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Abstract
In the search for better noise abatement solutions in flow ducts, a better understanding of the interaction be-
tween unsteady aerodynamics, the acoustic field and the dynamics of the confining structure is required. Due
to the large differences in time and length scales, a monolithic simulation of this multiphysical interaction
would result in high computational loads. A more efficient option is a partitioned approach, which means
coupling domain-dedicated solvers. This paper focuses on the vibro-acoustic coupling in the time domain be-
tween a flow-acoustic solver for the linearized Euler equations and a structural solver for the Euler-Bernoulli
beam equation. These two solvers, using different spatial and temporal discretization schemes, are coupled
through the open-source library preCICE and run in a co-simulation. A 2D verification case is simulated and
compared to the results of a commercial monolithic solver in the frequency domain, showing that the parti-
tioned approach properly captures the mutual interaction between duct acoustics and structural vibrations.

1 Introduction

Lightweight materials are entering the industrial practice for flow-confining structures, such as ventilation
ducts and automotive exhaust systems. Unfortunately, such lightweight constructions typically exhibit poor
vibro-acoustic properties and unsteady pressure fluctuations in the flow can easily excite structural vibrations.
These vibrations lead to unwanted noise emissions, which are often only discovered after installation. This
limits the possibilities for noise mitigation to adding heavy damping layers, compromising the lightweight
design.

The pressure fluctuations causing the vibrations can have an aerodynamic or acoustic nature. Several semi-
analytic models describe how a turbulent flow excites a flexible structure through aerodynamic wall pressure
fluctuations [1]. For the vibro-acoustic interaction between propagating acoustic waves and a flexible con-
fining structure, analytical models for simple duct geometries exist [2, 3, 4, 5]. To describe the interaction
between flow, acoustics and structural vibrations both the vibro-acoustic and aero-elastic interaction should
be considered. David et al. [6] therefore proposed a semi-analytical model, summing the aero-elastic and
vibro-acoustic contributions. However, such a semi-analytical model is limited to simple duct geometries.

Numerical models allow studying the multiphysical interactions for any kind of duct geometries. For the
development of an appropriate monolithic solver, modelling all multiphysical interactions simultaneously,
the different time and length scales of each physical domain needs to be taken into account, resulting in
a high computational cost. Conventional simulation techniques therefore limit themselves to a sequential
approach, where the result of a first domain-specific solver is used in a second one. In this way only so-
called weak one-way interactions are modelled, while strong two-way interactions are neglected.

A way to take the strong interactions into account, is a partitioned simulation approach. Such an approach
starts from efficient domain-specific solvers, between which data is exhanged in both directions to model the



multiphysical interactions. Partitioned approaches for the aeroacoustic-structural interaction were already
developed in [7, 8], coupling an aeroacoustic solver and a structural solver. Their aeroacoustic solvers
solve the compressible Navier-Stokes equations and simulate monolithically the strong two-way interaction
between aerodynamics and acoustics. This results in a high computational cost, which limits the usage of
these techniques to small computational domains. For flow-carrying structures like ventilation ducts and
exhaust systems, the aeroacoustic simulation can be performed more efficiently using a hybrid approach,
solving a linearized version of the compressible Navier-Stokes equations [9]. These linearized equations
model the propagation and interaction of the aerodynamic and acoustic first-order fluctuations in the flow,
while the mean flow parameters are considered known and steady. Such an approach is adopted in this work
for modelling the flow-acoustic interaction. This term is preferred in this work over the term aeroacoustic to
underline the difference with the solvers used in [7, 8].

As a first step towards the simulation of the flow-acoustic-structural interaction, this paper focuses on mod-
elling the vibro-acoustic interaction by coupling an existing flow-acoustic and a structural solver. In section
2 the set-up of the partitioned approach is explained. Section 3 shows a verification case for the 2D vibro-
acoustic interaction. Section 4 summarizes the main conclusions of the presented work.

