
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2019-0065

Vol. x, No. x, pp. 1-47
xxx 20xx

Analysis and Numerical Simulation of Hyperbolic

Shallow Water Moment Equations

Julian Koellermeier1,2,∗ and Marvin Rominger1

1 Institut für Mathematik, Freie Universität Berlin, Berlin, Germany.
2 School of Mathematical Sciences, Peking University, Beijing, China.

Received 24 April 2019; Accepted (in revised version) 17 January 2020

Abstract. Shallow Water Moment Equations allow for vertical changes in the horizon-
tal velocity, so that complex shallow flows can be described accurately. However, we
show that these models lack global hyperbolicity and the loss of hyperbolicity already
occurs for small deviations from equilibrium. This leads to instabilities in a numerical
test case. We then derive new Hyperbolic Shallow Water Moment Equations based on
a modification of the system matrix. The model can be written in analytical form and
hyperbolicity can be proven for a large number of equations. A second variant of this
model is obtained by generalizing the modification with the help of additional param-
eters. Numerical tests of a smooth periodic problem and a dam break problem using
the new models yield accurate and fast solutions while guaranteeing hyperbolicity.

AMS subject classifications: 76D05, 35L65, 65M08

Key words: Shallow water equation, moment method, hyperbolicity.

1 Introduction

The shallow water equations (SWE) are widely used to describe flows where the verti-
cal velocity components are much smaller than the horizontal components. Apart from
hydrodynamic applications such as the computation of currents in Venice bay [32], the
shallow water equations are used in many other scientific fields like weather forecasts [8],
gravitational flow models like snow avalanches [7], and granular flows of liquids in the
field of chemical engineering [9].

Nevertheless, the shallow water equations are often limited in their applications due
to the loss of information by averaging the vertical velocity, see [18]. The assumption of a
constant horizontal velocity with respect to height is a strong simplification and has been
shown to be inaccurate in measurements [20, 33].
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A first approach to circumvent this problem is the multi-layer shallow water model,
which yields a piecewise constant velocity profile to model changes in vertical direction,
see e.g. [5, 14, 28, 35] for details on the model derivation, analysis, and numerical imple-
mentation. However, this introduces a number of difficulties, for example the coupling
at the interfaces and hyperbolicity issues due to the discontinuous velocity description.

This paper investigates moment models for the shallow water equations, in which
vertical changes of the velocity variable are allowed by adding further variables (so-
called moments) such that deviations from that averaged constant velocity can be rep-
resented by a continuous polynomial. The moment method is already widely known in
kinetic theory after the seminal work by H. Grad [16] and was later applied in channel
flows [15, 37] and debris flows [26].

In [27] a moment method for the shallow water equations was introduced that suc-
ceeds in describing linear and quadratic velocity profiles for a smooth test case. We will
use this model called Shallow Water Moment Equations (SWME) as a starting point of
our investigations.

However, similar to the moment method in kinetic theory [2, 24, 39], hyperbolicity of
the SWME is limited to a bounded domain in phase space. This lack of hyperbolicity was
not discussed in detail in the shallow water moment model [27]. However, problems with
hyperbolicity often lead to instabilities in other models, so that new hyperbolic models
needed to be derived, for example [3, 31, 34, 38]. For rarefied gases the lack of hyperbol-
icity could be overcome using several strategies [4, 13, 22, 23], effectively resulting in the
change of some terms in the higher order equations, but up to now no strategy to derive
hyperbolic shallow water moment equations exists.

The aim of the paper is to investigate the hyperbolicity of the shallow water moment
equations and systematically derive modified systems of equations that yield global hy-
perbolicity and sufficient accuracy in numerical simulations.

We first focus on the original SWME system and prove that loss of hyperbolicity oc-
curs in practical applications, even when starting from initial conditions that are inside
the hyperbolicity region. This might result in unpredictable behavior of the solution and
makes it difficult to justify the use of the standard model. In one example we show
emerging instabilities in a numerical solution.

The hyperbolic regularization is then based on a linearization of the SWME model
around a linear deviation from equilibrium, similar to the models in [2] and [23]. The
resulting system of equations is called Hyperbolic Shallow Water Moment Equations
(HSWME). We investigate the structure and explicit terms in detail to allow for a global
hyperbolicity proof for the high order system. Using the insights of this proof, it is pos-
sible to generalize the approach so that predefined propagation speeds can be obtained.
This is achieved by the addition of some parameters βi in the very last row of the sys-
tem matrix, leading to a new hyperbolic system, called β-HSWME. The parameters are
chosen so that the characteristic polynomial of the system matrix matches a given target
polynomial. We show that there exists a unique solution and we give a practical example
in which the solution is particularly simple to compute and only a single entry has to be
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changed in the matrix.
After analyzing linear stability of both new systems, we perform numerical tests for

smooth and discontinuous initial data to access the accuracy of the hyperbolic regulariza-
tions. Despite the simplifications and changes in the system matrices, both new models
show good agreement with a reference solution and the original SWME, derived in [27].

The remaining part of this paper is structured as follows: A brief summary of the shal-
low water moment equations and the lack of hyperbolicity will be presented in Section 2
together with an example for the breakdown of hyperbolicity. In Section 3 the two new
hyperbolic shallow water moment models HSWME and β-HSWME will be presented
and investigated, including a linear stability analysis. A numerical test case showcasing
the stability improvement and a comparison using a smooth transport test case and a
discontinuous dam break test case will be presented in Section 4. The paper ends with a
short conclusion.

2 Shallow Water Moment Model

In this section the main ideas for the derivation of the one-dimensional shallow water
moment model from [27] are briefly discussed, before we recall the general form of the
hierarchical moment model. We show the lack of hyperbolicity and give an example for
the breakdown of hyperbolicity during a simulation.

Starting from the incompressible Navier-Stokes equations, the classical shallow wa-
ter equations can be derived by averaging over the vertical variable assuming constant
velocity in the same direction. In 1D this leads to the following evolution equations for
water height h and mean velocity um

∂th+∂x(hum)=0, (2.1)

∂t(hum)+∂x

(
hu2

m+
1

2
gh2

)
=− ν

λ
um, (2.2)

where ν is the friction coefficient, g is the gravitation constant and λ is the slip length, see [27].

A drawback of the shallow water equations is that the velocity is usually constant and
vertical variations in the velocity cannot be represented, except for models which add so
called shape factors [19, 25, 29]. However, these shape factors typically only allow for a
rather fixed parametrization. In [27], a new model for shallow flows is derived, based on
two main ideas. The first main idea is introducing a scaled vertical variable ζ(t,x) using

ζ(t,x) :=
z−hb(t,x)

hs(t,x)−hb(t,x)
=

z−hb(t,x)

h(t,x)
,

with h(t,x) = hs(t,x)−hb(t,x) the water height from the bottom hb to the surface hs, so
that ζ : [0,T]×R → [0,1]. This transforms the z-direction from a physical space (see red
lines in Fig. 1) to a projected space (see blue lines in Fig. 1).
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The transformation of the vertical variable leads to the following transformed shallow
water model when assuming a non-constant velocity profile u

∂th+∂x(hum)=0, (2.3)

∂t(hum)+∂x

(
hu2+

g

2
h2
)
−∂ζ

(ν

h
∂ζu
)
+∂ζ(huω)=−hg

∂hb

∂x
, (2.4)

where the vertical coupling term ω in 1D is given by

hω :=
∫ 1

0
∂x

(
h
∫ ζ

0
um−u dζ̃

)
.

The second main idea from [27] is the moment expansion of the velocity variable, used
for expressing more complex velocities e.g. linear, quadratic or cubic in the transformed
vertical direction. We thus expand u : [0,T]×R×[0,1]→R as

u(t,x,ζ)=um(t,x)+
N

∑
j=1

αj(t,x)φj(ζ), (2.5)

where um : [0,T]×R →R is again the mean velocity, φj : [0,1]→R are the scaled Legendre
polynomials of degree j and the αj : [0,T]×R →R with j ∈ [1,2,··· ,N] are corresponding
basis coefficients at time t and position x, also called moments. These coefficients will give
rise to different horizontal velocities over the height, which is an extension compared to
the classical shallow flow equation where the horizontal velocity does not change over
the height, see Fig. 1. N∈N denotes the order of the velocity expansion and the maximal
degree of the Legendre polynomials.

Instead of the classical shallow water system for water height h and mean velocity
um, N additional coefficients αj need to be computed, so that N further equations are
required. Note that for the case N = 0 there are no further equations and the velocity
is equal to the mean velocity, i.e. u(t,x,ζ)=um(t,x), so that the shallow water equations
(2.1) and (2.2) are obtained from the transformed equations (2.3) and (2.4).

Additional N equations are derived by projecting the momentum equation (2.4) onto
Legendre polynomials, i.e. multiplication of Eq. (2.4) with φj(ζ) for j= 1,··· ,N and sub-
sequent integration with respect to ζ.

