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Abstract. Computational prediction of drug-target interactions (DTI)
is vital for drug discovery. Despite modern technological advances, drug
development remains extremely expensive and time consuming. There-
fore, in silico DTI predictions based on machine learning are needed.
Here, we propose a new learning method which addresses DTI predic-
tion as a multi-output prediction task by learning ensembles of multi-
output bi-clustering trees (eBICT) on reconstructed networks. The pro-
posed approach integrates background information from both drug and
target protein spaces into the same global network framework. For evalu-
ation purposes, we used several benchmark datasets that represent drug-
protein networks. We showed that building tree-ensemble learning mod-
els with output space reconstruction leads to superior prediction results,
while preserving the advantages of tree-ensembles, such as scalability,
interpretability and inductive setting.
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1 Introduction

Predicting drug-target interactions (DTI) is vital for the development of new
drugs. Accurate and efficient identification of interactions between drugs and tar-
get proteins can accelerate the drug development process and reduce the required
cost. It also assists scientists to foresee adverse effects of drugs [4, 7]. Apart from
discovering new drugs, DTI prediction can also leverage drug repositioning [4,
2, 14, 5], which aims at revealing new uses for already approved drugs. However,
despite the efforts made by the scientific community, experimentally identifying
DTIs remains extremely time-consuming and expensive [9]. Therefore, effective
machine learning models for DTI prediction are needed.

Particularly interesting is the machine learning task of multi-output (multi-
target) prediction [13], where the model learns to predict multiple output vari-
ables at the same time. The interest in multi-output models is great for drug
discovery as we have moved from the old paradigm of ‘one target, one drug,
one disease’ to the era of polypharmacology. It is known that drugs which inter-
act with multiple target proteins are more effective [15]. Multi-output learning
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can also contribute to investigating the off-target drug activity (i.e., unintended
function of a drug), leading to new uses for existing drugs (drug repositioning)
or contrarily, the identification of unwanted side-effects. Such adverse reactions
of drug candidates are usually identified at a later stage of the drug development
process, leading to extremely expensive late stage failures.

Nowadays, the interest of the scientific community is focused on the setting
of chemogenomics [3]. The underlying idea behind this is that drug information
is integrated with target information and thereby complement each other. How-
ever, typical approaches are mostly based on matrix factorization (MF) or graph
learning, following the transductive setup (i.e. test instances are needed in the
training phase). There are also other methods that train binary classifiers over
the Cartesian product of drug and target-related feature sets. This leads to a
huge data matrix and thus, these methods are computationally very expensive.
Recently, another family of methods that draws increasing attention is GNN
based approaches, such as [17, 1].

DTI networks are bi-partite ones that consist of two sets of nodes D and P ,
corresponding to drugs and targets, respectively. Each node is represented by a
feature vector. Drug features may consist of chemical structure similarities, drug
side effects, or drug-drug interactions. Target features may consist of protein
sequence similarities, GO annotations, protein-protein interactions or protein
functions. A link between two nodes of a DTI network represents an interaction
between the corresponding drug and target. The set of existing or not existing
links form an interaction matrix Y ∈ <|D|×|P |. Every y(i, j) ∈ Y is 1 if an
interaction between di and pj exists and 0 otherwise. In Fig. 1, an illustration
of a network in the aforementioned setting is displayed.

Fig. 1. Illustration of a (bi-partite) DTI interaction network.

2 Proposed Method

The proposed approach learns bi-clustering trees with output space reconstruc-
tion (BICTR), integrating tree-ensembles with semi-supervised approaches, such
as MF. Here, we promote ensembles of bi-clustering trees (eBICT) [10] and
NRLMF [6].

min
U,V

|D|∑
i=1

|P |∑
j=1

(1 + cYij − Yij) ln [1 + exp(uiv
T
j )]− cYijuiv

T
j

+ λd||U||2F + λp||V||2F
+ αTr(UTLdU) + βTr(VTLpV)

(1)
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We first reconstruct the output space, exploiting neighborhood information, re-
vealing underlying manifolds in the topology of the DTI network (i.e. Y) and alle-
viating class-imbalance. The input of our approach is the drug feature space Xd,
the target feature space Xp, and the interaction matrix Y. We reconstruct the
DTI network by learning matrices U and V based on Eq. 1 [6]. The new interac-

tion matrix is denoted as Ŷ and every ŷij ∈ Ŷ is computed as: ŷij =
exp(uiv

T
j )

1+exp(uivT
j )

.