2 Partitioned simulation approach

The partitioned simulation approach used in this work couples in the time domain a flow-acoustic solver for
the linearized Euler equations and a structural solver for the Euler-Bernoulli beam equation. The kinematic
and dynamic continuity at the interface between the different physical domains is ensured by a data exchange
between the solvers at each time step. Subsection 2.1 gives more background about the flow-acoustic solver
and subsection 2.2 about the structural solver. The communication scheme managing the data exchange
during the time marching is explained in subsection 2.3. The spatial mapping allowing data transfer between
non-matching meshes is clarified in subsection 2.4.

2.1 Flow-acoustic solver

The flow-acoustic interaction is modelled using an in-house solver for the Linearized Euler Equations (LEE)
in the time domain [10, 11]. As the LEE make no assumptions regarding the nature of the pressure fluctu-
ations, all linear interactions between aerodynamic and acoustic perturbations are accounted for. However,
the mean flow profile will not be affected. In this work the mean flow is not yet taken into account and the
LEE are therefore equivalent to the Acoustic Wave equation.

The time domain LEE can be written in matrix notation for a two-dimensional cartesian domain [11]:
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The Einstein’s summation convention is used for r being one of the two cartesian coordinates (x1 = x, x2 = y).
The unknown first-order fluctuations are indicated by q, Fr = �rq contains the flux Jacobians in the r-
direction and the term �q models the effects of a non-uniform mean flow:
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The perturbations (ρ,u = [u1, u2]T , p) and the mean flow parameters (ρ0,u0 = [u01, u02]T , p0) indicate
respectively the density, the velocity vector and the pressure. The speed of sound is calculated as c2

0 =
γp0
ρ0

with γ the adiabatic index for air as an ideal gas. The symbol δi j indicates the Kronecker delta.

The nodal quadrature-free discontinuous Galerkin method is applied to spatially discretize the LEE over an
unstructured straight-edge triangular grid. The in-depth discussion about the implementation can be found



in [11]. Important to highlight is that within each element pth-order Langrangian polynomials are used, in-
terpolating between the nodal points which positions are chosen to optimize the interpolation characteristics
[12]. The discontinuity of the nodal values q̂ over the edge ∂Ωi between the element Ω− and its neighbour
element Ω+ gives rise to a Riemann flux F̂ ∂Ωi

R . This numerical flux is implemented as the Lax-Friederich
flux within the computational domain. At the boundary edge ∂Ωb the numerical flux is adjusted to prescibe
the boundary conditions:

F̂ ∂Ωb
R = �

∂Ωb
n q̂∂Ωb

BC with �∂Ωb
n =

2∑
r=1

�
∂Ωb
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The nodal values q̂∂Ωb
BC are taken from the corresponding nodes in the boundary element Ω−b . For an anechoic

inlet and outlet, the non-reflecting boundary condition is imposed by performing an eigendecomposition of
the projected flux Jacobian�∂Ωb

n and maintaining only the outgoing characteristics. For a rigid wall, the slip
condition (u · n = 0), with n the outgoing normal, is prescribed by replacing in q̂∂Ωb

BC the nodal velocity
fluctuations by their tangential components: û − (û · n∂Ωb)n∂Ωb . For a flexible wall a normal nodal velocity
(v̂ · n∂Ωb)n∂Ωb is imposed by the vibrating structure and summed to the tangential velocity fluctuations in
q̂∂Ωb

BC . This flexible wall boundary condition assumes that no aerodynamic boundary layer is present. The
effect of an infinitely thin boundary layer could be accounted for using the Ingard-Myers boundary condition
[13], which expresses the continuity of wall normal displacement instead of normal velocity. However, this
formulation is ill-posed in the time domain [14]. Well-posed time domain formulations are available in
literature [15], but are not considered in this paper as the mean flow is not yet taken into account.

The temporal discretization is carried out with a low-memory storage explicit fourth order of accuracy
Runge-Kutta scheme with eight stages, designated as RKC84 [16]. The stage coefficients are optimized
for the discontinuous Galerkin spatial discretization. As it is an explicit method, the solution at the end of
the time step is obtained solely from information available at the beginning of the time step. The time step is
determined using a CFL condition based on the minimum height of the triangular elements [17].

