
Process Outcome Prediction:
CNN vs. LSTM (with Attention)

Hans Weytjens and Jochen De Weerdt

Research Centre for Information Systems Engineering (LIRIS),
KU Leuven, Leuven, Belgium

{hans.weytjens,jochen.deweerdt}@kuleuven.be

Abstract. The early outcome prediction of ongoing or completed pro-
cesses confers competitive advantage to organizations. The performance
of classic machine learning and, more recently, deep learning techniques
such as Long Short-Term Memory (LSTM) on this type of classification
problem has been thorougly investigated. Recently, much research fo-
cused on applying Convolutional Neural Networks (CNN) to time series
problems including classification, however not yet to outcome predic-
tion. The purpose of this paper is to close this gap and compare CNNs
to LSTMs. Attention is another technique that, in combination with
LSTMs, has found application in time series classification and was in-
cluded in our research. Our findings show that all these neural networks
achieve satisfactory to high predictive power provided sufficiently large
datasets. CNNs perfom on par with LSTMs; the Attention mechanism
adds no value to the latter. Since CNNs run one order of magnitude
faster than both types of LSTM, their use is preferable. All models are
robust with respect to their hyperparameters and achieve their max-
imal predictive power early on in the cases, usually after only a few
events, making them highly suitable for runtime predictions. We argue
that CNNs’ speed, early predictive power and robustness should pave
the way for their application in process outcome prediction.

Keywords: Process Mining · Outcome Prediction · Neural Networks ·
LSTM · Attention · Convolutional Neural Networks.

1 Introduction

Every organization will gain considerable advantage from the early outcome
prediction of its ongoing processes: they can attempt to influence undesired out-
comes for the better, make well-informed decisions further down the value chain,
or realize efficiency gains. Process mining is the exercise of extracting informa-
tion from event logs stored in computer systems with the aim of discovering
or improving them. Within this realm, predictive process monitoring focuses on
making predictions and has already applied a plethora of machine learning ap-
proaches, achieving varying degrees of success. Teinemaa et al. [10] benchmark
several classical approaches such as random forests, gradient boosted trees (both
based on decision trees), logistic regression and support vector machines using



2 H. Weytjens, J. De Weerdt

various datasets. These classical machine techniques sometimes rely heavily on
manual feature engineering to represent the data, which is far from a trivial
task. Deep learning techniques have enjoyed remarkable successes automatically
representing data as a hierarchy of useful features. This led to a growing body of
predictive process monitoring applications. Both Evermann et al. [4] and Tax et
al. [9] use Long Short-Term Memory neural networks (LSTMs) to predict next
events and time stamps in business processes. Camargo et al. [3] further refined
this approach. Hinkka et al. [6] were amongst the first to apply them in process
outcome prediction. Kratsch et al. [7] included LSTM in their comprehensive
comparison of deep learning and classical approaches for outcome prediction.
LSTMs sometimes suffer from their limited memory capacity, an issue that Bah-
danau et al. [1] address with the Attention mechanism. Wang et al. [11] used
LSTMs with Attention in their outcome prediction benchmarking study that
also included bidirectional LSTMs and classic approaches. Convolutional Neural
Networks (CNNs) work with fixed-size, spatially-organized data and are often
associated with computer vision. Nevertheless, one-dimensional CNNs are also
utilized for time series classification or sequence modeling [2]. Fawaz et al.’s [5]
large-scale empirical study of deep learning methods for time series classification
includes CNNs but not LSTMs. Pasqualdibisceglie et al. [8], however, opted for
an original two-dimensional CNN approach to predict next events in processes.

Table 1. Related research in process mining and positioning of this paper.