Next, we learn eBICT on the reconstructed output space. In more detail, the
input for every tree in our ensemble is the drug feature space Xd, the target
feature space Xp, and the reconstructed interaction matrix Ŷ. The root node
of every tree in our setting contains the whole interaction network and a par-
titioning of this network is conducted in every node. The tree growing process
is based on both vertical and horizontal splits of the reconstructed interaction

matrix Ŷ. The variance reduction is computed as V ar =
∑|P |

j V ar(Ŷj) when

the split test is on φd ∈ Xd and V ar =
∑|D|

i V ar(ŶT
i ) when the split test is on

a φp ∈ Xp.
The NRLMF-based reconstruction step of the proposed strategy boosts the

predictive performance of the eBICT while preserving all the advantages of tree-
ensembles, such as scalability, computational efficiency, and interpretability. Our
approach, despite being integrated with MF, continues to follow the inductive
setup. In more detail, the output space reconstruction process takes place only
in the training process. After the training model is complete, new instances that
may arrive (e.g., new candidate drugs) just traverse the grown bi-clustering trees
and predictions are assigned to them based on the leaves in which they end up.

3 Data and Results

The benchmark datasets [16] that were used are displayed in Table 1. Our evalua-

Table 1. The DTI networks used in the experimental evaluation are presented.

DPN |drugs| × |proteins| |Features| |interactions|

NR 54× 26 54− 26 90/1404 (6.4%)
GR 223× 95 223− 95 635/21185 (3%)
IC 210× 204 210− 204 1476/42840 (3.4%)
E 445× 664 445− 664 2926/295480 (1%)

tion study begins with comparing the proposed approach BICTR against eBICT
without output space reconstruction. Next, we compare BICTR to three state
of the art DTI prediction methods, BLMNII [8], STC [12], and NRLMF [6]. The
methods are compared in three prediction settings; Td × Lp, predicting inter-
actions between new drug candidates and known targets, Ld × Tp, predicting
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interactions between known drugs and new targets, and Td × Tp, predicting in-
teractions between new drug candidates and new targets. In Td×Lp and Ld×Tp
we used 10-fold cross validation (CV ) on nodes while in Td × Tp, we used 5-fold
CV over blocks of drugs and targets. The number of trees in tree-ensembles
was set to 100 and the weight of positive interactions c in Eq.1 to 5. All other
parameters of NRLMF, BLMNII, and STC were optimized in 5-fold CV inner
tuning (nested CV) following grid search. Additional experimental results are
shown in [11].

The area under the receiver operating characteristic curve (AUROC) results
are presented in Table 2. Best results are shown in bold faces and * indicates
that the results between BICTR and its competitor were found statistically
significantly different (p < 0.05) based on a Wilcoxon Signed-Ranks Test run on
the CV-folds. BICTR outperforms eBICT in all three prediction settings. Thus,
the original hypothesis that network reconstruction can boost the predictive
performance of multi-output learning models is verified. BICTR also outperforms
all other competitors, affirming its effectiveness.

Table 2. AUROC results for the compared methods.

AUROC

Td × Lp

Data BICTR eBICT NRLMF BLMNII STC

NR 0.875 0.787* 0.851* 0.807* 0.794*
GR 0.894 0.857* 0.867* 0.842* 0.847*
IC 0.811 0.780* 0.792 0.737* 0.783*
E 0.891 0.827* 0.777* 0.815* 0.794*

Avg 0.868 0.813 0.822 0.800 0.805

Ld × Tp

Data BICTR eBICT NRLMF BLMNII STC

NR 0.905 0.614* 0.747* 0.667* 0.525*
GR 0.951 0.846* 0.861* 0.776* 0.800*
IC 0.968 0.931* 0.949* 0.887* 0.909*
E 0.973 0.924* 0.940* 0.904* 0.906*

Avg 0.949 0.829 0.874 0.809 0.785

Td × Tp

Data BICTR eBICT NRLMF BLMNII STC

NR 0.676 0.634* 0.683 0.554* 0.469*
GR 0.811 0.792* 0.800* 0.475* 0.630*
IC 0.733 0.719* 0.731 0.466* 0.649*
E 0.812 0.785* 0.749* 0.490* 0.682*

Avg 0.758 0.733 0.741 0.496 0.608
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4 Conclusion

Here, we have presented a new drug-target interaction prediction approach based
on multi-output prediction with output space reconstruction. We showed that
multi-output learning models can manifest superior DTI predictive performance
when built on reconstructed networks.
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