪ T is the closed unit disc and C = C ∪ {∞} is the Riemann sphere. The real axis
is denoted as R. Real and imaginary parts of a complex number z are indicated by < z and = z
respectively: z = < z+= z, i is reserved for the unit on the imaginary axis and the open right half
plane is denoted as

H = {z : < z > 0}.

By Πn we mean the set of polynomials of degree at most n. The set of complex functions holomor-
phic on X are denoted by H(X).

Let µ be a positive measure on T, whose support in an infinite set. It is characterized by a
distribution function

∫
dµ which has an infinite number of points of increase. If u = eiα ∈ T is a

point of discontinuity of the distribution function, then µ({u}) is the concentrated mass at u. The
metric spaces Lp(µ), 0 < p ≤ ∞ are well known. The normalized Lebesgue measure is denoted by
λ : dλ = (2π)−1dθ. If µ = λ, we just write Lp instead of Lp(λ). The inner product in L2(µ) is
denoted by

〈f, g〉µ =
∫
f(eiθ)g(eiθ)dµ(θ)

The integration will always be over the unit circle in one form or another and we shall take the
freedom to write the previous integral in different forms

〈f, g〉µ =
∫
fgdµ =

∫
f(eiθ)g(eiθ)dµ(θ) =

∫
f(z)g(z)dµ(z).

The Hardy spaces of Lp functions analytic in D are denoted by Hp. They are Banach spaces
for 1 ≤ p ≤ ∞.

The Nevanlinna class N contains all spaces Hp for 0 < p ≤ ∞. It can be characterized by

f ∈ N ⇐⇒ f = g/h; g, h ∈ H∞

which is a theorem by F. and R. Nevanlinna [32, p.16]. It is known that each function f ∈ N has
a nontangential limit to T a.e. and log |f | ∈ L1, unless f ≡ 0 [32, p.17].

The operation of taking the complex conjugate on the unit circle is extended to the whole
complex plane C by the involution operation

f∗(z) = f(1/z).

Note that on T, f∗(z) is just f(z).
The Hardy and Nevanlinna classes of analytic functions in E are indicated by a prime, e.g.,

H ′
p = {f : f∗ ∈ Hp} and N ′ = {f : f∗ ∈ N}

Let the Lebesgue decomposition of µ be µ = µa + µs with µa satisfying

dµa = ωdλ (2.1)

the absolutely continuous part : µa � λ. The function µ′ = dµa/dλ = ω ∈ L1 is a weight function.
The remaining µs is the singular part w.r.t. λ : µs ⊥ λ.
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Define the moments as the Fourier coefficients

ck =
∫
e−ikθdµ(θ) , k ∈ Z. (2.2)

Clearly c−k = ck and |ck| ≤ c0 for a real measure µ. Computations will simplify substantially
if we suppose the measure to be normalized. This means that we divide out c0 which is always
possible since it is not zero and we shall thus set c0 = 1 from now on, which is no restriction of the
generality. In other words, we work with the normalized measure which satisfies

∫
dµ = 1.

With the positive measure µ, we can associate a positive real function (that is a function analytic
in D whose real part is positive there) :

Ωµ(z) = ic+
∫
eiθ + z

eiθ − z
dµ(θ) , c ∈ R, z ∈ D. (2.3)

This function is analytic in D and belongs to Hp for all p < 1 ([32, p.34]) and hence it has a
nontangential limit a.e. The constant ic is the imaginary part of Ωµ(0). The integral representation
is called the Riesz-Herglotz representation. The relation between µ and Ωµ is one-to-one except for
the constant c. Since µ is uniquely defined by Ωµ, we shall refer to it as the Riesz-Herglotz measure
for Ωµ.

The kernel in (2.3) shall be denoted as D(t, z).

D(t, z) =
t+ z

t− z
, z ∈ D, t ∈ T

The Poisson kernel is defined as

P (t, z) = < D(t, z) =
1− |z|2

|t− z|2
, t ∈ T.

This relation could be generalized for t off T as

P (t, z) =
1
2
[D(t, z) +D(t, z)∗]

with the substar conjugate for t. The latter reduces to the previous definition for t ∈ T. This
kernel appears in the Poisson-Stieltjes integral

< Ωµ(z) =
∫
< t+ z

t− z
dµ(t) =

∫ 1− |z|2

|t− z|2
dµ(t) , z ∈ D (2.4)

which also has a radial limit given by

lim
r→1−

< Ωµ(reiθ) = µ′(eiθ) a.e. (2.5)

where µ′ is the symmetric derivative of µ, i.e.,

µ′(eiθ) = lim
h→0

µ((θ − h, θ + h))
2h

.

See [32, p.4]. The relation (2.4) shows that indeed < Ωµ(z) > 0 in D, since the integrand at the
right hand side is positive on T. This explains why Ωµ is called a positive real function. Note that
while Ωµ(z) depends on the measure µ, including its singular part, the radial limit function of < Ωµ

depends on its absolutely continuous part µ′ only.
If Ωµ ∈ H1, the analysis simplifies considerably, since then µ should be absolutely continuous,

the Fourier coefficients of µ are equal to the Taylor coefficients of Ωµ, since indeed writing

D(t, z) =
t+ z

t− z
= 1 + 2

∞∑
k=1

zkt−k, z ∈ D
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gives

Ωµ(z) = ic+ c0 + 2
∞∑

k=1

ckz
k (2.6)

which converges uniformely in D. Any positive real function Ω of H1 with Ω(0) > 0 can be char-
acterized by

Ω(z) =
∫
D(t, z)< Ω(t)dλ(t). (2.7)

Note that the converse is not true : the measure µ can be absolutely continuous without Ωµ being
an H1 function.

The class of positive real functions is denoted by P.

P = {f ∈ H(D) : < f(z) > 0, z ∈ D}.

More on class P functions and their relation to class B functions will be given in a later section.
Another useful observation we can make here is that

g(z) =
∫
D(t, z)f(t)dµ(t), f ∈ L1(µ)

represents an analytic function in D, while, by a symmetry argument, h defined by

h(z) = −
∫ 1 + tz

1− tz
f(t)dµ(t), f ∈ L1(µ)

represents an analytic function in E.
If logω ∈ L1, with ω = µ′, then we can define

σ(z) = c exp{1
2

∫
D(t, z) logω(t)dλ(t)} , z ∈ D, |c| = 1. (2.8)

which we shall call the spectral factor of ω. It is an outer function in H2. Outer implies that σ as
well as 1/σ are both in H2. See e.g. [73]. Since it is in H2, it has a radial limit which satisfies

ω(eiθ) = |σ(eiθ)|2 a.e. (2.9)

Note also that we have

|σ(z)|2 = exp{
∫
P (t, z) logω(t)dλ(t)} , z ∈ D.

The inequality

(1− |z|2)|σ(z)|2 ≤
∫
µ′dλ

holds. (See [42, p.25].)
As you can see from its definition, the spectral factor σ does not depend on the singular part

of the measure, but is completely defined in terms of the absolutely continuous part. Recall that
dµs = dµ−µ′dλ = dµ− dµa. From the Szegő theory of orthogonal polynomials, we know that 1/σ
vanishes dµs a.e. if logµ′ ∈ L1 as was shown in Freud’s book [36, p. 202].

The condition log µ′ ∈ L1 is fundamental in the theory of Szegő for orthogonal polynomials on
the unit circle. We shall therefore call it the Szegő condition. Szegő’s theory has been extended
beyond this condition if µ′ > 0 a.e. on T [58].

An inner function U in Hp is a function with

|U(eiθ)| = 1 a.e.

Such an inner function has the general form

U(z) = cB(z)S(z)

8



with |c| = 1,

B(z) = zn
∏
j≥1

αj

|αj |
αj − z

1− αjz

0 6= αj ∈ D for all j, n ≥ 0 is a Blaschke product and S(z) is a singular factor which has the form

S(z) = exp{−
∫
D(t, z)dν(θ)}

where ν is a finite positive singular measure on T.
Since on T we have for any inner function : |U |2 = 1 or UU∗ = 1, we can write U = 1/U∗

on T. Because U ∈ Hp, we can extend it analytically to D and because U∗ ∈ H ′
p, we can extend

this analytically to E. In this way, U has an analytic extension to the whole complex Riemann
sphere, where we have to exclude the poles 1/αj , j = 1, 2, . . . of course as well as the points of T
which are in the support of ν. One says that inner functions allow a pseudo-meromorphic extension
across the unit circle to the complete Riemann sphere [31]. The nontangential limits from outside
or inside the unit circle coincide. See also [37, p.75 ff]. Douglas, Shapiro and Shields [31] showed
that a general function f ∈ H2 has a pseudo-meromorphic extension across T if there exists an
inner function U ∈ H2 such that on T we have Uf ∈ H ′

2 or, equivalently, if f can be factored as
f = h∗/U∗ on T with h ∈ H2 and U inner in H2. Again, the left hand side has an extension to D
and the right hand side to E, which defines f in the sphere C.

Suppose that the spectral factor σ has such a pseudo-meromorphic extension, then the relations

ω = σσ∗ =
1
2
[Ω + Ω∗] (2.10)

are valid on T but these relations can now be extended to C.
We now conclude this section by observing that

〈f, g〉µ =
∫
fg∗dµ = 〈g∗, f∗〉µ = 〈fg∗, 1〉µ = 〈Uf,Ug〉µ

if U is an inner function.
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3 Reproducing kernel spaces

In this section we recall some definitions and properties of reproducing kernel spaces.

Definition 3.1 (Reproducing kernel) Let H be a Hilbert space of functions defined on X with
inner product 〈·, ·〉. Then we call kw(z) = k(z, w) a reproducing kernel if

1. kw(z) ∈ H for all w ∈ X

2. 〈f, kw〉 = f(w) for all w ∈ X and f ∈ H.

It is a well known property [57] that if the Hilbert space is separable and {φk}k∈Γ is an or-
thonormal basis, then the unique reproducing kernel is given by

k(z, w) =
∑
k∈Γ

φk(z)φk(w)

These reproducing kernels can also be used to find best approximants in subspaces as the
following property shows.

Theorem 3.1 Let H be a separable Hilbert space and K a closed subspace with reproducing kernel
kw(z) = k(z, w). Then the best approximant (w.r.t. the norm ‖ · ‖ = 〈·, ·〉1/2) of f ∈ H from K is
given by

h(w) = 〈f, kw〉.

This h is the orthogonal projection of f onto K.

Proof. Suppose {φk : k ∈ Γ′} is an orthonormal basis for K. Extend this with {φk : k ∈ Γ′′}
such that {φk : k ∈ Γ = Γ′ ∪ Γ′′} is an orthonormal basis for H. Then the kernel of K is given by
kw =

∑
k∈Γ′ φkφk(w). Any element f ∈ H can be expanded as

f =
∑
k∈Γ

akφk with ak = 〈f, φk〉.

The best approximant from K is given by

h =
∑
k∈Γ′

akφk

while

〈f, kw〉 =
∑
k∈Γ′

〈f, φk〉φk(w) =
∑
k∈Γ′

akφk(w) = h(w).

This proves the theorem. 2

With these kernels, it is also possible to solve a number of classical extremal problems in Hilbert
spaces. We find in [57, p.44] the following theorem.

Theorem 3.2 Let H be a Hilbert space with reproducing kernel k(z, w). Then all the solutions of
the following problem

P 1(a,w) : sup {|f(w)|2 : ‖f‖ = a, w ∈ X}

are given by

f = η a k(z, w)[k(w,w)]−1/2 , |η| = 1

and these are all the solutions. The supremum is

|a|2k(w,w).

10



The problem

P 2(a,w) : inf {‖f‖2 : f(w) = a, w ∈ X}

reaches an infimum for

f = a k(z, w)[k(w,w)]−1

and this solution is unique. The minimum reached is

|a|2[k(w,w)]−1.

Proof. This theorem was given in [57] for a = 1, but the introduction of a is trivial. 2

The problems P 1(a,w) and P 2(a,w) are related to dual extremal problems as can be found in [30,
p.133] in a much more general context of Banach spaces.

Problem P 2(a,w) can be read as the problem of finding the orthogonal projection in H of 0
onto the space V = {f ∈ H : f(w) = a}.
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4 The classes P and B
The class of positive real functions was already partially discussed in section 2. It is also known
as the class of Carathéodory functions. We shall denote this class as (recall that H(D) denotes
analytic functions in D and H is the (open) right half plane)

P = {f ∈ H(D) : f(D) ⊂ H}. (4.1)

The class of bounded analytic functions or Schur functions is defined as

B = {f ∈ H(D) : f(D) ⊂ D}. (4.2)

Since they can be regarded as the unit ball in H(D), we have chosen the notation B for it.
We shall also use the following notations for slightly larger classes :

P = {f ∈ H(D) : f(D) ⊂ H = H ∪ iR} (4.3)

B = {f ∈ H(D) : f(D) ⊂ D = D ∪T}. (4.4)

The classical Schwarz’ lemma for functions in B reads

Lemma 4.1 (Schwarz’ lemma) Suppose f ∈ B and f(0) = 0. Then

|f ′(0)| ≤ 1 and |f(z)| ≤ |z|, z ∈ D. (4.5)

Equality holds if and only if f(z) = c z with |c| = 1.

Proof. This is a classical theorem and we are not going to prove it here. See e.g., [17, p.191] or
[37, p.1]. 2

A Möbius transform is a conformal map of the unit circle/disc onto itself. It has the general
form

ζ : z 7→ az + b

bz + a
, |b| < |a| (4.6)

or equivalently

ζα : z 7→ η
z − α

1− αz
, |α| < 1, |η| = 1. (4.7)

Note that ζα is the most general conformal map of this type which transforms α into the origin.
The unit circle T is transformed into itself. The inverse transformation is given by

ζ−1
α : w 7→ w/η + α

1 + αw/η
. (4.8)

Clearly ζα is a function from the class B.
The expression

ρ(z, w) = |ζw(z)| =
∣∣∣∣ z − w

1− wz

∣∣∣∣ ; z, w ∈ D

is invariant under Möbius transformations. It is called the pseudohyperbolic distance and it forms
a metric in D.

A form of the Schwarz lemma which is invariant w.r.t. this distance can now be formulated :

Theorem 4.2 Let f ∈ B and z and w ∈ D. Then

ρ(f(z), f(w)) =

∣∣∣∣∣ f(z)− f(w)
1− f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − w

1− wz

∣∣∣∣ = ρ(z, w), z 6= w (4.9)

and
|f ′(z)|

1− |f(x)|2
≤ 1

1− |z|2
, z ∈ D. (4.10)

Equality holds if and only if f is a Möbius transformation.

12



Proof. Also this result is classical. See e.g., [17, p.192] or [37, p.2]. 2

Notes:

1. Inequality (4.9) says that f ∈ B is Lipschitz continuous w.r.t. the pseudohyperbolic distance.

2. The second form (4.10) is the limiting case of the first one (4.9) for z → w.

The following property forms the basis of the Pick-Nevanlinna algorithm.

Theorem 4.3 Let ζα be a Möbius transform as defined in (4.7).

1. Let f ∈ B and α ∈ D. Then ζα(f) ∈ B. More precisely:

ζα(B) = B. (4.11)

2. If f ∈ B and α ∈ D, then

ζf(α)(f)/ζα ∈ B. (4.12)

3. If f ∈ B and f(α) = 0 for some α ∈ D, then f/ζα ∈ B.

Proof.

1. Since ζα ∈ B and the composition of functions in B is also in B, we find that ζα(B) ⊂ B.
Hence B ⊂ ζ−1

α (B). But since ζ−1
α = ζ−α (take η = 1 in (4.7), without loss of generality) we

also have ζ−α(B) ⊂ B. Thus

B ⊂ ζ−1
α (B) = ζ−α(B) ⊂ B,

so that equality holds.

2. This is a rewriting of the invariant form of Schwarz’ lemma.

3. This is a special case of 2 because f(α) = 0.
2

The link with class P functions can be made as follows. The Cayley transform

c : z 7→ 1− z

1 + z
(4.13)

is a one-to-one map of D onto H and of T onto iR (−1 is mapped onto ∞). The following result
is now simple to see.

Theorem 4.4 The following relations between class P and class B exist.

1. The Cayley transform c is a one-to-one map of Ponto B. I.e.,

c(B) = P and c(P) = B (4.14)

2. For the extended classes, define B′ = B\{−1}, i.e., we exclude the constant function f ≡ −1.
Then

c(B′) = P and c(P) = B′. (4.15)

Proof.
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1. If f ∈ B, then |f | < 1 in D so that |1 + f | > 0 in D. Hence c(f) ∈ H(D) and conversely, if
f ∈ P, then 1+f has strictly positive real part in D and therefore 1+f does not vanish. Thus
again, f ∈ H(D). The rest follows from the one-to-one map given by the Cayley transform.

2. Here we have to exclude f(z) ≡ −1 because then the transform would fail.

This concludes our proof. 2

We conclude this section with a property of inner functions from B.

Theorem 4.5 Let f ∈ B be an inner function. Then a.e. the following relations hold

|f(z)| < 1 in D, |f(z)| = 1 on T, |f(z)| > 1 in E. (4.16)

Proof. This is a simple consequence of the definitions. (2) is from the definition of an inner
function, (1) follows from the maximum modulus principle and because of the technique of pseu-
domeromophic extension, it easily follows that (3) holds. 2
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5 J-unitary and J-contractive matrix functions

We shall consider 2 × 2 matrices θ with entries that are functions in the Nevanlinna class N :
θ = [θij ] ∈ N2×2. We consider such matrices that are unitary with respect to the indefinite metric

J =

[
1 0
0 −1

]
= 1⊕−1.

We mean that they satisfy

θH J θ = J on T (5.1)

where the superscript H denotes complex conjugate transpose. If we define the substar conjugate
for matrices as the elementwise substar conjugate of the transposed matrix :[

θ11 θ12

θ21 θ22

]
∗

=

[
θ11∗ θ21∗
θ12∗ θ22∗

]
,

then we can write (5.1) as

θ∗ J θ = J on T. (5.2)

As we did for inner functions in B, we can define a pseudomeromorphic extension for such a θ-
matrix. Indeed, it follows from (5.2) that |det θ| = 1 a.e. on T. Hence, θ is invertible on T a.e.
and therefore also in D a.e. From the relation

θ∗ = J θ−1 J

which holds a.e. on the unit circle T, we can extend the right hand side to D and hence we define
also θ∗(z) = [θ(1/z)]H for z ∈ D, which is equivalent with defining θ(y) = [θ∗(1/y)]H for y ∈ E.
Thus θ is defined on the sphere C.

We shall call the matrix functions satisfying

θ∗ J θ = J a.e. in C

J-unitary matrices and denote the set of these matrices as

TJ = {θ ∈ N2×2 : θ∗ J θ = J a.e. }.

We have the following properties for J-unitary matrices:

Theorem 5.1 For elements of TJ the following relations hold :

1. θ1, θ2 ∈ TJ ⇒ θ1θ2 ∈ TJ

2. θ ∈ TJ ⇒ |det θ| = 1

3. θ ∈ TJ ⇒ θ−1 = Jθ∗J

4. θ ∈ TJ ⇒ θ Jθ∗ = J

5. If θ = [θij ] ∈ TJ then

(a) θ11∗θ11 − θ21∗θ21 = θ22∗θ22 − θ12∗θ12 = 1

(b) θ11∗θ12 − θ21∗θ22 = θ11∗θ21 − θ12∗θ22 = 0

(c) θ12∗θ12 − θ21∗θ21 = θ11∗θ11 − θ22∗θ22 = 0

(d) (θ11 + θ12)−1
∗ (θ11 − θ12)∗ = (θ22 + θ21)−1(θ22 − θ21)
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6. Let θ = [θij ] ∈ TJ and set a = θ11− θ12; b = θ11 + θ12; c = θ22− θ21; and d = θ22 + θ21. Then

1
2

[
a

b
+
a∗
b∗

]
=

1
bb∗

=
1
2

[
c

d
+
c∗
d∗

]
=

1
dd∗

ab∗ + a∗b = cd∗ + c∗d = 2.

Proof. Parts 1-3 are trivial to check. Part 4 follows from θ∗Jθ = J so that Jθ∗ = θ−1J and by
multiplying with θ, we get θJθ∗ = J . Part 5 is just an explicitation of θ∗Jθ = J = θJθ∗. The
results of part 5 then give an easy proof for part 6. 2

An important example of a constant J-unitary matrix is

Uρ = (1− |ρ|2)−1/2

[
1 −ρ

−ρ 1

]
, ρ ∈ D. (5.3)

In fact, this example turns out to be almost the most general constant J-unitary matrix.

Theorem 5.2 The most general constant θ ∈ TJ is given by[
η1 0
0 η2

]
Uρ (5.4)

with |ηi| = 1, i = 1, 2 and Uρ, ρ ∈ D as given in (5.3).

Proof. This is a matter of simple algebra. You can make use of the properties given in Theorem
5.1. 2

A simple nonconstant matrix from the class TJ is given by the Blaschke-Potapov factor with a
zero in α ∈ D.

Bα =

[
ζα 0
0 1

]
= ζα ⊕ 1 ; ζα(z) =

z − α

1− αz
, α ∈ D. (5.5)

The J-unitary matrices that are also J-contractive in D form an important class we shall often need
in this paper. J-contractive in D means

θHJθ ≤ J a.e. in D.

By the inequality, we mean that J − θHJθ ≥ 0, i.e., this is positive semi definite. The class of
J-unitary, strictly J-contractive matrices is denoted by

DJ = {θ ∈ TJ ; θHJθ < J a.e. in D} (5.6)

and its closure

DJ = {θ ∈ TJ ; θHJθ ≤ J a.e. in D}. (5.7)

For these matrices a number of additional properties can be proved. The following theorem is
due to Dewilde and Dym [24, p.448].

Theorem 5.3 For θ = [θij ] ∈ DJ the following holds.

1. θH ∈ DJ .

2. θHJθ ≥ J a.e. in E.

3. (θ11 + θ12)−1
∗ ∈ H2.

4. (θ11 + θ12)−1
∗ (θ11 − θ12)∗ ∈ P.
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5. (θ22 + θ21)−1 ∈ H2.

6. (θ22 + θ21)−1(θ22 − θ21) ∈ P.

7. (θ11 + θ12)−1
∗ (θ21 − θ22)∗ is inner.

Proof. Part 1 was shown in Potapov [68, p.171].
Part 2 follows from part 1 and the definition of DJ which imply that for z ∈ D it holds that

a.e. θ(z)−1Jθ(z)−H ≥ J . Now make use of θ(z)−1 = Jθ(1/z)HJ to get

θ(w)HJθ(w) ≥ J with w = 1/z ∈ E. (5.8)

Using part 1, we also have

θ(1/z)Jθ(1/z)H ≥ J, z ∈ D.

Then it follows from writing out the (1,1) element that

|θ11∗|2 − |θ12∗|2 ≥ 1 a.e. in D. (5.9)

Therefore, (θ11∗ + θ12∗) is not zero and its inverse is analytic in D.
Computing the real part of the expression of part 4, we get, using (5.9)

<
(
θ11∗ − θ12∗
θ11∗ + θ12∗

)
=
|θ11∗|2 − |θ12∗|2

|θ11∗ + θ12∗|2
≥ 1
|θ11∗ + θ12∗|2

≥ 0.