Paper Classic LSTM LSTM CNN Outcome Early
Machine
Learning

Attention Prediction Prediction

Teinemaa [10] x - - - x x
Evermann [4] - x - - - -
Tax [9] - x - - - x
Camargo [3] - x - - - -
Hinkka [6] - x - - x x
Kratsch [7] x x - - x x
Wang [11] x x x - x x
Pasqual. [8] - x - 2D - -

This paper - x x x x x

To the best of our knowledge, there is no published research investigating
CNNs in process outcome prediction. Table 1 relates our paper to the research
described above. It concentrates on comparing CNNs to LSTMs with and with-
out Attention. We not only investigate classifying completed processes, but also
look at predicting the outcomes of ongoing processes. We find that neural net-
works can make accurate and early predictions, provided the datasets are large
enough. CNNs are much faster than LSTMs, but deliver very similar results.
Attention does not improve the plain-vanilla LSTMs. All three models prove to
be robust, to be relatively insensitive to hyperparameter changes. Intriguingly,
the time-related features and even the ordering of the events seem to play a
minor role at best for the quality of the models.



Process Outcome Prediction: CNN vs. LSTM (with Attention) 3

2 Solving the learning problem

Our objective, to benchmark different neural networks against each other, guided
the methodological choices described in this section. The choices we made will
not necessarily be optimal for any given learner on any given dataset. All datasets
are event logs describing processes, often called cases or traces. These processes
consist of events. A number of attributes, also called features or variables, de-
scribe the events. Every case is associated with a binary outcome, also called
class or target, e.g. ‘approved’ vs. ‘non-approved’ in the case of a loan appli-
cation process. In this paper, we use the words ‘cases’, ‘events’, ‘features’ and
‘targets’. The word ‘prefix’ refers to ongoing, incomplete cases.

The learning problem is essentially to train a learner using a training dataset
containing events, described by their features and organized in cases that are
labeled with targets, with the goal of predicting the targets of unseen cases
(complete or ongoing).

2.1 Models

Recurrent Neural Networks (RNN) are neural networks specifically designed to
handle sequences of variable length. Since process mining datasets are organized
in cases containing a variable number of events that can be chronologically sorted
using their respective time stamps, RNNs are intuitively the first choice when
applying neural networks to process prediction problems as testified by their
extensive use in the form of LSTMs (the most prominent RNNs, specifically
designed to treat longer-term dependencies) in [3, 4, 9].

An LSTM processes every sequence of events it is presented one time step at
a time. At any given time step, it will pass a vector (aka ‘state of the memory
cell’) containing information about the current and previous time steps to the
next time step, until reaching the last one (as depicted by the dotted horizontal
arrows in Fig 1(a)) whose output is propagated to the next layer. The vector’s
fixed size, however, will inevitably limit its informational content. Especially for
longer sequences, the information from the earlier inputs (events) risks dilution
or loss. The Attention Mechanism shown in Fig 1(b) was proposed to overcome
this problem by retaining the outputs of all nodes in the hidden layer, scoring
them, and then calculating a weighted average of the outputs using these scores
to compute the final outcome of the model (lines from the nodes in the hidden
layer to the output) .

In contrast to LSTMs, Convolutional Neural Networks work with fixed-sized,
spatially-organized data. A series of alternating convolution layers applying
weight-sharing filters and dimension-reducing pooling layers enables the models
to automatically recognize patterns and extract features from the input data.
These features are then passed to a series of dense layers for classification (or
regression). Two-dimensional CNNs are very commonly used in computer vision
applications. Interpreting time as a spatial dimension, one-dimensional CNNs
can be applied to sequence processing as well. Fig 1(c) shows such a 1-D CNN
with the filters striding along the temporal axis.



4 H. Weytjens, J. De Weerdt

2.2 Preprocessing

The data we used and the targets (outcomes that are based on certain events
in the cases) we defined are described in Section 3. We labeled the cases by
adding a target column to the original datasets and then clipped every case just
before the event indicating its target value. To improve comparability, possibly
at the detriment of the final result, we decided against incorporating any human
domain knowledge. We made an exception for the following synthetic features,
the same for all datasets, which were calculated as shown in Table 2.

Fig. 1. Conceptual Visualization Models (dense layers at top omitted).