The detailed derivation is given in [27]. Here, we state the resulting ith-moment equa-
tion in 1D with i∈{1,··· ,N}:

∂(hαi)

∂t
+

∂F̃i

∂x
= Q̃i+Pi, (2.6)

with the conservative fluxes

F̃i=h

(
2umαi+

N

∑
j,k=1

(2i+1)
∫ 1

0
φiφjφkdζαjαk

)
, (2.7)
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Figure 1: Different velocity profiles for polynomials PN(z) or PN(ζ) with N = 0 for constant velocity, N = 1
for linear velocity and N= 2 for quadratic velocity. The mapping of physical vertical space (red) to projected
vertical unit space (blue) is depicted.

the non-conservative terms

Q̃i=um
∂(hαi)

∂x
−

N

∑
j,k=1

(2i+1)
∫ 1

0
φ′

i

(∫ ζ

0
φjdζ̂

)
φkdζ ·αk

∂(hαj)

∂x
, (2.8)

and the right-hand side (friction) source terms

Pi=−(2i+1)
ν

λ

(
um+

N

∑
j=1

(
1+

λ

h

∫ 1

0
φ′

iφ
′
j dζ

)
αj

)
.

This leads to a closed shallow water moment system with a total of N+2 coupled equa-
tions for a 1D-problem, compared to only two equations for the shallow water equations:

1︸︷︷︸
mass balance equation

+ 1︸︷︷︸
momentum balance equation

+ N︸︷︷︸
moment equations

=N+2.

The complete system of equations can be rewritten in the form

∂V

∂t
+

∂F(V)

∂x
=Q(V)

∂V

∂x
+P(V), (2.9)

with variable vector V = (h,hu,hα1 ,··· ,hαN)
T ∈ RN+2, ∂F(V)

∂x , P(V) ∈ RN+2 and Q(V) ∈
R(N+2)×(N+2). The matrix Q(V) encodes the non-conservative contribution to the flux

while the vector
∂F(V)

∂x contains the conservative flux terms. We use conservative vari-
ables V to allow for easy exact conservation of mass and conservation of momentum in
equilibrium with zero friction.



6 J. Koellermeier and M. Rominger / Commun. Comput. Phys., x (20xx), pp. 1-47

2.1 Hyperbolicity of the SWME

For mathematical models of flow problems, especially in hydrodynamics but also for
gas dynamics, hypersonic flows or particle dynamics, hyperbolicity of the equations is a
paramount property [3, 30, 31, 38]. It ensures the propagation of information with real-
valued and bounded propagation speeds. Otherwise, non-physical oscillations could
occur, leading to a breakdown of the solution. This behavior was observed in comparable
models, e.g. moment models for rarefied gases [2, 22].

We will use the following definition of hyperbolicity [12].

Definition 2.1. A system of first order partial differential equations of the form

∂U(t,x)

∂t
+A(U)

∂U(t,x)

∂x
=0 on (0,∞)×R,

with U : [0,∞)×R→RN , U∈RN , and A : [0,∞)×R→RN×N is globally hyperbolic if A(U)
is diagonalizable with real eigenvalues for all states U.

Remark 2.1. Definition 2.1 is automatically fulfilled if the matrix A(U) has distinct real
eigenvalues.

In the following, we recall the hyperbolicity investigation of the lower order SWME
for N=1,2,3 from [27] and then take a closer look at the hyperbolicity loss for larger N.

2.1.1 First order system

Choosing N=1, i.e. linear velocity change with the vertical variable, the first order shal-
low water moment model reads

∂t




h
hum

hα1


+∂x




hum

hu2
m+g h2

2 + 1
3 hα2

1

2humα1


=Q∂x




h
hum

hα1


− ν

λ
P, (2.10)

with

Q=




0 0 0
0 0 0
0 0 um


, P=




0
um+α1

3(um+α1+4 λ
h α1)


 and

∂F

∂V
=




0 1 0

−u2
m−

α2
1

3 +gh 2um
2α1
3

−2umα1 2α1 um


,

leading to the system matrix

A=
∂F

∂V
−Q=




0 1 0

−u2
m−

α2
1

3 +gh 2um
2α1
3

−2umα1 2α1 um


.

It is easy to show that the first order system has the distinct real eigenvalues

λ1,2=um±
√

gh+α2
1 and λ3=um. (2.11)

Due to h>0, the first order shallow water moment model is hyperbolic.
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2.1.2 Second order system

The second order moment model using N=2 is given by

∂t




h
hum

hα1

hα2


+∂x




hum

hu2
m+g h2

2 + 1
3 hα2

1+
1
5 hα2

2

2humα1+
4
5 hα1α2

2humα2+
2
3 hα2

1+
2
7 hα2

2


=Q∂x




h
hum

hα1

hα2


− ν

λ
P,

with

Q=




0 0 0 0
0 0 0 0
0 0 um− α2

5
α1
5

0 0 α1 um+
α2
7


 and P=




0
um+α1+α2

3(um+α1+α2+4 λ
h α1)

5(um+α1+α2+12 λ
h α2)


.

This leads to

∂F

∂V
=




0 1 0 0

− α2
1

3 −u2
m+gh− α2

2
5 2um

2α1
3

2α2
5

−2α1um− 4
5 α1α2 2α1 2um+

4α2
5

4α1
5

− 2
3 α2

1−2α2um− 2
7 α2

2 2α2
4α1
3 2um+

4α2
7


,

and we get

A=
∂F

∂V
−Q=




0 1 0 0

− α2
1

3 −u2
m+gh− α2

2
5 2um

2α1
3

2α2
5

−2α1um− 4
5 α1α2 2α1 um+α2

3α1
5

− 2
3 α2

1−2umα2− 2
7 α2

2 2α2
α1
3 um+

3α2
7


. (2.12)

Scaling the coefficients α1 and α2 with 1√
gh

, the four eigenvalues have the form

λi =um+ci

√
gh for i=1,2,3,4,

with ci being the ith root of

χ(λ)=λ4− 10

7
α2λ3−

(
1+

6

35
α2

2+
6

5
α2

1

)
λ2+

(
22

35
α3

2−
6

35
α2α2

1+
10

7
α2

)
λ

− α4
2

35
− 6

35
α2

2α2
1−

3

7
α2

2+
α4

1

5
+

α2
1

5
.

Calculating the roots of this polynomial numerically for varying parameter values of α1

and α2, we see that they are complex numbers (see blue areas in Fig. 2(a)) leading to a
lack of hyperbolicity.
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(a) N=2

•

(b) N=3

(c) N=4 (d) N=5

(e) N=6 (f) N=7

Figure 2: Hyperbolicity breakdown (blue) and hyperbolic regions (beige) for different values of α1 and αN ,
N = 2,3,4,5,6,7, respectively. Second order model (top left) and exemplary third order model at α2 = 0 (top
right) reproduced from [27]. Initial condition for test case in Section 2.2 marked by ”•” in 2(b).
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2.1.3 Third order system

The system matrix for the third order system can be derived from the third order system
given in [27] analogously and reads

A=
∂F

∂V
−Q

=




0 1 0 0 0

− α2
1

3 −u2
m+gh− α2

2
5 − α2

3
7 2um

2α1
3

2α2
5

2α3
7

− 2
35(9α3α2+7α1(5um+2α2)) 2α1 um+α2

3(α1+α3)
5

3α2
7

− 2
21 (7α2

1+9α1α3+2α2
3+3α2(7um+α2)) 2α2

α1
3 + 9α3

7 um+
3α2
7

4α1
7 + α3

3

− 2
15(15umα3+4α2α3+9α1α2) 2α3 0

2(α1+α3)
5 um+

α2
3




.

(2.13)

The eigenvalues of A again have the form ai = um+ci

√
gh with ci being the ith root of a

scaled polynomial given in the appendix of [27].
In Fig. 2(b), we exemplarily plot the hyperbolicity region of this model in the α2 = 0

plane. We see that already infinitely small values of the remaining coefficients are suffi-
cient to enter the non-hyperbolic region and cause a loss of hyperbolicity. Additionally,
the line α1=−α3 lies in the non-hyperbolic region.

2.1.4 On the hyperbolicity loss of higher order models

As the SWME cannot be written in closed form for the general case N∈N and a solution
of the eigenvalue problem for large N seems infeasible, a general analysis of the hyper-
bolicity regions proves difficult. However, the system can be reduced for a specific case
that easily allows computation of the non-hyperbolic region also for higher order models.

We can extend Fig. 2 and numerically compute the hyperbolicity region of the corre-
sponding moment models for large N in the plane defined by αi=0 for i=2,··· ,N−1, i.e.
we only keep the first and the last coefficient α1 and αN . We see that the non-hyperbolic
patches in this plane increase in number and size with increasing N. Furthermore, the
equilibrium point α1=αN=0 is on the boundary of the hyperbolicity region, which means
that the system can immediately become non-hyperbolic when starting from equilibrium.
Also, we see that the line α1 =−αN always seems to be inside the non-hyperbolic region
for small values of the coefficients.

However, it is not a-priori clear if distribution functions as considered non-hyperbolic
in Fig. 2 ever occur during simulations. We want to investigate this by considering the
non-hyperbolic values α1=−αN,αi=0 for i=2,··· ,N−1, and use the scaling αN = α̃N ·um,
i.e. the following velocity distribution uN(t,x,ξ) for arbitrary N∈N

uN(t,x,ξ)=um(t,x)(1+ α̃N ·(ΦN(ξ)−Φ1(ξ))). (2.14)

The boundary values are uN(t,x,0)=1 and uN(t,x,1)=1+((−1)N+1)·α. In case of α̃N=1,
i.e. the coefficients are of the same order as the mean velocity, the function approximates
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(a) N=3 (b) N=11 (c) N=51

Figure 3: Example velocity distributions for N = 3 (left), N = 11 (middle) and N = 51 (right) that yield
hyperbolicity loss.

the linear function u(t,x,ξ)=2umξ that was commonly used in the test cases in [27], see
also Fig. 3. We note that negativity of the distribution function is not necessary, as can
be seen in the case N = 3 and also for other values α̃N < 1. Therefore it seems evident
that velocity distributions as mentioned above, can arise during simulation and the loss
of hyperbolicity can occur.