From this part 4 follows. Since the left hand side in the previous expression is a harmonic majorant
in D for the analytic function |θ11∗ + θ12∗|−2, it follows from [32, Theorem 2.12, p.28] that part 3
is true.

Part 5 and 6 follow from the (2,2) element in much the same way as 3 and 4 followed from the
(1,1) element in (5.8).

To prove the last part, note that we had for z ∈ D that θ∗JθH
∗ ≥ J . So we get in D :

[1 1]θ∗JθH
∗ [1 1]T ≥ [1 1]J [1 1]T = 0

with equality on T. Working out gives

1− aa ≥ 0

where a = (θ11∗+θ12∗)−1(θ21∗+θ22∗) and with equality on T. This identifies a as an inner function.
2

The following theorem describes a simple matrix from the class DJ .

Theorem 5.4 The most general first degree matrix in DJ with a zero at z = α ∈ D is given by[
η1 0
0 η2

]
Uρ Bα Uγ

with η1, η2 ∈ T, Uρ and Uγ constant J-unitary matrices as defined in (5.3) for ρ and γ ∈ D and
Bα is a Blaschke-Potapov factor as in (5.5).

Proof. This is a classical result that can be found e.g. in Potapov [68, p.187-188]. 2
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6 The spaces Ln
In this section we shall introduce the spaces Ln which are the fundamental spaces most sections of
this paper will be dealing with. Define for αi ∈ D a Blaschke factor as

ζi(z) =
αi

|αi|
αi − z

1− αiz
if αi 6= 0 or ζi(z) = z if αi = 0. (6.1)

In what follows we shall use only the first notation and suppose by convention that αi/|αi| is equal
to −1 for αi = 0.

Next we define finite Blaschke products recursively as

B0 = 1 and Bn = Bn−1ζn for n ≥ 1. (6.2)

We then consider the spaces

Ln = span{Bk : k = 0, 1, . . . , n}. (6.3)

They will often be considered as subspaces of L2(µ) but from time to time we shall also consider
them as subspaces of L2(λ) or some other space. Note that if all αi = 0, then Ln is just the space of
polynomials of degree at most n. Thus in that case Ln = Πn. There are of course many equivalent
ways to describe the spaces Ln. One of them is to say that Ln is a space of rational functions with
prescribed poles 1/αi, i = 1, . . . , n which are all in E.

Ln = {f =
p(z)∏n

i=1(1− αiz)
; p ∈ Πn}.

The spaces Ln depend upon the numbers in

An = {αi : αi ∈ D, i = 1, . . . , n}.

By An∗ we shall denote the set

An∗ = {1/αi : αi ∈ An}.

Some of the αi can be repeated a number of times. So we could rearrange them and make the
repetition explicit by setting

An = {β1, . . . , β1︸ ︷︷ ︸
ν1

, β2, . . . , β2︸ ︷︷ ︸
ν2

, βm, . . . , βm︸ ︷︷ ︸
νm

}. (6.4)

We fix β1 to be 0, but it may happen that it does not appear. Therefore we set ν1 ≥ 0. All the
other νi, i = 2, . . . ,m are positive integers and

∑m
1 νi = n.

The basis {Bk : k = 0, . . . , n} is not the only possible choice to span Ln of course. With An as
described in (6.4), we can use as a possible basis

{wk : k = 0, . . . , n} = {1, z, . . . , zν1 , (1− β2z)
−1, . . . , (1− β2z)

−ν2 , . . . ,

(1− βmz)
−1, . . . , (1− βmz)

−νm}. (6.5)

The advantage of working with the basis {Bk : k = 0, . . . , n} is that repetition of points and
distinction between αi = 0 or αi 6= 0 need no special notation as in some other choices like e.g.,
(6.5).

Here is yet another way to characterize the spaces Ln. Define

Mn = zBnH2

with Bn the finite Blaschke product associated with α1, . . . , αn. Clearly Mn is a shift invariant
subspace of H2 since

f ∈Mn ⇒ Sf ∈Mn
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where Sf(z) = zf(z) represents the shift operator. As a matter of fact, the famous Beurling
theorem says that any shift invariant subspace can be characterized as UH2 where U is an inner
function.

The sequence {Mn : n = 0, 1, . . .} contains shrinking subspaces, i.e., Mn+1 ⊂ Mn ⊂ · · · ⊂
M0 = zH2. If we define

Ln = H2 	Mn = M⊥
n = {f ∈ H2, 〈f, g〉 = 0 for all g ∈Mn}, (6.6)

then the sequence {Ln : n = 0, 1, . . .} is a growing sequence : Ln+1 ⊃ Ln ⊃ · · · ⊃ L0 = C. The
choice of the notation Ln in the previous definition may seem confusing at the moment, since we
reserved this notation for the spaces defined in (6.3). Our next Theorem will show that the spaces
of (6.3) and (6.6) are actually the same. We shall do this by proving that a basis for Ln is given
by {Bk : k = 0, . . . , n}.

Theorem 6.1 Define the spaces Mn = zBnH2 and Ln = H2 	Mn = M⊥
n where Bn is a finite

Blaschke product of degree n. Then

Ln = span{Bk : k = 0, . . . , n}

Proof. The result is obvious for n = 0. We shall then prove that Bn ∈ Ln − Ln−1 which implies
that the Blaschke products form indeed a basis. First we show that Bn ∈ Ln. Choose some
f = zBng ∈ zBnH2 (g ∈ H2). Then

〈f,Bn〉 =
∫
zBngBn∗dλ =

∫
zgdλ = 0

since Bn∗ = 1/Bn and g has vanishing negative Fourier coefficients. Hence Bn ⊥ zBnH2 and
therefore Bn ∈ Ln. On the other hand Bn 6∈ Ln−1 since for f ∈Mn−1 :

〈f,Bn〉 =
∫
zBn−1g Bn∗dλ =

∫
zg/ζndλ

with 1/ζn = αn/|αn| · (1− αnz)/(αn − z), which gives by Cauchy’s formula

〈f,Bn〉 = −g(αn)
αn

|αn|
αn(1− |αn|2)

which is not zero for all g ∈ H2. Hence, Bn is not orthogonal to Mn−1, thus not in Ln−1. 2

The previous theorem shows that, we can identify Ln as defined in (6.6) with the originally intro-
duced space Ln of (6.3).

Ln = H2 	 zBnH2 = M⊥
n = span{Bk : k = 0, . . . , n}.

In the special case where all αi = 0, the spaces Ln reduce to the spaces Πn of polynomials. It is
well known that in that case the Gram matrix of the basis ZT

n = [1 z z2 . . . zn] in L2(µ) is given
by

Gn = 〈Zn, Z
T
n 〉µ = [〈zi, zj〉µ] = [cj−i]

which is a positive definite Toeplitz matrix containing the moments of µ. If all the αi are distinct,
then the basis wk which we mentioned previously reduces to W T

n = [w0 w1 . . . wn] = [1, (1 −
α1z)−1 . . . (1 − αnz)−1]. Set by convention α0 = 0 and denote Ωµ (see (2.3)) as Ω, which is
supposed to be normalized such that Ω(0) = 1. This gives the Gram matrix

Gn = 〈Wn,W
T
n 〉µ =

1
2

[
Ω(αj) + Ω(αi)

1− αjαi

]
.

This is a so called Pick matrix named after G. Pick who used the positive definiteness of this matrix
as a criterion to characterize the solvability of the Pick-Nevanlinna interpolation problem. In the
more general case where some of the αk do coincide, the Gram matrix looks more complicated and
involves derivatives of Ω evaluated at the αi. To see this, we give a technical lemma first.
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Lemma 6.2 Let Dw(z) = D(z, w) = (z + w)(z − w)−1 be the reproducing kernel for H2, then

∂k
wDw(z) = 2(k!)z(z − w)−(k+1), k ≥ 1

where ∂k
w denotes the k-th derivative with respect to w. We also have

[∂k
wDw(z)]∗ = 2(k!)zk(1− wz)−(k+1), k ≥ 1,

where the substar transform is with respect to z. Furthermore, if

Ω(w) = = Ω(0) +
∫
Dw(z)dµ(z),

then

Ω(k)(w) = ∂k
wΩ(w) =

∫
∂k

wDw(z)dµ(z) = 2(k!)
∫

z

(z − w)k+1
dµ(z), k ≥ 1.

Note also that

Ω(k)(w) =
∫

[∂k
wDw(z)]∗dµ(z).

Proof. This is a matter of simple algebra and we leave this to the reader. 2

With this lemma, we can now prove the following theorem.

Theorem 6.3 If we choose the basis (6.5) for the space Ln, then the Gram matrix

Gn = [〈wi, wj〉µ]

will only depend upon

Ω(t)(βs) t = 0, 1, . . . , νs − 1, s = 1, 2, . . . ,m

The superscript (t) denotes the t-th derivative.

Proof. One possible form of the elements in Gn involves an integral like∫ 1
(1− αz)k

zl

(z − β)l
dµ(z). (6.7)

It should be clear from the previous lemma that the function to be integrated can be written as
a linear combination of ∂i

wDw(z) evaluated at w = β for i = 0, . . . , l and [∂j
wDw(z)]∗ evaluated at

w = α for j = 0, . . . , k. Thus (6.7) can be written as a linear combination of Ω(i)(β) and Ω(j)(α)
for i = 0, . . . , l and j = 0, . . . , k.

The other possibilities for wi and wj can be treated similarly 2

We shall call a matrix of the form Gn as in the previous theorem a generalized Pick matrix. The
Gram matrix for any other basis, e.g., the basis {Bk : k = 0, . . . , n} is of course equivalent with a
generalized Pick matrix. Turning this argument around, we can show that every generalized Pick
matrix is equivalent with a Toeplitz matrix. This is explicitly done in the next theorem which is
due to Delsarte, Genin and Kamp [23].

Theorem 6.4 A generalized Pick matrix is equivalent with a Toeplitz matrix.

Proof. We just note that also

{`(n)
k : k = 0, . . . , n} = { zk

πn(z)
; k = 0, . . . , n}, πn(z) =

n∏
i=1

(1− αiz)

is a basis for Ln. The Gram matrix for this basis is obviously a Toeplitz matrix since its entries
depend only on the difference of the indices (and n) :

〈`(n)
i , `

(n)
j 〉µ =

∫
zi−j

πn∗πn
dµ = 〈zi, zj〉π
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with dπ = (πn∗πn)−1dµ.
It is not difficult to find the transformation matrix explicitly, at least not in the case where all

the αi are different. Suppose we express the basis functions wi in terms of `(n)
j as

wi =
n∑

j=0

`
(n)
j aij , i = 0, . . . , n.

which we can also express as

wi(z)πn(z) =
n∑

j=0

zjaij , i = 0, . . . , n

Since this is a relation between polynomials of degree at most n, we can take the transform p∗(z) =
znp(1/z) to get

πni(z) =
n∑

j=0

zn−jaij , i = 0, . . . , n (6.8)

where πni = (wiπn)∗ is a polynomial of degree at most n. So we get again a polynomial relation.
We can now find the coefficients aij by requiring that the polynomial on the right interpolates
the polynomial on the left in the points {αi : i = 0, . . . , n} where we have supposed that α0 = 0.
Interpolation has to be understood in Hermite sense. This means that, if a point αi appears νi

times, then one interpolates the first (νi− 1) derivatives. In case of all different αi, we get ordinary
interpolation. The result then is

Π = V AH

where A = [aij ], V is a Vandermonde matrix V = [αn−j
i ] and Π is a diagonal matrix

Π = diag[πni] with πni =
n∏

j 6=i,j=0

(αi − αj).

In the case of confluent points, the matrices Π and V can still be found, only they are much more
complicated to write down. If we set

W T = [w0, . . . , wn] and LT = [`(n)
0 , . . . , `(n)

n ]

with W = AL, then the Pick matrix is given by

Pn = 〈W,W T 〉µ

and the Toeplitz matrix

Tn = 〈L,LT 〉µ

will be related by

Pn = A〈L,LT 〉µAH = ATnA
H = ΠHV −HTnV

−1Π.

This concludes the proof of our theorem. 2

From the proof of the previous theorem, it follows that another interesting basis is

{nk : k = 0, . . . , n} =
{

1
πn
,
z

πn
,
z(z − α1)

πn
, . . . ,

z(z − α1) · · · (z − αn−1)
πn

}
where as always πn =

∏n
i=1(1− αiz). The coefficient aij from the previous theorem is then a j-th

order divided difference of the function πnwi at the points 1/αi : i = 0, . . . , j. Again, here we can
have confluency. See the book of Donoghue [29].
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Some other bases can be found in the literature like e.g.,{
1,

γ1

1− α1z
,B1

γ2

1− α2z
, . . . , Bn−1

γn

1− αnz

}
(6.9)

with γk = (1 − |αk|2)1/2. It is an orthonormal basis for Ln w.r.t. the Lebesgue measure if all the
points αi, i = 1, . . . are different and nonzero [7, p.138].

If the points αi are renamed like in (6.5) as βj , then the basis 1
1− βiz

(
z − βi

1− βiz

)k

: k = 0, . . . , νi − 1; i = 1, . . . ,m


has also attracted a lot of attention. See e.g. [46, p.149 ff] where expressions for the elements of
the corresponding Gram matrix (w.r.t. Lebesgue measure) can be found. See also [72, p.27]. In
[27] it is called the Malmquist basis.

Let us elaborate a bit further on this orthonormal basis in H2. Let us define as in (6.9)

vk = Bk−1
γk

1− αkz
; k = 1, . . . , n. (6.10)

Then this forms, together with v0 = 1, an orthonormal basis in H2 for Ln if all the αi are mutually
different and nonzero. However, it holds in general, also if some points coincide or are equal to zero
that

Ln = span{1, (z − w)v1, (z − w)v2, . . . , (z − w)vn)}

for any w. The interesting thing about this basis is that we can now write

Ln(w) = span{(z − w)v1, . . . , (z − w)vn)} = {f ∈ Ln : f(w) = 0}.

Define

Kn(w) = span{v1, . . . , vn} = {(z − w)−1f : f ∈ Ln(w)} =
Ln(0)∗ = {f ∈ Ln : f∗ ∈ Ln(0)} =

= {p/πn : p ∈ Πn−1, πn =
n∏

i=1

(1− αiz)}

which is of course independent of w : Kn(w) = Kn(0). Define

z−1Mn = Mn(0) = BnH2,

then we can prove the following property (see also Walsh [79, p. 225]).

Theorem 6.5 With the spaces as defined above we have that

Kn(0) = {z−1f : f ∈ Ln, f(0) = 0} = {f ∈ Ln : f∗(0) = 0} = Ln(0)∗

is the orthogonal complement (w.r.t. the Lebesgue measure) of Mn(0) = BnH2. Thus

Kn(0) = H2 	BnH2 = Mn(0)⊥.

Similarly, it also holds that

Ln = H2 	 zBnH2 = H2 	Mn = M⊥
n .
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Proof. Take a function from BnH2 which is of the form Bnf with f ∈ H2 and a function from
Kn(0) which has the form z−1pn(z)/πn(z) where pn(z) ∈ Πn(0), a polynomial of degree at most n
which vanishes at the origin and as before πn =

∏n
1 (1−αiz). The inner product of these functions

equals∫
Bn(z)f(z)

zpn∗(z)
πn∗(z)

dλ = ηn

∫
f(z)

zp∗n(z)
πn(z)

dλ, ηn =
n∏

i=1

(−αi/|αi|)

where p∗n(z) = pn(1/z) and Bn = ηnπ
∗
n/πn. Since fp∗n/πn is analytic in D, this integral is zero.

The other orthogonality relation follows similarly. An element from Ln can be written as c+zkn

with c ∈ C and kn ∈ Kn(0). We should prove that 〈zf, c + zkn〉 = 0 for all f ∈ BnH2 = Mn(0),
c ∈ CC and kn ∈ KKn(0). The inner product equals 〈zf, c〉+ 〈zf, zkn〉. The second term vanishes
by the first part of this theorem. The first term equals c

∫
zf(z)dλ(z) = 0 since f is analytic. Hence

the theorem is proved. 2

The previous result says for example that a function in H2 is orthogonal to Ln if and only if it
vanishes in the point set A0

n = {0, α1, . . . , αn}, thus the difference between a function f ∈ H2 and
its orthogonal projection onto Ln should vanish in A0

n. In other words, the orthogonal projection
of f ∈ H2 onto Ln should interpolate f in the points A0

n. We shall come back to this property in
Section 9.

The next result says that we can also find a basis for Ln from its reproducing kernel.

Theorem 6.6 Let kn(z, w) be a reproducing kernel for Ln. Then for a set {ξ0, . . . , ξn} of distinct
points in D, the functions {kn(z, ξj)}, j = 0, . . . , n form a basis for Ln.

Proof. Certainly, the functions are all in Ln. They are also linearly independent. Suppose they
were not, then there is a nonzero vector A = [a0, . . . , an]T ∈ Cn such that for all z

n∑
j=0

kn(z, ξj)aj = 0

Take z = ξi for i = 0, . . . , n, then this would mean that the following system
n∑

j=0

kn(ξi, ξj)aj = 0, i = 0, . . . , n

has a non trivial solution. However, since the matrix

[kn(ξi, ξj)] = [〈kn(·, ξj), kn(·, ξi)〉µ],

this matrix is positive definite the system has only the zero solution. Thus the functions {kn(z, ξj), j =
0, . . . , n} form indeed a basis for Ln. In fact, a positive definite (Gram) matrix is basically equiva-
lent to a reproducing kernel. See [8, p. 344] or [29, chap. 10]. 2
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7 Calculus in Ln
Recall that we already defined the substar transform f∗(z) = f(1/z). Now if f ∈ Ln, we shall also
define the superstar transform as f∗(z) = Bn(z)f∗(z) where Bn is the finite Blaschke product with
zeros from An = {αi : i = 1, . . . , n}. Note that if all αi are zero, Ln = Πn and then it is natural to
define the superstar transform for polynomials as p∗(z) = znp∗(z) if p ∈ Πn. Thus(

n∑
i=0

akz
k

)∗
=

n∑
i=0

aiz
n−i = an + an−1z + · · ·+ a0z

n.

For functions in Ln, this generalizes to(
n∑

i=0

aiBi(z)

)∗
=

n∑
i=0

aiBn\i(z) = an + an−1ζn + · · ·+ a0Bn

where

Bn\i(z) =
Bn(z)
Bi(z)

=
n∏

j=i+1

ζj(z), 0 ≤ i ≤ n.

Note also that if we define πn(z) =
∏n

i=1(1− αiz), then we can write Bn(z) as

Bn(z) =
π∗n(z)
πn(z)

ηn with ηn =
n∏

i=1

(−αi

|αi|

)
∈ T.

Since in the polynomial case, p∗(0) is the leading coefficient of the polynomial p, we shall generalize
this concept and call f∗n(αn) the leading coefficient of fn ∈ Ln, i.e.

fn = f∗n(αn)Bn + an−1Bn−1 + · · ·+ a0

If f∗n(αn) = 1, we shall say that it is monic. The following technical properties can be trivially
verified but they are very useful if you want to do computations in Ln.

Theorem 7.1 In Ln, the following relations hold.

1. If f ∈ Ln, then

(a) (f∗)∗ = (f∗)∗ = f

(b) (f∗)∗ = fBn

(c) (f∗)∗ = fBn∗ = f/Bn

2. For the finite Blaschke products we have

(a) B∗
n = 1

(b) Bn∗ = 1/Bn

3. Define πn(z) =
∏n

i=1(1− αiz), and let f ∈ Ln be given by f = pn/πn, with pn a polynomial.
Then

(a) Bn = ηnπ
∗
n/πn with ηn =

∏n
i=1(−αi/|αi|)

(b) f∗ = pn∗/πn∗ = p∗n/π
∗
n

(c) f∗ = ηnp
∗
n/πn.

4. If f, g ∈ Ln, then

〈f, g〉µ = 〈f∗, g∗〉µ = 〈g∗, f∗〉µ
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5. If φn ∈ Ln and 〈φn,Ln−1〉µ = 0, i.e. φn ⊥ Ln−1, then 〈φ∗n, ζnLn−1〉µ = 0, i.e. φ∗n ⊥ ζnLn−1

or in the notation of the last section φ∗n ⊥ Ln(αn) where Ln(αn) = {f ∈ Ln : f(αn) = 0}.

6. If f ∈ Ln has a zero/pole β in D (E,T), then f∗ ∈ Ln∗ has a zero/pole 1/β in E (D,T) and
f∗ ∈ Ln has the same zeros as f∗ and the same poles as f∗. The latter are the elements from
An∗ = {1/α1, . . . , 1/αn}.

Proof. These results are so simple to verify that we do not give the proof explicitly. 2

Let us now introduce the orthonormal basis {φk} for the space Ln with respect to the inner product
〈·, ·〉µ. This means

Ln = span{φk : k = 0, . . . , n}

while 〈φi, φj〉µ = δij We can always choose the leading coefficient κn = φ∗n(αn) of φn to be real
and positive. We shall use from now on the notation κn to denote this coefficient. The functions
Φn = κ−1

n φn are then the monic orthogonal basis functions.
From a previous section we know that the reproducing kernel for Ln is given by

kn(z, w) =
n∑

k=0

φk(z)φk(w).

We can obtain the following determinant expressions.

Theorem 7.2 Let ET
n = [e0, . . . , en] be a vector of basis functions for Ln and let Gn denote the

Gram matrix w.r.t. µ:

Gn = 〈En, E
T
n 〉µ = [〈ei, ej〉µ].

Then the reproducing kernel kn(z, w) for Ln is expressed as

kn(z, w) =
−1

detGn
det

[
Gn En(z)

En(w)H 0

]
.

Proof. Suppose that by a Gram-Schmidt orthogonalization procedure, the basis En is transformed
into an orthonormal basis Fn = [φ0, . . . , φn]T and that

φk =
k∑

i=0

lkiei.

then the vector Fn can be written as Fn = LnEn with Ln the lower triangular matrix containing
the lki coefficients. Now express that these φk form an orthonormal set. Then you get

I = 〈Fn, F
T
n 〉µ = Ln〈En, E

T
n 〉µLH

n = LnGnL
H
n .

Hence G−1
n = LH

n Ln. Therefore

kn(z, w) = Fn(w)HFn(z) = En(w)HLH
n LnEn(z) = En(w)HG−1

n En(z).

The last line gives the result by a standard argument for determinants. 2

From this fact the following simple but basic relations can be derived.

Theorem 7.3 Let kn(z, w) be the reproducing kernel for Ln which is based on the points An =
{αi : i = 1, . . . , n} and {φk} a set of orthonormal basis functions with leading coefficients κk > 0.
Then the following relations hold.

1. kn(z, w) = Bn(z)Bn(w)kn(1/w, 1/z)
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2. kn(z, αn) = κnφ
∗
n(z)

3. kn(αn, αn) = κ2
n.

Proof.

1. If {e0, . . . , en} is a basis for Ln with Gram matrix Gn, then {Bnek∗ : k = 0, . . . , n} is also a
basis with Gram matrix GT

n . Indeed,

〈Bnei∗, Bnej∗〉µ = 〈ej , ei〉µ.

Let us denote this basis in a vector form, which, according to our earlier convention of substar
transform for matrices, should be denoted as

Bn(z)En∗(z) = Bn(z)[e0∗(z), . . . , en∗(z)] if ET
n (z) = [e0(z), . . . , en(z)].