2.2 Structural solver

To impose the normal velocities of the vibrating structure at the boundary of the flow-acoustic domain, the
flow-acoustic solver is coupled to a linear elasto-dynamics solver in the time domain. As the flow-acoustic
domain is 2D, the flexible wall can be modelled with the Euler-Bernoulli beam equation:

EI
∂4w(t, xt)
∂x4

t
+ hρs

∂2w(t, xt)
∂t2 = p1(t, xt) − p2(t, xt) (4)

This equation describes the deformation w of a beam along the xt-axis through time. The xt-axis is tangential
to the flexible wall boundary of the flow-acoustic domain and w indicates a displacement perpendicular to this
axis. The Young’s modulus of the linear elastic material is indicated by E, the density by ρs, the thickness by
h and the second area moment by I = h3

12 . On each side of the xt-axis a flow-acoustic domain can be situated,
exerting a pressure force p1 − p2 on the beam.

Spatial discretization is done with the isoparametric finite element method, as described in [18]. The beam is
divided into beam elements of equal length with each 2 nodes. The boundary conditions for a clamped beam
are enforced by setting the nodal value for the displacement w and the rotation θ = dw

dxt
at the beam’s ends on

zero.

The time integration is performed following the Newmark-Beta’s algorithm, described in [18]. By choosing
the algorithm’s coefficients as β = 1/4 and α = 1/2, this implicit algorithm is unconditionallly stable and
known as the method of constant acceleration. The time step size determines the accuracy in terms of
numerical dissipation and dispersion. Due to its implicit character, the flow-acoustic pressures at the end of
the time step need to be known at the start of the time step.
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Figure 1: Illustration of the communication during runtime for one common time step ∆t following the
Conventional Serial Staggered scheme (CSS). RKDG stands for Runge-Kutta Discontinuous Galerkin and
FENB stands for Finite Elements Newmark-Beta.

2.3 Time domain coupling

The flow-acoustic and structural solver are run in a co-simulation. This means that a common time step
needs to be defined to keep both solvers synchronized. At the end of such a common time step, data is
exchanged between both solvers to ensure kinematic and dynamic continuity over the interface. The pressure
fluctuations acting on the flexible wall boundary of the flow-acoustic mesh are transferred to the structural
model and the normal velocity of the flexible wall is communicated in the other direction. It is assumed that
the structural deformations are small and the flow-acoustic mesh does not change over time. The time steps
of both solvers can be chosen according to the solver’s own stability and accuracy rules. The common time
step can then be set equal to the largest time step, such that the solver with the smaller time step subcycles
until it reaches the end of the common time step. During these subcycles predictions for the evolution of the
other solver’s data can be made to increase the accuracy [8].

The communication between the flow-acoustic solver and the structural solver is realized with a Conventional
Serial Staggered scheme (CSS), as shown in Figure 1. The explicit Runge-Kutta scheme of the flow-acoustic
solver requires the wall velocity vt at the beginning of the common time step. On the other hand, the
implicit Newmark-Beta scheme of the structural solver requires the pressure load pt+∆t at the beginning of
the common time step. The flow-acoustic solver is therefore run first until the end of the common time step.
The computed wall pressures are then communicated to the structural solver, which then completes its time
marching until the end of the common time step. At that point, the wall normal velocity is communicated
back to the flow-acoustic solver and the process is repeated. As decribed in [19], for a compressible fluid the
CSS scheme is stable and should obtain an order of accuracy comparable to a monolithic method in the limit
of a vanishing common time step size. Algorithms for repeating each common time step until convergence
can be used if the benefits in terms of accuracy outweighs the added computational cost. The CSS scheme is
managed through the routines of the open-source library preCICE [20], licensed under LGPL3. This results
in only high-level adaptations in the source code of the solvers.