In [27] the simulations for larger order N ≥ 2 were performed using the eigenvalues
for the N = 1 model as an estimate, effectively avoiding the use of explicit and possibly
complex eigenvalues of the higher order models in the numerical scheme. The maximum
and minimum eigenvalues then reduce to the eigenvalues λ1,2 from (2.11). However, this
is only true for αi =0, i≥2, when

λ1,2=um±
√

gh+α2
1 and λ3,4=um±

√
1

5
α1. (2.15)

For αi 6=0, i≥2 the system matrix may be inconsistent with the eigenvalue estimates used
in the numerical method.

For the smooth test cases in [27], the solution seems to run properly, but it might give
nonphysical values upon loss of hyperbolicity as from that moment on the exact solution
is no longer well defined. Reducing the eigenvalues to the first order system prevents
any prediction of stability of the system, as there is an inconsistency between the used
eigenvalues and the actual dynamics of the system.
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2.2 Example of a breakdown of hyperbolicity

In [27] the authors performed simulations of a smooth periodic wave interacting with its
periodic reflection, which will be explained in more detail in Section 4. In their simulation
the system of higher order always used the (inconsistent) eigenvalues of the first order
system. Following the previous section, we now give a simple example of physically
plausible initial values that do lead to a loss of hyperbolicity at some times and in some
points during the simulation even in the authors’ simulation framework. We will show
that the third order system is indeed not hyperbolic throughout the whole simulation.

The simulation setup closely follows [27], the initial values are h(x) = 1+
exp(3cos(π(x+0.5)))

exp(4) , um = 0.25,α1 =−0.25, α2 = 0, and α3 = 0.26, which results in a cubic

initial velocity profile

u(0,x,ζ)=−5.2ζ3+7.8ζ2−2.62ζ+0.26

for all x∈ [−1,1] as depicted in Fig. 4 and marked in Fig. 2(b) by ”•”. This example is in
fact very close to the values of hyperbolicity loss considered in Section 2.1.4, but still in-
side the hyperbolicity region. Plugging the initial values into the fifth order characteristic
polynomial gives five real eigenvalues.

The velocity profile can occur during real-world applications, for example in situa-
tions where strong winds move the water surface or water is pumped into the channel
by an industrial plant with a slightly higher velocity at the bottom.

Fig. 5 shows the evolution of the coefficients α1, α2 and α3 at three different spatial
points x1 =−0.5, x2 = 0 and x3 = 0.5 during the simulation with green dots indicating
hyperbolic states and red dots indicating loss of hyperbolicity. The single green dot in
the top right of each graph shows the initial condition.

Figure 4: Cubic initial velocity profile close to hyperbolicity loss u(0,x,ζ) for um=0.25 and coefficients α1=−0.25,
α2 =0, and α3=0.26, Compare Fig. 3.
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(a) x1 =−0.5 (b) x2 =0

(c) x3 =0.5

Figure 5: SWME hyperbolic breakdown (red) at three different points in space (left x1 =−0.5; right x2 = 0;
bottom x3 =0.5) over time (see Fig. 4 and Table 1 for detailed setup).

Table 1: Simulation setup example of a breakdown of hyperbolicity test case.

friction coefficient λ=0.1

slip length ν=0.1

temporal domain t∈ [0,2]

spatial domain periodic x∈ [−1,1]

spatial resolution nx =100

initial height h(x)=1+exp(3cos(π(x+0.5)))/exp(4)

initial velocity u(0,x,ζ)=0.26−5.2ζ3+7.8ζ2−2.62ζ

CFL number ≈0.5

numerical scheme same as in [27]

It can clearly be seen that even though the simulation starts in a hyperbolic region, the
simulation reaches non-hyperbolic states quickly. Several simulation steps at each plot-
ted spatial point are thus using the wrong hyperbolic eigenvalues instead. It is unclear
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(a) x1 =−0.5 (b) x2 =0

(c) x3 =0.5

Figure 6: Velocity profiles during hyperbolic breakdown test case at three different points in space (left x1=−0.5;
right x2 =0; bottom x3 =0.5) and different times (see Fig. 4 for detailed setup).

how accurate or meaningful the result of the simulation is as a proper Riemann solver
for the underlying shallow water moment system would correctly break down due to
complex eigenvalues. In Fig. 6 the corresponding velocity profiles at the three spatial
points x1 =−0.5, x2 = 0 and x3 = 0.5 are plotted for different times. It can be seen that
the velocity variation remains strongest in the region with initially large water height at
x=−0.5, as the initial wave in this region results in faster water movement driving the
non-equilibrium. The other points x=0 and x=0.5 relax to a uniform velocity distribu-
tion relatively quickly. However, the velocity distributions look reasonably physical at all
times and positions and it is not obvious when and where the hyperbolicity loss occurs.
The loss of hyperbolicity is therefore difficult to detect in the original simulation in [27].

During the simulations in [27] the system seemed to stay within hyperbolic regions
for all times as claimed by the authors, but this can be attributed to the special choice
of the initial condition. It is unclear how the loss of hyperbolicity can be prevented,
especially given the non-linear dynamics of the system.

2.3 Example of instability

In [27] the numerical solution was performed using a third order WENO scheme for
the conservative fluxes and a finite difference method for the non-conservative terms.
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Table 2: Simulation setup for example of instability test case.

friction coefficient λ=0.1

slip length ν=0.01

spatial domain x∈ [−1,1]

spatial resolution nx =1000

initial height h(x)=

{
5 if x≤0,

1 if x>0,

initial velocity u(0,x,ζ)=0.25−2.5ζ+7.5ζ2−5.ζ3

CFL number ≈0.7

numerical scheme UPRICE implementation [21, 36]

However, it is known that the treatment of the non-conservative terms requires special
caution as different numerical schemes might yield different numerical solutions [1, 6,
10]. This is especially true for the finite differences applied in [27] as this introduces
a large amount of diffusion in comparison to the well-resolved conservative part. We
therefore test the SHME equations again using a dedicated numerical method for the
non-conservative terms. The implemented schemes are the same as in [22]. We use the
path-consistent, first-order finite volume UPRICE scheme, described in [36]. The method
was tested for comparable non-conservative models in rarefied gases in [21] and found
to show well-resolved solutions, with especially little diffusion.

We perform the test case for N = 3 and it is chosen such that the friction terms on
the right hand are comparably small with respect to the convective terms, so that the
coefficients only relax slowly to equilibrium. The parameters of the test case are given in
Table 2. The initial condition is a dam break problem with initial velocity profile similar
as in Fig. 4, which results in an initially non-hyperbolic cubic initial velocity profile.

In Fig. 7 the results are plotted for t=0.05 and t=0.1, together with a reference solution
that has the same setup as in [27]. We see that the SWME model approximates the water
height h and velocity u reasonably well. However, already the first coefficient α1 starts
to show instabilities for this setup. The instabilities occur not at the leading shock wave,
but behind that shockwave at an intermediate shock around x=0.75. This might be the
reason why this could not be detected by the diffusive finite difference scheme in [27].
Any larger order moment system has several of those sub-shocks that might be the cause
for instabilities in the system. It seems that the instabilities grow in time by comparison
of the left and right figures.

In the rest of this paper, we want to circumvent the loss of hyperbolicity and the occur-
ring instabilities by slightly changing the dynamics of the system resulting in a globally
hyperbolic model that can use consistent eigenvalues without possible numerical incon-
sistencies. The regularized system will be represented by a modified system matrix AH

having only real eigenvalues.



J. Koellermeier and M. Rominger / Commun. Comput. Phys., x (20xx), pp. 1-47 15

(a) h, t=0.05 (b) h, t=0.1

(c) um, t=0.05 (d) um, t=0.1

(e) α1, t=0.05 (f) α1, t=0.1

Figure 7: Unstable dam break simulation of SWME for N= 3 at t= 0.05 (left) and t= 0.1 (right). Reference
solution with settings from [27].
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3 Hyperbolic extension of shallow water moment equations

The breakdown of hyperbolicity and instability in the previous section motivates the
following sections to change the system matrix A so that the system is hyperbolic.

In the first approach, all coefficients αi of the system matrix, except the first one α1,
are set to zero. This turns out to be very close to the corresponding system for the fixed
eigenvalues (2.11) used in [27]. The resulting system is called Hyperbolic Shallow Water
Moment Equations (HSWME) using a modified system matrix AH.

The second approach is called generalized β-Hyperbolic Shallow Water Moment
Equations (β-HSWME). It is a generalization of the first approach achieving predefined
propagation speeds. Hyperbolicity is guaranteed by introducing additional parameters
βi in the last row of the system matrix. The corresponding system matrix is Aβ.

3.1 Hyperbolic Shallow Water Moment Equations (HSWME)

We linearize the system matrix around the variables (h,um,α1,0,··· ,0), i.e.

(h,um,α1,··· ,αN)→ (h,um,α1,0,··· ,0),

or around linear deviations from equilibrium/constant velocity. Keeping α1 allows to
capture a large part of the structure despite its simplicity. For example, there will still be
a coupling between the different higher order equations.