Hence, when applying the determinant formula of the previous theorem for this new basis,
we get

kn(z, w) =
−1

detGn
det

[
GT

n Bn(z)En∗(z)T

Bn(w) En∗(w) 0

]

=
−Bn(z)Bn(w)

detGn
det

[
Gn En∗(w)H

En∗(z) 0

]
= Bn(z)Bn(w)kn(1/w, 1/z)

2. The first part gives that

kn(z, w) =
n∑

k=0

φk(z)φk(w) =
n∑

k=0

φ∗k(z)φ∗k(w)Bn\k(z)Bn\k(w)

where Bn\k = Bn/Bk. For w → αn, we see that Bn\k(αn) = δkn, so that

kn(z, αn) = φ∗n(z)φ∗n(αn) = φ∗n(z)κn.

3. If you also let z tend to αn, then you directly get the third result.
2

We can now also obtain determinant expressions for κn and φn.

Theorem 7.4 Consider the basis of finite Blaschke products {Bk(z) : k = 0, . . . , n} for the space
Ln and denote the elements from the corresponding Gram matrix as

µij = 〈Bi, Bj〉µ

and set Gn = [µij ]. The orthonormal basis functions are denoted as φk and their leading coefficient
as κk. Then the following equalities hold

1. κ2
n = detGn−1/detGn,

2. φn(z) = (detGn−1 detGn)−1/2 det


µ00 · · · µ0n
...

...
µn−1,0 · · · µn−1,n

B0(z) · · · Bn(z)

 .
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Proof. We know from the previous theorem that

kn(z, αn) =
−Bn(z)
detGn

det

 Gn

γ0
...
γn

B0∗(z) · · ·Bn∗(z) 0


with γk = Bn\k(αn) = δkn. Hence we get

kn(z, αn) = κnφ
∗
n(z) =

Bn(z)
detGn

det


µ00 · · · µ0n
...

...
µn−1,0 · · · µn−1,n

B0∗(z) · · · Bn∗(z)


which then gives first

kn(αn, αn) = κ2
n =

1
detGn

det


µ00 · · · µ0n
...

...
µn−1,0 · · · µn−1,n

γ0 · · · γn


=

detGn−1

detGn

because γk = δkn. So that also

φn(z) = κ−1
n kn(z, αn)∗ = (detGn−1 detGn)−1/2 det


µ00 · · · µ0n
...

...
µn−1,0 · · · µn−1,n

B0 · · · Bn


which concludes the proof. 2
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8 Extremal problems in Ln
In this section we shall review some of the extremal problems that can be solved with reproducing
kernels in the special case of Ln. From now on we shall use the notation ‖ · ‖µ to mean 〈·, ·〉1/2

µ .
From the problem P 1(a,w) which we considered in section 3, we can now derive

Theorem 8.1 All the solutions of the following optimization problem

P 1
n(1, αn) : sup {|f(0)|2 : ‖f‖µ = 1, f ∈ Ln}

are given by

f = ηφ∗n , |η| = 1

where φn is the n-th orthonormal basis function of Ln with leading coefficient κn = φ∗n(αn). The
maximum is equal to κ2

n.

Proof. This follows immediately from the Theorem 3.2 and the properties given in Theorem 7.3.
2

Also for the second optimization problem of Theorem 3.2 we formulate a special case.

Theorem 8.2 The optimization problem

P 2
n(1, αn) : inf {‖f‖2µ : f(αn) = 1, f ∈ Ln}

has a unique solution given by

f = Φ∗n = κ−1
n φ∗n

where Φn is the n-th monic orthogonal basis function in Ln, φn the orthonormal one with φ∗n(αn) =
κn > 0. The minimal value is κ−2

n .

Proof. Also this follows from Theorem 3.2 and the properties in Theorem 7.3. 2

Since in Ln it holds that

‖f‖µ = ‖f∗‖µ

we also have solved the following problem.

Corollary 8.3 The unique solution of the problem

inf {‖f‖2µ : f ∈ LM
n }

where LM
n denotes all monic elements of Ln is given by the n-th monic orthogonal basis function

Φn = κ−1
n φn of Ln and the minimum is κ−2

n , with κn > 0 the leading coefficient of the orthonormal
one.

Recall the definition of Ln(w), given in section 6

Ln(w) = {(z − w)f : f ∈ Kn(w)} = {f : f ∈ Ln : f(w) = 0}.

The problem of finding the orthogonal projection of 1 onto Ln(w) is related to a classical Szegő
problem.

Theorem 8.4 Define the following problem in Ln(w) which is defined as above with Ln the rational
function space based on the point set An = {α1, . . . , αn}.

P 3
n(w) : inf {‖1− f‖2µ : f ∈ Ln(w)}.

Then P 3
n(w) has the unique solution

f = 1− kn(z, w)
kn(w,w)

where kn(z, w) is the reproducing kernel of Ln. The minimum is given by [kn(w,w)]−1.
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Proof. This problem can be reduced to problem P 2
n(1, w) by noting that

Ln(w) = {f = 1− g : g ∈ Ln, g(w) = 1}

and thus is

inf {‖1− f‖2µ : f ∈ Ln(w)} = inf {‖g‖2µ : g ∈ Ln, g(w) = 1}, f = 1− g.

From this the result follows easily. 2

This theorem has an easy corollary.

Corollary 8.5 If kn(z, w) is the reproducing kernel for Ln, then kn(w,w) is nondecreasing with n
if w ∈ D.

Proof. Since the Kn(w) are nested as Kn(w) ⊂ Kn+1(w), the minimum [kn(w,w)]−1 can not
increase with n. 2

Since there are so many optimization problems whose solutions can be expressed in terms of the
reproducing kernel, one can ask whether there is an optimization problem that has this kernel
for its solution. It turns out that it gives an approximation to the spectral factor that can be
related to the measure µ as explained in section 2. More precisely, it approximates some function
sw(z), depending on w which is related to the spectral factor. This function is defined in the next
Theorem. It is known as the Szegő kernel associated with µ. See [42, p.51-52].

Theorem 8.6 Let σ be the spectral factor, related to the measure µ as explained in section 2. That
is we suppose σ∗σ = µ′. Define for w ∈ D the function s(z, w) = sw(z) with

sw(z) = [σ(z)(1− wz)σ(w)]−1, w ∈ D.

Define the problem

Sn(w) : inf {‖f − sw‖2µ : f ∈ Ln}.

Then Sn(w) has a solution f(z) = kn(z, w), where kn(z, w) is the reproducing kernel for (Ln, µ)
and the minimum is given by

[(1− |w|2)|σ(w)|2]−1 − kn(w,w).

Proof. First note that sw ∈ H2 since 1/σ ∈ H2 and w ∈ D and σ(w) 6= 0. Now you can also
reduce this problem Sn(w) to the problem P 2

n(1, w) by observing that

‖f − sw‖2µ = ‖f‖2µ + ‖sw‖2µ − 2< 〈f, sw〉µ.

The last term can be obtained by the following computation

〈f, sw〉µ =
∫
f(z)

1
σ∗(z)σ(w)

z

z − w
dµ(z)

=
∫
f(z)

σ(z)
σ(w)

z

z − w
dλ(z)

= f(w).

The second equality follows from the fact that 1/σ = 0 dµs-a.e. where dµs = dµ − µ′dλ. On the
other hand, using again the fact that 1/σ vanishes dµs-a.e., we get

‖sw‖2µ =
1

|σ(w)|2
∫

dµ(z)
σ(z)σ∗(z)|1− wz|2

=
1

|σ(w)|2
∫

dλ(z)
|1− wz|2

=
1

|σ(w)|2
1

1− |w|2
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It is now clear that we have to minimize

inf
a
{ inf

f∈Ln,f(w)=a
‖f‖2µ − 2< a} = inf

a
{ |a|2

kn(w,w)
− 2< a}

The solution of the latter problem is easily seen to be found for a = kn(w,w), so that we get the
solution of the Theorem. 2

This Theorem can also be reformulated as follows.

Corollary 8.7 Let the measure µ of the previous theorem satisfy dµ = P (·, w)dν with P (z, w) the
Poisson kernel. Denote by σµ and σν the spectral factors of µ and ν respectively. Then the problem

inf{‖f − [σνσν(w)]−1‖2µ : f ∈ Ln}

reaches a minimum |σν(w)|−1 − kn(w,w) for f(z) = kn(z, w) where kn is the reproducing kernel
for Ln w.r.t. dµ.

Proof. Note that the outer spectral factors are related by

σµ = σν

√
1− |w|2
1− wz

.

Fill this into the expression for sw of the previous Theorem to find that it is equal to [σν(z)σν(w)]−1.
The result then follows easily. 2
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9 Density in Lp and Hp

As with the powers of z, it is possible to prove that the basis functions of finite Blaschke products
and their inverses are complete in the space Lp if and only if

∑
(1−|αk|) →∞. In analogy with the

powers of z we can define the finite Blaschke products Bn for n = 0, 1, . . . as before and we set by
definition B−n = Bn∗ = 1/Bn for n = 1, 2, . . . Hence, the {Bn}n∈Z span the spaces Rn = Ln +Ln∗,
n = 0, 1, . . . The completeness of the functions {Bn}n∈Z is the same as the density of R∞ in Lp. If
R denotes the closure in Lp of R∞, then if R∞ is dense in Lp, R should coincide with Lp.

In order to prove this density property, we start with a Lemma that can be found in Achieser
[1, p. 243].

Lemma 9.1 Let z1, z2, . . . , zn be some fixed points in C. We have the following optimization result
in Lp, 0 < p ≤ ∞

min
q

{
‖f‖p : f(z) =

q(z)
(z − z1) · · · (z − zn)

, q ∈ ΠM
N , N ≥ n

}
=

n∏
k=1

1
|zk|+

(9.1)

where q ranges over all monic polynomials of degree at most N (q ∈ ΠM
N ) and |z|+ = max{|z|, 1}.

The unique solution is obtained for q = Q with Q as in (9.2) below.

Proof. Suppose for simplicity that z1, . . . , zd are all in E while zd+1, . . . , zn are all in D. It is clear
that the right hand side value can be reached. It is obtained for q = Q with

Q(z) =
zN−n(zz1 − 1) · · · (zzd − 1)(z − zd+1) · · · (z − zn)

z1 · · · zd
(9.2)

and this is the unique solution. Thus we have to show that for any other monic polynomial P ∈ ΠM
N∥∥∥∥P (z)

π(z)

∥∥∥∥
p

>

∥∥∥∥Q(z)
π(z)

∥∥∥∥
p

(9.3)

where π(z) = (z − z1) · · · (z − zn). Since ‖f‖∞ ≥ ‖f‖p, it is sufficient to prove that (9.3) is true
for 0 < p < ∞. Suppose that q1, . . . , qj are all the zeros of Q in the closed unit disk. Thus
Q(z) = (z − q1) · · · (z − qj)R(z) with |R(0)| > 1. The function

g(z) =
(1− q1z) · · · (1− qjz)R(z)

(z − z1) · · · (z − zd)(1− zd+1z) · · · (1− znz)
(9.4)

is analytic in D and therefore∫ ∣∣∣∣Qπ
∣∣∣∣p dλ =

∫
|g|pdλ ≥

∣∣∣∣∫ g(z)pdλ

∣∣∣∣ = |g(0)|p =
|R(0)|p

|z1 · · · zd|p
≥ 1
|z1 · · · zd|p

with inequality if P 6= Q. 2

With the previous Lemma, we can now prove the following completeness theorem. It is a slight
generalization of a result in Achieser [1, p. 244] where the poles were supposed to be simple. On
the other hand Achieser is more general since poles need not appear in reflection pairs (αk, 1/αk)
as we suppose here.

Theorem 9.2 For given α1, α2, . . . all in D, let the finite Blaschke products Bn be defined as before
for n ≥ 0 and B−n = 1/Bn for n = 1, 2, . . . Then the system {Bn}n∈Z is complete in any Lp space
(1 ≤ p ≤ ∞) if and only if

∑
(1− |αk|) →∞.

Proof. First note that the case where infinitely many αk are equal to zero can immediately be
discarted since in that case the system contains the trigonometric polynomials and these are known
to be complete while the sum certainly diverges. So we suppose that only finitely many (say q) of
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the αk that are zero. Without loss of generality we suppose α1 = · · · = αq = 0. In this case the
system contains the trigonometric polynomials of degree at most q. Suppose we set

Rn = span{Bk : k = −n, . . . , n} = Ln + Ln∗

=

z−np2n(z)
D(z)

: p2n ∈ Π2n, D(z) = zq
n∏

k=q+1

[(z − 1/αk)(z − αk)]

 .
It is sufficient to prove that the divergence of the sum implies completeness in L∞ and conversely

that completeness in L1 implies divergence of the sum.
Completeness in L1 ⇒ divergence of the sum. By the previous Lemma we have for p = 1 that

inf
f∈Rn

‖zq+1 − f(z)‖1 = inf
P∈Π2n

∥∥∥∥zq+1 − P (z)
D(z)

∥∥∥∥
1

= inf
Q∈ΠM

2n+1

∥∥∥∥Q(z)
D(z)

∥∥∥∥
1

=
n∏

k=q+1

|αk|.

Since the system is supposed to be complete in L1, the previous expression should go to zero.
Whence

∑
(1− |αk|) →∞.

Divergence of the sum ⇒ completeness in L∞. We already know that all the powers zk, k =
−q, . . . , q are in the system, so we should prove that all zk for |k| > q can be approximated
arbitrarily close in L∞ by elements from Rn for n sufficiently large. This follows from the following
observations

inf
f∈Rn,ai

‖zm+q + a1z
m+q−1 + · · ·+ am−1z

q+1 + f(z)‖∞

= inf
q∈Π2n+m−1

∥∥∥∥∥z2n+m + q(z)
D(z)

∥∥∥∥∥
∞

=
n∏

k=q+1

|αk|

for m = 1, 2, . . . and

inf
f∈Rn,ai

‖z−m−q + a1z
−m−q+1 + · · ·+ am−1z

−q−1 + f(z)‖∞

= inf
f∗∈Rn,ai

‖zm+q + a1z
m+q−1 + · · ·+ am−1z

q+1 + f∗(z)‖∞ =
n∏

k=q+1

|αk|

for m = 1, 2, . . . Since the sum diverges to infinity, we must have that the right hand side∏n
q+1 |αk| → 0. By an induction argument, it then follows that z±(q+m) for m = 1, 2, . . . can

be approximated arbitrary close by the system {Bn}. This means that it is complete in L∞. 2

While the previous Theorem was concerned with the density of R∞ in Lp, we shall now study
the density of L∞ inH2. It can already be expected from 6.5 which characterized Ln asH2	zBnH2.
If
∑

(1 − |αk|) diverges, the Blaschke product goes to zero in D, which suggests that Ln becomes
H2. In fact the previous characterization links interpolation with least squares approximation as
we can find in the next Theorem which can be found in the book of Walsh [79, p. 224].

Theorem 9.3 Let f ∈ H2 be given. Then the following least squares approximation problem

inf
fn

{‖f − fn‖2 : fn ∈ Ln}

has a unique solution which is the function fn ∈ Ln which interpolates f in the point set A0
n =

{0, α1, . . . , αn}.

Proof. The details can be found in Walsh’s book, but it may be sufficient to observe that the
interpolation error will vanish in the point set A0

n and will therefore be orthogonal to Ln (Theorem
6.5). By the orthogonality principle of least squares approximation, this identifies the interpolant
as the least squares approximant. 2
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In fact Walsh observes that we may replace in the previous Theorem f ∈ H2 by f1 ∈ L2. The best
least squares approximant is the interpolant for its Cauchy integral

f(z) =
∫
f1(t)
t− z

tdλ(t)

in the point set A0
n. See Walsh [79, p. 225].

Completely analogous is the following result which uses the other part of Theorem 6.5.

Theorem 9.4 Let f ∈ H2 be given and recall the definition Kn(0) = {fn ∈ Ln : f∗n(0) = 0}. The
unique solution of

inf
fn

{‖f − fn‖2 : fn ∈ Kn(0)}

is the function fn ∈ Kn(0) which interpolates f in the point set An = {α1, . . . , αn}.

Let us now return to our density problem. The idea that the interpolation error, which now turns
out to be also related to the L2 approximation error, is proportional to a Blaschke product, forms
the backbone of the following convergence result which can be found again in Walsh [79, p. 305-306].

Theorem 9.5 Let f ∈ H2 and suppose that
∑

(1−|αk|) diverges. Let fn ∈ Ln be the function which
interpolates f in the point set A0

n = {0, α1, . . . , αn}. (The zero is in this theorem not essential. It
could be replaced by any other α0 ∈ D.) Then fn converges uniformly on compact subsets of D to
f(z).

If f ∈ H2 is also analytic on T, then the convergence is also uniform on T.

Proof. The details of the proof can be found in Walsh’s book. The basic idea is to use the error
formula

f(z)− fn(z) =
∫
Bn(z)Bn∗(t)

f(t)t
t− z

dλ(t).

For z ∈ D, use the fact that Bn(z) converges to zero while the modulus of Bn∗(t) is 1.
For z ∈ T, take the integral over a circle slightly larger than the unit circle. Then |Bn(z)| = 1

while (|t| > 1)

Bn∗(t) =
∏ αi

|αi|
1− αit

αi − t
=
∏ αi

|αi|
αi − 1/t
1− αi/t

→ 0.

Whence the Theorem follows. 2

The second part of the Theorem implies that the set {Bn}n≥0 is complete in H2. The result is
stronger. It says that if the sum diverges, it is possible for an arbitrary polynomial p and any ε > 0,
to find n sufficiently large such that there is an fn ∈ Ln with |p− fn| < ε uniformly on D.

For a more general positive measure µ, we can also prove the density of L∞ in H2(µ). Since
every element from some Ln is meromorphic in C and analytic in D and since L2(µ) is a complete
metric space [32, p.69], all Ln ⊆ H2(µ). Hence L∞ ⊆ L ⊆ H2(µ) where L denotes now the L2(µ)
closure of L∞. It was shown in [24, Appendix] for an absolutely continuous measure dµ = µ′dλ,
that we have equality in the previous inclusion if and only if

∑
(1− |αi|) diverges. This happens to

be the condition for the infinite Blaschke product to go to zero.
We have the following property.

Theorem 9.6 Let µ be a positive measure on T. We have equality of the spaces (L, µ) = H2(µ) ≡
(Π, µ) if

∑n
1 (1 − |αi|) diverges for n → ∞. Conversely, let logµ′ ∈ L1, then the density of L∞ in

L2(µ) implies the divergence of the sum
∑n

1 (1− |αi|) for n→∞.
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Proof. The first part goes as follows. Since we already know that L ⊆ H2(µ), we have only to
show that there is no function in H2(µ) which is orthogonal to L except for the zero function.
Suppose f is such a function in H2(µ) and 〈f,Bk〉µ = 0 for all k ≥ 0. Thus

∫
f(t)/Bk(t)dµ(t) = 0

for all k ≥ 0. This implies that

F (αk) =
∫
tf(t)dµ(t)
t− αk

= 0 for all k = 0, 1, 2, . . .

where the function

F (z) =
∫
tf(t)dµ(t)
t− z

is analytic inside D as the Cauchy-Stieltjes integral of the measure dν(t) = f(t)dµ(t) and belongs
to Hp for any p < 1 [32, Theorem 3.5, p.39]. Suppose that there are infinitely many different αi.
Otherwise one needs a slight adaptation to find that the repeated αk are multiple zeros of F . Then
we can use the following argument. Since any function in the Nevanlinna class N ⊃ Hp which has
zeros at the points z = 0, α1, α2, . . . and

∑
(1− |αi|) = ∞, vanishes identically in D [73, Corollary

p.335], we have F (z) ≡ 0 in D. Now this is equivalent with∫
f(t)t−kdµ(t) = 0 for all k = 0, 1, 2, . . .

(compare with [32, Theorem 3.7, p.40]). Thus f ∈ H2(µ), while at the same time, the last relations
imply that f ⊥µ H2(µ). Thus f = 0 µ-a.e.

For the second part, we can use a similar construct as in [24]. If
∑

(1 − |αi|) < ∞, then it is
known that Bn(z) converges to a Blaschke product B(z) which is an inner function, i.e., bounded
by 1 in D, while its radial limit is equal to 1 a.e. It has zeros in z = α1, α2, . . . Let us take
f(z) = zB(z)σ(z)/σ∗(z), with σ(z) the outer spectal factor of µ. Since |f(t)| = 1 a.e. on T we have
f ∈ L2(µ). Let g be the orthogonal projection of f onto H2 and define h = g/σ. Clearly h ∈ H2(µ)
because hσ = g ∈ H2 (see [36, Theorem 3.4, p. 215]). On the other hand, it is orthogonal to L∞,
since the orthogonality h ⊥µ L∞ does not depend on the singular part µs of the measure µ because∣∣∣∣∫ g(t)

σ(t)Bk(t)
dµs(t)

∣∣∣∣2 = |〈h,Bk〉µs |2 ≤
∥∥∥∥ g(t)Bk(t)

∥∥∥∥2

µs

∥∥∥∥ 1
σ(t)

∥∥∥∥2

µs

=
∫ ∣∣∣∣ g(t)Bk(t)

∣∣∣∣2 dµs ·
∫ ∣∣∣∣ 1

σ(t)

∣∣∣∣2 dµs.

The last factor is zero because 1/σ vanishes dµs-a.e., and the other factor is finite because |g/Bk| = 1
a.e. on T. Hence 〈h,Bk〉µs = 0 for all k = 0, 1, . . . Thus the situation is exactly as in the case of an
absolutely continuous measure. 2

Since we know from the classical Szegő theory that the polynomials are dense in L2(µ) if and only
if log µ′ 6∈ L1, we can combine this with the previous Theorem to get the following Corollary.

Corollary 9.7 The space L∞ is dense in L2(µ) if
∑

(1− |αi|) diverges and logµ′ 6∈ L1.

Proof. The divergence of the sum implies the density of L∞ in H2(µ), the fact that logµ′ 6∈ L1

implies that H2(µ) is dense in L2(µ). 2

The technique used in the first part of the Theorem 9.6 can be used to prove also that R∞ is
dense in L2(µ). So it is possible to show that the following is true.

Corollary 9.8 Suppose
∑n

1 (1 − |αi|) diverges for n → ∞ and that µ is a positive measure on T.
Then R∞ = span{Bn}n∈Z is dense in L2(µ).

Proof. Exactly like in the Theorem, we have that R∞ ⊆ L2(µ) and we have to show that if f ∈
L2(µ) and orthogonal to R∞, then it is zero. It follows from the Theorem that if

∫
f(t)Bk(t)dµ(t) =

0 for all k ≥ 0, then
∫
f(t)t−kdµ(t) = 0 for all k = 0, 1, . . . Similarly, if

∫
f(t)Bk(t)dµ(t) = 0 for

k = 0, 1, 2, . . ., then, using the same assumption of infinitely many different αk, that

G(αk) =
∫

f(t)
1− tαk

dµ(t) =
∫

tf∗(t)
t− αk

dµ(t) = 0 for all k = 0, 1, . . .
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where now

G(z) =
∫
tf∗(t)dµ(t)
t− z

is again analytic in D. We then derive in a similar way that also∫
f∗(t)t−kdµ(t) =

∫
f(t)tkdµ(t) = 0 for all k = 0, 1, . . .