Process Outcome Prediction: CNN vs. LSTM (with Attention) 5

Since our datasets contain both range (e.g. ‘nr open’) and categorical fea-
tures (e.g. ‘month’), we proceeded to map the labels of the categorical features
to integers. All our models include an embedding layer, which maps these inte-
ger values into vectors that should ideally be similar for values with comparable
properties. The length of these vectors was set to be one-fifth of the respective
feature’s vocabulary size (nearly always far below 10, rarely above), thereby real-
izing a substantial dimensionality reduction compared to one-hot encoding. The
embeddings themselves are learned by the model. Finally, we also standardized
(mean of zero and standard deviation of one) the range features.

Table 2. The synthetic features.

Name Type Explanation

nr open range nr. of open cases at time of every event’s time stamp (=load)
elapsed range time elapsed since start of case, marked by its first event
evTime range time since last event (0 for first event in the case)
sinceMidnight range time elapsed since midnight of previous day
month categ. month of year
day categ. day of month
hour categ. hour of day
evNR range order nr of event in case

2.3 Feeding the models

Since both types of LSTM learners require time sequences as inputs, we combined
the vectors containing the features for all events in a given sequence into matrices
with shape (sequence length x number of features). This was done by sliding a
sequence-length-wide window over the events in a case. The first window only
covered the first event in the case, the second one covered two, etc. The last
window covered the case’s sequence-length last number of events. Fig 2 visualizes
this step, showing the matrix formed by the vectors associated with events 1-10.

Fig. 2. A window with (sequence) length nine sliding over a sixteen-event case forms
the input matrices for the model.



6 H. Weytjens, J. De Weerdt

Padding was used to fill in the missing values for short cases and for the first
(sequence-length - 1) windows of a case. Despite their one-dimensional character
suggesting otherwise, our CNNs work with the same two-dimensional input data.
The one-dimensionality refers to the filters covering the whole width (number
of features) and striding in one direction only, along the longitudinal axis of
the matrix (sequence length). In this fashion, every case produced a number of
matrices in the processed dataset equal to its number of events.

3 Experimental evaluation

In this section, we first present the datasets we chose for our experiments. We
then describe the implementation of the experiments, including splitting the
datasets into training, validation and test sets, hyperparameter tuning, mea-
sures against overfitting and physical infrastructure. Before finally describing
our results, we devote a short paragraph to the metrics used.

3.1 Datasets

We selected a number of publicly available and widely-used datasets1 containing
both range and categorical features. To discover the suitability of deep learning
models in different environments, we created variety by including small and large
datasets, with short and long traces, varying degrees of class balance and of lower
and higher quality:

– BPIC 2012: This dataset describes a loan application process at a Dutch
bank. Every case has three possible targets: ‘approved’, ‘declined’ or ‘can-
celed’. This multi-classification problem was transformed into three different
binary classification problems for our purposes.

– BPIC 2017: This dataset is a higher-quality version of BPIC 2012 with
both more examples and features that should facilitate better predictions.
Note that the sum of the three targets exceeds 100% as sometimes ‘canceled’
cases are restarted and ‘approved’ or ‘declined’ cases become ‘canceled’ later.

– Traffic fines: Is an event log of a system managing traffic road fines. Fines
are either paid in full or sent for credit collection. The latter is our target
(‘deviant’). Cases in this dataset are very short (avg. 3.3 events).

– Sepsis cases: Describes the pathways of patients through a hospital. We
define three targets:
• 28 days EM: is the patient admitted to the emergency rooms within

twenty eight days of his/her release from the hospital?
• IC: does the patient enter the intensive care unit?
• no A release: is the patient eventually released from the hospital for

another reason than the most frequent ‘A’?
Table 3 provides an overview of the used datasets, some of which contain

highly imbalanced classes. In line with our decision to apply an identical method-
ology to all datasets, we decided against sampling techniques to restore balance.
This negatively impacted results, especially for BPIC 2017 (declined) and Sepsis.
1 All datasets can be found at https://data.4tu.nl/repository/collection:event logs real

(4TU Centre for Research Data)



Process Outcome Prediction: CNN vs. LSTM (with Attention) 7

Table 3. Statistics of the used datasets.