We first derive the structure and the explicit form of the system matrix, before proving
global hyperbolicity up to large N.

Theorem 3.1. The HSWME system matrix AH ∈R(N+2)×(N+2) is given by

AH =




1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1
1
3 α1 um

. . .
. . .

. . . N+1
2N+1 α1

N−1
2N−1 α1 um




, (3.1)

where all other entries are zero.

Proof. See Appendix A.

Remark 3.1. In fact, our hyperbolic regularization strategy is similar as that in [2], where
the system is linearized around equilibrium as well, but in conservative variables, then
transformed to primitive variables. That way the system still looks highly non-linear,
even though it is a linearization in another set of variables.

We can now prove the following property of the system matrix AH.
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Theorem 3.2. The HSWME system matrix AH ∈R(N+2)×(N+2) (3.1) has the following charac-
teristic polynomial

χA(λ)=
(
(λ−um)

2−gh−α2
1

)
·χA2

(λ−um),

where the matrix A2∈RN×N is defined as follows

A2=




c2

a2
. . .

. . . cN

aN




, (3.2)

with values ci =
i+1

2i+1 α1 and ai =
i−1

2i−1 α1 the values above and below the diagonal, respectively,
from (3.1).

Proof. See Appendix B.

With the help of the characteristic polynomial, we can now obtain the following result
for the eigenvalues of HSWME.

Theorem 3.3. The eigenvalues of the system matrix AH ∈R(N+2)×(N+2) (3.1) are the real num-
bers

λ1,2=um±
√

gh+α2
1,

λi+2=um+bi ·α1, i=1,··· ,N,

with bi ·α1 the real and pairwise distinct roots of A2 from Theorem 3.2 for all feasible orders of at
least up to N0 =150.

The HSWME system is thus globally hyperbolic.

Proof. According to Theorem 3.2, the characteristic polynomial reads

χA(λ)=
(
(λ−um)

2−gh−α2
1

)
·χA2

(λ−um).

From the first factor, we immediately obtain

λ1,2=um±
√

gh+α2
1.

Up to a shift with um the last factor is the characteristic polynomial of the matrix

Ai=




ci

ai
. . .

. . . cN

aN



∈R

N×N ,
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with ci =
i+1

2i+1 α1 and ai =
i−1

2i−1 α1.

Due to the structure of the matrix A2, we can factor out α1 and see that the roots of
the characteristic polynomial have the form λi =um+bi ·α1, i>2.

This matrix is generating polynomials in λ by the associated recursion formula

|Ai+2|=
1

aici

(
|Ai|+λ̃|Ai+1|

)
,

similar to known sets of polynomials like Legendre or Hermite polynomials, which are
generated by the same form of the so-called Jacobian matrix. We have computed the roots
of |Ai| up to large i and only observed real roots up to N0 = 150. A formal proof of this
property seems to be difficult. However, the HSWME model will probably be used only
for a small to medium number N, so that the numerical proof up to high order should be
sufficient.

The HSWME model thus yields a globally hyperbolic system of equations for the
simulation of shallow flows and can be seen both as an approximation to the original
SWME and as an improvement due the lack of hyperbolicity of the SWME model.

Due to the real propagation speeds, the HSWME models do not loose hyperbolicity,
unlike the SWME as shown in Section 2.2.

In the following we will show some examples of the HSWME model including the
respective eigenvalues for higher order models.

3.1.1 Example equations for HSWME

For N=0 and N=1 the zeroth and first order system matrices of the HSWME are equiv-
alent to the system matrices of the SWME for the zeroth and first order (2.1)-(2.2), (2.10),
respectively.

For N=2 the second order system matrix of the HSWME reads

AH =




0 1 0 0

gh−u2
m− 1

3 α2
1 2um

2
3 α1 0

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1 0 1
3 α1 um


. (3.3)

According to Theorem 3.3, we get the real propagation speeds

λ1,2=um±
√

gh+α2
1,

λ3,4=um±
√

1

5
α1.

These are in fact the proposed real eigenvalues (2.15) from [27].
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Table 3: Eigenvalues of HSWME system matrix AH for order N=0,1,2,3,4,5.

N EV 1 EV 2 EV 3 EV 4 EV 5 EV 6 EV7

0 um+
√

gh um−
√

gh - - - - -

1 um+
√

gh+α2
1 um−

√
gh+α2

1 um - - - -

2 um+
√

gh+α2
1 um−

√
gh+α2

1 um+
√

1
5 α1 um−

√
1
5 α1 - - -

3 um+
√

gh+α2
1 um−

√
gh+α2

1 um+
√

3
7 α1 um−

√
3
7 α1 um - -

4 um+
√

gh+α2
1 um−

√
gh+α2

1 um+
√
( 1

3 − 2
3
√

7
)α1 um−

√
( 1

3 − 2
3
√

7
)α1 um+

√
( 1

3 +
2

3
√

7
)α1 um−

√
( 1

3+
2

3
√

7
)α1 -

5 um+
√

gh+α2
1 um−

√
gh+α2

1 um+
√

15−2
√

15
33 α1 um−

√
15−2

√
15

33 α1 um+
√

15+2
√

15
33 α1 um−

√
15+2

√
15

33 α1 um

For N=3 the third order system matrix of the HSWME is given by

AH =




0 1 0 0 0

gh−u2
m− 1

3 α2
1 2um

2
3 α1 0 0

−2umα1 2α1 um
3
5 α1 0

− 2
3 α2

1 0 1
3 α1 um

4
7 α1

0 0 0 2
5 α1 um




.

And again the propagation speeds from Theorem 3.3 coincide with the propagation
speeds from [27]:

λ1,2=um±
√

gh+α2
1,

λ3,4=um±
√

3

7
α1,

λ5=um.

For N=0,··· ,5, Table 3 shows the eigenvalues of the corresponding modified matrices
for larger order models. Interestingly, the eigenvalues EV 1 and EV 2 seem to be correct
estimates for the maximum and minimum speeds in the system, which is a hint at the
fact that the original numerical method used in [27] was not a bad choice. However,
a full Riemann solver would still need to use the intermediate eigenvalues EV 3 – EV
(N+2).

The previous proofs give rise to a different regularization that allows for slightly more
changes in the equations with the benefit of more flexibility with respect to the propaga-
tion speeds, which can be chosen almost arbitrarily. This approach will be discussed in
the next section.

3.2 β-Hyperbolic Shallow Water Moment Equations (β-HSWME)

We have seen that the HSWME propagation speeds are real even for a large number of
equations in contrast to the SWME model. However, the eigenvalues λi for i>2 are only
obtained due to the simplifications of the model. They are bounded by the propagation
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speeds of the first order system but have no direct physical interpretation. In order to
investigate the accuracy of the model in comparison to other possibly hyperbolic shal-
low water moment models, we want to derive other models having slightly different
propagation speeds.

So we want to extend the HSWME approach towards more flexibility with respect to
the propagation speeds and obtain a model with specific propagation speeds by allowing
for small changes in the last equation of the system.

We note that even though the SWME are derived from first principles, it relies on a
closure and is thus an approximation. The HSWME are indeed only an approximation
of the physical process. We now want to see if it is possible to make more changes to
the equations to obtain different properties and still achieve comparable accuracy. The
numerical investigation then shows how accurate the model is. If the differences between
the models are small, we could conclude that the approximation does not influence the
accuracy. This would also mean that the moment approach in general is robust with
respect to changes of the equations.

The main idea of the generalized β-HSWME for arbitrary N is to add parameters βi

so that the modified system matrix has predefined propagation speeds. Each parameter
βi is added to the ith element of the last row of the modified matrix AH from Eq. (3.1).
This way, the matrix is changed as little as possible only in the last row corresponding to
the evolution equation for the last expansion coefficient, which should ideally be small
in any case. Following Theorem 3.1, this defines

Aβ =




1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1
1
3 α1 um

. . .
. . .

. . . N+1
2N+1 α1

β1 . . . βN βN+1+
N−1

2N−1 α1 βN+2+um




. (3.4)

The βi could have been added differently to the matrix. However, adding all βi to the
last row does not further change the mass balance equation and all the other equations
except the last. This means that mass conservation is still satisfied, while the momentum
conservation is satisfied linearly around the linearization point. We will later give a very
simple choice of all βi for which the matrix is indeed hyperbolic with additional Legendre
eigenvalues.

Remark 3.2. Changing only the last entry of the system matrix is a well-known technique
in moment models, where the last equation encodes the moment closure which is neces-
sary because the moment expansion in Eq. (2.5) can in general be infinite. This leads to
an infinite and coupled system that has to be closed somehow. See e.g. [2, 31, 38] for dif-
ferent moment closures. This could also include changes such that the system has other
desirable properties like hyperbolicity, or conservation of higher order moments.
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3.2.1 Hyperbolicity proof for arbitrary but distinct eigenvalues

In this subsection it will be shown that there exists a unique solution for the parameters
βi for any given set of N+2 distinct eigenvalues of the matrix Aβ.

Lemma 3.1. Let Aβ∈R(N+2)×(N+2) from (3.4) with N≥2,

χ(λ,β1,··· ,βN+2)

the characteristic polynomial of Aβ and

S(λ,b1,··· ,bN+2)=(−1)N+2(λ−b1)(λ−b2)···(λ−bN+2)

a polynomial with roots bi, i=1,··· ,N+2.
Then there exists a unique solution for the parameters βS

i so that the characteristic polynomial
matches the target polynomial, i.e.