Thus f is orthogonal to all the elements in {tn}n∈Z, which is complete in L2(µ). Thus f is at the
same time in L2(µ) and orthogonal to it. Hence it is zero. in 2

Another kind of density result relates to the representation of positive functions in L1. It is e.g.
well known that f ∈ L1, f ≥ 0 a.e. on T and log f ∈ L1 if and only if f = |g|2 with g ∈ H2. In fact,
any positive trigonometric polynomial can be written as the square modulus of a polynomial of the
same degree. As we know, we can take g to be the spectral factor, which may be chosen an outer
function. You find this result in any standard work, e.g., in Grenander and Szegő [42, p. 23-26].
The density of the trigonometric polynomials then implies that any positive function from L1 with
integrable logarithm can be approximated arbitrary well by a positive trigonometric polynomial,
hence by the square modulus of an outer polynomial can be generalized as follows.

Theorem 9.9 Let
∑

(1−|αi|) diverge and f ∈ L1. Suppose f ≥ 0 a.e. on T and log f ∈ L1. Then
for every ε > 0, there is some fn ∈ Ln for n sufficiently large such that ‖f − |fn|2‖1 < ε.

Proof. By the above mentioned property, we may replace f by |g|2 with g ∈ H2 and outer. Thus
we have to prove that there exists an fn such that ‖|g|2 − |fn|2‖1 < ε. By a property which can be
found in the book by Rudin [73, p. 78], we may use for p = 2

‖|g|p − |h|p‖1 ≤ 2pRp−1‖g − h‖p, with max{‖g‖p, ‖h‖p} ≤ R.

Thus

‖|g|2 − |fn|2‖1 ≤ 4R
[∫

|g − fn|2dλ
]1/2

.

We can always find an interpolant fn which makes |g − fn| arbitrary small and hence also |fn| <
|g| + ε1 with ε1 > 0 arbitrary small. Thus because g ∈ H2, also fn will be in H2, so that R is
bounded, while on the other hand ‖g − fn‖2 can be made as small as we want. This proves the
Theorem. 2
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10 Christoffel-Darboux relations

We now prove the Christoffel-Darboux relations. We start with some technical lemmas.

Lemma 10.1 Let f ∈ Ln.

1. If g and h are defined by the relations f(z)− f(w) = (z − w)g(z) = z−w
1−αnzh(z) then

(a) p1(z)g(z) ∈ Ln for all p1 ∈ Π1, an arbitrary polynomial of degree at most 1. Especially
g(z) ∈ Ln.

(b) h ∈ Ln−1.

2. If f(w) = 0, then 1−αnz
z−w f(z) ∈ Ln−1.

Proof. Clearly g(z) can be written as pn−1(z)/πn(z) with πn(z) =
∏n

k=1(1− αkz) and pn−1(z) ∈
Πn−1. This implies (a). Furthermore, h(z) = (1 − αnz)g(z), which gives h(z) = pn−1(z)/πn−1 ∈
Ln−1 and this is (b).

The second result is a special case of (1b) for f(w) = 0. 2

Lemma 10.2 Let φk denote as before the orthonormal basis functions for Ln and ζk the Blaschke
factor based on αk. As functions of z, with w some parameter, we have

l0n(z, w) =
φ∗n+1(z)φ∗n+1(w)− φn+1(z)φn+1(w)

1− ζn+1(z)ζn+1(w)
∈ Ln

and for k = 1, . . . , n

lkn(z, w) =
φ∗n(z)φ∗n(w)− ζk(z)ζk(w)φn(z)φn(w)

1− ζk(z)ζk(w)
∈ Ln.

Proof. An easy computation gives

1− ζk(z)ζk(w) = 1− (αk − z)(αk − w)
(1− αkz)(1− αkw)

=
(1− |αk|2)(1− zw)
(1− αkz)(1− αkw)

.

According to part (2) of the previous lemma, we only have to prove that the numerator of l0n is
zero for z = 1/w. Call this numerator N(z, w). Thus we have to prove that N(1/w,w) = 0. Now,

N(1/w,w) = φ∗n+1(1/w)φ∗n+1(w)− φn+1(1/w)φn+1(w)

= Bn+1(1/w)φn+1(w)Bn+1(w)φn+1(1/w)− φn+1(1/w)φn+1(w)
= 0

which proves the first part.
For the second part, we have to prove, according to part (1a) of the previous lemma, as in part

one of this theorem that the numerator of lkn(z, w) is zero for z = 1/w. Let us call this numerator
again N(z, w). Then

N(1/w,w) = φ∗n(1/w)φ∗n(w)− φn(1/w)φn(w)
= Bn(1/w)φn(w)Bn(w)φn(1/w)− φn(1/w)φn(w)
= 0

and this proves the second part. 2

Now we can prove the Christoffel-Darboux relations.
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Theorem 10.3 (Christoffel-Darboux relations) The following relations hold between repro-
ducing kernel and orthonormal basis functions of Ln.

kn(z, w) =
φ∗n+1(z)φ∗n+1(w)− φn+1(z)φn+1(w)

1− ζn+1(z)ζn+1(w)
(= l0n(z, w)) (10.1)

and

kn(z, w) =
φ∗n(z)φ∗n(w)− ζn(z)ζn(w)φn(z)φn(w)

1− ζn(z)ζn(w)
(= lnn(z, w)). (10.2)

Proof. The proof we give is completely analogous to the proof that Szegő gave for these relations
in the polynomial case. See [78, p.293]. We have shown in the previous lemma that the right hand
sides are elements from Ln. We only have to show that they reproduce. So choose some f ∈ Ln.
Then

〈f, l0n(·, w)〉µ = f(w)〈1, l0n(·, w)〉µ + 〈f − f(w), l0n(·, w)〉µ. (10.3)

By Lemma 10.1a, we find that if f(z) − f(w) = (z − w)g(z), then g ∈ Ln−1 and p1g ∈ Ln for all
p1 ∈ Π1. Thus if we call N(z, w) the numerator of l0n, we get

〈f − f(w), l0n〉µ =
1− αn+1w

1− |αn+1|2
〈(z − w)g(z),

1− αn+1z

1− zw
N(z, w)〉µ

=
1− αn+1w

1− |αn+1|2
〈(z − αn+1)g(z), N(z, w)〉µ.

Because (z − αn+1)g(z) ∈ Ln, the inner product in the right hand side gives

〈(z − αn+1)g(z), N(z, w)〉µ = 〈(z − αn+1)g(z), φ∗n+1(z)〉µφ∗n+1(w)
= 〈ζn+1(z)h(z), φ∗n+1(z)〉µφ∗n+1(w)

with h(z) = −|αn+1|/αn+1 (1 − αn+1z)g(z) ∈ Ln. This is zero because of Theorem 7.1(4). It
remains to be shown that 〈1, l0n(·, w)〉µ = η(w) = 1. Apply (10.3) to f(·) = l0n(·, z). Then we get

〈l0n(·, z), l0n(·, w)〉µ = l0n(w, z)η(w).

If we interchange z and w, we get

〈l0n(·, w), l0n(·, z)〉µ = l0n(z, w)η(z).

Since the left hand sides are each others conjugate and because also l0n(z, w) is the complex conjugate
of l0n(w, z), we find η(z) = η(w). Thus η is a constant and this constant is 1 because for z = w =
αn+1, we get

kn(αn+1, αn+1) = ηl0n(αn+1, αn+1) = η(κ2
n+1 − |φn+1(αn+1)|2)

= kn+1(αn+1, αn+1)− |φn+1(αn+1)|2

= κ2
n+1 − |φn+1(αn+1)|2.

So that η = 1.
Analogously, we get when N(z, w) is now the numerator of lnn

〈f(z)− f(w), lnn(z, w)〉µ = c
1− αnw

1− |αn|2
〈ζn(z)h(z), N(z, w)〉µ

with h ∈ Ln−1 by Lemma 10.1. The inner product of the right hand side is zero because φ∗n ⊥
ζnh ∈ ζnLn−1 and ζnφn ⊥ ζnh because h ∈ Ln−1. The rest follows exactly as in the proof of the
previous formula. 2

From these relations, we find a useful corollary.
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Corollary 10.4 For the orthonormal functions of Ln, it holds that for all n ≥ 0

1. φ∗n(z) 6= 0 for z ∈ D and φn(z) 6= 0 for z ∈ E.

2. |φn+1(z)/φ∗n+1(z)| < 1 for z ∈ D and |φn+1(z)/φ∗n+1(z)| > 1 for z ∈ E.

Proof. From the first Christoffel-Darboux relation (10.1), we get for w = z

(1− |ζn+1(z)|2)kn(z, z) = |φ∗n+1(z)|2 − |φn+1(z)|2.

Because |ζn+1(z)| < 1 for z ∈ D, and kn(z, z) > 0, we get

|φ∗n+1(z)|2 > |φn+1(z)|2 ≥ 0, for z ∈ D.

Hence φ∗n+1(z) 6= 0 for z ∈ D and thus

|φn+1(z)/φ∗n+1(z)| < 1 for z ∈ D.

The proof for E is analogous. 2
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11 Recurrence relations for the kernels

The reproducing kernels for the spaces Ln satisfy some recursions which can be found from the
Christoffel-Darboux relations. We shall derive them below.

Theorem 11.1 Let kn(z, w) be the reproducing kernel for Ln. Then[
k∗n+1(z, w)
kn+1(z, w)

]
= tn+1(z, w)

[
k∗n(z, w)
kn(z, w)

]
(11.1)

where the superstar conjugation is with respect to z. The matrix tn+1 is given by

tn+1(z, w) = c

[
1 ρn+1

ρn+1 1

] [
ζn+1(z) 0

0 1

] [
1 γn+1

γn+1 1

]

with

c = (1− |ρn+1|2)−1

ρn+1 = ρn+1(w) = φn+1(w)/φ∗n+1(w)
γn+1 = γn+1(w) = −ζn+1(w)ρn+1(w)

and φn+1 is the (n+ 1)-st orthonormal basis function.

Proof. Obviously,

kn+1(z, w) = kn(z, w) + φn+1(z)φn+1(w). (11.2)

From the Christoffel-Darboux relation (10.1), we get

φn+1(z)φn+1(w) = φ∗n+1(z)φ∗n+1(w)− (1− ζn+1(z)ζn+1(w))kn(z, w). (11.3)

Substitute this into (11.2) to get

kn+1(z, w) = ζn+1(z)ζn+1(w)kn(z, w) + φ∗n+1(z)φ∗n+1(w). (11.4)

Now, take the superstar conjugate with respect to z of (11.2).

φ∗n+1(z)φ∗n+1(w) ρn+1(w) = k∗n+1(z, w)− ζn+1(z)k∗n(z, w). (11.5)

Substitute this into (11.4) to get

kn+1(z, w)ρn+1 = ζn+1(z)ζn+1(w)kn(z, w)ρn+1 + k∗n+1(z, w)− ζn+1(z)k∗n(z, w). (11.6)

The superstar conjugate of (11.6) is

k∗n+1(z, w)ρn+1 = ζn+1(w)k∗n(z, w)ρn+1 + kn+1(z, w)− kn(z, w). (11.7)

From (11.6) and (11.7), the result follows. 2

Note that by Corollary 10.4, |ρn(w)| < 1 for w ∈ D and also γn(w) = −ζn(w)ρn(w) is in D for all
w ∈ D. The following Corollary generalizes a well known result from the polynomial case. See e.g.
[42, p.40].

Corollary 11.2 The following statements hold.

1. Because of the normalization of the measure µ, which was
∫
dµ = 1, it follows that φ0 =

κ0 = 1, so that also k0(z, w) = 1 and consequently s0(z) = k∗0(z, w)/k0(z, w) = 1. For n ≥ 1,
define sn(z, w) = k∗n(z, w)/kn(z, w). Then it holds that sn(z, w) ∈ D for all z, w ∈ D. In
other words, for n ≥ 1 and w ∈ D fixed, sn(z, w) ∈ B.
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2. For some fixed w ∈ D(E,T), the reproducing kernel kn(z, w) has its zeros in E(D,T).

3. The zeros of the orthonormal basis functions φn are all in D.

Proof.

1. From the recurrence relation given in the previous theorem, we can deduce that the function
sn+1(z, w) is obtained from sn(z, w) by a transformation which we denote as τ , i.e.,

sn+1(z, w) = τ(sn(z, w))

where τ is a succession of three transformations τ1 ◦ τ2 ◦ τ3 with

τ3 : t 7−→
t+ γn+1

1 + γn+1t

τ2 : t 7−→ ζn+1(z)t

τ1 : t 7−→
t+ ρn+1

1 + ρn+1t
.

In other words, in the notation of section 4, τ3 = ζ−γn+1
and τ1 = ζ−ρn+1

. Because |γn+1| < 1
and |ρn+1| < 1 for w ∈ D, it follows that all these transformations are contractions of D,
thus all the sn are Schur functions as it follows from Theorem 4.3.

2. For this part a transcription of the proof given in Szegő [78, p.292] can be made. Szegő
proved this result in the polynomial case for an absolutely continuous measure dµ = µ′dλ.
This absolute continuity however is not essential and his proof can be easily translated to a
direct proof for the rational case. If we start from the fact that the theorem is true for the
polynomial case, then we can make the following observation. If

kn(z, w) = pn(z, w)/πn(z), pn(z, w) ∈ Πn

where πn(z) =
∏n

k=1(1−αkz), then one easily sees that pn(z, w) is a (polynomial) reproducing
kernel for (Πn, µn) with dµn = |πn(z)|−2dµ. Hence, the zeros of kn(z, w), which are the zeros
of pn(z, w) are exactly as was stated.

Another, direct, proof can be given, using the J-unitary recursions as given in the next section.

3. If we set w = αn in the previous result and use kn(z, αn) = κnφ
∗
n(z), we find that φ∗n has all

its zeros (and poles) in E. Consequently, φn has all its zeros in D (and poles is E). Note that
this sharpens the result of Corollary 10.4(1).

2

The recursion for the kernels can easily be inverted to give kn−1 and k∗n−1 in terms of kn and k∗n.
Moreover, the recursion coefficients ρn and γn are completely defined in terms of kn, since indeed
ρn = kn(w,αn)∗/kn(w,αn), so that the kernel kn−1 is uniquely defined for given kn. By induction,
all the previous kernels kj will also be fixed by kn. Thus to check if in Ln all the kernels with
respect to two different measures µ and ν are the same, it is sufficient to check that the kn are the
same.
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12 Normalized recursions for the kernels

The recursions for the reproducing kernels involved matrices that were almost J-unitary matrices.
Since J-unitary matrices had a lot of interesting properties, we want to normalize these recursions.
It turns out that the recursion is given by a J-unitary matrix if we consider normalized kernels,
which we shall denote with a capital :

Kn(z, w) = kn(z, w)[kn(w,w)]−1/2. (12.1)

This can be easily inverted to give kn(z, w) = Kn(w,w)Kn(z, w). Note that Kn(z, αn) = φ∗n(z),
the n-th orthonormal basis function. The next theorem gives the normalized recursion.

Theorem 12.1 The normalized kernels Kn(z, w) defined in (12.1) satisfy the recursion[
K∗

n(z, w)
Kn(z, w)

]
= θn(z, w)

[
K∗

n−1(z, w)
Kn−1(z, w)

]
(12.2)

where the superstar conjugation is with respect to z. The matrix θn is given by

θn(z, w) = c

[
1 ρn

ρn 1

] [
ζn(z) 0

0 1

]
d

[
1 γn

γn 1

]
with

c = (1− |ρn|2)−1/2 and d = (1− |γn|2)−1/2

ρn = ρn(w) = φn(w)/φ∗n(w)
γn = γn(w) = −ζn(w)ρn(w)

and φn is the n-th orthonormal basis function for Ln.

Proof. Note that in the notation of section 5, the matrix θn can also be written as θn =
U−ρn

BαnU−γn
with the exception of the factor αn/|αn| in ζn.

From the normalization, it follows that the θn matrix of this theorem and the tn matrix of
Theorem 11.1 are related by

tn(z, w) =
[
kn(w,w)
kn−1(w,w)

]1/2

θn(z, w).

From Theorem 11.1 with z = w and γn = −ζn(w)ρn, we get

kn(w,w) = (1− |ζn(w)ρn|2)(1− |ρn|2)−1kn−1(w,w). (12.3)

This gives the normalized recursion. 2

Corollary 12.2 If ρk(w) = φk(w)/φ∗k(w) and γk(w) = −ζk(w)ρk(w) as in the previous Theorem,
we have the following expression for kn(w,w).

kn(w,w) =
n∏

k=1

(1− |γk(w)|2)
(1− |ρk(w)|2)

. (12.4)

Proof. This is a direct consequence of the formula (12.3) which is repeatedly applied and the fact
that k0(w,w) = 1. 2

Now define

Θn = θnθn−1 · · · θ1, n ≥ 1. (12.5)

It is not difficult to show that each Θk = [Θij
k ], has the property that

Θ11
k = (Θ22

k )∗ and Θ12
k = (Θ21

k )∗ (superstar with respect to z). (12.6)
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Notice that k0 = K0 = 1. Let us define

θ0 =

[
K∗

0 L∗0
K0 −L0

]
=

[
1 1
1 −1

]
(12.7)

with L0 = K0 = 1. Then we immediately get

Θnθ0 =

[
K∗

n(z, w) L∗n(z, w)
Kn(z, w) −Ln(z, w)

]
. (12.8)

The first column is obtained as a consequence of the recurrence for the normalized kernels. The
elements in the second column satisfy the same recurrence but with different initial conditions.
Notice that Ln(z, w) ∈ Ln for every w. That you get L∗n(z, w) on top of −Ln(z, w) is a consequence
of ((12.6). The elements of Θn can be expressed in terms of these Kn and Ln by multiplying with
θ−1
0 .

Θn =
1
2

[
K∗

n + L∗n K∗
n − L∗n

Kn − Ln Kn + Ln

]
. (12.9)

From property (6) of Theorem 5.1, we now get the next Theorem.

Theorem 12.3 Let w ∈ D be a given number and let Kn and Ln be as defined above by the
normalized recurrence matrix. Then

1.
1
2

[
L∗n
K∗

n

+
Ln

Kn

]
=

Bn

K∗
nKn

=
1

Kn∗Kn
=

1
2

[
Ln∗
Kn∗

+
Ln

Kn

]
2. Ln/Kn ∈ P

3. 1/Kn ∈ H2.

Proof. Take a = θ11 − θ12 = L∗n, b = θ11 + θ12 = K∗
n, and use (f∗)∗ = B−1

n f∗ from Theorem 7.1.
Theorems 5.1 and 5.3 then lead to the result. 2

The following is some useful observation.

Theorem 12.4 If K∗
n and Kn are generated from (12.2) with some coefficients ρn and γn, then

L∗n and Ln as defined in (12.8) are generated by exactly the same relation (12.2) where you have
to replace ρn by −ρn and γn by −γn.

Proof. We can remove the minus sign in the defining relation (12.8) by writing it as[
L∗n
Ln

]
= JθnJ

[
L∗n−1

Ln−1

]

with

JθnJ = c

[
1 −ρn

−ρn 1

] [
ζn 0
0 1

]
d

[
1 −γn

−γn 1

]

where the coefficients have the same meaning as in Theorem 12.1. 2
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13 Recursions for the orthogonal functions

Because of the importance of the recurrence relations for the orthogonal polynomials as studied
by Szegő, it is a natural question to ask whether it is possible to find such a recurrence relation
also for the rational case. These turn out to be a bit more complicated. In view of the J-unitary
recursions which we saw in the previous section for the reproducing kernels, the recursions for the
orthonormal basis seems not to be so nice.

Theorem 13.1 For the orthonormal basis functions in Ln, a recursion of the following form exists[
φn(z)
φ∗n(z)

]
= Nn

1− αn−1z

1− αnz

[
1 λn

λn 1

] [
ζn−1(z) 0

0 1

] [
φn−1(z)
φ∗n−1(z)

]
(13.1)

where the matrix Nn is a constant en > 0 times a unitary matrix

Nn = en

[
η1

n 0
0 η2

n

]

with η1
n and η2

n ∈ T. The constant η1
n is chosen such that φ∗n(αn) > 0. The other constant η2

n is
related to η1

n by

η2
n = η1

n

αn−1

|αn−1|
αn

|αn|
.

The parameter λn is given by

λn = η
φn(αn−1)
φ∗n(αn−1)

= ηρn(αn−1) with η =
1− αnαn−1

1− αnαn−1

αn

|αn|
αn−1

|αn−1|
∈ T

and ρn(w) as defined in Theorem 11.1.
The formula (13.1)holds from n = 1 on if we define α0 = 0.

Proof. First we prove the existence of constants cn and dn such that

1− αnz

z − αn−1
φn − dnφn−1 − cn

1− αn−1z

z − αn−1
φ∗n−1 ∈ Ln−2 (13.2)

Let us define as before πk(z) =
∏k

i=1(1− αiz) and the polynomials pk are defined by φk = pk/πk.
Note that we can use Theorem 7.1 to rewrite this as

pn − dn(z − αn−1)pn−1 − cn(1− αn−1z)p∗n−1ηn−1

(z − αn−1)πn−1(z)
=
N(z)
D(z)

where we have used ηk ∈ T as defined in Theorem 7.1. If this has to be in Ln−2, then we should
require that N(αn−1) = N(1/αn−1) = 0 or, which is the same, N(αn−1) = N∗(αn−1) = 0. The
first condition gives

cn =
ηn−1

1− |αn−1|2
pn(αn−1)
p∗n−1(αn−1)

.

The second condition defines dn.

dn =
1

1− |αn−1|2
p∗n(αn−1)
p∗n−1(αn−1)

.

Note that p∗n−1(αn−1) = φ∗n−1(αn−1)πn−1(αn−1)ηn−1 = κn−1πn−1(αn−1)ηn−1 6= 0. We can there-
fore also write

cn =
1− αnαn−1

1− |αn−1|2
φn(αn−1)
κn−1
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and

dn = −1− αnαn−1

1− |αn−1|2
αn

|αn|
φ∗n(αn−1)
κn−1

. (13.3)

Thus we have proved that with the previous choices of cn and dn, the expression in (13.2) is in
Ln−2. However, at the same time it is orthogonal to Ln−2. To check this, we note that for every
k ≤ n− 2, φk is orthogonal to the first term in (13.2) because

〈 1− αnz

z − αn−1
φn, φk〉µ = 〈φn,

z − αn

1− αn−1z
φk〉µ

and this is zero because the right factor is in Ln−1. φk is trivially orthogonal to the second term
in (13.2). Finally, it is also orthogonal to the third term since

〈1− αn−1z

z − αn−1
φ∗n−1, φk〉µ = 〈φ∗n−1,

z − αn−1

1− αn−1z
φk〉µ

and this is zero by Theorem 7.1. We may thus conclude that the expression in (13.2) is zero. Hence

φn = dn
z − αn−1

1− αnz
φn−1 + cn

1− αn−1z

1− αnz
φ∗n−1 (13.4)

= dn
−αn−1

|αn−1|
1− αn−1z

1− αnz
[ζn−1(z)φn−1 + λnφ

∗
n−1]

with

λn = − cn
dn

αn−1

|αn−1|
(13.5)

Note that we can write λn as

λn = η
φn(αn−1)
φ∗n(αn−1)

= ηρn(αn−1) with η =
1− αnαn−1

1− αnαn−1

αn

|αn|
αn−1

|αn−1|
∈ T

and ρn(w) as defined in Theorem 11.1. We then know from Corollary 10.4 that ρn ∈ D and thus
also λn ∈ D. Recall that αk/|αk| = −1 if αk = 0. Taking the superstar conjugate, we can find the
recurrence as claimed. One can choose e.g., en = |dn| ∈ R. The values of η1

n and η2
n can readily be

computed to be

η1
n = − dn

|dn|
αn−1

|αn−1|
and η2

n = − dn

|dn|
αn

|αn|

It remains to check the initial conditions of the recurrence, i.e., for n = 1. Now, since φ0 =
φ∗0 = 1, we can always put

φ1(z) = e1η
1
1

1
1− α1z

[zφ0 + λ1φ
∗
0]

where e1 ∈ R and η1
1 ∈ T. Hence the constants η1

1 and λ1 should satisfy

φ1(0) = e1η
1
1λ1 and φ∗1(0) = −e1η1

1α1/|α1|.