Dataset Target # # Min Max Mean Med Pos Pos # categ. # range
(binary) events cases events events events events events cases features features

BPIC approved 219,858 12,688 2 172 17.3 8 .40 .18 3 2
2012 declined 219,858 12,688 2 172 17.3 8 .26 .60 3 2

canceled 219,858 12,688 2 172 17.3 8 .33 .22 3 2

BPIC approved 1,071,054 31,417 7 175 34.1 30 .65 .55 11 6
2017 declined 1,071,054 31,417 7 175 34.1 30 .12 .12 11 6

canceled 1,071,054 31,417 7 175 34.1 30 .44 .50 11 6

Traffic deviant 496,067 149,958 1 20 3.3 4 .48 .39 8 4

Sepsis 28 days... 13,095 781 5 185 16.8 14 .16 .14 25 4
Sepsis IC 10,841 781 3 60 13.9 13 .09 .14 25 4
Sepsis no A... 13,182 781 5 183 16.9 14 .16 .14 25 4

3.2 Implementation

We first preprocessed the data and reshaped it to fit our models as described
in 2.2 and 2.3. A test set comprising the chronologically last 20% cases of each
dataset was set apart for the final evaluation of the models’ predictions. We
ran every model/dataset combination 50 times with different values for three
hyperparameters: sequence length, batch size and model size. The latter was
accomplished by multiplying every layer’s number of nodes by a multiplication
factor. As the CNN models had one additional hyperparameter, kernel size, they
were run 100 times. Prior to every run, the input data was reshuffled before sep-
arating a training set of 80% from a validation set of 20% of the examples.
To avoid overfitting, we used an automatic stopping mechanism to halt train-
ing after five epochs without improvement of the metric on the validation set.
Each experiment was run on the Google Cloud. Polyaxon running above Kuber-
netes allowed for parallel execution on multiple two-core, 13GB, 2.0 GHz Intel
Xeon Scalable Processors (Skylake) and either NVIDIA Tesla K80 or P100 (for
BPIC 2017) GPUs.

3.3 Metrics

Given the class imbalance in some of our datasets and the binary nature of
the targets, we opted for the area under the curve ROC (AUC ROC) metric
to evaluate our models. Since AUC ROC yields a non-differentiable loss curve,
we had to resort to accuracy to train our models. At the end of each epoch, we
computed the AUC ROC on the validation set for the early-stopping mechanism.
After training, the model with the highest AUC ROC score on the validation set
was withheld to make predictions on the test set, on which we report below in
this paper. We also calculated other metrics: F1-score, accuracy and AUC PR
(area under the precision-recall curve) and recorded computation times.

3.4 Results

The evaluation of our experiments’ results allows us to formulate answers to
the following questions: Which models perform better on what kind of datasets?



8 H. Weytjens, J. De Weerdt

What are the speed differences between the models? How robust are they with
respect to their hyperparameters? Are early runtime predictions possible? We
also make an observation about the relevance of timestamps.

CNNs perform comparably to LSTMs with and without Attention.
Table 4 shows that neural networks can deliver useful results for large enough
datasets (BPIC 2017, Traffic and BPIC 2012). However, none of our models
could cope with the combined challenge of short, imbalanced datasets and many
(sparse and possibly correlated) variables found in Sepsis. Whilst the BPIC 2012
predictions still beckon a great deal of caution (the F1-scores are extremely low
for ‘canceled’), the BPIC 2017 results are vastly superior and clearly demonstrate
the benefits of improved data collection by the user. The lower F1- and AUC PR-
scores for ‘declined’ versus ‘approved’ and ‘canceled’ in all likelihood result from
the dataset’s class imbalance. Despite the extreme shortness of the cases in
the Traffic dataset, the results are significantly better than random guesses.
The three different models deployed performed equally well, suggesting they all
manage to extract the same information from the data. CNNs proved to be
a match for the state-of-the-art LSTM, confirming the findings of [2, 5]. In our
setting, no benefit was derived by adding an attention layer to the LSTM models.

