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Abstract

Interval fields have been introduced to model spatial uncertainty in Finite Element Models when the available
data is insufficient to build representative probabilistic models. However, they are limited to modelling
global non-stationary uncertainty and hence cannot model local non-stationary uncertainty. This is typically
occurring in specific regions of a component or a structure which is produced with,e.g., casting, welding,
drawing. This paper presents a more efficient local interval field approach to model the local uncertainty
under scarce data. The method is based on the concept of explicit interval fields and aims to develop an
alternative approach for the commonly applied inverse distance weighting approach for the generation of the
basis functions. In this paper the method is applied on a two-dimensional spatial uncertainty case with a
specific focus on dynamics. The paper compares the introduced local interval field approach with inverse
distance weighting from a numerical and application point of view.

1 Introduction

Interval analysis is becoming popular when there are only limited or incomplete data of the true model
parameters. In comparison to probabilistic techniques, which require distributions of the uncertain param-
eters, intervals quantify the uncertainty on actual parameter value by an upper and a lower bound. Interval
computation methods quantify then, the best and worst-case behavior of the structure. By definition, in-
tervals are independent, and hence, the joint description of several interval-valued parameters is given by a
hyper-rectangle [1]. To describe spatial uncertainty with interval Finite Element (FE) analysis, independent
intervals are defined on locations in the FE-model (e.g. element centers, element nodes, Gauss points) [2].
The independent intervals neglect all correlation present in the physical quantities under consideration. This
results in over-conservative results and unrealistic interval fields due to spurious gradients in the field realisa-
tions. To obtain less conservative results, Moens et al. [3] proposed a method to represent spatial uncertainty
in FE analyses: interval fields. In this approach, spatial dependency is achieved by limiting the number
of intervals to a smaller set of locations (=control points), and defining the relation between those control
points and all other locations in the FE-model (e.g., element centers, element nodes, Gauss points) with ba-
sis functions [3]. The big advantage of this method is that the dimension of the hyper-rectangle is reduced
from the number of all locations in the FE-model to a limited number of interval scalars. These interval
fields were recently used for several cases such as modeling of dynamic phenomena [4, 5, 6] and the effect
of manufacturing-related uncertainty on the mechanical quality of additive manufactured plastic parts [7].
Another approach to model interval fields is to apply an affine arithmetic representation of the interval un-
certainty in combination with the Karhunen-Loève expansion, as presented by Sofi et al. [8] and Sofi and
Muscolino [9]. Also, other authors formulated an interval field for static plane stress [10] and an interval
field for spatial-time varying uncertainty [11, 12]. Following the explicit interval fields [3], Faes et al. [13]
introduced the use of Inverse Distance Weighting (IDW) functions, where the interval scalars are defined
on predefined locations in the model domain. In this approach, the local bounds of the interval field at an
arbitrary location within the model geometry are computed as a sum of the intervals defined at these control
points, weighted with the inverse of their relative distance to this arbitrary location.



However, when considering local inhomogeneous uncertainty, all those interval field techniques are very
limited in their ability to model realistic local uncertainty. Local inhomogeneous uncertainty is presented
in parts which are for instance deep-drawn or casted. When deep-drawing, there is e.g. local uncertainty in
the thickness of the part introduced by local micro cracks and voids. For the cased part, local uncertainty is
present inside thicker sections of the part as micro cracks and voids are more likely to be present in those
areas due to cooling effects.

In this paper, the description of explicit interval fields [3] is used to model local inhomogeneous spatial
uncertainty. As in [13], the interval scalars are defined on locations in the model domain (control points) and
the spatial dependency is described with basis functions. The modeling of local inhomogeneous uncertainty
is achieved by defining the basis function such that the dependency is limited to a zone around their control
point. To construct these basis functions, the technique of IDW from Shepard is modified and combined with
a weighting function that satisfies two requirements for local weighting functions.

The paper is structured as follows: section 2 presents interval field FE analysis. This technique is then
extended to model intervals fields with basis functions and a limited set of interval scalars using explicit
interval fields. Next, in section 3 the method of IDW is described. Section 4 proposes a new local interval
field method to model local uncertainty. A structural dynamic academic case study is used to illustrate the
difference between the basis functions of IDW [14] and the local interval fields in section 5. At the end of
this paper, the conclusions are summarized in section 6.