These can be solved for η1
1 and λ1, and as you can easily check, the result corresponds to the general

formula if you take α0 = 0 and use α0/|α0| = −1.
This gives the first of the two coupled recursions of (13.1). The other recurrence is found by

taking the superstar conjugate of the first one. They are equivalent to each other. 2

The previous expressions for the recursion coefficients λn are not very practical, since they use
function values of φn and φ∗n to compute these. The following Theorem gives, at least in principle,
more reasonable expressions.
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Theorem 13.2 The recursion coefficient λn from the previous Theorem can also be expressed as

λn =
αn−1

|αn−1|
〈φn−1,

z−αn−1

1−αnz φn−1〉µ
〈φn−1,

1−αn−1z
1−αnz φ∗n−1〉µ

,

and the value of en > 0 can be obtained as the positive square root of

e2n =
1− |αn|2

1− |αn−1|2
1

1− |λn|2
.

Proof. Use the relation (13.4) for φn and express that it is orthogonal to φn−1. Then you get.

〈φn−1,
z − αn−1

1− αnz
φn−1〉µ dn + 〈φn−1,

1− αn−1

1− αnz
φ∗n−1〉µ cn = 0

Use then the defining relation of (13.5) and the expression for the ratio of cn/dn that you can get
from the previous relation. Then you will find the expression for λn.

To find the expression for e2n, we should prove that

e2n(1− |λn|2) =
1− |αn|2

1− |αn−1|2
. (13.6)

Fill in e2n = |dn|2 with dn given by (13.3) and the expression for λn to find

e2n(1− |λn|2) =
|1− αnαn−1|2

(1− |αn−1|2)2
|φ∗n(αn−1)|2

|φ∗n−1(αn−1)|2

(
1− |φn(αn−1)|2

|φ∗n(αn−1)|2

)

=
|1− αnαn−1|2

(1− |αn−1|2)2
1

|φ∗n−1(αn−1)|2
(
|φ∗n(αn−1)|2 − |φn(αn−1)|2

)
=

|1− αnαn−1|2

(1− |αn−1|2)2
(
1− |ζn(αn−1)|2

)
where for the third line we used the Christoffel-Darboux relation. It is just a matter of writing
ζn(αn−1) explicitly and simplification to find that you get indeed the right hand side of (13.6).

2

The presence of the η1
n and η2

n are a bit cumbersome to deal with in certain circumstances. They
are needed because of our choice of the orthonormal functions to satisfy φ∗n(αn) = κn > 0. It is
possible to get rid of the η’s by rotating the orthonormal functions. That is, we multiply them by
some number εn ∈ T. This number can be chosen to avoid the rotations needed in the recurrence
(13.1). Therefore we define

ε0 = 1 and εn = −εn−1
dn

|dn|
αn

|αn|
for n ≥ 1. (13.7)

where dn is as in (13.1) and use this as a rotation for φn. The rotated orthonormal functions, which
are still orthonormal, will be denoted by Φn = εnφn. These basis functions now satisfy a recurrence
relation as given in the next Theorem.

Theorem 13.3 Let φn be the orthonormal functions satisfying the recurrence relation of Theorem
13.1 and denote by Φn the rotated orthonormal functions Φn = εnφn as introduced above. Then
these satisfy the recurrence relation[

Φn(z)
Φ∗n(z)

]
= en

1− αn−1z

1− αnz

[
1 Λn

Λn 1

] [
Zn−1(z) 0

0 1

] [
Φn−1(z)
Φ∗n−1(z)

]
(13.8)

where

Λn = ε2n−1

αn

|αn|
αn−1

|αn−1|
λn

= ε2n−1

1− αnαn−1

1− αnαn−1

Φn(αn−1)
Φ∗n(αn−1)
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and

Zn−1 =
αn

|αn|
αn−1

|αn−1|
ζn−1.

Proof. You can start with the recurrence (13.1) and express the φn in terms of the Φn, which
results in the relation[

Φn(z)
Φ∗n(z)

]
= en

1− αn−1z

1− αnz
Mn

[
ζn−1(z) 0

0 1

] [
Φn−1(z)
Φ∗n−1(z)

]

with the matrix Mn defined by

Mn =

[
εnη

1
nεn−1 εnη

1
nεn−1λn

εnη
2
nεn−1λn εnη

2
nεn−1

]
.

Use in this matrix the definitions of εn, of ηi
n and Λn and some algebra will give the result. 2

In the next sections, we still go on developing the results for the φn in the first place, but virtually
the same results hold true for the rotated functions Φn. Occasionally we shall state the result for
Φn in a remark. The rotated functions are however important for the interpolation algorithm to
be given later in Section 19.

It is also possible to get relations between successive orthogonal functions from the recursions
for the (normalized) kernels Kn(z, w) in the previous section. We give the result in a slightly more
general form

Theorem 13.4 Let the J-unitary contractive matrices Θn(z, w) be as defined in (12.5). Then[
φn(z)
φ∗n(z)

]
= Θn(z, αn)Θ−1

n−k(z, αn−k)

[
φn−k(z)
φ∗n−k(z)

]
. (13.9)

Proof. We recall that Kn(z, αn) = φ∗n(z). Hence it follows that[
φn(z)
φ∗n(z)

]
= Θn(z, αn)

[
φ0(z)
φ∗0(z)

]
.

Because Θn is J-unitary and therefore invertible (see Theorem 5.1) the result easily follows. 2

Recall the definition of the Ln(z, w) from (12.9) and suppose we set by definition Ln(z, αn) =
χ∗n(z) ∈ Ln. As a special case of (12.9) we thus get

Θn(z, αn) =

[
φn + χn φn − χn

φ∗n − χ∗n φ∗n + χ∗n

]
. (13.10)

We can now formulate a special case of Theorem 12.3.

Theorem 13.5 Let φn and χn be as defined above. Then

1.
1
2

[
χn

φn
+
χ∗n
φ∗n

]
=

Bn

φnφ∗n
=

1
φnφn∗

2. χ∗n/φ
∗
n = χn∗/φn∗ ∈ P

3. 1/φ∗n and hence also 1/φn∗ ∈ H2

4. φn/φ
∗
n ∈ B.

Proof. Use Theorems 12.3, 11.2 and some properties from section 7. 2

It will be useful to write an inverse form of the recursion formulas as in the next theorem.
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Theorem 13.6 Given the orthonormal function φn with φ∗n(αn) = κn > 0, all the previous or-
thonormal functions φk, k < n are uniquely defined if they are similarly normalized by φ∗k(αk) =
κk > 0. They can be found with the recursions[

φn−1(z)
φ∗n−1(z)

]
=

1
1− |λn|2

1− αnz

1− αn−1z

[
1/ζn−1(z) 0

0 1

] [
1 −λn

−λn 1

]
N−1

n

[
φn(z)
φ∗n(z)

]
(13.11)

with all the quantities appearing in this formula as in Theorem 13.1.

Proof. The formula (13.11) is evidently the inverse of the recurrence formula (13.1). Since the
coefficients λn and the matrix Nn is completely defined in terms of φn, the φn−1 is uniquely defined.
By induction, all the previous φk are uniquely defined. 2

In fact this is a simple consequence of the note given at the end of section 11. The kernels are
uniquely defined in terms of the last one. The orthonormal functions will also be unique if they
have the normalization mentioned.
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14 Functions of the second kind

In this section we shall define some functions ψk which are the rational analogues of the polynomials
of the second kind which appear in the Szegő theory. We shall call them functions of the second
kind. They are defined first in terms of the orthogonal functions φn. We then show that they
satisfy the same recurrence relation as the orthogonal functions and that they can be used to get
rational approximants for the positive real function Ωµ. Here are some equivalent definitions for
z ∈ D

ψn(z) =
∫

[
2t
t− z

φn(t)− t+ z

t− z
φn(z)]dµ(t) (14.1)

=
∫
D(t, z)[φn(t)− φn(z)]dµ(t) +

∫
φn(t)dµ(t)

=

 1 , if n = 0∫
D(t, z)[φn(t)− φn(z)]dµ(t) , if n ≥ 1.

(14.2)

The last equality follows from the fact that 〈1, φn〉µ = δ0n. These definitions are for z ∈ D, but,
as we show below, these functions are rational and can therefore be defined in the whole complex
plane.

We shall first show that these are functions from Ln.

Lemma 14.1 The functions ψn of the second kind belong to Ln.

Proof. This is trivially true for n = 0. For n ≥ 1, note that the integrand in (14.2) has the form

[φn(t)− φn(z)](t+ z)/(t− z).

The term in square brackets vanishes for t = z, so that the integral can be written as

ψn(z) =
∫ (t− z)

∑n
k=0 an(t)zk

(t− z)πn(z)
dµ(t) =

∑n
k=0[

∫
an(t)dµ(t)]zk

πn(z)

and this is clearly an element in Ln. 2

We can obtain more general expressions for these functions of the second kind as shown below.

Lemma 14.2 To define the functions of the second kind for n > 0, we may replace (14.2) by

ψn(z)
Bk(z)

=
∫
D(t, z)[

φn(t)
Bk(t)

− φn(z)
Bk(z)

]dµ(t) =
∫

[
2t
t− z

φn(t)
Bk(t)

− t+ z

t− z

φn(z)
Bk(z)

]dµ(t) (14.3)

for any 0 ≤ k < n. The second formula holds also for n = 0, if you then take Bk = 1.

Proof. We only consider the case n > 0. To prove the first or the second formula, we only have to
check that∫

t+ z

t− z
[1− Bk(z)

Bk(t)
]φn(t)dµ(t) = 0 or

∫
t

t− z
[1− Bk(z)

Bk(t)
]φn(t)dµ(t) = 0

depending on the case. The proof is the same for both of them. Since the term in square brackets
vanishes for z = t, it follows that we can write the integral as∫

p(t)
π∗k(t)

φn(t)dµ(t)

with p a polynomial of degree at most k. The latter is of the form 〈φn, f〉µ with f ∈ Lk. Since
k < n and φn⊥Ln−1, this is zero. 2

We show next an expression for ψ∗n.
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Lemma 14.3 The superstar conjugate of the functions of the second kind are given by

ψ∗n(z) =
∫

[
t+ z

t− z
φ∗n(z)− 2z

t− z

Bn\k(z)
Bn\k(t)

φ∗n(t)]dµ(t) (14.4)

for any 0 ≤ k < n. As before, we set Bn\k = Bn/Bk for n > 0 and it equals 1 for n = 0.

Proof. Note that the previous expression implies that ψ∗0 = 1, since we get

ψ∗n(z) = −
∫
D(t, z)[φ∗n(t)

Bn\k(z)
Bn\k(t)

− φ∗n(z)]dµ(t) +
∫
φ∗n(t)

Bn\k(z)
Bn\k(t)

dµ(t)

The last term equals 〈φ∗n, Bn\k〉µBn\k(z) = δn0 because of the orthogonality properties of φ∗n. Since
the first term vanishes for n = 0, the Lemma is true for n = 0. So, suppose that n > 0. The relation
(14.4) then follows immediately from (14.3) by taking the superstar conjugate. This proves the
Lemma. 2

Note that like in (14.3), we can give an equivalent form of (14.4) as follows.

− ψ∗n(z)
Bn\k(z)

=
∫
D(t, z)[

φ∗n(t)
Bn\k(t)

− φ∗n(z)
Bn\k(z)

]dµ(t)−
∫

φ∗n(t)
Bn\k(t)

dµ(t)

where, as we know, the last term is δ0n. For k = 0, this takes the even simpler form

−ψn∗(z) =
∫
D(t, z)[φn∗(t)− φn∗(z)]dµ(t)− δ0n.

Since by definition∫
D(t, z)φn(z)dµ(t) = φn(z)

∫
D(t, z)dµ(t) = φn(z)Ω(z),

we can derive the following interpolation properties.

Theorem 14.4 Let Ω = Ωµ be the positive real function with Riesz-Herglotz measure µ. Then for
the functions of the second kind, it holds that

φnΩ + ψn

Bn−1
=

{
Ω + 1 ∈ H(D) , n = 0
g ∈ H(D) and g(0) = 0 , n > 0.

(14.5)

For their superstar conjugates, we find

φ∗nΩ− ψ∗n
Bn

=

{
Ω− 1 ∈ H(D),Ω(0)− 1 = 0 , n = 0
h ∈ H(D) and h(0) = 0 , n > 0.

(14.6)

Proof. For n = 0, the relation (14.5) is obvious knowing that φ0 = ψ0 = 1.
Use (14.3) for k = n− 1 and n > 0 to write the left hand side of (14.5) as

2
∫

t

t− z

φn(t)
Bn−1(t)

dµ(t). (14.7)

For z = 0, the integral equals∫
φn

Bn−1
dµ = 〈φn, Bn−1〉µ = 0.

This implies that φn/Bn−1 ∈ L1(µ). Therefore (14.7) is analytic in D as a Cauchy-Stieltjes integral.
For the relation (14.6), one can similarly check the case n = 0 and for n > 0, use (14.4) with

k = 0 to see that the left hand side equals∫
D(t, z)

φ∗n(t)
Bn(t)

dµ(t) (14.8)
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which for z = 0 equals 〈φ∗n, Bn〉µ and this is zero because φ∗n⊥ζnLn−1. Thus φ∗n/Bn ∈ L1(µ). We
can also rewrite (14.8) as∫

D(t, z)
φ∗n(t)
Bn(t)

dµ(t) =
∫
D(t, z)

φ∗n(t)
Bn(t)

dµ(t) +
∫
φ∗n(t)
Bn(t)

dµ(t)

=
∫

[D(t, z) + 1]
φ∗n(t)
Bn(t)

dµ(t)

=
∫ 2t
t− z

φ∗n(t)
Bn(t)

dµ(t)

and this is again analytic for z in D as a Cauchy-Stieltjes integral.
This proves the theorem. 2

Like in the polynomial case, these functions of the second kind satisfy the same recurrence
relations as the orthogonal functions. We prove the following theorem.

Theorem 14.5 For the functions of the second kind a recursion of the following form exists[
ψn(z)
−ψ∗n(z)

]
= Nn

1− αn−1z

1− αnz

[
1 λn

λn 1

] [
ζn−1(z) 0

0 1

] [
ψn−1(z)
−ψ∗n−1(z)

]
(14.9)

where the recurrence matrix is exactly as in Theorem 13.1.

Proof. As in the case of Theorem 13.1, it is sufficient to prove only one of the two associated
recursions. The other one follows by duality. We shall prove the second one. First note that by
our previous lemma’s we can write for n > 1[

ψn−1(z)
−ψ∗n−1(z)

]
= −Ω(z)

[
φn−1(z)
φ∗n−1(z)

]
+
∫ 2z
t− z

[
φn−1(t)

ζn−1(z)
ζn−1(t)φ

∗
n−1(t)

]
dµ(t).

Multiply from the left with

enη
2
n

1− αn−1z

1− αnz
[λnζn−1(z) 1]

then the right hand side becomes

−Ω(z)φ∗n(z) + 2zenη2
n

∫
f(t, z)
t− z

dµ(t) (14.10)

with

f(t, z) =
1− αn−1z

1− αnz
[λnζn−1(z)φn−1(t) +

ζn−1(z)
ζn−1(t)

φ∗n−1(t)]

=
ζn−1(z)
ζn−1(t)

1− αn−1z

1− αnz
[λnζn−1(t)φn−1(t) + φ∗n−1(t)].

Using the recursion for φ∗n, we thus get that (14.10) can be replaced by

−Ω(z)φ∗n(z) + 2z
∫ 1
t− z

αn−1 − z

αn−1 − t

1− αnt

1− αnz
φ∗n(t)dµ(t).

This will equal −ψ∗n(z) if we may replace the latter integral by∫ 1
t− z

αn − z

αn − t

1− αnt

1− αnz
φ∗n(t)dµ(t).

This can indeed be done, since the difference equals

2z
∫ 1
t− z

[
αn−1 − z

αn−1 − t
− αn − z

αn − t

]
1− αnt

1− αnz
φ∗n(t)dµ(t)

= 2z
∫
f∗(t)φ∗n(t)dµ(t) = 2z〈φ∗n, f〉µ
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with f ∈ ζnLn−1. This gives zero because of the orthogonality. This proves the Theorem for n > 1.
For n = 1, we have to show that ψ1(z) = e1η

1
1(z − λ1)/(1− α1z). From the definition, we get

ψ1(z) =
∫
D(t, z)[φ1(t)− φ1(z)]dµ(t).

Now we replace φ1 by its expression from the recurrence relation which is φ1(z) = e1η
1
1(z+λ1)/(1−

α1z). After some computations, this results in

ψ1(z) =
e1η

1
1

1− α1z

∫
t+ z

t− z

[
(t+ λ1)(1− α1z)

1− α1t
− (z + λ1)

]
dµ(t)

=
e1η

1
1(1 + α1λ1)
1− α1z

∫
t+ z

1− α1t
dµ(t).

Now we use the expression we get from Theorem 13.1 for φ1 in terms of λ1 and express the
orthogonality relation 〈φ1, 1〉µ = 0 to find∫

t

1− α1t
dµ(t) = −λ1

∫ 1
1− α1t

dµ(t).

Fill this into the last expression and you find

ψ1(z) = e1η
1
1

z − λ1

1− α1z
(1 + α1λ1)

∫ 1
1− α1t

dµ(t). (14.11)

We have to find an expression for the remaining integral. Therefore we use again the expression
for λ1 from Theorem 13.2 to get∫

dµ(t)
1− α1t

= 1 + α1

∫
tdµ(t)
1− α1t

= 1− α1λ1

∫
dµ(t)

1− α1t
.

From this relation we finally get

(1 + α1λ1)
∫

dµ(t)
1− α1t

= 1.

Now the recursion for ψ1 is proved and this concludes the proof of the Theorem. 2

The interpolation properties cause the following Theorem to be true.

Theorem 14.6 Let φn be the orthonormal functions of Ln with respect to the measure µ. Define
the absolutely continuous measure µn by dµn(t) = P (t, αn)|φn(t)|−2dλ(t) where P is the Poisson
kernel. Then on Ln, the inner product with respect to µn and µ is the same : 〈·, ·〉µ = 〈·, ·〉µn.

Proof. We prove first that the norm of φn is the same. ‖φn‖2µn
=
∫
P (t, αn)|φn|2/|φn|2dλ =

1 = ‖φn‖2µ.
Next we show that 〈φn, φk〉µ and 〈φn, φk〉µn is the same for k < n. They are both zero.

〈φn, φk〉µn =
∫
φk∗(t)
φn∗(t)

P (t, αn)dλ(t)

=
∫
φ∗k(t)Bn\k(t)

φ∗n(t)
P (t, αn)dλ(t)

Since φ∗n has its zeros in E, we know that Bn\kφ
∗
k/φ

∗
n is analytic in the closed unit disk and then we

may apply Poisson’s formula which gives zero because Bn\k(αn) = 0. Of course also 〈φn, φk〉µ = 0.
Hence φn is a function of norm 1 and orthogonal to Ln−1 both with respect to µn and with respect
to µ. By Theorem 13.6 this φn will uniquely define all the previous φk, provided they are normalized
properly with φ∗k(αk) = κk > 0. Thus the orthonormal system in Ln for µn and for µ is the same :
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〈φk, φi〉µ = 〈φk, φi〉µn = δki. Since every element from Ln can be expressed as a linear combination
of the φk, it also holds that 〈f, g〉µ = 〈f, g〉µn for every f and g ∈ Ln. 2

The previous Theorem was proved for orthogonal polynomials e.g. in [36, p. 199].
We shall now derive some determinant formula and some other properties of these functions like

we did for the kernels and for the orthogonal functions at the end of the previous section. Therefore
we need a J-unitary matrix. This is obtained in the next Lemma.

Lemma 14.7 Let tn denote the recursion matrix

tn = Nn
1− αn−1z

1− αnz

[
1 λn

λn 1

] [
ζn−1(z) 0

0 1

]

with all the parameters as defined in Theorems 13.1 and 14.5. Set Tn = tntn−1 · · · t1 (recall α0 = 0).
Then

Tn =
1
2

[
φn + ψn φn − ψn

φ∗n − ψ∗n φ∗n + ψ∗n

]
. (14.12)

There exists a positive constant cn such that

Θn =
1− αnz

cn
Tn

is a J-unitary matrix which is J-contractive in D.

Proof. The first relation follows easily from[
ψn φn

−ψ∗n φ∗n

]
= Tn

[
1 1
−1 1

]
(14.13)

by inverting the right most matrix.
Now note that tk can be written as

|dk|(1− |λk|2)1/2 1− αk−1z

1− αkz
θk

with

θk =

[
η1

k 0
0 η2

k

]
(1− |λk|2)−1/2

[
1 λk

λk 1

] [
ζk−1 0

0 1

]
,

a J-unitary matrix, which is also J-contractive in D since |λk| = |ρk(αk−1)| < 1. Multiply this out
to find Θn = θnθn−1 · · · θ1 and cn =

∏n
k=1 |dk|(1− |λk|2)1/2. 2

With the previous result, we can now prove the following Theorem.

Theorem 14.8 With the notation introduced in the previous Lemma, we have :

1. the determinant formula 1
2 [ψnφn∗ + ψn∗φn] = P (z, αn)

2.
1
2

[
ψn

φn
+
ψ∗n
φ∗n

]
=
P (z, αn)
φnφn∗

with P (z, w) the Poisson kernel.

3. ψ∗n/φ
∗
n = ψn∗/φn∗ ∈ P. The Riesz-Herglotz measure for this positive real function is the one

given in the first entry of this Theorem :

ψ∗n(z)
φ∗n(z)

=
∫
D(t, z)dµn(t) with dµn(t) =

P (t, αn)
|φ∗n|2

dλ(t).
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Proof. The first determinant relation follows by taking the determinant of (14.13), giving

1
2

[
ψn

φn
+
ψ∗n
φ∗n

]
=

c2n
(1− αnz)2

det Θn

=
z

(1− αnz)2
Bn−1(z)

n∏
k=1

1− |αk|2

1− |αk−1|2
αk−1

|αk−1|
αk

|αk|

=
z

(1− αnz)(z − αn)
Bn(z)(1− |αn|2)

= Bn(z)P (z, αn)

The second relation is a direct consequence of part 1.
That ψ∗n/φ

∗
n ∈ P is because Θn is J-contractive and the factor cn/(1−αnz) relating Θn and Tn

drops out of the ratio.
If Ωn = ψ∗n/φ

∗
n ∈ P, then <Ωn = P (z, αn)/|φn|2, by the first part. hence the Riesz-Herglotz

representation has the form

Ωn(z) =
∫
D(t, z)<Ωn(t)dλ(t).