CNNs train much faster than LSTMs. Training times matter, especially
since concept drift will require frequent training of models in production. CNN
models remarkably outrun the other models during training—sometimes by over
one order of magnitude—making them the model of choice for practitioners. Pre-
diction times are negligible. Training times depend heavily on model architecture
decisions, and hardware infrastructure, and are stochastic by nature. In our im-
plementation as described in subsection 3.2, the run times of the fastest models
were 23-60, 380-500, 270, and 17-40 seconds for BPIC 2012, BPIC 2017, Traffic
and Sepsis respectively (BPIC 2017 was run on faster GPUs). Hyperparameter
tuning multiplies total training times by the number of trainings performed.

All models are robust with respect to their hyperparameters. As for
the hyperparameters, there is no consensus on the batch sizes: all available sizes
(128, 256, 512, 1024) are used by the best models. One could expect longer
sequence lengths to support better predictions for datasets with longer cases.
Indeed, the sequence length is consistently about 1.5 times the median num-
ber events per case for the BPIC 2017 and Traffic datasets. This is less clear
for BPIC 2012. We used a multiplication factor (between one and sixteen) to
generate models of different widths. A preference for a certain size cannot be
deduced from our experiments. The same holds true for the CNNs’ kernel size.
Fortunately, these hyperparameter differences do not oblige the practitioner to
engage in very extensive hyperparameter tuning. The models are robust with
respect to them as visualized in Fig 3, where the AUC ROC values hardly move
with changes in the individual hyperparameters.



Process Outcome Prediction: CNN vs. LSTM (with Attention) 9

Table 4. Results from best models in hyperparameter space, aggregated over all prefix
lengths. ‘Rel. Time’ is the relative run time compared to the fastest run time for the
respective experiment which is set at 100%.

Dataset Target
Model AUC F1- Accu- AUC Rel. Batch Seq. Kernel Model

ROC score racy PR Time Size Length Size Size

BPIC 2012

approved
LSTM 0.79 0.67 0.72 0.74 668% 512 45 16
Att 0.79 0.66 0.72 0.74 552% 512 35 16
CNN 0.80 0.69 0.72 0.75 100% 256 15 8 16

declined
LSTM 0.76 0.59 0.76 0.63 443% 1024 35 16
Att 0.75 0.59 0.75 0.63 160% 512 5 8
CNN 0.76 0.59 0.75 0.62 100% 512 35 4 8

canceled
LSTM 0.75 0.35 0.79 0.50 1158% 128 5 2
Att 0.75 0.35 0.79 0.50 1352% 128 5 4
CNN 0.74 0.26 0.79 0.48 100% 1024 5 2 16

BPIC 2017

approved
LSTM 0.93 0.88 0.83 0.96 909% 128 47 4
Att 0.93 0.88 0.84 0.97 946% 128 47 8
CNN 0.93 0.86 0.83 0.97 100% 128 47 2 4

declined
LSTM 0.91 0.66 0.92 0.69 200% 1024 47 16
Att 0.91 0.66 0.92 0.67 240% 1024 47 2
CNN 0.91 0.67 0.92 0.69 100% 1024 47 2 4

canceled
LSTM 0.92 0.79 0.82 0.91 294% 1024 47 1
Att 0.92 0.77 0.82 0.91 356% 512 47 4
CNN 0.92 0.80 0.82 0.91 100% 256 47 8 4

Traffic deviant
LSTM 0.75 0.66 0.66 0.63 170% 512 8 2
Att 0.77 0.67 0.68 0.66 100% 512 6 2
CNN 0.76 0.68 0.69 0.64 132% 128 6 3 2

Sepsis

28 days EM
LSTM 0.51 0.03 0.84 0.10 845% 256 45 1
Att 0.50 0.07 0.82 0.10 424% 128 5 2
CNN 0.47 0.89 0.11 100% 512 25 4 4