2 Interval Field Finite Element analysis

In current engineering practice, FE analysis is a popular technique used to approximate the solution of a
partial differential equation (PDE). In this work, we consider that FE models are parametric, i.e., they are
represented by a numerical modelM(x), parameterized by a vector x(r) ∈ X ( Rdi with X the admissible
set of input parameters and di ∈ N the number of input parameters. For instance, x(r) contains material
parameters as a function of the spatial coordinate r ∈ Ω ( RdΩ with dΩ ∈ N, dΩ ≤ 4 the number of
dimensions (max. 3 Cartesian dimensions and 1 time dimension).

The model domain Ω is discretised in Ne elements Ωe ⊆ Ω yielding dd degrees of freedom (DOF) and the
PDE is approximated by the solution of a set of algebraic equations.

The modelM(r) provides a vector of model responses y(r) ∈ Y ( Rdo with Y the admissible set of output
parameters and do ∈ N the number of output parameters. This is defined as:

M(x) : yi(r) = mi(x(r)) (1)

with mi : Rdi 7→ R mapping the parametric input space to the individual outputs of the FE analysis and
i = 1, 2, . . . , do, when the output y is generated on element or nodal level r (e.g. displacement, strains).
Note that when the output is defined on a global model level (e.g., eigenfrequencies), the outputs yi are not
dependent on r.

Spatial uncertainty is here introduced in FE analysis with interval fields [15]. An interval scalar xI ∈ IR,
where IR is the domain of closed real-valued intervals, is defined as:

xI = [xmin xmax] = [x x] = {x ∈ R|x ≤ x ≤ x} , (2)

with xmin and xmax bounds of the uncertain parameter x. The midpoint of the interval is defined as:

xµ =
x+ x

2
. (3)

An interval vector xI ∈ IRdi contains di interval scalars which are by definition independent from each



other. In general, the interval FE analysis [15] has an uncertain interval vector xI ∈ IRdi as input:

xI =


xI1
xI2
...
xIdi

 =
{
x ∈ Rdi |xi ∈ xIi

}
. (4)

The solution set yS ∈ Rdo of the interval FE analysis is then formulated as:

yS =
{
y|
(
x ∈ xI

)
(y = m(x))

}
, (5)

with m(x) containing m1, . . . ,mi,mdo the deterministic functions of the FE analysis and y ∈ Rdo . The
solution set yS is commonly approximated by an interval vector yI ∈ IRdo :

yI =


yI1
yI2
...
yIdo

 . (6)

The components yIi =
[
y
i
yi

]
of yI are found by optimisation:

y
i

= min
x∈xI

mi(x), (7)

yi = max
x∈xI

mi(x). (8)

With this optimization the interval of each component is found independently, such that the solution set yS

is approximated with a hyper-rectangle.

With explicit interval fields, there are independent intervals scalars αI ∈ IRnb with nb ∈ N, such that the
input space is reduced from IRdi to IRnb , di ≥ nb. From these interval scalars the dependency inside Ω is
modeled with basis functions ψi(r) : Ω 7→ RkFE with i = 1, 2, . . . , nb and kFE the total number of interval
field discretisation points in Ω. An explicit interval field xI(r) : Ω × IRnb 7→ IRkFE is as such build as a
series expansion of nb basis functions, multiplied with interval scalars:

xI(r) =

nb∑
i=1

ψi(r) · αIi . (9)

To propagate the interval field throughM the number of required deterministic model evaluations is impor-
tant, especially when using industrially-sized FE models (up to millions of DOF). To achieve this, the number
of interval scalars di must be limited as the number of deterministic model evaluations scale with 2di when
considering linear monotonic interval analysis. In this perspective, the explicit interval field formulation has
the advantage that the input space is reduced from IRdi to IRnb , di ≥ nb.

3 Interval fields with Inverse Distance Weighting

Section 2 introduced the description of interval FE analysis and explicit interval fields, where the interval
field is built with interval scalars and basis functions. As the basis function determines the spatial dependency
of the field, it is of great importance to select a basis function that represents the physical nature of the field.
In this work, the approach as presented by Faes et al. [16] is used as a starting point. Basis functions are
generated with IDW to describe the spatial dependency from interval scalars that are defined on specific



locations r in the domain Ω. The IDW basis function ψi(r) is built from weight functions IDWwi(r):

ψi(r) =
IDWwi(r)

nb∑
j=1

IDWwj(r)

, (10)

with r ∈ Ω and IDWwi(r) the weight functions calculated as:

IDWwi(r) =
1

[d (r, rni)]
p , (11)

where d(r, rni) is the Euclidean distance between the locations r ∈ Ω and locations of the control points
rni ∈ Ω. The power p controls the gradient and the continuity of the weight function. As a result of the
distance calculations, the computational cost of generating the weight functions scales withO(kFE×nb), the
total number of interval field discretisation points in the FE model kFE and the control points nb. Here the
weight and basis functions are discretised following the element centers, element nodes or Gauss points of the
FE-model Ω, resulting in computational cost depending on the number of DOF in the FE-model. However,
this computational cost is can be reduced by using sparse grids to reduce the interval field discretisation
points, as presented by the authors [17].