The theorem is completely proved. 2

As with the functions φn, we could rotate the functions of the second kind to give Ψn = εnψn

where the εn are as defined in (13.7). For these rotated Ψn a recurrence like in Theorem 13.3 exists.
Most of the properties of ψn are transferred to Ψn.
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15 Measures and interpolation

In this section, we want to show how interpolation properties of positive real functions is practically
equivalent with the equality of inner products in some Ln-spaces. In Section 14 we already saw
that Ωn = ψ∗n/φ

∗
n was in P and interpolated Ωµ ∈ P in the points of A0

n = {0, α1, . . . , αn}. In
the same section, it was shown that dµn = P (·, αn)/|φn|2dλ = < Ωndλ and dµ are two measures
defining the same inner product in Ln. That this is not a coincidence will be shown in this section.

We shall therefore first prove a simple Lemma.

Lemma 15.1 Let µ be a normalized positive measure on T and let the positive real function Ω = Ωµ

be associated with it by (2.3) with c = 0. This means that Ωµ(0) > 0. Define also the positive real
function Ωµ(z, w) with w ∈ D some parameter, by

Ωµ(z, w) =
∫
D(t, z)
P (t, w)

dµ(t) + c

with c = cw[wc−1 − wc1] ∈ iR, cw = 1/(1 − |w|2), P (t, w) being the Poisson kernel and ck = c−k

the moments of µ. Then the relation between Ωµ(z) and Ωµ(z, w) is given by

Ωµ(z, w) = cw[(z − w)(z−1 − w)Ωµ(z) + (z−1w − wz)c0] =
Ωµ(z)
P (z, w)

+ cw(z−1w − wz)c0.

Note that c0 = Ωµ(0) = Ωµ(w,w).

Proof. First, note the simple relations

D(t, z)t = (t+ z) + zD(t, z)
D(t, z)t−1 = −(t−1 + z−1) + z−1D(t, z).

This can be used to give the following relations.

Ωµ(z, w) = cw

∫
D(t, z)(t− w)(t−1 − w)dµ(t) + c

= cw(z − w)(
1
z
− w)

∫
D(t, z)dµ(t) + cw(

w

z
− wz)

∫
dµ+ cw

∫
(
w

t
− wt)dµ(t) + c

= cw(z − w)(z−1 − w)Ωµ(z) + cw(z−1w − wz)c0

and this proves the Lemma. 2

Note that the choice of c in the previous Lemma is such that Ωµ(w,w) = Ωµ(0) = 1 ∈ R. You can
also see easily that Ωµ(z, 0) = Ωµ(z).

Now we get to an interpolation result. Part of it confirms what was shown in Theorem 6.4.

Theorem 15.2 Let µ be a normalized positive measure on T and associate with it as in Lemma
15.1 the positive real functions Ωµ(z) and Ωµ(z, w), for some arbitrary w ∈ D. Let ν be another
normalized positive measure on T and associate with it in a similar way the positive real functions
Ων(z) and Ων(z, w). Suppose that on Ln the inner product w.r.t. µ and ν is the same : 〈·, ·〉µ =
〈·, ·〉ν . Then, with π∗n =

∏n
i=1(z − αi),

Ωµ(z, w)− Ων(z, w)
π∗n(z)

= gw(z) ∈ H(D) and gw(w) = 0. (15.1)

This means that Ων(·, w) is an Hermite interpolant for Ωµ(·, w) in the point set Aw
n = {w,α1, . . . , αn},

multiplicities counted.

Proof. By Lemma 15.1 we know that (15.1) holds if and only if (Ωµ(z)−Ων(z))/π∗n(z) is analytic
in D and vanishes at the origin. Thus we shall prove the latter instead of (15.1).
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Consider[
1

π∗n(z)
− 1
π∗n(t)

]
D(t, z) =

1
π∗n(t)

[
π∗n(t)− π∗n(z)

π∗n(z)
t+ z

t− z

]
=
p∗(t)
π∗n(t)

Because π∗n(t)− π∗n(z) is zero for t = z, we may conclude that the factor p∗ in the right hand side
is a polynomial of degree n in t. Since

p∗

π∗n
=

p∗
πn∗

= f∗(t) with f =
p

πn
∈ Ln

we can see that

0 = 〈1, f〉µ−ν =
1

π∗n(z)

∫
D(t, z)d(µ− ν)(t)−

∫
D(t, z)
π∗n(t)

d(µ− ν)(t).

Thus, by evaluating the first term of the right hand side

Ωµ(z)− Ων(z)
π∗n(z)

=
∫
D(t, z)
π∗n(t)

d(µ− ν)(t).

By construction, the right hand side is analytic in D. Furthermore, Ωµ(0)−Ων(0) =
∫
d(µ−ν) = 0,

so that (15.1) is now proved. 2

There is also a kind of inverse for Theorem 15.2.

Theorem 15.3 Suppose that for some positive real functions Ωµ and Ων ,

Ωµ − Ων

π∗n
= g ∈ H(D) and g(w) = 0 for some w ∈ D. (15.2)

The measures µ and ν are the Riesz-Herglotz measures for Ωµ and Ων respectively. Then the
measures

dµw(z) = P (z, w)dµ(z) and dνw(z) = P (z, w)dν(z), z ∈ T

with P (z, w), the Poisson kernel, define on Ln the same inner products : 〈·, ·〉µw = 〈·, ·〉νw .

Proof. We can again use Lemma 15.1 to find that Ωµ is an Hermite interpolant of Ων in the point
set Aw

n if and only if Ωµw is an Hermite interpolant of Ωνw in the point set A0
n. Thus the problem

reduces to the following one. If Ωµw is an Hermite interpolant in A0
n for Ωνw , prove that on Ln,

〈·, ·〉µw = 〈·, ·〉νw . It follows from Theorem 6.3 that we can choose a basis in Ln which will make
the Gram matrix only depend on function values and derivatives of Ωµw and Ωνw respectively in
points from the set A0

n. By the mutual interpolation property these are the same. Thus the Gram
matrices are the same and therefore also the inner products. 2

This Theorem has also a Corollary which is worth formulating.

Corollary 15.4 Let µ be a given measure to which we associate the positive real function Ωµ(z, w)
as in Lemma 15.1. Suppose Ωn is a positive real function which is an Hermite interpolant for
Ωµ(z, w) in the point set Aw

n . Let µn be the Riesz-Herglotz measure corresponding with Ωn. Define
the measure µw

n by dµw
n (z) = P (z, w)dµn(z) with P (z, w) the Poisson kernel. Then on Ln, the

inner product 〈·, ·〉µw
n

is independent of w.

Proof. You can apply the previous Theorem with Ωn(z) in the role of Ωµ(z, w) and Ωµ(z, w) in
the role of Ων(z, w). Hence we have to substitute for the corresponding measures dµ(z) and dν(z)
respectively dµ(z)/P (z, w) and µn(z). You will find that on Ln the inner products w.r.t. µw

n and
µ are the same : 〈·, ·〉µw

n
= 〈·, ·〉µ. This implies that 〈·, ·〉µw

n
is independent of w. 2
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16 Quadrature on the unit circle

We now consider the functions

fn(z) = fn(z, w) = φn(z) + wφ∗n(z) ∈ Ln (16.1)

with φn the orthonormal functions of Ln. In accordance with the polynomial costume, we can call
these quasi-orthogonal functions. See e.g., in Akhiezer [1, p.10]. The function fn is orthogonal to
Ln−1 ∩ ζnLn−1 since 〈φn + wφ∗n, g〉µ = 〈φn, g〉µ+ w〈φ∗n, g〉µ = 0 for any g ∈ Ln−1 ∩ ζnLn−1. Note
that it holds that

Ln−1 ∩ ζnLn−1 = {g ∈ Ln : g(αn) = g∗(αn) = 0}.

(see Theorem 7.1). The zeros of these quasi-orthogonal functions have the following property.

Theorem 16.1 Let w ∈ T be given and define the quasi-orthogonal functions fn by (16.1). Then
all the zeros of fn are on T and they are simple.

Proof. Since φ∗n doesn’t vanish in D, the ratio φn/φ
∗
n is well defined in D and it equals pn/p

∗
n if

the polynomial pn ∈ Πn is defined by φn = pn/πn with as always πn(z) =
∏n

i=0(1 − αiz). Since
bn = pn/p

∗
n is a finite Blaschke product, with all its poles in E, we have |bn(z)| < 1 in D. Let α

be a zero of fn in D, then fn(α) = 0 and this implies pn(α)/p∗n(α) = bn(α) = −w. Since w ∈ T
and |bn(α)| < 1, we get a contradiction. Hence, fn has no zeros in D. Because on the other hand,
f∗n = wfn, it follows that if α is a zero of fn, then also fn(1/α) = Bn∗(α)wfn(α) = 0. Thus zeros
appear in pairs (α, 1/α). Because we showed that there are no zeros in D, there can also be no
zeros in E by this duality property. Thus we may conclude that all the zeros are on T.

Now we prove that they are simple zeros. Suppose there are only s ≤ n− 2 zeros with an odd
multiplicity. Call them ξ1, . . . , ξs, possibly repeated if they are multiple. They are all in T. Now
we note that (z − ξi)2 = (z − ξi)(z − 1/ξi) = ciz(z − ξi)(z − ξi)∗ with ci = −ξi. Hence, fn = N/πn

with N of the form

N(z) = c
s∏

i=1

(z − ξi)zt
s+t∏

i=s+1

(z − ξi)(z − ξi)∗ with n− s = 2t, t ≥ 1

for some constant c. Consider now the function T (z) = M(z)/πn(z) with M(z) of the form
c
∏s

i=1(z − ξi)zt−1(z − αn). Clearly T ∈ Ln−1, hence it is orthogonal to φn, but also T (z) ∈
(z − αn)Ln−1 = (z − αn) span{Bk : k = 1, . . . , n − 1}. This means that it is of the form
(z − αn)pn−1(z)/πn−1 with pn−1 ∈ Πn−2. Thus it is also in ζnLn−1 and therefore 〈T, φ∗n〉µ = 0.
Consequently, T is orthogonal to fn. On the other hand, if we write explicitly 〈fn, T 〉µ, we get

|c|2
∫ ∏s

i=1 |z − ξi|2

|πn(z)|2
s+t∏

i=s+1

|z − ξi|2dµ = ‖S‖2µ > 0

since S 6≡ 0. This is a contradiction so that s ≥ n− 1. This means that all the zeros of fn should
be simple and on T. 2

Now we consider the space of rational functions

Rn = Ln + Ln∗

where Ln∗ = {f : f∗ ∈ Ln}. The space Rn can also be characterized as

Rn = { tn(z)
πn(z)πn∗(z)

: tn ∈ Πn + Πn∗}.

Πn + Πn∗ is the set of trigonometric polynomials
∑n

k=−n akz
k, and πn(z) =

∏n
k=0(1 − αkz). Let

`ni(z) =
∏

k 6=i(z − ξk)/(ξi − ξk) denote the Lagrange polynomial for the interpolation points
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ξ1, ξ2, . . . , ξn, so that
∑n

k=1R(ξk)`nk(z) is the interpolating polynomial of degree n for R, which we
take from Rn−1. Let Lni be defined by

Lni(z) = `ni
πn−1(ξi)
πn−1(z)

and ξk, k = 1, . . . , n the zeros of fn = φn + wφ∗n, which are all on T. Note that Lnk(ξi) = δki, so
that

∑n
1 R(ξk)Lnk(z) is an interpolant for R(z) from Ln−1 in the points ξ1, . . . , ξn. Consider

E(z) = R(z)−
n∑

k=1

R(ξk)Lnk(z)

=
tn−1(z)−

∑n
k=1R(ξk)`nk(z)πn−1(ξk)πn−1 ∗(z)
πn−1(z)πn−1 ∗(z)

.

From the interpolating property, we find

E(z) =
∏n

k=1(z − ξk)qn−2(z)z−(n−1)

πn−1(z)πn−1 ∗(z)
, qn−2 ∈ Πn−2.

Now, because ξi, i = 1, . . . , n are the zeros of fn(z), we can write this also as

E(z) = fn(z)
(1− αnz)qn−2(z)z−(n−1)

πn−1 ∗(z)
.

The second factor can be written as S∗ with S defined by

S(z) =
(z − αn)q∗n−2(z)

πn−1(z)
.

Observe that S ∈ Ln−1 and also S ∈ ζnLn−1, so that S is orthogonal to φn and to φ∗n, hence
orthogonal to fn. Thus 〈fn, S〉µ =

∫
Edµ = 0. In other words, if R ∈ Rn−1 and ξk, k = 1, . . . , n

are the zeros of fn = φn + wφ∗n, then∫
Rdµ =

n∑
i=1

R(ξi)
∫
Lnidµ =

n∑
i=1

R(ξi)λni,

which is the Gauss quadrature on the unit circle.
Since LniLni∗ ∈ Rn−1 and also LniLni∗ − Lni ∈ Rn−1, we get∫

(LniLni∗ − Lni)dµ =
∑

λni0 = 0.

Thus

λni =
∫
Lnidµ =

∫
|Lni|2dµ > 0.

Thus we have proved the following Theorem.

Theorem 16.2 Let {φk} be an orthonormal system for Ln, w ∈ T and fn = φn + wφ∗n. Then fn

has n simple zeros on T : ξ1, . . . , ξn. Let `ni denote the Lagrange polynomials for the interpolation
points ξ1, . . . , ξn. Then the Gauss quadrature formula

n∑
i=1

R(ξi)λni with λni =
∫

`ni(z)
πn−1(z)

πn−1(ξi)dµ > 0

is exact for all R ∈ Rn−1 = Ln−1 + Ln−1 ∗.
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17 Interpolation properties for the kernels

In this section we will show how to find a rational interpolant, or if you prefer, a multipoint Padé
type approximant for the positive real function Ω = Ωµ that was related to the measure µ by the
Poisson-Stieltjes integral (2.3).

We first prove the following Theorem which can be found in [25, p.48] or [26, p.654].

Theorem 17.1 Let Kn(z, w) be the normalized kernel of (Ln, µ) and define the absolutely contin-
uous measure on the unit circle dµn(z) = |Kn(z, 0)|−2dλ(z), z ∈ T. Then in the space Ln we have
equality of the inner products 〈·, ·〉µn = 〈·, ·〉µ
Proof. We only have to show that for all f ∈ Ln and arbitrary w ∈ D

〈f,Kn(·, w)〉µn = 〈f,Kn(·, w)〉µ = f(w)/Kn(w,w) (17.1)

because the Kn(·, wi) with wi, i = 0, . . . , n some set of distinct points in D form a basis for Ln.
We first note that, if we define πn(z) =

∏n
i=1(1−αiz), and let {pk} be a system of orthonormal

polynomials with respect to the measure dπ = |πn(z)|−2dµ, then

kπ(z, w) =
n∑

k=0

pk(z)pk(w)

is a reproducing kernel for the space (Πn, π) of polynomials where the inner product is with respect
to the measure π. Thus for any polynomial q ∈ Πn, it holds that

〈q, kπ(·, w)〉π = q(w).

Hence, dividing by πn(w), we get

〈 q(·)
πn(·)

,
kπ(·, w)

πn(·)πn(w)
〉µ =

q(w)
πn(w)

which means that
kπ(z, w)

πn(z)πn(w)
= kn(z, w)

is the reproducing kernel for (Ln, µ).
On the other hand Kn(z, 0) = p∗n(z)/πn(z) since indeed, by the Christoffel-Darboux relation for

polynomials (see e.g., [42, p.41] or derive it from our Theorem 10.3 by setting all αi = 0)

kπ(z, w) =
p∗n(z)p∗n(w)− zwpn(z)pn(w)

1− zw

so that kπ(z, 0) = p∗n(z)p∗n(0). If we now suppose the polynomials pn to be chosen such that
pn(0) > 0, then it easily follows that Kn(z, 0) = p∗n(z)/πn(z).

With these tools, we can now see that (17.1) will be proved if we can show that

〈p(·)/πn(·), kn(·, w)〉µnπn(w) = p(w)

for arbitrary polynomial p ∈ Πn. The left hand side can be written explicitly as∫ |πn(z)|2

|p∗n(z)|2
p(z)

|πn(z)|2

[
zp∗n(z)p∗n(w)− wpn(z)pn(w)

z − w

]
dλ(z)

= p∗n(w)
∫

p(z)
|p∗n(z)|2

zp∗n(z)
z − w

dλ(z)− wpn(w)
∫

p(z)
|p∗n(z)|2

pn(z)
z − w

dλ(z)

= p∗n(w)
∫

p(z)
p∗n(z)

z

z − w
dλ(z)− wpn(w)

∫
p(z)
pn(z)

1
z − w

dλ(z)

= p∗n(w)
p(w)
p∗n(w)

− wp(w)0 = p(w).
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The last line follows from the Cauchy formula and the fact that p∗n(z) 6= 0 in D while pn(z) 6= 0 in
E. 2

Note that for the polynomial case, i.e., when all αi = 0, then dµn = |φ∗n(z)|−2dλ = |φn(z)|−2dλ
and a theorem in this style can be found in [36, p.198].

From the previous result and the Theorems from Section 15 we can now find the interpolation
property.

Theorem 17.2 Let us define

Ω(z) =
∫
D(t, z)dµ(t) and Ωn(z) =

∫
D(t, z)dµn(t), D(t, z) = (t+ z)/(t− z)

with dµn(z) = |Kn(z, 0)|−2dλ(z) as defined in Theorem 17.1. Then

Ωn(z) =
Ln(z, 0)
Kn(z, 0)

(17.2)

with Kn(t, z) the normalized kernel and Ln(t, z) the associated function as defined in (12.8). Fur-
thermore

µ′n = ωn =
1
2
[Ωn + Ωn∗] =

1
Kn(z, 0)Kn∗(z, 0)

(17.3)

is positive on T and the spectral factor of dµn is given by

σn(z) = 1/Kn(z, 0). (17.4)

Moreover, the function g defined by

Ω− Ωn

Bn
= g (17.5)

is analytic in D and g(0) = 0.

Proof. By Theorem 12.3, we get for t ∈ T,

1
|Kn(t, 0)|2

= <
[
Ln(t, 0)
Kn(t, 0)

]
= < Ωn(t)

while Ωn ∈ P. Thus (17.2) follows by (2.7). Since 1/Kn(z, 0) is outer in H2, also (17.4) follows and
(17.5) is a consequence of the previous Theorem. 2

The interpolation result of the last Theorem states that Ωn is a partial multipoint Padé approxi-
mant of Ω in the points of A0

n = {0}∪An = {0, α1, . . . , αn}. It is only a partial interpolant since it is
of degree type (n/n) while only n+1 interpolation conditions are satisfied. Because Ω−Ωn = zBng
with g analytic in D, we find by taking the substar conjugate that Ω∗ − Ωn∗ = z−1Bn∗g∗ with g∗
analytic in E. Summing up gives for ωn = µ′n = [Kn(z, 0)Kn∗(z, 0)]−1

µ′ − µ′n = zBng + z−1Bn∗g∗

This generalizes the notion of Laurent-Padé approximant [14], since in the case where all αi = 0,
ωn is the inverse of a Laurent polynomial of degree n, which fits the expansion of µ′ from −n till
+n. In the present case, ωn takes the form

ωn =
1

Kn(z, 0)Kn∗(z, 0)
=
πn(z)πn∗(z)
pn(z)pn∗(z)

where pn(z) = Kn(z, 0)πn(z) ∈ Πn is a polynomial. Thus ωn is the ratio of two Laurent polynomials
of degree n and fits only 2n+ 2 interpolation conditions. It is a partial Laurent-Padé approximant
since by fixing the interpolation points αi, one fixes the zeros and hence the numerator of the
approximant.
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18 The interpolation algorithm of Pick-Nevanlinna

In this section we describe the algorithm of Pick-Nevanlinna for interpolation of class P functions
or equivalently class B functions. The recursions can be described by J-unitary matrices. This
approach gives an alternative way of computing the recurrence coefficients ρk and γk, exactly like
the duality of the two algorithms considered in [14].

Suppose we start with some function S0 ∈ B which is zero at w ∈ D. Since it depends on
the parameter w, we write it as a function in z but include the dependence on w explicitly when
appropriate. We now transform this S0 into some other S1 ∈ B in three steps. Let α1 in D be
given. Then

S1(z, w) = τ31 ◦ τ21 ◦ τ11(S0(z, w)) = τ1(S0(z, w))

where

τ11 : S0 7→ S′1 =
S0 − γ1

1− γ1S0
, γ1 = γ1(w) = S0(α1, w)

τ21 : S′1 7→ S′′1 = S′1/ζ1, ζ1(z) =
α1

|α1|
α1 − z

1− α1z

τ31 : S′′1 7→ S1 =
S′′1 − ρ1

1− ρ1S
′′
1

, ρ1 = ρ1(w) = S′′1 (w,w)

Clearly, S1 is again a function in B and it will be zero at w. This follows from Theorem 4.3. What
was done in the previous transformations is the following. First, S0 is transformed into S′1 to make
it zero in α1. This zero can be taken out by dividing with ζ1. The last step will normalize S1 by
making it zero at w just like S0 was. We are now in a position like the one we started with and we
can repeat the same procedure with some point α2 from D to produce S2. Note that this procedure
can go on indefinitely as long as the αi is in D since both γi and ρi will be in D as evaluations
of functions in B. Note the following relation between γk and ρk. Since Sk−1(w,w) = 0, it follows
that

S′k(w,w) =
Sk−1(w,w)− γk

1− γkSk−1(w,w)
= −γk

while on the other hand

S′k(w,w) = ζk(w)S′′k (w,w) = ζk(w)ρk

so that for all k > 0 : γk = −ζk(w)ρk.
We can also invert the previous procedure. Suppose the coefficients ρk and γk for k = 1, . . . , n

are produced by the previous algorithm starting from some S0. Now choose some Γ0 ∈ B such that
Γ0(w) = 0. Then generate the sequence Γk+1 = τ−1

n−k(Γk) for k = 0, . . . , n− 1. It turns out that Γn

shall interpolate S0 in the points Aw
n = {w,α1, . . . , αn}. Indeed, denote n − k as j, then it holds

in general that, Γj will interpolate Sk in the points {w,αn, . . . , αk+1}. We show this for the case
where all αk are different. If some of them are confluent, the proof becomes messy by technicalities.
For that case, we refer to the homogeneous formulation to be given later in this section. If the
interpolation points are all different, then the result follows easily by induction. For j = 0, we
have interpolation at w only since both Γ0 and Sn are zero in that point. The induction step can
be proved by noting that Γj+1 = τ−1

k (Γj) and Sk−1 = τ−1
k (Sk) so that the interpolation from the

previous step in inherited. There is one extra interpolation condition satisfied, viz., in the point αk

since Γj+1(αk) = γk = Sk−1(αk, w).
We have now (almost) proved the following Theorem.