2.4 Spatial mapping

The spatial discretization of the flow-acoustic and structural domain are independent from each other. This
means that at the interface the nodal positions from the flow-acoustic mesh (total amount na) do not match
the ones of the structural mesh (total amount ns). Hence, the nodal values need to be mapped each common
time step. The mapping from flow-acoustic mesh to the structural mesh is represented by the (ns×na) matrix
�sa and in the other direction by the (na × ns) matrix �as:

p̂1 − p̂2 ≡ P̂s = �saP̂a (5)

v̂ ≡ V̂a = �asV̂s (6)

To define these mapping matrices different approaches are known in literature [21, 22]. These approaches
are determined by a mapping constraint and a mapping method. The mapping constraint can be consistent or
conservative. A consistent mapping exactly transfers a constant function between two non-matching meshes
and is used for parameters like velocity. The corresponding constraint to the mapping matrix is that each
row sum equals one. Conservative mappings preserve the total sum of a parameter over the interface and are
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Figure 2: Illustration of the consistent Nearest Projection mapping, assuming that the flexible wall boundary
of the flow-acoustic mesh (top line) exists of 2 elements and the structural mesh (bottom line) has also 2
elements. For simplifying the figure, the flow-acoustic and structural element sizes are taken almost equal
and the order p of the flow-acoustic mesh is 2. The red arrows indicate the orthogonal projection of the target
mesh on the source mesh and the blue arrows illustrate the linear interpolation and the copying of the value
onto the target mesh.

used for parameters like forces. The constraint to the mapping matrix is then that each column sum equals
one. To map pressures, which are distributed forces, the consistent constraint is used in this paper.

Conform the chosen constraint, the mapping method further defines the mapping matrix. Several methods
exist in literature and a classification based on [21, 22] is given. A first class are the projection-based
methods, which includes the simplest kind of mapping, namely Nearest Neighbour mapping. As the name
indicates, each node gets the value from its nearest neighbour in the other mesh. This method only has
first order accuracy. A better choice is then the Nearest Projection mapping, which works as shown in
Figure 2. The nodes of the target mesh are orthogonally projected on the source mesh, where the projected
image gets its value by linear interpolation between the neighbouring source mesh nodal values. This value
is then copied back to the target mesh. When the projected image coincides with a source mesh node, no
interpolation is necessary. The Nearest Projection mapping is second order accurate. To increase the order of
accuracy, the Nearest Projection mapping can be extended by using the solver’s higher-order shape functions
for the interpolation. A further extension is the Weighted Residual mapping, which determines the mapping
matrix out of a weak formulation of the mapping residual with as weighing functions the solver’s shape
functions.

A second class of mapping methods is the Radial Basis Function mapping. This approach constructs a global
interpolant over the source mesh out of radially symmetric basis functions at its nodes. The interpolant can
then be directly evaluated at the target mesh nodes. The order of accuracy depends on the chosen radial basis
functions. These mapping methods are computationally more efficient than the projection-based mapping
methods as they do not need a projection and search algorithm.

The spatial mapping is managed through the routines of the open-source library preCICE [20]. As preCICE
regards each domain-specific solver as a black-box, it does not know the solver’s shape functions. Therefore
it only provides consistent and conservative implementations of the Nearest Neighbour, Nearest Projection
and Radial Basis Function mapping. The mapping matrices only need to be computed once, as the meshes
do not change assuming small vibrational amplitudes.

3 2D vibro-acoustic verification case

The verification case describes the propagation of plane acoustic waves through a 2D duct with a flexible
side wall backed by a cavity and is simulated with the developed partitioned model and with a monolithic
reference model. A two-port characterization of the flexible wall duct segment is used to facilitate the
comparison of the results. Subsection 3.1 presents the geometry and some analytical considerations. The
model settings for the partitioned approach are given in subsection 3.2 and in subsection 3.3 for the reference
model. The two-port characterization is explained in subsection 3.4 and subsection 3.5 discusses the results.
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Figure 3: Geometry of the 2D vibro-acoustic verification case.