IC
LSTM 0.65 0.29 0.89 0.31 191% 256 45 4
Att 0.64 0.34 0.89 0.34 125% 256 15 16
CNN 0.69 0.90 0.16 100% 512 45 2 8

no A release
LSTM 0.55 0.34 0.79 0.32 447% 128 45 4
Att 0.56 0.27 0.78 0.32 100% 256 5 4
CNN 0.57 0.30 0.79 0.34 103% 128 5 2 2

Early runtime predictions are possible. Fig 4 provides insight into the
earliness of learning based on the example of the BPIC 2012 dataset. The test
set was sorted according to the prefix length of the (incomplete) cases. When
basing predictions on up to the ten very first events of cases as in the left column
of the figure, a pattern emerges: the outcomes predictions for all models are best
for prefix lengths of three and four! Thus, early runtime predictions are possible
as most of the information about case outcomes resides in the first few events.
Waiting for more events to materialize does not seem to pay off for BPIC 2012,
as shown in the second column of Fig 4 where up to 70 events are considered2.

Do timestamps matter? The aforementioned observations, combined with
the CNNs’ strong performance and the robustness with regards to sequence
length as described earlier, lead to the conclusion that the characteristic timing
feature of process mining problems does not play an important role in outcome
prediction, at least not for the BPIC 2012 dataset (approved) shown in Fig 5.

2 Notice that the (weighted) average of the AUC ROC of subsets will not necessarily
match the AUC ROC of the total set, as observed here.



10 H. Weytjens, J. De Weerdt

128 256 512 1024
batch_size

0.78

0.79

0.80

0.81

au
c_
ro
c

5 15 25 35 45
seq_len

1 2 4 8 16
model_size

2 4 8
kernel_size

Fig. 3. Hyperparameter tuning (BPIC 2012 approved, CNN, average values for all
relevant samples in 100 experiments).

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

au
c_
ro
c

approved

...-10 ...-20 ...-30 ...-40 ...-50 ...-60 ...-70

approved

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

au
c_
ro
c

declined

...-10 ...-20 ...-30 ...-40 ...-50 ...-60 ...-70

declined

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

au
c_
ro
c

canceled

...-10 ...-20 ...-30 ...-40 ...-50 ...-60 ...-70

canceled

<1 <2 <3 <4 <5 <6 <7 <8 <9 <10
prefix lengths up to 10

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
. n

r.
 e
ve

nt
s

events

<10 <20 <30 <40 <50 <60 <70
all prefix lengths

events

LSTM
Att
CNN
cum. share of events

Fig. 4. Runtime predictons: AUC ROC as a function of prefix length (nr. of events
since start of case considered) for 3 BPIC 2012 datasets (max. prefix length of 70).



Process Outcome Prediction: CNN vs. LSTM (with Attention) 11

LSTM Att CNN
0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

AU
C_
RO

C

best model (on validation set)

LSTM Att CNN

average over all models

complete
no time features
no time features, no evNr
shuffled complete
shuffled, no time features
shuffled, no time features, no evNr

Fig. 5. Time-related features and events order and BPIC 2012 (approved) predictions.

The left-hand graph shows the results for the models that scored best on the
validation sets as before. For more general conclusions, we enlarged the sam-
ple to all models trained in the hyperparameter space on the right side. The
results without timestamp-related features always mildly outperform the base
case (white better than grey). The effects of dropping evNr (the feature indicat-
ing the event’s order in the case, red bars) and of shuffling (dotted bars) are not
statistically significant. Apparently, the models are not learning from timestamp-
related data, all information within the datasets is stored in the other features,
an observation also made by [10].