From equation 10 and 11, the inverse distance basis functions are strictly positive on all locations of the
model that do not coincide with control points, are one at the defining control point location rni and are zero
at all other control points (global dependency). The global dependency is achieved through the weighting
functions and through the following properties:

1.
∂ IDWwi

∂d(r, rni)
≤ 0 and when d(r, rni)→∞ :

∂wi

∂d(r, rni)
→ 0,

2.

{
IDWwi(r) ≥ 0 if d(r, rni) 6=∞,
IDWwi(r) = 0 if d(r, rni) =∞,

those properties are only valid when the size of the FE he → 0. As a result, this weighting technique with
global dependency is not capable to describe local dependency, as through the second property, all weight
functions will contribute to non-zero uncertainty levels throughout the entire spatial domain. An idea could
be to truncate the basis functions on a distance from the control points. The disadvantage of truncating is
that it introduces discontinuities in the field. Another idea is to use other weighting functions that are zero
on a finite distance of a control point. In the next section of this paper the use of a local weighting and basis
function is presented.

4 Interval field with local dependency

An explicit interval field has local dependency if it is built from weighting functions wi that satisfy the
following properties:

1.
∂wi

∂d(r, rni)
≤ 0 and when d(r, rni)→ Ri :

∂wi

∂d(r, rni)
→ 0,

2.

{
wi(r) 6= 0 if d(r, rni) < Ri,

wi(r) = 0 if d(r, rni) ≥ Ri,

those properties are only valid when the size of the FE he → 0, withRi the width of the support zone Ωi ⊆ Ω
where i = 1, . . . , dΩ and dΩ ≤ 4 around one control point ni. The first property ensures that the weighting



function is monotonically decreasing to zero on the edge of the support zone Ωi. Property two introduce the
local description of the weight function, specifying that the weight function is zero starting from a distance
Ri around the control point ni
The local character of the weight function introduces the following computational advantage in comparison
to IDW. The support zone Ωi ∈ Ω where d(r, rni) < Ri → wi(r) 6= 0 is compact K such that it is closed
and bounded. This means that the weight function must only be calculated inside Ωi and not on the full
domain Ω, yielding a drastic gain in computational efficiency as kFE is reduced to a very limited set of
discretisation points.

Further in this paper, the support zone Ωi of one control points ni is defined as K. Weight functions are then
wK(r) : K 7→ RkFE and basis functions are ψK(r) : K 7→ RkFE . Paragraph 4.1 describes the construction
of basis functions for 1D (dΩ = 1) as recently introduced by the authors in [18].

4.1 Local basis functions for 1-dimensional domains

To build local basis functions ψK(r) : K 7→ RkFE from weight functions, equation 10 is changed. In this
equation, the weight functions are normalized to the weight functions of other control points. As there is only
one control point and weight function inside the domainK, the weight functionwK(r) is normalized to itself
and the basis function ψK(r) is a constant function equal to one inside K. This results in a discontinuous
basis function: one inside K and zero outside K. A continuous basis function is achieved by adding two
virtual nodes nK on the edges of each spatial dimension of the domain K. For a one-dimensional problem,
the nodes inside K are located on:

1. the lower bound edge of K: rKn=1 = rni −R,

2. the midpoint of K: rKn=2 = rni ,

3. the upper bound edge of K: rKn=3 = rni +R,

with the first and last virtual node on the edges of K and rni ∈ K the location of the control point ni. On
all those virtual nodes, weighting functions are defined wK

i (r) with i = 1, 2, 3 for 1D. This is visualised
in figure 1, which illustrates the building of one basis function inside K from the weight functions (in this
figure, quartic splines are used see section 5.2). The result is a basis function which is continuous in K and
has a local spatial dependency.