3.1 Geometry and analytical cosiderations

The geometry of the verification case is shown in Figure 3. The duct has a length of 3 m and a height H of
0.04 m. A duct segment with a length L of 0.2 m has a flexible wall backed by a cavity. The remaining walls
of the cavity and the duct are modelled as rigid. The ambient pressure p0 and density ρ0 of the fluid are
respectively 101.325 kPa and 1.225 kg/m3, which makes the speed of sound c0 equal to 340.3 m/s. Acoustic
plane wave propagation can be assumed in the duct below the first cut-on frequency fcut−on,1 [23]:

fcut−on,1 =
c0

2H
= 4253.75 Hz (7)

Only the plane acoustic wave region is considered in this paper. The backing cavity has a width Lx of 0.2 m
and a height Ly of 0.45 m. Under the assumption of rigid walls the first two cavity modes are determined
analytically at 378.1 Hz (m = 1, n = 0) and at 756.2 Hz (m = 2, n = 0) [23]:

fcavity,(m,n) =
c0
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nπ
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)2

+

(
mπ
Ly

)2

(8)

The beam is made out of steel with a Young’s modulus E equal to 233.1 GPa and a density ρs of 7766.9 kg/m3.
It has a length L of 0.2 m and a thickness h equal to 0.5 mm. The beam is clamped on both sides and the first
four beam modes following the analytical in-vacuo solution lie at 70.4 Hz, 194 Hz, 380.4 Hz and 628.8 Hz
[24]:

fbeam,s =
k2

s

2π

√
EI
hρ

with ks the sth solution of cos(ksL) = sech(ksL) (9)

At very high frequencies the structural wavelengths of the beam become sufficiently short to describe them
as a propagating flexural wave. Important for the vibro-acoustic interaction is in that case the coincidence
frequency fc. This is the frequency at which the structural wavelength λb equals the acoustic wavelength λ.
The beam becomes then transparent for the acoustic waves. The coincidence frequency lies for this beam at
23.309 kHz [25], which is well above the frequency range of interest:

fc =
c2

0

2π

√
ρh
EI

(10)

3.2 Partitioned time domain model

As described in section 2, the partitioned approach divides the computational domain into a flow-acoustic
and a structural domain with each a domain-specific solver. A schematic of this decomposition for the
verification case can be seen in Figure 4. The solver coupling is realized through the flexible wall boundary
condition of Equation 3 in the flow-acoustic model and the pressure loads in Equation 4 in the structural
model. In the flow-acoustic model, the anechoic inlet and outlet of the duct are modelled with the non-
reflecting characteristic boundary condition and the slip boundary condition is imposed at the rigid walls of



Figure 4: Schematic overview of the 2D vibro-acoustic verification case and the partitioned modelling ap-
proach. A plane Gaussian acoustic pulse propagates through the duct and initiates the vibro-acoustic inter-
action between the acoustic field in the duct and cavity and the structural vibrations of the beam.

the duct and the cavity. In the structural model, the beam’s ends are represented by a clamped boundary
condition.

As indicated in subsections 2.3 en 2.4, the element size and time step size of the two solvers do not need to
match, which is an important instrument to lower computational cost and a key argument for the development
of a partitioned solver. As only the plane acoustic wave region is considered in this work, the frequencies of
interest are well below the coincidence frequency of the beam and the excited structural waves cannot be seen
as propagating flexural waves, but only as standing waves. Therefore the structural solver can have a larger
element size and a larger time step size than the flow-acoustic solver. The choice has however been made
to take the element size and the time step size of both solvers equal in this paper, such that the partitioned
method and the monolithic reference method can be properly compared.

For the element size a characteristic length of 0.01 m has been chosen, resulting in 5404 flow-acoustic el-
ements and 20 structural elements. For both solvers independently these grids are overly fine. The flow-
acoustic mesh is made out of straight-edge triangles and the nodes at the triangle edge vertices on the flex-
ible wall boundary match the nodal positions in the structural mesh. So the mapping of the pressure values
from the flow-acoustic mesh to the structural mesh is exact. For the mapping of the velocity values from
the structural mesh to the flow-acoustic mesh, the values at the flow-acoustic nodes in between the triangle
edge vertices due to the higher-order shape functions still need to be determined. In this work, the order
p is chosen as 5, giving 4 extra nodes on the triangle edge, and the consistent Nearest Projection Mapping
is used. The time step size of both solvers, thus also the common time step, is set as 1.47 µs based on the
minimum height CFL rule of the flow-acoustic solver [17]. No solver needs to subcycle and also no iterative
algorithm to reach convergence each common time step is used.