4 Conclusion and future work

We found neural networks to be a useful tool for process outcome prediction,
given sufficiently large datasets. CNNs deliver the same results as the state-of-
the-art LSTMs at a fraction of the time and can therefore be recommended as
first choice for practitioners. We found no benefit in the use of the Attention
mechanism in the LSTM models. The comparison of BPIC 2017 and BPIC 2012
clearly demonstrates how organizations can benefit from improved data collec-
tion. Based on further exploration of the results on the BPIC 2012 dataset, neu-
ral networks turned out to be robust with regards to their hyperparameters as
well. The models often nearly reached full predictability after observing only the
first few events of a case, suggesting that events critical to determining the case
outcome often appear early. These factors support the usability of the models in
practice, both for completed and (young) ongoing cases. The aim of this paper
was to compare methods; we did not seek optimal predictions. Therefore, the
published results would probably improve from balancing classes in the datasets
and applying some domain-specific knowledge among other things.
Our conclusions on the models’ performance and speed were based on experi-
ments on several datasets with consistent results, and hence generalizable. How-
ever, the BPIC 2012 dataset is not necessarily representative of all process min-
ing datasets. Therefore, future research considering a wider range of datasets



12 H. Weytjens, J. De Weerdt

could solidify our conclusions about hyperparameters, runtime predictions and
timestamps. We expect most of our conclusions to be valid for next-event and
duration prediction problems, as the approach and models used would be iden-
tical, but only further experiments could confirm that. The observed irrelevance
of the timestamp-related features warrants further inquiry. Our preliminary re-
search suggests that under the right circumstances, neural networks outperform
the classic methods in [10] to the order of a few percentage points on average.
Further investigation is required to strengthen these findings and derive recom-
mendations for the deployment of the networks. Offering insights into how the
neural networks’ results were reached would contribute to the practitioner’s con-
fidence in them. Finally, one could gain deeper insight into the uncertainty of
the model predictions (e.g., by using Bayesian techniques), to account for the
probabilistic nature of the input data and model weights.

References
1. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural Machine Translation by Jointly Learn-

ing to Align and Translate. In: Bengio, Y., LeCunn, Y. (eds) 3rd International
Conference on Learning RepresentationsICLR 2015. Conference Track Proceedings
(2015). https://dblp.org/rec/bib/journals/corr/BahdanauCB14

2. Bai, S.J., Kolter, J.Z., Koltun, V..: An Empirical Evaluation of Generic Convolu-
tional and Recurrent Networks for Sequence Modeling. arXiv:1803.01271v2 (2018)

3. Camargo, M., Dumas, M., Gonzlez-Rojas, O.: Learning Accurate LSTM Models
of Business Processes. In: Business Process Management 2019, LNCS 11675, pp.
286–302. Springer Nature Switzerland AG, Cham (2019)

4. Evermann, J., Rehse, J-R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems 100, 129–140 (2017)

5. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning
for time series classification: a review. Data Mining and Knowledge Discovery 33
(4), 917–963 (2019) https://doi.org/10.1007/s10618-019-00619-1

6. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Classifying Process Instances Using
Recurrent Neural Networks. https://arxiv.org/pdf/1809.05896.pdf (2018)

7. Kratsch, W., Manderscheid, J., Roeglinger, M., Seyfried J.: Machine Learning in
Business Process Monitoring: a Comparison of Deep Learning and Classical Ap-
proaches Used for Outcome Prediction, Business & Information Systems Engineer-
ing 2020. https://link.springer.com/article/10.1007%2Fs12599-020-00645-0

8. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using Convolutional
Neural Networks for Predictive Process Analytics. In 2019 International Conference
on Process Mining (ICPM) (2019). https://doi.org/10.1109/ICPM.2019.00028

9. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive Business Process Mon-
itoring with LSTM Neural Networks. In: Dubois, E., Pohl, K. (eds) Advanced In-
formation Systems Engineering. CAiSE 2017. Lecture Notes in Computer Science,
vol 10253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 30

10. Teinemaa, I., Dumas, M., La Rosa, M., Maggi, F.M.: Outcome-Oriented Predic-
tive Process Monitoring: Review and Benchmark. ACM Transactions on Knowledge
Discovery from Data (TKDD) 13(2), Article No. 17 (2019)

11. Wang, J., Yu, D., Liu, C., Sun, X.: Outcome-Oriented Predictive Pro-
cess Monitoring with Attention-based Bidirectional LSTM Neural Networks.
In 2019 IEEE International Conference on Web Services (ICWS)(2019).
https://doi.org/10.1109/ICWS.2019.00065