χ(λ,βS
1 ,··· ,βS

N+2)=S(λ,b1,··· ,bN+2).

Proof. Aβ only has one non-zero upper diagonal. We compute the characteristic polyno-
mial expanding the determinant with respect to the last column.

χ(λ,β1,··· ,βN+2)=det(Aβ−λI)

=− N+1

2N+1
α1 det(MN+1,N+2)+(βN+2+um−λ)det(MN+2,N+2),

with Mi,j being the corresponding minors. Continuing to expand the determinants along
the last column, one can easily see with (3.4) that the characteristic polynomial of the
matrix Aβ will be of the form

χ(λ,β1,··· ,βN+2)=(−1)N+2λN+2+aN+2(βN+2)λ
N+1

+aN+1(βN+2,βN+1)λ
N+···+a0(βN+2,··· ,β1),

where the coefficients aj depend only linearly on the parameters βi with i≥ j, since ev-
ery parameter appears in the matrix only once. Following the fundamental theorem of
algebra, the polynomial χ(λ,βN+2,··· ,β1) can be expressed by its roots in C. Now we set

χ(λ,β1,··· ,βN+2)=S(λ,b1,··· ,bN+2).

Since the coefficients aj depend only linearly on βi, the equation can be solved uniquely

by matching coefficients resulting in the values for βS
i .

Remark 3.3. Note that the previous proof only works if all βi are added to different
columns, otherwise there would be multiplicative terms in βi so that the unique solution
might not exist.
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We use the previous Lemma 3.1 to show the hyperbolicity of Aβ.

Theorem 3.4. There always exists a set of parameters βS
1 ,··· ,βS

N+2 so that the system

∂V

∂t
+Aβ

∂V

∂x
=P

is globally hyperbolic with βi=βS
i for N≥2 and the eigenvalues match the given pairwise distinct

real roots bi, for i=1,··· ,N+2.

Proof. Choosing the target roots bi before setting the target characteristic polynomial as
S(λ)=(−1)N+2(λ−b1)(λ−b2)···(λ−bN+2), and using Lemma 3.1 by setting

χ(λ,β1,··· ,βN+2)=S(λ),

we get a unique solution βS
i for each set of parameters bi. The system matrix Aβ with

βi = βS
i has real eigenvalues b1,··· ,bN+2. Since all eigenvalues are distinct, the system is

globally hyperbolic.

3.2.2 System matrix Aβ of β-HSWME

The proof shown above is a constructive proof. Therefore the following algorithm can be
performed to obtain the hyperbolic system matrix of the β-HSWME with the propagation
speeds b1 ···bN+2:

1. Add parameters βi to the last row of the system matrix of HSWME to obtain the
matrix Aβ and calculate the characteristic polynomial χ(λ,β1,··· ,βN+2).

2. Choose target propagation speeds bi that should be the desired eigenvalues of the
system matrix. See Remark 3.5 for more details.

3. Solve for the uniquely defined βi by matching coefficients of the target poly-
nomial S(λ) = (−1)N+2(λ−b1)···(λ−bN+2) and the characteristic polynomial
χ(λ,β1,··· ,βN+2).

4. Insert the solution βi to obtain the explicit Aβ.

3.2.3 Example for β-HSWME using Legendre eigenvalues

For an example of the β-HSWME model for ≥ 2 we follow the steps from the previous
section and choose shifted and scaled Legendre roots as target propagation speeds.



J. Koellermeier and M. Rominger / Commun. Comput. Phys., x (20xx), pp. 1-47 23

1. Adding parameters βi to the last row of AH leads to Aβ

Aβ=




1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1
1
3 α1 um

. . .
. . .

. . . N+1
2N+1α1

β1 . . . βN βN+1+
N−1

2N−1 α1 βn+2+um




and the characteristic polynomial χ(λ,β1,··· ,βN+2) can be computed using some
numerical algebra software.

2. For the desired eigenvalues bi of the system, we use the following example:

b1=um−
√

gh+α2
1,

b2=um+
√

gh+α2
1,

bi+2=um+ci,Nα1, i=1,··· ,N,

where ci,N is the i−th root of the Legendre polynomial of degree N, symmetri-
cally placed within the interval [−1,1]. This means that all eigenvalues bi are real.

Furthermore, all eigenvalues are within the interval [um−
√

gh+α2
1,um+

√
gh+α2

1],

which corresponds to the propagation speeds of the first order SWME.

3. Matching coefficients of the characteristic polynomial χ(λ,β1,··· ,βN+2) and the tar-
get polynomial S(λ) = (−1)N+2(λ−b1)···(λ−bN+2), we can compute the unique
solution of values βi according to Theorem 3.4. For this example, the simple solu-
tion reads

βi =0, i 6=N+1,

βN+1=
N2−N

2N2+N−1
α1.

The regularization entry βN+1 is monotonically increasing and bounded by the
limit

lim
N→∞

βN+1=
1

2
,

leading to a small change in the last equation of the system even for large N.
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4. The new system matrix reads

Aβ=




1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1
1
3 α1 um

. . .
. . .

. . . N+1
2N+1α1

2N2−N−1
2N2+N−1

α1 um




. (3.5)

The modified entry in the last row is bounded by 1.

We summarize the result of the example above in the following theorem.

Theorem 3.5. The β-HSWME model with only non-zero parameter

βN+1=
N2−N

2N2+N−1
α1

is hyperbolic with eigenvalues

λ1,2=um±
√

gh+α2
1,

λi+2=um+ci,N ·α1, i=1,··· ,N,

where ci,N is i−th root of the Legendre polynomial of degree N on [−1,1] for all feasible orders of
at least up to N0=100.

Proof. Analogously to Theorem 3.3, we directly get the first two eigenvalues and the re-
maining eigenvalues can be obtained with the help of the submatrix

A
β
2 =




c2

a2
. . .

. . . cN

βN+1+aN




,

with βN+1=
N2−N

2N2+N−1
α1.

By numerical computation up to large order (we have conducted numerical tests up
to order N0 =100), we show that the characteristic polynomial is the same as the Legen-
dre polynomial of order N. The remaining roots of Aβ are thus given according to the
Legendre roots ci,N of order N by um+ci,N ·α1.
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Remark 3.4. For N=1, SWME, HSWME and β-HSWME are equivalent.
For N=2, the β-HSWME model uses two non-zero parameters given by

β1=−4

9
α2

1, β3=
2

9
α1,

and the hyperbolicity proof including the eigenvalues of the system can be easily done
by direct computation of the eigenvalues.

Table 4 summarizes the model hierarchy including the maximal order N so that
the corresponding system is hyperbolic and the respective structure of the propagation
speeds. The standard SWE correspond to N = 0. The SWME derived as an extension of
the shallow water equations are hyperbolic up to order N=1 and do not yield an analyt-
ical formula for the eigenvalues. The new HSWME are hyperbolic for all tested N ∈N,
with N≤150 and the structure of the propagation speed can be computed. Based on that,
the new β-HSWME is hyperbolic for all N ∈N and yields almost arbitrary propagation
speeds, with one example illustrated in this section.

Table 4: Model hierarchy overview including hyperbolicity and eigenvalue structure.

model hyperbolic for propagation speeds

SWE N=0 λ1,2=um±
√

gh

SWME only N≤1 not analytical

HSWME at least N≤150
λ1,2=um±

√
gh+α2

1,

λi+2=um+bi ·α1 for fixed bi∈R

β-HSWME N∈N arbitrary, e.g.
λ1,2=um±

√
gh+α2

1,

λi+2=um+ci,N ·α1 for ci,N ∈R

Remark 3.5. In this paper, we focus on one choice for the propagation speeds for the
β-HSWME model. However, different choices are possible. In the given realisation of
the β-HSWME model, the propagation speeds are chosen in accordance to the following
points:

1. The model should include the underlying shallow water model in equilibrium, i.e.
um±

√
gh should be obtained for vanishing coefficients

2. The model should be invariant with respect to changes in um, i.e. um is an additive
term in all eigenvalues.

3. The remaining part of the propagation speeds should depend on α1.

4. The model should reflect the choice of the basis functions, which are Legendre func-
tions in this case.
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Points 1 and 2 are obvious from the underlying SWE. Point 3 seems reasonable as the
underlying HSWME model contains only α1 as higher order variable in the matrix and
especially the lower rows of the matrix. Point 4 is chosen to resemble similar moment
models from rarefied gases, where the discretization using Hermite polynomials leads
to shifted and scaled Hermite roots as propagation speeds [22]. Different choices are
possible, especially in other applications of moment models, other underlying models or
discretizations, but this is beyond the scope of this paper.

3.3 Physical interpretation of hyperbolic regularizations

Both the HSWME and the β-HSWME model succeed in overcoming possible stability
problems of the SWME model by guaranteeing that the eigenvalues of the new models
are always real. However, additional changes might impact the physical properties of
the model. We want to emphasize that both the HSWME and the β-HSWME model do
not modify the two most important propagation speeds um±

√
gh, which belong to the

underlying shallow water equations. The conservation of mass is not altered and the
momentum equation is simplified by removing the some nonlinear terms correspond-
ing to the higher order coefficients αi for i > 1. This leads to less back coupling of the
higher order coefficients/equations to the lower order equations for mass and momen-
tum, and similarly for the other equations in between. In numerical computations of
moment equations, we can expect a structure of subshocks that reflects the hyperbolic
nature of the system. The new, hyperbolic models use less term for the back coupling of
the higher order coefficients to the lower order coefficients, especially in relation to the
friction terms on the right hand side, which remain unchanged. It thus seems reasonable
that the subshocks for the HSWME and β-HSWME model are reduced. In other words,
the subshocks in higher order coefficients do not influence the lower order coefficients
as much as in the SWME model. In cases, where the higher order coefficients are differ-
ent from zero, the HSWME and β-HSWME models are thus expected to give smoother
results. One example is the test case, where the SWME model suffered instabilities in
Fig. 7.