Using those virtual nodes and control point in K equation 10 is changed to:

ψK(rK) = aK
wK
i (rK)

3∑
j=1

wK
j (rK)

, (12)

with rK ∈ K ⊆ Ω and aK is defined as:

aK =

{
1 if rKn = rni

0 if rKn 6= rni ,
(13)

with rKn the locations of the nodes in K and rni the location of the control point ni in Ω. The definition of
aK is such that the basis function of the control point ni is retained from all the basis functions of the nodes
inside K.

The basis function ψK(rK) is then mapped from the domain K to the domain Ω by the locations of, e.g.,
element nodes, element centers or Gauss points using:

ψi(r) =

{
ψK(rK) if Ke = Ωe

0 if Ke 6= Ωe.
(14)



Figure 1: For a 1D domain, the location of the virtual control points (small black dots) and control point (big
black dot). The corresponding weight functions (quartic spline) and basis function are visualised in blue and
red. R describes the width of the domain K around the control point.

The basis function ψi(r) ∈ Ω is zero outside K such that strict local dependency is obtained. The interval
field is then represented as:

xI(r) = xµ +

nb∑
i=1

ψi(r) · (αIi − xµ), (15)

where xµ is the midpoint of the field. The previous methodology is valid as long as the weight function
satisfies the three properties. As a result, an interval field with local influence is reached.

4.2 Local basis functions for two-dimensional domains

For problems which have dΩ = 2, the construction of a multidimensional weight function is necessary.
This construction is depending on the node structure in K. In this paper the proposed structure is a rectangle.
Computationally a rectangular is the most efficient way, as the locations in FE-models are commonly defined
in a Cartesian coordinate system. The node structure is visualized for dΩ = 2 in figure 2. This rectangle
domain is only valid if the uncertainty under consideration is concentrated inside a rectangle. Otherwise,
different structures have to be defined, where a coordinate transformation is necessary. This, however, is
outside the scope of this paper. With this node structure, the weight function in dΩ = 2 is constructed by a
Kronecker product of six weight function defined where three weight functions are defined on each spatial
dimension, such that the required two-dimensional distance calculation is reduced to two one-dimensional
distance calculations. The location for each node in K is the same as when dΩ = 1. This limits the required
distance measures to two one-dimensional problems. In practice, distance calculations are required between
the coordinates of the control points ni and the FE nodes, element centers or Gauss points. Using a Cartesian
space dΩ = 2, the normalized distances are calculated with equation 7 in each dimension of K:

d̄xi =
d(rxi ,n

K
xi)

Rxi
, (16)

d̄yi =
d(ryi ,n

K
yi)

Ryi
. (17)



K
K

Figure 2: 2D unit grid of 20 × 20 in blue, where one control point is defined on the midpoint of domain K:
coordinate (0.3; 0.4). The edges of the domain K show the width of the domain in black with dimensions:
Rx, Ry = 0.15. The smaller black nodes are the virtual nodes defined in K on which the weight and basis
functions are defined.

If the weight function is defined by the analyst, they can be calculated for each dimension of K with the
normalised distances. In two dimensions the resulting weight functions arewK

xi ,w
K
yi . By using the Kronecker

product of those six weight functions (three in each dimension), on each node inK, a two dimensional weight
function is obtained:

wK
xyi = wK

xi ⊗w
K
yi . (18)

The resulting weight functions inside K are visualized in figure 3. The basis function generated with equa-
tions 12 and 13 for one control point and one interval is visualized in figure 4 and the resulting interval field
is then calculated by using equations 14 and 15.

5 Case study: Interval Field on a 2D plate

In this case-study, the effect of local material uncertainty on the first bending mode of a rectangular plate
clamped at one side is studied. Additionally, the difference between local explicit interval field and explicit
interval field with IDW is shown. For the local explicit interval fields, the weighting functions are defined as
quartic splines as these satisfy the two necessary properties for the definition of a local explicit interval field.

5.1 Problem description

This case study concerns an interval field that is calculated for a 2D FE linear elastic model of a square
plate, which is L = 1 m long and wide. The plate is uniformly discretised with square elements of size
h = 0, 0125 mm, resulting in 6400 elements. The boundary condition is modeled as a Dirichlet boundary
condition with for y = 0 : u = 0 mm. The plate has a uniform thickness of t = 25 mm. Figure 5 visualizes
the plate with its boundary conditions.