Theorem 18.1 Let S0(z, w) ∈ B be a Schur function which is zero at z = w. Construct iteratively
for a sequence of points {αk : k > 0} ⊂ D the functions Sk by Sk(z, w) = τk(Sk−1(z, w)) where
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τk = τ1k ◦ τ2k ◦ τ3k,

τ1k : Sk−1 7→ S′k =
Sk−1 − γk

1− γkSk−1
, γk = γk(w) = Sk−1(αk, w) (18.1)

τ2k : S′k 7→ S′′k = S′k/ζk, ζk(z) =
αk

|αk|
αk − z

1− αkz
(18.2)

τ3k : S′′k 7→ Sk =
S′′k − ρk

1− ρkS
′′
k

, ρk = ρk(w) = S′′k (w,w) (18.3)

Then all the Sk are in B and Sk(w,w) = 0. All the γk(w) and ρk(w) are in D and γk(w) =
−ζk(w)ρk(w).

Conversely, by choosing an arbitrary Γ0(z, w) ∈ B which vanishes for z = w, we can construct,
using the previous γk and ρk the functions Γk by Γk+1 = τ−1

n−k(Γk). All these Γk are in B and Γk

will interpolate Sn−k in the points {w,αn, . . . , αn−k+1}. Specifically

Γn − S0

Bn(z)
= h(z), h ∈ H(D) and h(w) = 0.

The previous Theorem gives algorithms to check whether a certain function is an element from
B. It was shown in the literature ([1, 79] and others) that S0 is in B if and only if one of the
following two cases occur. Either γk and ρk are all in D for all k or they are all in D for all
k ≤ n− 1 and |γn| = 1 and all the remaining γ’s and ρ’s are zero. In the latter case, S0 was a finite
Blaschke product of degree n.

We shall now give an equivalent homogeneous formulation of the previous algorithm. Suppose
that a Schur function S ∈ B is described as the ratio of two functions S = ∆1/∆2 which are both
holomorphic in D and ∆2 zero-free in D. If Sk(w) = 0, then of course ∆1(w) = 0 too. We place
these two functions in a vector

∆ = [∆1 ∆2]

which can be considered as a set of homogeneous coordinates for S. Following Dewilde-Dym [24]
we shall call this set of ∆-matrices admissible and denote it as

A = {∆ = [∆1 ∆2] : ∆1,∆2 ∈ H(D),∆2(z) 6= 0, z ∈ D,∆1/∆2 ∈ B} (18.4)

We use A if B is replaced by B in the previous definition. Note that ∆1/∆2 ∈ B can also be written
as ∆HJ∆ < 1.

We can now describe the Pick-Nevanlinna algorithm of the previous Theorem in terms of J-
unitary matrix multiplications on admissible matrix functions. Let ∆n = [∆n1 ∆n2] be the
admissible matrix containing the homogeneous coordinates for Sn. Then the inverse transform
Sn−1 = τ−1

n (Sn) can be written as

∆n−1 = ∆nθn

with the matrix θn given by

θn(z, w) = c

[
1 ρn

ρn 1

] [
ζn(z) 0

0 1

]
d

[
1 γn

γn 1

]
with

c = (1− |ρn|2)−1/2 and d = (1− |γn|2)−1/2

γn = γn(w) = ∆n−1,1(αn, w)/∆n−1,2(αn, w)

ρn = ρn(w) =

{
γn(w)/ζn(w) if w 6= αn

∂z (∆n−1,1(z, w)/∆n−1,2(z, w))|z=w if w = αn

Let us define the J-unitary matrix Θn as Θn = θn · · · θ1 for n ≥ 1. Because this matrix is formally
the same as the Θn matrix of section 12, there must exist some Kn and Ln, both functions in
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Ln, parametrized in w, such that a relation like (12.9) holds. The interpolation property given in
Theorem 18.1 implies that if we choose ∆n = [0 1] ∈ A, then ∆nΘn = [Kn−Ln Kn +Ln] ∈ A has
the property that (Kn−Ln)/(Kn +Ln) interpolates S0 at the points of Aw

n if they are all different.
We can now easily give the proof for confluent points too. If we define Θ∗

n as BnΘn∗ we get the
form

Θ∗
n =

1
2

[
Kn + Ln K∗

n − L∗n
Kn − Ln K∗

n + L∗n

]
.

Because we know that for a J-unitary matrix Θ−1
n = JΘn∗J = Bn∗JΘ∗

nJ , we get

∆0JΘ∗
nJ = Bn∆n.

Furthermore, since S0 = ∆01/∆02 ∈ B and vanishes at z = w, the positive real function Ω(z, w) =
(1 − S0(z, w))/(1 + S0(z, w)) ∈ P will be 1 for z = w : Ω(w,w) = 1. We can write ∆0 =
[1− Ω(z, w) 1 + Ω(z, w)]. If we multiply this from the right with JΘ∗

nJ , then we get

1
2
[1− Ω 1 + Ω]

[
Kn + Ln −K∗

n + L∗n
−Kn + Ln K∗

n + L∗n

]
= Bn[∆n1 ∆n2].

Thus

[Ln −KnΩ L∗n +K∗
nΩ] = Bn[∆n1 ∆n2].

The first of these relations shows that

Ln(z, w)−Kn(z, w)Ω(z, w) = Bn(z)∆n1(z, w) with ∆n1 ∈ H(D) and ∆n1(w,w) = 0.

Because Kn does not vanish in D and Ln/Kn ∈ P by a property of J-unitary matrices, we can also
say that the positive real function Ω is approximated by the positive real function Ωn = Ln/Kn

such that

Ω− Ωn

Bn
= h ∈ H(D) with h(w) = 0.

Taking a Cayley transform results in the interpolation property of the Schur function S0 by the
Schur function Γn = (Kn − Ln)/(Kn + Ln) ∈ B:

S0 − Γn

Bn
= g ∈ H(D) with g(w) = 0.

Suppose µ is some positive measure of T and that we associate with it the positive real function
Ωµ(z, w) like in Lemma 15.1. Suppose we start the Pick-Nevanlinna algorithm as described above
with Ω = Ωµ. Since we just showed that then Ωn will interpolate this starting Ωµ at the point set
Aw

n , it follows from Theorem 15.3 that the inner product on Ln is the same for the measure µ, and
the measure ν defined by dν(t) = [P (t, w)/|Kn(t, w)|2]dλ(t). Thus, as far as the inner product in
Ln is concerned, ν is not dependent on w (see Corollary 15.4).∫

f(t)g∗(t)dµ(t) =
∫
f(t)g∗(t)dν(t)

=
∫
f(t)g∗(t)

P (t, w)
|Kn(t, w)|2

dλ(t)

=
∫
f(t)g∗(t)

P (t, 0)
|Kn(t, 0)|2

dλ(t).

This has the important consequence that Kn(z, w) as generated by the Pick-Nevanlinna algorithm
applied to the Ωµ, is the normalized reproducing kernel for Ln w.r.t. the measure µ. Note that the
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real part of Ωµ has a radial limit satisfying a.e. < Ωµ(z, w) = µ′(z)/P (z, w), z ∈ T, w ∈ D. To see
that up to normalization, Kn reproduces every f ∈ Ln note that

〈f,Kn(·, z)〉µ = 〈f,Kn(·, z)〉ν

=
∫
f(t)Kn∗(t, z)

P (t, z)
Kn∗(t, z)Kn(t, z)

dλ(t)

=
∫

f(t)
Kn(t, z)

P (t, z)dλ(t) =
f(z)

Kn(z, z)

because f/Kn is analytic in D so that the Poisson formula holds.
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19 Interpolation algorithm for the orthonormal functions

We shall try in this section to give an algorithm in the style of the Pick-Nevanlinna algorithm,
which will , based on the idea of successive interpolation generate the recursion for the orthonormal
functions φn and the functions of the second kind ψn. As a matter of fact, it is difficult to do this
for these functions because of the rotating factors η1

n and η2
n in the recurrence relation. These

rotations depend on the angle that φn(αn−1) forms with the real axis and this is difficult to find
without evaluating φn(αn−1). However, the rotated functions Φn and Ψn satisfied a recurrence
that got rid of these η’s and it will be possible to find an interpolation algorithm for these rotated
functions. That is what we shall currently do.

Recall that Φn = εnφn and Ψn = εnψn with εn as defined by (13.7). Define Rn1 and Rn2

through[
Bn−1Rn1(z)
BnRn2(z)

]
=

[
Φn(z)
Φ∗n(z)

]
Ω(z) +

[
Ψn(z)
−Ψ∗

n(z)

]
. (19.1)

Where Ω = Ωµ is the positive real function associated with the measure µ for which the orthog-
onality holds. Note that the functions in the left hand side are in fact rotated versions of the
functions g and h as defined in (14.5) and (14.6) respectively. These are indeed the remainders
in the linearized interpolation properties of the rotated functions. We shall call the functions Rn1

and Rn2 the remainder functions. The factor B−1 has to be understood as 1 and thus R01 = Ω + 1
while R02 = Ω− 1. For n > 0, both Rn1 and Rn2 are zero in the origin.

The right hand side in the defining relation (19.1) of the remainder functions satisfies the
recurrence for the rotated functions as in Theorem 13.3. Hence, also the left hand side shall satisfy[

Bn−1Rn1(z)
BnRn2(z)

]
= en

1− αn−1z

1− αnz

[
1 Λn

Λn 1

] [
Zn−1(z) 0

0 1

] [
Bn−2Rn−1,1(z)
Bn−1Rn−1,2(z)

]
. (19.2)

This can be rewritten as given in the next Theorem.

Theorem 19.1 The remainder functions as defined above satisfy the following recursion

(1− αnz)

[
Rn1(z)
Rn2(z)

]
= en

[
1 0
0 1/ζn(z)

] [
1 Λn

Λn 1

]
(1− αn−1z)

[
ηn−1Rn−1,1(z)
Rn−1,2(z)

]
(19.3)

with en > 0 and

Λn = −ηn−1 lim
z→αn

Rn−1,2(z)
Rn−1,1(z)

, ηn−1 =
αn

|αn|
αn−1

|αn−1|
and e2n =

1− |αn|2

1− |αn−1|2
1

1− |Λn|2
. (19.4)

The Λn in the previous expression are the same as the Λn of Theorem 13.3.
We can make the recursion even simpler and avoid the explicit use of the ηn−1 by introducing

rn1(z) =
αn

|αn|
Rn1(z) and rn2(z) = Rn2(z). (19.5)

With this notation, the recursion (19.3) becomes

(1− αnz)

[
rn1(z)
rn2(z)

]
= en

[
1 0
0 1/ζn(z)

] [
1 Ln

Ln 1

]
(1− αn−1z)

[
rn−1,1(z)
rn−1,2(z)

]
(19.6)

with

Ln =
αn

|αn|
Λn = − lim

z→αn

rn−1,2(z)
rn−1,2(z)

, en =

[
1− |αn|2

1− |αn−1|2
1

1− |Ln|2

]1/2

. (19.7)
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Proof. We shall only prove (19.4), because (19.7) is a direct consequence. We can start from the
relation (19.2) and use ζn−1 = ηn−1Zn−1 to get

Bn−1(z)

[
Rn1(z)
ζnRn2(z)

]
= en

1− αn−1z

1− αnz

[
1 Λn

Λn 1

]
Bn−1(z)

[
ηn−1Rn−1,1(z)
Rn−1,2(z)

]
(19.8)

which now easily gives (19.3). To find the expression for Λn, you can use the last line of (19.8) for
z = αn which gives

0 = Λnηn−1Rn−1,1(αn) +Rn−1,2(αn)

from which the expression for Λn follows. The expression for en was shown in Theorem 13.2. 2

The previous Theorem has the following consequence.

Corollary 19.2 Define the function Γn(z) in terms of the remainder functions by

Γn(z) =
αn

|αn|
Rn2(z)
Rn1(z)

=
rn2(z)
rn1(z)

. (19.9)

Then Γ0 = (1− Ω)/(1 + Ω) and for all k ≥ 0, Γk ∈ B and Γk(0) = 0 and they are generated by

Γn =
1
ζn

(
Ln + Γn−1

1 + LnΓn−1

)

with Ln = −Γn−1(αn).

Proof. This follows immediately from the previous Theorem. All the Γk are in B because Γ0

is, while the Möbius transforms are done with Lk ∈ D. Moreover the division by ζn respects the
analyticity because the function between brackets was made zero in z = αn by the choice of Ln.

2
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20 Continued fractions and three term recurrence

We shall now give some continued fractions which can be given in association with the recurrence
relations we have introduced so far. Therefore we borrow a result from [14, p. 19-21].

Lemma 20.1 Let us define

tk =

[
ck dk

ak bk

]
, k ≥ 0 and Tn =

[
Cn Dn

An Bn

]

with T0 = t0 and Tn = tnTn−1 for n > 0. Suppose d0ck 6= 0 for all k > 0. Furthermore define
Rn = FBn −An and Sn = FDn − Cn. Then the formal continued fraction expansion

F =
c0
d0

+
(a0d0 − b0c0)d−2

0

b0d
−1
0

+
c1
d1

+
(b1c1 − a1d1)c−1

1

a1c
−1
1

+ · · ·+

cn
dn

+
(bncn − andn)c−1

n

anc
−1
n

+


cn+1
dn+1

− Sn+1
Rn

− Rn
Sn

(20.1)

holds and the successive convergents are

C0

D0
,
A0

B0
,
C1

D1
,
A1

B1
, . . . ,

Cn

Dn
,
An

Bn
, . . .

Proof. This is a matter of simple algebra. See e.g. [14, Property 2.9 and Property 2.5]. 2

This can now be applied to the situation of a recursion like the one for the orthonormal functions.
Note that tn there looks like

tn =

[
ck dk

ak bk

]
= ek

1− αk−1z

1− αkz

[
η1

kζk−1 η1
kλk

η2
kλkζk−1 η2

k

]
.

A general term therefore is of the form

ck
dk

+
(bkck − akdk)c−1

k

akc
−1
k

=
ζk−1

λk

+
η1

kη
2
k(1− |λk|2)
η1

kη
2
kλk

.

We can now try several initial conditions and get different convergents. For example, to get the
convergents

ψ0

φ0
,−ψ

∗
0

φ∗0
, . . . ,

ψn

φn
,−ψ

∗
n

φ∗n
, . . .

you need the initial conditions[
c0 d0

a0 b0

]
=

[
1 1
−1 1

]

If you choose F of Lemma 20.1 to be −Ω, then the remainders Rn and Sn can be recovered from
(19.1) which can be written as[

−εnBn−1Rn1(z)
−εnBnRn2(z)

]
=

[
φn(z)
φ∗n(z)

]
(−Ω(z))−

[
ψn(z)
−ψ∗n(z)

]
.

The first row gives Sn, the second gives Rn.
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All this put together gives the expansion

−Ω = 1− 2
1

+
n∑

k=1

 ζk−1

λk

+
η1

kη
2
k(1− |λk|2)
η1

kη
2
kλk

+


ζn
λn+1

− εn+1(1− αn+1z)Rn+1,1

en+1εn(1− αnz)η1
n+1Rn,2

− εnζnRn2
εnRn1

(20.2)

From this, you can derive that

φn − ψn

φn + ψn
,
φ∗n − ψ∗n
φ∗n + ψ∗n

for n ≥ 1

are the successive convergents of the previous continued fraction without the two initial terms i.e.,

∑
k≥1

 ζk−1

λk

+
η1

kη
2
k(1− |λk|2)
η1

kη
2
kλk

 .
By interchanging rows and columns in the matrices of the recurrence, we get the same convergents
in the other order. For example, the convergents of the continued fraction expansion

Ω = 1− 2
1

+
n∑

k=1

 1
ζk−1λk

+
η2

kη
1
k(1− |λk|2)ζk−1

η2
kη

1
kλk

+


1

ζnλn+1
− εn+1Bn+1(1− αn+1z)Rn+1,2

en+1η
2
n+1εnBn−1(1− αnz)Rn1

− εnBn−1Rn1
εnBnRn2

(20.3)

are now
ψ∗0
φ∗0
,−ψ0

φ0
, . . . ,

ψ∗n
φ∗n
,−ψn

φn
, . . .

Taking contractions of these continued fractions will give you the even or odd parts and these
give genuine three-term recurrence relations. By definition, the even contraction of the continued
fraction

a0

b0
+

a1

b1
+

a2

b2
+ · · · (20.4)

is the continued fraction whose convergents are the even convergents of the contracted one. We
have the following expression for an even contraction.

Lemma 20.2 The even contraction of the continued fraction (20.4) is given by

a0

b0
+

a1b2
a2 + b1b2

+
∑
k≥1

−a2kb
−1
2k a2k+1b2k+2

a2k+2 + (b2k+1 + b−1
2k a2k+1)b2k+2

Proof. This can be found e.g., in [14, Property 2.8]) 2

For example the even convergents of (20.2) i.e., ψk/φk for k = 0, 1, . . . are the successive convergents
of the following continued fraction expansion

−Ω = 1− 2λ1

z + λ1
+
∑
k≥1

−ζk−1η
2
kη

1
k(1− |λk|2)

λk+1

λk

ζk + η2
kη

1
k

λk+1

λk
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if all the λk are different from 0 and 1. From which it follows that the orthonormal functions as
well as the functions of the second kind satisfy the three term recurrence relation

λkfk+1(z) = (ζk(z)λk + η2
kη

1
kλk+1)fk(z)− (ζk−1(z)η2

kη
1
k(1− |λk|2)λk+1)fk−1(z). (20.5)

With the initial conditions f0 = 1, f1 = a1η
1
1(z+λ1)/(1−α1z) you generate fk = φk and with initial

conditions f0 = 1, f1 = a1η
1
1(z − λ1)/(1− α1z) you generate fk = ψk. For the even contraction of

(20.3), we find

Ω = 1− 2zλ1

1 + zλ1
+
∑
k≥1

−ζkη1
kη

2
k(1− |λk|2)

λk+1

λk

1 + ζkη
1
kη

2
k

λk+1

λk

with convergents ψ∗k/φ
∗
k for k = 0, 1, . . .

We can also use the rotated functions and thus avoid the η’s. The reader can translate the
results easily for himself. The rule is to multiply φn and ψn and Rn1 by εn. For φn and ψn this
means replace them by Φn and Ψn etc. In short, here are the translation rules:

φ→ Φ, ψ → Ψ, λ→ Λ, ζ → Z, η → 1, ε→ 1

As an example, the translation of (20.3) reads like

Ω = 1− 2
1

+
n∑

k=1

(
1

Zk−1Λk
+

(1− |Λk|2)Zk−1

Λk

)
+

1
ZnΛn+1

− Bn+1(1− αn+1z)Rn+1,2

en+1Bn−1(1− αnz)Rn1

− Bn−1Rn1
BnRn2

The convergents are

Ψ∗
0

Φ∗0
,−Ψ0

Φ0
, . . . ,

Ψ∗
n

Φ∗n
,−Ψn

Φn
, . . .

The three term recurrence for the rotated functions is

ΛkFk+1(z) = (Zk(z)Λk + Λk+1)Fk(z)− (Zk−1(z)(1− |Λk|2)Λk+1)Fk−1(z). (20.6)

It will be clear from our discussion in this section that it is also possible to get continued
fractions whose convergents are the ratios of kernels Lk(z, w)/Kk(z, w) etc. Likewise we can obtain
three term recursions for these kernels. We leave this to the reader, it is a matter of simple algebra.
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21 Favard Theorems

In sections 12 and 13, we have seen how the kernels, as well as the orthogonal functions satisfied
certain recurrence relations which generalize the Szegő recurrence relations. It is thus true that all
rational functions which are orthogonal (or reproducing kernels) with respect to a certain positive
measure on the unit circle will satisfy such a recurrence. The converse of this theorem is known as a
Favard Theorem, named after Favard’s paper [35]. Such a Favard Theorem states that if functions
satisfy recurrence relations as we have given in Section 13, then they will give orthogonal rational
functions with respect to some positive measure on the unit circle; if we have a recurrence like
in Section 12, then it will be reproducing kernels for some positive measure. A simple proof for
the Szegő polynomials was recently given in [34]. There, not only the existence of the measure is
proved, but the measure is actually constructed. We shall follow in this section a similar approach
for the rational case. Related results in a somewhat different setting were obtained in [47, 16].

We shall give a sequence of lemmas which will eventually lead to the proof of the Favard
Theorem. We start with the orthogonal functions.

Lemma 21.1 Suppose we are given two sequences of numbers αk ∈ D and λk ∈ D for k=1,2,. . . and
set α0 = 0. Define the numbers ek > 0 by their squares

e2k =
1− |αk|2

1− |αk−1|2
1

1− |λk|2
for k = 1, 2, . . . (21.1)

Finally define the functions φk by

φ0 = 1, φk = ekη
1
k

1− αk−1z

1− αkz
[ζk−1φk−1 + λkφ

∗
k−1], k = 1, 2, . . . (21.2)

where the numbers η1
k ∈ T are chosen such that φ∗(αk) > 0.

Then the functions φ∗k satisfy the following recurrence

φ∗0 = 1, φ∗k = ekη
2
k

1− αk−1z

1− αkz
[ζk−1λkφk−1 + φ∗k−1], k = 1, 2, . . . (21.3)

with

η2
k = η1

k

αk−1

|αk−1|
αk

|αk|
. (21.4)

Moreover, 1/φ∗n ∈ H2.

Proof. We can leave this proof to the reader because the first part comes down to simple calculus
and the second part follows immediately from the J-unitarity of the recurrence that can be obtained
by coupling the recurrences (21.2) and (21.3) in one matrix relation. The result follows as in
Theorem 13.5. 2

Lemma 21.2 Under the conditions of Lemma 21.1, it holds that

λk = η
φk(αk−1)
φ∗k(αk−1)

with η =
αk

|αk|
αk−1

|αk−1|
1− αkαk−1

1− αkαk−1
∈ T. (21.5)

Proof. From the recurrences for φk and φ∗k, we find

φk(αk−1) = ekη
1
k

1− |αk−1|2

1− αkαk−1
[0 + λkφ

∗
k−1(αk−1)] (21.6)

and

φ∗k(αk−1) = ekη
2
k

1− |αk−1|2

1− αkαk−1
[0 + φ∗k−1(αk−1)]. (21.7)
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Dividing (21.6) by (21.7) gives

φk(αk−1)
φk(αk−1)

=
η1

k

η2
k

1− αkαk−1

1− αkαk−1
λk =

αk−1

|αk−1|
αk

|αk|
1− αkαk−1

1− αkαk−1
λk = ηλk.

The result now follows. 2

Lemma 21.3 Define the positive measure µn on T by

dµn(z) =
P (z, αn)
|φn(z)|2

dλ(z) (21.8)

with P (z, w) the Poisson kernel. Then the functions constructed in Lemma 21.1 satisfy the orthog-
onality relations

〈φk, φ`〉µn = δk` for 0 ≤ k, ` ≤ n. (21.9)

Proof. We shall first prove that φn is orthonormal with respect to all its predecessors :

〈φn, φm〉µn = δnm for 0 ≤ m ≤ n. (21.10)

This is shown as follows

〈φn, φm〉µn =
∫
φn(z)φm∗(z)
φn(z)φn∗(z)

P (z, αn)dλ(z)

=
∫
φm∗(z)
φn∗(z)

P (z, αn)dλ(z)

=
∫
Bn\m(z)

φ∗m(z)
φ∗n(z)

P (z, αn)dλ(z)

= Bn\m(z)
φ∗m(z)
φ∗n(z)

∣∣∣∣
z=αn

= δnm.