The model is still highly nonlinear. The differences of SWME and the new models are
only in the nonlinear terms of higher order. Those terms small in case of small deviation
from linear velocity profiles. Despite the reduced back coupling, the effect of α1 on the
other equations remains largely unchanged. In cases of linear velocity profiles or small
deviations thereof, the introduced approximation is thus believed to result in small errors
from the original model. In cases, where the velocity profile is deviating significantly
from a linear (or constant) profile, for example in cases of very large N and large values
of the higher order coefficients, the approximation quality will obviously deteriorate.
We note that this represents a difficult test case anyway, as large high order coefficients
correspond to highly non uniform velocity profiles. However, for the typical use case
of small N and reasonably complex (i.e. linear or small deviations) velocity profiles, the
new HSWME and β-HSWME models might give satisfactory results with guaranteed
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hyperbolic equations.
The additional term in the last row of the β-HSWME model leads to an increased

influence of αN−1 on the evolution of the last coefficient αN . This also means that infor-
mation propagates faster from the lower order equations to the last equation. In order to
satisfy the last balance law equation, it is thus not necessary for the last coefficient αN to
show too much variation. By means of the limited back coupling, this feeds back into the
equation for αN−1 and is expected to smooth the equation there.

We will come back to these interpretations when looking at the results of the HSWME
and the β-HSWME model in comparison with the SWME model in Section 4.

3.4 Linear Stability Analysis

In this section the SWME, the HSWME and the β-HSWME with the Legendre target poly-
nomial from the example of the previous Section 3.2.3 shall be analyzed with respect to
their linear stability. Linear stability is a crucial property of moment models, as also in-
vestigated in [11]. We assume a small perturbation δ=Vpert−V0 around a linearization
point V0 and consider the linearized system

∂δ

∂t
+A(V0)

∂δ

∂x
=

∂P(V0)

∂V
δ. (3.6)

The right hand side of the linearized system is obtained from the right side of Eq. (2.9)
using the linearization

P(Vpert)=P(V0)+
∂P(V0)

∂V
(Vpert−V0)+O

(
(Vpert−V0)

2
)
≈P(V0)+

∂P(V0)

∂V
δ,

so that P(δ)= P(Vpert−V0)≈ ∂P(V0)
∂V δ. As system matrices A(V0) we use the matrices A,

AH, and Aβ from (2.12), (3.3) and (3.5) evaluated at V0.
For the perturbation we use a wave ansatz

δ= cei(kx−ωt)= ceikxe−iωt,

where c∈RN+2 is the amplitude of the wave, k∈R is the wave number and ω∈C is the
complex frequency. Since δ represents the perturbation from the perturbation point V0,
the imaginary part of the frequency Im(ω) should not be positive for stability in time, i.e.

Im(ω)≤0. (3.7)

Plugging the perturbation into Eq. (3.6) and rearranging gives

0=−iωδ+ikA(V0)δ−
∂P(V0)

∂V
δ

=

(
−iω I+ikA(V0)+

∂P(V0)

∂V

)
δ.
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Table 5: Fixed values of the ground state V0 for linear stability analysis.

h um α1 α2 g ν λ k

1 0.25 0 0 1 0.1 0.1 1

By multiplying with −i we get

0=

(
ω I−kA(V0)+i

∂P(V0)

∂V

)
δ.

So that ω needs to be an eigenvalue of −kA(V0)+i ∂P(V0)
∂V for non-trivial solutions.

Investigating the eigenvalues of this matrix, we check if the condition (3.7) for ω is
fulfilled. We focus on the case N = 2, the other systems can be treated in the same way
yielding similar results.

We choose the values of V0 and additional coefficients as presented in Table 5 accord-
ing to the values in the simulation of [27].

We then use α1 and α2 as perturbations from the linearization point and analyze the
eigenvalues of the system.

In Fig. 8, the beige regions show the stable regions, while the blue regions show the
unstable regions.

We see that the SWME, HSWME, and β-HSWME are all linearly stable for small val-
ues of α1 and α2.

4 Numerical simulation

We first demonstrate that the HSWME and β-HSWME models overcome the stability
problems of the SWME model shown in Fig. 7 and then test the HSWME and β-HSWME
models numerically using the smooth test case from [27] and another non smooth dam
break test case.

We choose the moment order up to N = 4 and compare it with the original SWME
system and a reference solution from [27]. The numerical simulations are performed us-
ing the path-conservative numerical UPRICE method given in [36] as explained before.
We emphasize that a direct Roe solver, for example as described within [22], does break
down for SWME in case of hyperbolicity loss. We note that the new models HSWME and
β-HSWME are significantly easier to implement and to solve, as the hyperbolic regular-
ization reduces the number of non linear terms drastically for the larger values of N. The
β-HSWME has effectively the same runtime as the HSWME model.

4.1 Overcoming instability of SWME

First we repeat the test case from Section 2.3, where the SWME showed instabilities in the
first coefficient α1. The simulations for HSWME and β-HSWME use the same settings as
for SWME given in Table 1. The results are shown in Fig. 9.
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(a) SWME (b) HSWME

(c) β-HSWME

Figure 8: Linearly stable (beige) and unstable (blue) regions for SWME (top left), HSWME (top right) and
β-HSWME (bottom) depending on α1 and α2 (see Table 5).

The results for the water height h in Figs. 9(a) and 9(b) show only small differences
for the new hyperbolic models. However, both models (on top of each other) have a
smoother behavior at the plateau for x∈ [0,0.12] for t=0.05 and for x∈ [0,0.25] for t=0.05,
respectively. This coincides with the interpretation in Section 3.3. The changing values in
the higher order variables apparently do not influence the water height as much as in the
SWME model due to the reduced back coupling. This can be interpreted as a regularizing
effect of the model, as the additional sub shock in the SWME model can be unphysical
and lead to the oscillations visible for α1. The mean velocity um is visually the same for
all models. For the first coefficient in Figs. 9(e) and 9(f) we now see the same regulariz-
ing effect mentioned earlier. The oscillations of the SWME model are greatly reduced if
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(a) h, t=0.05 (b) h, t=0.1

(c) um, t=0.05 (d) um, t=0.1

(e) α1, t=0.05 (f) α1, t=0.1

Figure 9: Unstable dam break simulation of SWME, HSWME, β-HSWME for N = 3 and different times.
Reference solution with settings from [27].
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not completely removed in the new hyperbolic models due to the changed behavior ex-
plained in Section 3.3. The β-HSWME model largely coincides with the HSWME model
but indeed leads to an even smoother α1 as visible in Fig. 9(f) and again consistent with
the interpretation in Section 3.3.

As a summary of the test case we can say that both the HSWME and β-HSWME model
succeed in reducing the oscillations of the SWME model and yield accurate results for this
particularly difficult test case.

4.2 Simulation of a smooth periodic wave

Next, we focus on a smooth test case simulating water waves moving in a periodic do-
main, repeating the test setup in [27], given in Table 6 with linear velocity profile.

Table 6: Simulation setup for smooth periodic wave test case.

friction coefficient λ=0.1

slip length ν=0.1

temporal domain t∈ [0,2]

spatial domain periodic x∈ [−1,1]

spatial resolution nx =1000

initial height h(x)=1+exp(3cos(π(x+0.5)))/exp(4)

initial velocity u(0,x,ζ)=0.25ζ

CFL number ≈0.7

numerical scheme UPRICE implementation [21, 36]

After the start the initial bump will lead to two traveling waves, moving left and right,
respectively, and then colliding with the respective waves from the other side of the pe-
riodic domain. We compare the results at tend=2 when the waves have collided twice. A
reference solution using a vertically resolved shallow water model with piecewise con-
stant discretization in z-direction is taken from [27].

The results of the smooth test case are shown in Fig. 10 for variables h and um and all
models up to N=4 for SWME, HSWME and β-HSWME. It is evident from this figure that
all models seem to converge. Increasing N leads to more accurate simulations and the
solution already shows very good agreement with the reference solution, starting from
N = 2 for all models. This shows that the HSWME and the β-HSWME succeed in the
accurate description of this test case, despite their changes and simplifications. Even for
larger N the new hyperbolic models do not result in visibly bad accuracy.

Taking a closer look at a direct comparison of the models in Fig. 11, exemplarily for
N = 4, we see no differences in h and um, whereas α1 shows a small deviation from the
reference solution for HSWME and β-HSWME (on top of each other). We conclude that
the changes in the terms of the HSWME and β-HSWME models do not influence the
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(a) SWME, h (b) SWME, um

(c) HSWME, h (d) HSWME, um

(e) β-HSWME, h (f) β-HSWME, um

Figure 10: Smooth test case from [27] for SWME, HSWME and β-HSWME for varying N and t=2.
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(a) h (b) u

(c) α1

Figure 11: Smooth test case from [27] for SWME, HSWME and β-HSWME, N=4 and t=2.

quality of the solution for this test case. The hyperbolic models successfully approximate
the macroscopic variables h and um with no differences.