One of the advantages of a time domain simulation is the capability of assessing the system’s behavior over
a broad frequency range by exciting the system with a pulse and monitoring its broadband response. In
this verification case a Gaussian acoustic pulse excitation is imposed at the duct inlet. The pulse propagates
through the duct as a plane wave and initiates a vibro-acoustic interaction with the beam and the cavity. The
system’s response is monitored at several positions located on the centerline of the duct.

3.3 Monolithic reference model

A reference solution for the verification of the 2D vibro-acoustic case is obtained using the frequency domain
finite element model of COMSOL Multiphysics 5.4.

In the acoustic domain the Helmholtz equation is solved over an unstructured straight-edge triangular grid,
existing of 5054 elements. A Perfectly Matched Layer is put at the inlet and outlet of the duct and meshed
with a structured grid of 40 rectangles on each side. The slip boundary condition is defined at the rigid walls.
A time-harmonic pressure source at the inlet excites plane acoustic waves, propagating through the duct.
The dynamics of the beam are modelled by the equations of motion in the frequency domain for a linear
elastic material with the fixed boundary condition at the outer ends. The plane stress assumption is used such
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that the solution is equivalent to the one of the Euler-Bernoulli beam equation. The structural domain is a
structured mesh with 5 rows of 80 rectangular elements. The Acoustics-Structure boundary condition is set
at the interfaces between both physical domains and enforces the continuity of pressure and normal velocity.

The acoustic and structural models are discretized with the finite element method, creating a single system
matrix that is solved in the chosen frequency range to determine the time-harmonic response of the system.
This is thus a monolithic vibro-acoustic approach. The acoustic and structural meshes match at their in-
terace such that no data mapping is necessary. To ensure conformity at this interface, the same Quadratic
Langrangian shape functions are used in both domains.

3.4 Duct acoustic characterization

A two-port characterization of the duct segment with the flexible wall and cavity is used to analyze the
simulation results and to facilitate the comparison between the monolithic frequency domain model and the
partitioned time domain approach. This method regards the duct segment with the flexible wall and cavity as
a black-box element and characterizes it by a linear input-output relation in the frequency domain, which is
independent of the boundary conditions and sources at the inlet and outlet of the duct. Below the first cut-on
frequency of the duct, these inputs and outputs are described in terms of the complex amplitudes p+ and p−

of the right-running and left-running plane acoustic waves.

The vibro-acoustic interaction within the duct segment is then described by the scattering matrix:[
p+

outlet( f )
p−inlet( f )

]
=

[
T +( f ) R−( f )
R+( f ) T−( f )

] [
p+

inlet( f )
p−outlet( f )

]
(11)

The scattering of the plane acoustic waves is expressed in terms of transmission T± and reflection coefficients
R± as can be seen in Figure 5. In the frequency domain simulation in COMSOL, it is possible to request
the incident and scattered pressure values directly. Given the anechoic boundary conditions, the transmis-
sion and reflection coefficients are easily determined by dividing the scattered pressure values at the outlet,
respectively the inlet of the duct by the incident plane acoustic wave.

In the partitioned time domain simulation, the response of the system to the incident Gaussian plane pulse is
sampled at several positions along the duct centerline. The simulation is stopped after approximately 0.3 s.
The saved time signals are then transformed to the frequency domain with a FFT. Due to the excitation of the
beam and cavity resonances without any damping mechanism except numerical dissipation, a half-Hanning
window is needed to let the pressure values at the end of the simulation time converge to zero. The frequency
content of the time signals at the sampling points is used to decompose the acoustic field into the left- and
right-running plane waves and to determine the scattering matrix coefficients by solving linear systems of
equations [26].