The general orthogonality follows from Theorem 13.6 which says that all the previous orthogonal
functions are defined in terms of φn, orthonormal to Ln−1 by the inverse recurrence, and we have
just proved by the previous Lemma 21.2 that the recurrence in the Lemma 21.1 is the same as the
one from Theorem 13.1. 2

We are now ready to prove the following Favard-type Theorem.

Theorem 21.4 There exists a unique Borel measure on T for which the φn as constructed in
Lemma 21.1 are the orthonormal functions.

Proof. Define

µn(t) =
∫ t

0

P (eiθ, αn)
|φn(eiθ)|2

dλ(θ) =
∫ t

0
dµn(θ). (21.11)

These are all increasing functions and uniformly bounded (
∫
dµn = 1). Hence, there exists a

subsequence such that

lim
k→∞

µnk
(θ) = µ(θ)

and

lim
k→∞

∫
f(eiθ)dµnk

(θ) =
∫
fdµ

for all functions f continuous on T. Thus the {φn} are an orthonormal system with respect to this
measure µ.

The uniqueness follows from the representation of bounded linear functionals (F. Riesz). 2

We can now repeat a similar thing for the reproducing kernels.
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Lemma 21.5 Let 0 = α0, α1, α2, . . . be complex numbers in D. Let ρ, k = 1, 2, . . . be given functions
in B (i.e., |ρk(w)| < 1 for w ∈ D). Define γk(w) = −ζk(w)ρk(w) for k = 1, 2, . . . (Hence γk ∈ B.)
Let the functions Kn(z, w) be generated by (12.2), i.e.,[

K∗
n(z, w)

Kn(z, w)

]
= θn(z, w)

[
K∗

n−1(z, w)
Kn−1(z, w)

]
;

[
K∗

0 (z, w)
K0(z, w)

]
=

[
1
1

]
, (21.12)

with the matrix θn given by

θn(z, w) =
1√

1− |ρn|2

[
1 ρn

ρn 1

] [
ζn(z) 0

0 1

]
1√

1− |γn|2

[
1 γn

γn 1

]
. (21.13)

Then the following properties hold.

1/Kn(z, w) ∈ H2 for w ∈ D fixed. (21.14)

Kn(w,w) = Kn−1(w,w)

√
1− |γn(w)|2
1− |ρn(w)|2

=
n∏

k=1

(
1− |γn(w)|2

1− |ρn(w)|2

)1/2

> 0 (21.15)

ρn(w) =
K∗

n−1(αn, w)
Kn−1(αn, w)

. (21.16)

Proof. Again, (21.14) follows from Theorem 12.3 as for the orthogonal functions because the
recurrence is J-unitary by definition.

The proof of (21.15) is pure calculus, just replace z by w and play a bit with the formulas.
Equality (21.16) is also immediate, since

K∗
n(αn, w)

Kn(αn, w)
=
ρn[Kn−1(αn, w) + γn(w)K∗

n−1(αn, w)]
[Kn−1(αn, w) + γn(w)K∗

n−1(αn, w)]
= ρn

2

Lemma 21.6 Let the Kn be generated as in the previous Lemma 21.5 and define

km(z, w) = Km(z, w)Km(w,w) for k = 0, 1, . . . (21.17)

Then km(z, w) is the reproducing kernel for Lm ( 0 ≤ m ≤ n) with respect to the measure µn defined
by

dµn(z) =
P (z, w)

|Kn(z, w)|2
dλ(z) (21.18)

where P (z, w) is the Poisson kernel

Proof. We first prove that kn reproduces functions from Ln. This is easily seen as follows. It
holds for all f ∈ Ln that

〈f, kn(·, w)〉µn =
∫
f(z)kn∗(z, w)

P (z, w)dλ(z)
Kn(z, w)Kn∗(z, w)

= Kn(w,w)
∫
f(z)

kn∗(z, w)
kn∗(z, w)

P (z, w)
Kn(z, w)

dλ(z)

= f(w)
Kn(w,w)
Kn(w,w)

= f(w).

We show next the induction step which starts from the fact that km reproduces all f ∈ Lm with
respect to the measure µn and we shall prove that km−1 will then be reproducing with respect to
the same measure for all functions in Lm−1. That is we have to prove

〈f, km(·, w)〉µn = f(w),∀f ∈ Lm ⇒ 〈f, km−1(·, w)〉µn = f(w),∀f ∈ Lm−1 (21.19)
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We first derive the following expression from the recurrence which can be obtained with some
patient calculations.

km(z, w)[ζm(z)γm + ρm] = [ζm(z)(1− |γm|2)]k∗m−1(z, w) + [ζm(z)γmρm + 1]k∗m(z, w)

which becomes after dividing by Bm

km(z, w)
Bm(z)

[ζm(z)γm + ρm] = (1− |γm|2)km−1∗(z, w) + [ζm(z)γmρm + 1]km∗(z, w).

Now we use this in the right hand side of (21.19) to get

〈f, km−1(·, w)〉µn =
−1

1− |γm|2
〈f, [km∗(ζmγmρm + 1)]∗〉µn +

1
1− |γm|2

〈f, [ km

Bm
(ζmγm + ρm]∗〉µn

=
−1

1− |γm|2
〈f(ζmγmρm + 1), km〉µn +

1
1− |γm|2

〈f(ζmγm + ρm, k
∗
m〉µn .

The first term can be simplified because f(ζmγmρm + 1) ∈ Lm and km reproduces. Therefore the
inner product in the first term equals

f(w)(ζm(w)γm(w)ρm(w) + 1) = −(1− |γm(w)|2).

The inner product in the second term equals

〈f(ζmγm + ρm, k
∗
m〉µn = 〈km, f

∗(γm + ζmρm)〉µn .

The latter has a factor f∗(γm + ζmρm) which is again in Lm and we can use again the reproducing
property of km to find that that inner product equals the complex conjugate of

f∗(w)(γm(w) + ζm(w)ρm(w))

which is zero by the definition of γm. Thus, after filling in the last two results for the inner products,
we get

〈f, km−1(·, w)〉µn = f(w) + 0 = f(w)

which proves the induction step. 2

We can now prove the Favard Theorem for the kernels.

Theorem 21.7 There exists a unique Borel measure on the unit circle for which the Kn(z, w) as
defined in Lemma 21.5 are the normalized reproducing kernels of the spaces Ln.

Proof. From the foregoing Lemmas, it follows that the Kn are the normalized reproducing kernels
with respect to the measure µn as defined in (21.18). By Theorem 17.1, it follows that in Ln we
have equality of the inner products

〈·, ·〉µn = 〈·, ·〉νn

with the measure νn defined by

dνn(z) =
dλ(z)

|Kn(z, 0)|2
. (21.20)

Thus the Km are also the normalized reproducing kernels for Lm, 0 ≤ m ≤ n with respect to the
measure νn. We can now repeat the proof of Theorem 21.4 for the orthogonal functions. We leave
this to the reader. 2
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22 Generalization of the Szegő problem

In this section and the next one we bring together some convergence results. We start with a
resume of the treatment given by Grenander and Szegő, [42, chapter 3] for the polynomial case.

The original Szegő problem was to solve the extremal problem, which in the notation of Section
8 can be denoted as P 2

∞(1, 0). That is : find the solution of

P 2
∞(1, 0) : inf{‖f‖2µ : f(0) = 1, f ∈ Π∞} = κ−2

∞ .

Π∞ represents the set of all possible polynomials. Since the previous problem is set in L2(µ), we
could as well replace Π∞ by Π, which is the L2(µ) closure of the polynomials. In other words, Π
is just another notation for H2(µ). The problem was solved by successively considering f ∈ Πn for
n = 0, 1, 2, . . .. An immediate generalization to the rational case forces us to consider the problem
P 2

n(1, αn), treated in Theorem 8.2 which was to find inf ‖f‖2µ when f is in Ln and f(αn) = 1. The
minimum is reached for f = κ−1

n φ∗n and the minimum is κ−2
n . You recover the polynomial results

by setting all αk equal to zero. The κn are then the positive leading coefficients in the orthonormal
Szegő polynomials φn(z). If we take this process to the limit when n→∞, we shall have solved the
Szegő problem for a general f ∈ L2(µ) if Π∞ is dense in L2(µ). So the intimately related problem
is to find conditions for the latter to happen. The answer is that Π∞ is dense in L2(µ) if and only
if the infimum κ−2

∞ = 0 which happens if and only if
∫

logµ′dλ = −∞ [42, p.49-50]. In general,
the limiting value of κ−2

n as n → ∞ is given by |σ(0)|2 = exp{
∫

logµ′dλ}. This is equal to the
geometric mean of µ′. If logµ′ 6∈ L1, then this has to be replaced by 0. This was proved e.g., in [42,
p.44]. See also [36, p.200 ff]. As a generalization, Grenander and Szegő consider next the problem
P 2

n(1, w) with w ∈ D again for the polynomial case. We know that the infimum is reached for
f = kn(z, w)[kn(w,w)]−1 and that the minimum is found to be [kn(w,w)]−1. The latter function
in known as the Christoffel function. For w = 0 we rediscover the previous result in the case of
polynomials. In [42, section 3.2] it is shown that this minimum converges to (1− |w|2)|σ(w)|2. We
shall generalize the last approach to the rational case. However in the rational case, it requires
putting w = αn to rediscover the former problem. This is an extra complication since this w is
supposed to be in D, while when replacing it by αn, it depends upon n and when n tends to ∞
this may approach the unit circle T or may not converge at all. We shall also have to consider
L∞ and L. In analogy with the polynomials, the latter is again supposed to denote the closure in
L2(µ) of L∞. We shall have solved the same problem as Szegő did if L = Π ≡ H2(µ). We have
seen in section 9 that this happens when the sum

∑
(1− |αi|) diverges.

In Dewilde and Dym [24] we find most of the other results of this section proved for an absolutely
continuous measure dµ = µ′dλ. We now generalize this to the case of a general measure. We follow
closely the development in [24]. In [42, p. 51] we find that for polynomials the limit function
limn→∞ kn(z, w) equals the Szegő kernel

sw(z) = s(z, w) = [(1− wz)σ(z)σ(w)]−1. (22.1)

This is the function appearing in Theorem 8.6. Note that it satisfies sw(w) > 0. For the next
development, it turns out to be preferable to define a normalized form : limn→∞Kn(z, w) where
Kn is the normalized form of kn. We shall prove that it converges to the following function

Sw(z) = S(z, w) =
√

1− |w|2
1− wz

1
σ(z)

(22.2)

if its arbitrary factor of modulus 1 is chosen to satisfy σ(w) > 0. This function is different from the
one in Theorem 8.6. In this notation the Szegő kernel can be written as sw(z) = Sw(w)Sw(z) and
conversely Sw(z) = sw(z)/

√
sw(w) as you can easily check. Another interesting observation to make

is that 1/Sw(z) is readily found to be the outer spectral factor of µw where dµw(z) = dµ(z)/P (z, w).
With the notation just introduced, Theorem 8.6, which implied that

‖kn(z, w)− sw(z)‖2µ = sw(w)− kn(w,w)
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which can be rephrased as

‖kn(z, w)− Sw(z)Sw(w)‖2µ = |Sw(w)|2 − kn(w,w). (22.3)

We shall denote by Pn the orthogonal projection operator in L2(µ) onto Ln. Theorem 8.6 then says
that Pn[sw(z)] = Sw(w)Pn[Sw(z)] = kn(z, w) and that the squared norm of the error is given by the
previous expression. As everywhere in this paper we assume that the Szegő condition log µ′ ∈ L1

is satisfied. Now we formulate our first convergence result :

Theorem 22.1 Let kn(z, w) be the kernel for Ln and sw(z) the Szegő kernel as defined in (22.1).
Let Pn denote the projection operator in L2(µ) onto Ln. Then

‖kn(z, w)− P∞sw(z)‖2µ → 0 as n→∞. (22.4)

If moreover
∑

(1− |αk|) = ∞, then P∞sw = sw. In that case of course

‖kn(z, w)− sw(z)‖2µ → 0 as n→∞. (22.5)

and we also have

kn(w,w) → sw(w) = [(1− |w|2)|σ(w)|2]−1 (22.6)

uniformly on compact subsets of D.

Proof. By Theorem 8.6 we have kn(z, w) = Pnsw(z). Hence

‖kn(·, w)− P∞sw‖2µ = ‖Pnsw − P∞sw‖2µ

and the latter tends to zero by definition.
The relation P∞sw = sw holds if sw ∈ L. Since we assumed that

∑
(1 − |αk|) = ∞, which

implies by the previous Lemma that L = H2(µ), it is sufficient to prove that sw ∈ H2(µ). It is a
well known property that a function f will be in H2(µ) if and only if fσ ∈ H2 (see [36, Theorem
3.4, p. 215]). We now have

‖swσ‖22 =
1

|σ(w)|2(1− |w|2)

∫
P (z, w)dλ(z)

=
1

|σ(w)|2(1− |w|2)
≤ ∞

and this implies sw ∈ H2(µ) because sw is analytic in D. Since the squared norm of the error equals
sw(w) − kn(w,w), which has to go to zero, we get the uniform convergence in compact subsets of
D as stated. 2

Note that (22.6) gives in fact a solution of the generalized Szegő problem in the rational case.
It says that

inf ‖f‖µ = (1− |w|2)|σ(w)|2

if the infimum is taken over all f ∈ L with f(w) = 1.
For the normalized kernel we have the following.

Lemma 22.2 Let Sw be the normalized Szegő kernel defined in (22.2) and Kn(z, w) the normalized
reproducing kernel for Ln. Then

‖Kn(z, w)− Sw(z)‖2µ = 2<[1−Kn(w,w)/Sw(w)]. (22.7)
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Proof. We evaluate the norm in the left hand side. From the reproducing property of the kernels
we readily find

‖kn(z, w)‖2µ = kn(w,w).

Since Kn(z, w) = kn(z, w)/
√
kn(w,w), we find that ‖Kn(z, w)‖2µ = 1.

The norm of the second term is evaluated as follows

‖Sw‖2µ =
∫ 1− |w|2

|1− wz|2|σ(z)|2
dµ(z)

=
∫ (1− |w|2)|σ(z)|2

|1− wz|2|σ(z)|2
dλ(z)

=
∫
P (z, w)dλ(z).

The second equality is because 1/σ vanishes dµs-a.e. This is also used in the next evaluation to
give the cross product term.

<〈Kn(z, w), Sw(z)〉µ =
√

1− |w|2<
∫

zσ(z)σ(z)
(z − w)σ(z)

Kn(z, w)dλ(z)

=
√

1− |w|2< σ(w)Kn(w,w).

Hence the assertion is proved since 1/Sw(w) =
√

1− |w|2σ(w). 2

Theorem 22.3 Let Sw(z) be the normalized Szegő kernel satisfying Sw(w) > 0 and Kn(z, w) the
normalized reproducing kernel for Ln. Suppose also that

∑
(1 − |αk|) = ∞, i.e., that L = H2(µ).

Then

‖Kn(z, w)− Sw(z)‖2µ → 0 as n→∞ (22.8)

and also∥∥∥∥1− Kn(z, w)
Sw(z)

∥∥∥∥2

λw

→ 0 as n→∞ (22.9)

and ∥∥∥∥1− kn(z, w)
sw(z)

∥∥∥∥2

λw

→ 0 as n→∞ (22.10)

where dλw(z) = P (z, w)dλ(z).

Proof. From the previous Theorem, we easily derive, by taking the square roots that Kn(w,w) →
Sw(w). The first result now follows easily from the previous Lemma.

To prove the second one, note that∥∥∥∥1− Kn(z, w)
Sw(z)

∥∥∥∥2

λw

=
∥∥∥∥1− Kn(z, w)

Sw(z)

∥∥∥∥2

ν

with

dν(z) =
P (z, w)
|σ(z)|2

dµa(z)

and this in turn can be bounded as∥∥∥∥1− Kn(z, w)
Sw(z)

∥∥∥∥2

ν

= ‖Sw(z)−Kn(z, w)‖2µa

≤ ‖Sw(z)−Kn(z, w)‖2µ
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Since the latter converges to zero, the assertion (22.9) follows.
The last relation is shown similarly. 2

The last result (22.9) is a generalization of Theorem 5.8 of [39].
Two functions equal in L2(µ) can only differ in T on a set of µ-measure 0, a fortiori with

µa-measure 0 where µa is the absolute continuous part of µ. Because we supposed logµ′ ∈ L1,
µ′ can only be zero on a set of Lebesgue measure zero. Thus the two functions can only differ
on a set of Lebesgue measure 0. In other words convergence in L2(µ) implies convergence in L2.
Since Hp functions are defined (by the Poisson integral) in terms of the boundary values if p ≥ 1, it
follows that for these functions least squares-µ convergence implies uniform convergence in compact
subsets of the open unit disk.

Hence the previous results imply the following.

Theorem 22.4 Suppose that
∑

(1 − |αk|) = ∞. Then, with the usual notation, the following
convergence results hold uniformly for z in compact subsets of D as n tends to ∞.

kn(z, w) → sw(z) w ∈ D, (22.11)

Kn(z, w) → Sw(z) w ∈ D, (22.12)

φn(z) → 0. (22.13)

Proof. The first two results follow by the observations made just before this Theorem. The third
one follows from the convergence of kn(w,w) =

∑
|φk(w)|2 to a finite limit. 2

Theorem 22.5 Let κn be the leading coefficient of the orthonormal function φn and σ(z) the
spectral factor of µ. Suppose αn → 0 for n→∞, then we have

κn → [σ(0)]−1 if σ(0) > 0, (22.14)

and

φ∗n(z) → [σ(z)]−1 uniformly on compact subsets of D. (22.15)

The last one is equivalent with

φn(z)
Bn(z)

→ [σ∗(z)]−1 uniformly on compact subsets of E. (22.16)

Proof. All this follows easily from the previous results if we use Kn(z, αn) = φn and fill in w = 0.
2

The last two theorems generalize a theorem given by Grenander and Szegő [42, p.51].
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23 Further convergence results and asymptotic behaviour

This section includes a number of convergence results like uniformly on compacts of the unit disk
of the approximants we obtained. It is a well known fact that an infinite Blaschke product B(z) =
B∞(z) will converge to zero uniformly on compact subsets of the unit disk if

∑∞
k=1(1− |αk|) = ∞.

See e.g., [79, p.281 ff]. This can be used to obtain some other convergence results of the same type.

Theorem 23.1 Let φn be the orthonormal functions for Ln and ψn the functions of the second kind.
Define Ωn = ψ∗n/φ

∗
n ∈ P and let the positive real function Ω be associated with the measure µ as in

(2.3) (c = 0). Then Ωn converges to Ω uniformly on compact subsets of D if
∑∞

1 (1− |αn|) = ∞.

Proof. First, we note that Ωn = ψ∗n/φ
∗
n = Ψ∗

n/Φ
∗
n, where Φn and Ψn are the rotated functions as

in section 19.
Let Tn be the recurrence matrix for the rotated functions, i.e., Tn = tntn−1 . . . t1 with tn the

elementary recurrence matrices as in (13.8). Then

Tn =

[
Φn + Ψn Φn −Ψn

Φ∗n −Ψ∗
n Φ∗n + Ψ∗

n

]
.

hence Φ∗n[1− Ωn 1 + Ωn] = [0 1]Tn and thus

[1− Ωn 1 + Ωn]

[
Ω + 1
Ω− 1

]
=

1
Φ∗n

[0 1]Tn

[
Ω + 1
Ω− 1

]

=
1

Φ∗n
[0 1]

[
Bn−1Rn1

BnRn2

]
=
Bn

Φ∗n
Rn2

= 2(Ω− Ωn)

Thus

Ω− Ωn =
1
2
BnRn2/Φ∗n in D. (23.1)

Now define the Schur functions by Cayley transforms of Ω and Ωn

Γ =
Ω− 1
Ω + 1

∈ B and Γn =
Ωn − 1
Ωn + 1

∈ B.

Then,

Γ− Γn = 2
Ω− Ωn

(1 + Ω)(1 + Ωn)
,

which, in view of (23.1) gives

Γ− Γn

Bn
=

Rn2

Φ∗n(1 + Ω)(1 + Ωn)
∈ H(D).

On the unit circle, we now get |Bn| = 1 a.e. and |Γ| ≤ 1 and |Γn| ≤ 1, so that∣∣∣∣Γ− Γn

Bn

∣∣∣∣ ≤ 2 on T.

The maximum modulus theorem then gives

|Γ− Γn| ≤ 2|Bn| in D.

The right hand side, and hence also the left hand side converges to zero uniformly on compact
subsets of D if

∑∞
1 (1− |αn|) = ∞. With inverse Cayley transforms we now find that

Ω− Ωn =
Γ− 1
Γ + 1

− Γn − 1
Γn + 1

= 2
Γ− Γn

(1 + Γ)(1 + Γn)

which will converge exactly as Γ− Γn does. 2

Practically the same proof can be repeated for the following Theorem.
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Theorem 23.2 Let Kn(z, w) be the normalized kernels for Ln and Ln(z, w) the associated kernels.
Define Ωn(z, w) = Ln(z, w)/Kn(z, w) ∈ P. Let Ω(z, w) = Ωµ(z, w) be as defined in Lemma 15.1.
Then, if

∑∞
1 (1− |αn|) = ∞, Ωn converges uniformly to Ω on compact subsets of the unit disk for

any w ∈ D.

Proof. You can use the result of Section 18 to find that

Ω− Ωn

Bn
=

∆n1

Kn
= g ∈ H(D).

From then on the proof runs exactly like in the previous Theorem. 2

The previous Theorem actually corresponds to Lemma 3.4 in [24].
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24 Conclusion

We have given an introduction to the theory of orthogonal rational functions related to the
Nevanlinna-Pick interpolation algorithm exactly like the Szegő theory of orthogonal polynomials is
related to the Schur algorithm. The treatment is only introductory since we have not attempted to
cover all possible generalizations of the corresponding Szegő theory. We could have discussed the
case where logµ′ 6∈ L1. Some ideas on this case can be found in [26]. We also could have included
the matrix case like in [23, 12] and many other papers or even the case of operator valued functions
[72]. We could have stressed more the multipoint Padé aspect of this theory (see [41, 48, 63]) or
discussed a more formal setting where orthogonality is defined with respect to a linear functional
defined on a set of rational functions like in the previous papers and also in [13]. Much more results
can be obtained for the asymptotics of the polynomials or the recursion coefficients and the con-
vergence of Fourier series in these orthogonal functions. The material of positive real functions in
the half plane and the corresponding orthogonal functions on the real line is left here undiscussed.
And there are of course the many beautiful applications, with their own terminology and their own
problem settings.

So we are well aware of the fact that the present discussion is only an appetizing survey which
may hopefully invoke some interest in the field, if that were necessary at all. We think it is
a fascinating subject, even more fascinating than the theory of orthogonal polynomials, if that
doesn’t sound too much as a blasphemy.
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[18] J.P. Burg Maximum entropy spectral analysis. In D.G. Childers, editor, Modern spectral
analysis, pages 34–39, IEEE Press, 1978, IEEE Press. Originally presented at 37th Meet. Soc.
Exploration Geophysicists, 1967. 1978,
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Comp. Appl. Math., 1990. To appear.
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Verlag, Basel, 1984.
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