In Fig. 12, we display the convergence of the relative error in water height and velocity
with increasing N. We can clearly see the error reduction with respect to increasing N
throughout all models. We note that for N = 0,1 all models are equal and thus result in
the same error, as depicted. For N ≥ 3, the SWME model results in a slightly smaller
error. However, the hyperbolic models also yield reduced errors. It is expected that the
linearization for the HSWME model leads to some small additional model errors that can
especially be seen for larger N, where the SWME model benefits from its full nonlinearity
depending on more variables. However, the global hyperbolicity of HSWME and β-
HSWME might counteract this effect, especially for N=2, where the SWME in fact yields
a slightly larger error. The overall error is below 1% for the higher order models and
thus very small, especially in comparison to the standard shallow water model N=0 that
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Figure 12: Error convergence of smooth test case from [27] for SWME, HSWME and β-HSWME.

leads to errors in the order of 10% for the height h and the mean velocity um, respectively.

As a summary of this smooth test case we can say that both the HSWME and β-
HSWME model converge to the same solution as the original SWME model and espe-
cially the water height and mean velocity show no visual difference. We remark that de-
spite the changes in the equations, the model error is almost the same for all models. This
means that the moment model is in general not sensitive to changes of the equations and
the moment approach thus seems a good approach for modeling shallow water flows.

4.3 Simulation of dam break problem

Since the new HSWME and β-HSWME showed good behavior for a periodic test case
and smooth initial conditions, we want to investigate if the models also converge for
discontinuous initial conditions, which typically pose more difficulties, especially for
non-conservative systems. We show results for a dam break problem, where an initial
discontinuity is propagated through the domain.

The test setup in Table 7 is similar to the case with demonstrated instabilities, but we
choose a stable test case to allow for fair comparison with the SWME model.

Fig. 13 shows the results of the dam break problem for h, um and α1, all models and
order up to N=5. In the left column, we see convergence of the SWME model, whereas
the right column shows the HSWME results. The β-HSWME largely coincide with the
HSWME model and are thus not shown in this figure.

As before both the SWME and HSWME models show good numerical results com-
pared to the reference solution of a vertically resolved system, computed with the soft-
ware from [27]. The accuracy is improved by increasing the number of moments, starting
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(a) SWME, h (b) HSWME, um

(c) SWME, h (d) HSWME, um

(e) SWME, α1 (f) HSWME, α1

Figure 13: Small dam break test case for SWME and HSWME (β-HSWME practically identical), varying N
and t=0.2.
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Table 7: Simulation setup for dam break test case.

friction coefficient λ=0.1

slip length ν=0.1

spatial domain x∈ [−1,1]

spatial resolution nx =1000

initial height h(x)=

{
1.5 if x≤0,

1 if x>0

initial velocity u(0,x,ζ)=0.25ζ

CFL number ≈0.7

numerical scheme UPRICE implementation [21, 36]

with N=1. The fact that we observe no visual difference between the three models again
indicates that the changes introduced by the HSWME and the β-HSWME do not have a
large influence on the accuracy of the model while being sufficient to guarantee hyper-
bolicity.

Fig. 14 shows the relative error in water height and velocity for this test case. We
can clearly see a fast error reduction with increasing order N for all involved models.
Again we note that all models are equivalent for N = 0,1. For a larger number of mo-
ments the accuracy of the new hyperbolic models is the same as for the SWME, while
still reducing the error below 1% in contrast to the SWE model N = 0, which shows a

Figure 14: Error convergence of dam break test case for SWME, HSWME and β-HSWME.



J. Koellermeier and M. Rominger / Commun. Comput. Phys., x (20xx), pp. 1-47 37

substantially larger error. We thus see that the new hyperbolic models succeed in yield-
ing the desired accuracy while preserving the hyperbolicity of the model. However, the
differences in the higher order results are smaller than in the smooth test case from the
previous section. This is despite the discontinuity in the initial data. Again it seems that
the moment method in general seems to be quite robust when it comes to slight changes
of the equations, which increases usability and credibility of the approach.

As a summary of this test case we can say that also for discontinuous data the models
seem to converge to the reference solution. All models yield relatively similar results in
this case which hints at the fact that the moment method itself seems to be very robust in
this application.

5 Conclusion

In this paper we successfully derived hyperbolic moment approximations of shallow wa-
ter flows for higher orders that yield good accuracy compared to existing models and
reference solutions as demonstrated by numerical simulations.

After a brief introduction the derivation of the SWME was reviewed and we showed
the lack of hyperbolicity, a breakdown of hyperbolicity for the SWME in simulations us-
ing an explicit example as initial state, and pointed out arising instabilities in a numerical
solution.

Using this motivation we introduced the hyperbolic shallow water moment equa-
tions HSWME, based on a linearization of the system matrix around a linear deviation
from equilibrium. After a detailed analysis, we could prove global hyperbolicity even
for larger number of equations and give the analytical form of the equations including
formulas for the eigenvalues.

Based on the HSWME, we allowed more flexibility by deriving a second hyperbolic
model called β-HSWME as a generalization of the HSWME. We gave an algorithm, so
that for a given set of real and distinct eigenvalues there exists a unique solution for
the parameters βi so that the system matrix adopts these eigenvalues and hence becomes
hyperbolic for all orders N∈N. We provide a physical interpretation of the new HSWME
and β-HSWME in comparison to the SWME model and linear stability of all moment
models was shown in a domain around equilibrium.

We could show that the new hyperbolic models successfully remove the oscillations
observed in the numerical solutions before. In two additional simulations of a smooth
periodic test case and an initially discontinuous dam break test case, we could show the
good agreement of the solution of our new hyperbolic models HSWME and β-HSWME
in comparison with the existing SWME and a reference solution. With increasing the
number of moments we saw an error reduction and even smaller errors than for the
SWME for some cases.

We conclude that the new HSWME and β-HSWME are two successful new models for
the simulation of complex shallow flows that allow for variations of the vertical velocity
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while providing necessary global hyperbolicity and still resulting in good numerical ac-
curacy together with significant speedup with respect to the reference model.

Despite the changed equations, all models yield similar results which means that the
moment method in general seems to be quite robust, which increases its usability and
credibility.

Further work should focus on extension of the hyperbolic shallow water moment
models to other applications, e.g. granular flows or multi-dimensional problems. An-
other possibility could be the investigation of the shallow water moment equations for
strongly enforced boundary conditions. Due to the general form of the β-HSWME it
could be beneficial to explore different choices of propagation speeds to obtain suitable
models.
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Appendices

A Proof of explicit HSWME system matrix AH

Theorem A.1. The HSWME system matrix AH is given by

AH =




1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1
1
3 α1 um

. . .
. . .

. . . N+1
2N+1 α1

N−1
2N−1 α1 um




,

where all other entries are zero.

Proof. The Jacobian matrix AH is computed by taking the derivative of the flux function,
subtracting the left-hand side non-conservative terms, and then setting the higher order
moments to zero. The proof will consider the mass and momentum equation and the
equations for αi separately. The latter are further divided into the non-conservative and
conservative parts.
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1. The mass and momentum equations

The first two rows of the coefficient matrix corresponding to mass and momentum bal-
ance equations can be easily determined as

(
1

gh−u2
m− 1

3 α2
1+∑

N
i=2α2

i 2um
2
3 α1

2
5 α2 ··· 2

2N−1 αN−1
2

2N+1 αN

)
.

When setting all the higher moments to zero, the remaining part is given by

(
1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

)
. (A.1)

2. The equations for αi

We first show the general structure of this part of the matrix.
Recall that the (i+2)th equation of the system with i≥1 is given by (2.6)

∂(hαi)

∂t
+

∂F̃i

∂x
= Q̃i+Pi.

The system matrix AH is thus composed of terms from ∂F̃i
∂x and Q̃i. We will consider the

two terms separately.

2.1. The conservative part ∂F̃i
∂x

Recall from (2.7) that

F̃i=h2umαi+h
N

∑
j,k=1

(2i+1)
∫ 1

0
φiφjφkdζ

︸ ︷︷ ︸
Bijk

αjαk.

We further consider the first term h2umαi and the second term including Bijk sepa-
rately.

Using all α={α1,···αN} and setting all higher variables αi=0, for i≥2 in the coefficient
matrix of the first term leads to

∂(2humα)

∂V
=




−2umα1 2α1 2um

. . .

2um


. (A.2)

Now we will consider the second term

h
N

∑
j,k=1

(2i+1)
∫ 1

0
φiφjφkdζ

︸ ︷︷ ︸
Bijk

αjαk.



40 J. Koellermeier and M. Rominger / Commun. Comput. Phys., x (20xx), pp. 1-47

We will first simplify this the integral over the Legendre polynomials and than again take
the derivative with respect to the conservative variables V.

Therefore, assume j = 1. For the triple Legendre integral, we use that if i+ j < k or
i+k< j or j+k< i, then ∫ 1

0
φiφjφkdζ=0.

For the proof see e.g. [17]. Let i be fixed, then from i+1< k and i+k< 1 and 1+k< i it
follows that only for i−1≤k≤ i+1, the integral can become non-zero. Therefore, we take
a closer look at the three cases, k= i, k+1= i and k−1= i.