Figure 3: 2D unit grid of 20× 20 in blue, where the weighting functions are defined on K

Figure 4: 2D unit grid of 20× 20 in blue, where the basis function is defined on K
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Figure 5: 2D case: the linear elastic square plate of length L = 1 m is discretised in 6400 square elements of
size h = 0, 0125 mm. Boundary conditions are: fixed displacement for y = 0 : u = 0 mm. The plate has a
uniform thickness of t = 25 mm

The uncertainty is defined as an interval field on the Young’s modulus using two control points. Table 1 gives
the coordinates (xi,yi) of those control points, the interval values EIi and the width Rxi, Ryi of the domain
K around each control point.

Table 1: Uncertainty in 3 control points with location, intervals EIi and width of the local domain K around
each control point i

Control point Location (xi, yi) (m) Intervals EIi (GPa) Width (Rxi, Ryi) (m)
1 (0.2, 0.3) [50, 90] (0.1, 0.15)

2 (0.8, 0.1) [50, 90] (0.2, 0.1)

5.2 Explicit interval field for global or local uncertainty modeling

Explicit interval fields allow to select basis functions that represent the spatial uncertainty of the component
or structure, such that the expert is able to choose between global or local dependency. For global dependency
the basis functions obtained with IDW give a smooth continuous function that is always greater then zero
expect in the control points where its zero. The formulation of an explicit interval field with IDW is given in
section 3. From equation 10 the IDW functions IDWwi ∈ Ω are calculated and the basis functions ψi ∈ Ω
are obtained with equation 11. In addition to the values in table 1 the value of the power factor p of IDW is
chosen as p = 2.

Local dependency is on the other hand achieved by selection of the weighting function, this is limited by the
two properties in section 4. The used weight function in this paper is a quartic spline QwK

i from [19] based
on the Euclidean distance between the location rKn of the nodes nK and the locations rK. This distance is
then normalized with the support width R:

d̄(rKn , r
K) =

d(rKn , r
K)

R
. (19)

At a distance R of the nodes nK the normalized distance equals zero and the functions is monotonically de-
creasing, as visualised in figure 1. This can be verified when the weight functions are analytically expressed
as:

QwK
i (d̄) =

{
1− 6d̄(rKn , r

K)2 + 8d̄(rKn , r
K)3 − 3d̄(rKn , r

K)4 d̄(rKn , r
K) ≤ 1

0 d̄(rKn , r
K) > 1.

(20)

Three local weight functions wK
xi ,w

K
yi (quartic splines) are first calculated for each dimension separately

with equation 19, equation 20 and the values from table 1. From those weight functions, two dimensional



Figure 6: The first bending mode of a 2D plate with deterministic input field with constant Young’s Modulus
of E = 70GPa

weight functions are calculated with equation 18 and the basis functions ψK with equation 12. The resulting
weight and basis functions inside K are similar to the one visualised in respectively figure 3 and figure 4.
The basis functions are then mapped from the local domain K to the model domain Ω with equation 14.

5.3 First bending mode with local uncertainty on the Young’s modulus

The changes in the first bending mode are characterized when comparing the first bending mode with
MU

1 (x, y) and without MD
1 (x, y) spatial uncertainty for the 2D plate with a local interval field as defined in

5.2. The difference D1(x, y) in percent is then calculated with the following equation:

D1(x, y) = 100% · M
D
1 (x, y)−MU

1 (x, y)

max
x,y∈Ω

(
MD

1 (x, y)
) , (21)

where, the difference between de deterministic MD
1 (x, y) and uncertainty MU

1 (x, y) bending mode is scaled
with the maximum value max

x,y∈Ω

(
MD

1 (x, y)
)

of the deterministic bending mode. Figure 6 visualises the

deterministic first bending mode shape MD
1 (x, y) scaled by its maximum value, for the deterministic input

field with a constant Young’s Modulus of E = 70GPa.

Propagating the spatial uncertainty is limited to the vertex analysis, as for this specific case the interval field
analysis is strictly monotonic. Consequently, the highest difference D1(x, y) on the first bending mode is
obtained when the interval parameters are at a corner of the vertex interval domain. The difference D1(x, y)
is visualized in figure 7 on the right side, along with the corresponding vertex realisations on the left side.
The overall difference is small D1(x, y) < 1% with the highest value at location y = 1. In the regions where
local uncertainty is defined, a relatively small D1(x, y) < 0.2% difference is noticeable, when y increases
away from those regions the difference raises until the maximum when y = L. In all those realizations, the
uncertainty introduces a small torsional change into the first bending mode, which is smaller for the first and
last realisation. For the second and third realisation, the change in Young’s modulus inside the plate is at
maximum value and so the torsional effect for this particular case is also at its maximum value.