3.5 Discussion of the results

The transmission and reflection coefficients obtained with the partitioned and the monolithic simulation are
shown in Figure 6 for frequencies up to 850 Hz. At a first glance, it is clear that the different beam and cavity
modes are the main drivers of the vibro-acoustic interaction. However some important differences are visible
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the verification case, obtained from the developed partitioned time domain approach and compared to the
solution from a commercial monolithic frequency domain Finite Element solver (COMSOL Multiphysics
5.4).

from the analytical resonance frequencies given in subsection 3.1. These differences can be summarized into
two strong vibro-acoustic coupling effects.

The first one is the change in resonance frequency of the beam modes due to the presence of the cavity. When
the resonance frequency of the cavity mode φ(m,n) lies higher than the one of the beam mode ψs, the cavity
adds an equivalent mass to the beam, lowering the beam resonance frequency. When the resonance frequency
of cavity mode φ(m,n) lies lower than the one of the beam mode ψs, the cavity increases the structural stiffness
and therefore the beam resonance frequency. The cavity mode φ(0,0) thus always adds stiffness to the beam
mode ψs and this effect can be determined analytically following Dowell’s work [27]:

fbeam,s,shi f ted =
1

2π

√
(2π fbeam,s)2 +

ρ0c2
0L2Q2

0s

MsLxLy
(12)

with:

Q0s =
1
L

∫
L
φ(0,0)ψsdx

Ms =

∫
L
ρhψsψsdx

φ(0,0) = 1, ψs(x) = cosh(ksx) − cos(ksx) −
cosh(ksL) − cos(ksL)
sinh(ksL) − sin(ksL)

(sinh(ksx) − sin(ksx))

For the first beam mode, this results in a shift of the resonance frequency from 70.4 Hz to 79.8 Hz, which
confirms the shift visible in Figure 6. For the shifts in frequency of the second and fourth beam mode,
the influence of the first and second cavity mode should also be taken into account, making the analytical
formulation by Dowell incomplete.

The second effect is the coupling of a cavity mode with a beam mode with coinciding resonance frequencies.
This happens here for the third beam mode and the first cavity resonance around 380 Hz. The coinciding
resonance frequencies then lead to the tuned vibration absorber effect: at the original resonance frequency
both resonances cancel each other out and two new resonance peaks arise, here at 369 Hz and 393 Hz.

The results show that the partitioned approach manages to properly capture these strong vibro-acoustic cou-
pling effects. The peaks in the graphs for the partitioned approach are however less sharp than in the ones
for the monolithic method. This is due to the energy that stays behind in the resonating modes when the
simulation ends and the damping introduced by the half-Hanning window. Running the simulation longer
will result in better convergence of the time signals to zero and sharper peaks for this verification case. In
more realistic cases, this issue will be solved by the addition of damping in the structural model.



4 Conclusions

This paper describes the coupling of a flow-acoustic solver for the linearized Euler equations and a structural
solver for the Euler-Bernoulli beam equation in the time domain with the goal of developing a simulation
tool for the flow-acoustic-structural interaction in flow-confining structures. The main advantage of such a
partitioned approach is that it allows each solver to have its own spatial and temporal discretization schemes,
such that the different time and length scales in each physical domain can be dealt with in an efficient way.
The exchange of data between both solvers, requiring mapping and synchronization algorithms, is realized
using the algorithms available in the open-source library preCICE [20], licensed under LGPL3.

The focus lies in this work on the vibro-acoustic verification of the partitioned approach in 2D. No mean flow
is taken into account. The data exchanged between both solvers needs to ensure the kinematic continuity of
normal velocity and the dynamic continuity of pressure over their interface. This is obtained by transfer-
ring the nodal pressure values at the flexible wall boundary of the flow-acoustic mesh to the nodes of the
structural mesh. The normal velocity of the flexible wall is communicated in the other direction. This data
exchange follows the Conventional Serial Staggered communication scheme (CSS). The mapping between
both meshes happens following the consistent Nearest Projection method.

The partitioned approach is verified by comparing the results of a 2D case with the results from a monolithic
commercial solver. This case simulates the propagation of plane acoustic waves through a duct segment
with one flexible wall backed by a cavity. The transmission and reflection coefficients, obtained by applying
the two-port characterization method to the simulation results, show that the partitioned approach properly
captures the strong vibro-acoustic interactions.
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