For the first case k= i the integral is zero. This is because in [17] it is shown that the
integral vanishes if (j+i+k) mod2 6=0. For j=1 that precisely happens for the first case
of k= i since then (j+i+k) mod2=(1+2k) mod2=1. Therefore, if j=1, only case 2 (i.e
k+1= i) and case 3 (i.e. k−1= i) need to be considered.

The same can be shown for k=1 and an arbitrary j analogously due to commutativity
of the sum and the integral.

Using this, we can pull out the second and third case from the sum. This results in

h
N

∑
j,k=1

(2i+1)
∫ 1

0
φiφjφkdζαjαk =h

N

∑
j,k=2

Bijkαjαk

︸ ︷︷ ︸
first term

+2Bi,1,i−1hα1αi+1︸ ︷︷ ︸
second term

+2Bi,1,i+1hα1αi−1︸ ︷︷ ︸
third term

. (A.3)

Notice that due to the commutativity of the integral and multiplication of the αi for the
second term Bi,1,i+1hα1αi−1=Bi,i+1,1hαi−1α1 and analogously for the third term. Therefore,
the factor 2 appears.

To obtain the entries of our system matrix, we take the derivative of all three terms of
the right hand side with respect to h, hum, and (hαl) for l≥1:

1. Consider the first term of (A.3):

∂
(

h∑
N
j,k=2 Bijkαjαk

)

∂(hαl)
=

N

∑
j,k=2

Bijk

∂(hαjαk)

∂(hαl)
=

N

∑
j,k=2

Bijk(αjδk,l+αkδj,l),

with δi,j being the Kronecker delta. One can see that for every i, j and k, these terms
always depend on αm with m≥ 2 or are equal to zero. The same can be observed
when taking the derivative with respect to h and to hum. Therefore all terms reduce
to 0 when setting all αm = 0. Similarly, all terms reduce to zero when taking the
derivative with respect to h and hum and setting αm =0.

2. Consider the second term of (A.3):

∂(2Bi,l,i−1hα1αi−1)

∂(hαl)
=2Bi,l,i−1αi−1δ1,l+2Bi,l,i−1α1δi−1,l.
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Notice that Bi,l,i−1αi−1δ1,l vanishes for i>2 when setting αi=0 for i≥2. Furthermore,
when taking the derivative with respect to h and hum from Bi,l,i−1αi−1δ1,l only one
additional non-zero term appears in the first column of the system matrix. This
non-zero term evaluates to − 2

3 α2
1. All other terms depend on αi with i≥ 2 and are

therefore set to zero.

The term Bi,l,i−1α1δi−1,l will only be non-zero for i−1 = l. Leading to a non-zero
entry on the first lower diagonal, which we call aF

i .

The entry aF
i can be computed for i = 2,··· ,N using orthogonality and recursion

formulas of the Legendre polynomials by

aF
i =2(2i+1)

∫ 1

0
φiφ1φi−1dζα1

=2(2i+1)
∫ 1

0
φi(1−2ζ)φi−1 dζα1

=
2i

2i−1
α1.

3. The third term of (A.3) leads to a corresponding entry on the first upper diagonal,
which we call cF

i+1. Analogously, this entry cF
i+1 can be computed for i=1,··· ,N−1

using orthogonality and recursion formulas of the Legendre polynomials by

cF
i+1=2(2i+1)

∫ 1

0
φiφ1φi+1dζα1

=2(2i+1)
∫ 1

0
φi(1−2ζ)φi+1 dζα1

=
2i+2

2i+3
α1.

Together with the mass and momentum equation of (A.1) and the results from the
first term (A.2) we get for the coefficient matrix ∂F

∂V mod
:

∂F

∂V mod
=




1

gh−u2
m− 1

3 α2
1 2um

2
3 α1

−2umα1 2α1 2um
4
5 α1

− 2
3 α2

1
4
3 α1 2um

. . .
. . .

. . . 2N
2N+1 α1

2N
2N−1 α1 2um




.

2.2. The non-conservative part Q̃i

Recalling (2.8), the (i+2)th row uses
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Q̃i=um
∂(hαi)

∂x
−

N

∑
j,k=1

(2i+1)
∫ 1

0
φ′

i

(∫ ζ

0
φj dζ̂

)
φk dζ

︸ ︷︷ ︸
Cijk

·αk

∂(hαj)

∂x
,

and we investigate the first and the second term separately. The first term obviously
leads to the term um on the diagonal of Q.

We can simplify the second term of Q̃i for the case αi=0, for i≥2, since it is multiplied

with
(hαj)

∂x αk. Independently of j, each term will become zero for k 6=1, since all αk =0 for
2≤ k≤N. Therefore, only the term

N

∑
j

(2i+1)
∫ 1

0
φ′

i

(∫ ζ

0
φjdζ̂

)
φ1dζ

︸ ︷︷ ︸
Cij1

∂(hαj)

∂x
α1

needs to be considered.
Analogously to the previous conservative part, it turns out that Cij1 = 0 for |i− j| 6= 1

and Bij1 6=0 for |i− j|=1 except for the first two rows.

Since Q̃i does not depend on any derivative with respect to h and um, the first two
columns of Q are always zero. The first two rows of Q will also be zero, which consis-
tently means that the mass and momentum equations do not contain non-conservative
terms.

We thus get one non-zero term cQ
i+1 on the first upper diagonal and one term aQ

i on
the first lower diagonal, as follows:

aQ
i =(2i+1)

∫ 1

0
φ′

i

(∫ ζ

0
φi−1dζ̂

)
φ1dζα1

=
i+1

2i−1
α1

and

cQ
i+1=(2i+1)

∫ 1

0
φ′

i

(∫ ζ

0
φi+1dζ̂

)
φ1dζα1

=
i

2i+3
α1.

This results in the following Qmod:

Qmod=




um
1
5 α1

3
3 α1 um

. . .
. . .

. . . N−1
2N+1α1

N−1
2N−1α1 um




.
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The system matrix is then given by

AH =
∂F

∂V mod
−Qmod

which completes the proof.

B Proof of characteristic polynomial of HSWME matrix AH

Theorem B.1. The HSWME system matrix AH∈R(N+2)×(N+2) (3.1) has the following charac-
teristic polynomial

χA(λ)=
(
(λ−um)

2−gh−α2
1

)
·χA2

(λ−um),

where the matrix A2∈RN×N is defined as follows

A2=




c2

a2
. . .

. . . cN

aN




, (B.1)

with values ci =
i+1

2i+1 α1 and ai =
i−1

2i−1 α1 the values above and below the diagonal, respectively,
from (3.1).

Proof. We write AH= ÃH+um I and λ̃=λ−um, so that we can compute the characteristic
polynomial using

χA(λ)=det(AH−λI)

=det(ÃH−(λ−um)I)

=det(ÃH−λ̃I)

=:
∣∣∣ÃH−λ̃I

∣∣∣.

We use the following notation for conciseness:

d1= gh−u2
m− 1

3
α2

1, d2=
2

3
α1,

d3=−2umα1, d4=2α1,

d5=−2

3
α2

1, a2 =
1

3
α1,
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and compute
∣∣∣ÃH−λ̃I

∣∣∣ by always developing with respect to the first row

∣∣∣ÃH−λ̃I
∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ̃−um 1

d1 −λ̃+um d2

d3 d4 −λ̃ c2

d5 a2 −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−λ̃−um)

∣∣∣∣∣∣∣∣∣∣∣∣

−λ̃+um d2

d4 −λ̃ c2

a2 −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣∣∣

−1

∣∣∣∣∣∣∣∣∣∣∣∣

d1 d2

d3 −λ̃ c2

d5 a2 −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣∣∣

=(−λ̃−um)



(−λ̃+um)

∣∣∣∣∣∣∣∣∣∣

−λ̃ c2

a2 −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣

−d2

∣∣∣∣∣∣∣∣∣∣

d4 c2

−λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣




−d1

∣∣∣∣∣∣∣∣∣∣

−λ̃ c2

a2 −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣

+d2

∣∣∣∣∣∣∣∣∣∣

d3 c2

d5 −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣

=(−λ̃−um)
(
(−λ̃+um)|A2|−d2d4|A3|

)
−d1|A2|+d2(d3|A3|−c2d5|A4|),

where Ai are the following submatrices

Ai=

∣∣∣∣∣∣∣∣∣∣

−λ̃ ci

ai −λ̃
. . .

. . .
. . . cN

aN −λ̃

∣∣∣∣∣∣∣∣∣∣

. (B.2)

From (B.2), we directly obtain the recursion formula

|A4|=
1

a2c2

(
|A2|+λ̃|A3|

)
,

so that we can eliminate |A4| from the expression and factorize the remaining terms with
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respect to |A2| and |A3| as follows

χA(λ)=(−λ̃−um)
(
(−λ̃+um)A2−d2d4 A3

)
−d1 A2+d2(d3 A3−c2d5 A4)

=A2

(
λ̃2−u2

m−d1+
d5d2

a2

)
+A3

(
(λ̃+um)d2d4+d2d3+

d5d2

a2

)

= |A2|
(

λ̃2−gh−α2
1

)
+|A3|

(
(λ̃+um)2α1−um2α1−λ̃2α1

)

= |A2|
(

λ̃2−gh−α2
1

)
+|A3|·0,

where we inserted the specific terms for the variables di and a2. Going back to the stan-
dard notation χA2

= |A2|, we finally have

χA(λ)=
(
(λ−u)2−gh−α2

1

)
·χA2

(λ−u),

which completes the proof.
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