Figure 7: Left the interval field realisations of the input field EI . Right the difference D1(x, y) between the
deterministic first bending mode and the first bending mode corresponding to the interval field realisations



5.4 Interval field propagation

The explicit interval field realizations are calculated form the basis functions (see subsection 5.2) and equa-
tion 15 with αIi = EIi and xµ = Eµ the midpoint of the field. To quantify the interval of the first three
eigenfrequencies f I1 , f

I
2 , f

I
3 the interval field EI is propagated.

The 2D plate is linear-elastic and so the interval analysis problem is monotonic and especially strictly positive
monotonic for this specific case, as the basis functions are stationary and a higher Young’s modulus will
result in a higher eigenfrequency. As a result, the intervals of the eigenfrequencies f I1 , f

I
2 , f

I
3 are quantified

by solving the FE-model with two realisations of the interval field. Each realisation has different interval
field scalars:

• interval field scalars for the highest eigenfrequencies y:

1. EI1 : E1 = 90 Gpa,

2. EI2 : E2 = 90 Gpa.

• interval field scalars for the lowest eigenfrequencies y:

1. EI1 : E1 = 50 Gpa,

2. EI2 : E2 = 50 Gpa.

The resulting intervals on the first three eigenfrequencies for local explicit interval fields with quartic splines
is:

Qf I1 =
[
f

1
, f1

]
= [20.88, 21.35] (Hz), (22)

Qf I2 =
[
f

2
, f2

]
= [50.73, 51.37] (Hz), (23)

Qf I3 =
[
f

3
, f3

]
= [129.75, 130.87] (Hz), (24)

and for IDW the interval is:

IDW f I1 =
[
f

1
, f1

]
= [17.86, 23.97] (Hz), (25)

IDW f I2 =
[
f

2
, f2

]
= [43.16, 57.90] (Hz), (26)

IDW f I3 =
[
f

3
, f3

]
= [110.17, 147.82] (Hz). (27)

The difference in basis functions used in the local interval field and the global IDW interval field introduces
the change in intervals of the eigenfrequenties. When only local uncertainty is present in the component, the
local uncertainty modeling technique will be clearly less conservative then the global uncertainty modeling
technique.

5.5 Difference in computational cost

The computational cost in interval analysis is most often concentrated in propagating the uncertainty and
less in modelling the field. However, when considering the same interval scalars on the same location for
both techniques and when high dimensional FE-models (> 1M DOF) are used, the computational cost of
modeling the field becomes important. Modelling the field requires commonly a lot of distance measures,
that are required to compute the basis functions. For this case study two basis functions have to be computed.
For IDW the calculation of two weighting functions on the full model domain Ω are required, such that the
total number of distance measures equals:

2

(
L

h

)2

= 2 ·
(

1

0.0125

)2

= 12800 (28)



With local explicit interval fields in two-dimensions six weighting functions (=three in each dimension) are
defined on a local domain K around there control point. So more weighting function and less distance
measures are required due to the smaller domain. In total, the distance measures for this modeling technique
are:

2

(
2
Rx1

h
+ 2

Ry1

h
+ 2

Rx2

h
+ 2

Ry2

h

)
= 4

0.1

0.0125
+ 4

0.15

0.0125
+ 4

0.2

0.0125
+ 4

0.1

0.0125
= 176 (29)

As a result, the computational cost is reduced from 12800 to 176 when using the local explicit interval field
formulation.

6 Conclusion

This paper presents an approach to generate a local interval field to represent locally spatial uncertain param-
eters in FE models up to 2D. To characterise the local character of the interval field this paper proposes two
requirements, (1) the weight function is w > 0 within a specific region around the control point and w = 0
outside that region, (2) the weight function is a monotonically decreasing function towards the edges of that
region. The use of quartic splines is proposed, as the selection of weighting functions is limited by these
requirements. An academic structural dynamic case study is performed to illustrate the difference between
local dependent interval fields and global dependent interval fields using the IDW technique. With this test
case, it was shown that the local interval fields model the local dependency much better than fields based on
IDW. Another advantage of the local interval fields is that for this case the computational cost (the number
of distance measures) is reduced with a factor of 72 in comparison with global interval fields. In this paper,
two spatial dimensions and non-overlapping dependency regions in the model domain are considered. The
extension to n-dimensions and allowing for overlapping dependency regions requires future research.
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