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Preface

As children we have all been taught to listen politely to others before
speaking ourselves. Unfortunately, sometimes this lesson is forgotten, causing
simultaneous or overlapping speech. Overlapping speech also occurs naturally
when many people are present in the same environment, sometimes referred to
as the cocktail party problem. While normal-hearing individuals can deal with
this to some extent, the same cannot be said for hearing-impaired persons or
hearing-aid users. Machines also struggle with automatic speech processing
in such scenarios. This is unfortunate, as speech is a user friendly way of
communication between human and computer. This PhD thesis addresses this
problem by applying automatic speech separation. More specifically, the link
between speaker characterization and speaker separation will be studied. Who
said what?

I would not be able to present this manuscript without the help of many people
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the university.

Tinne Tuytelaars and Alexander Bertrand, as members of my supervisory
committee, have provided useful feedback. I am also glad to have had the
opportunity to co-author with both of them on one or more publications. I
appreciate the time invested in reading my manuscript by them and the other
members of the jury: Sarah Verhulst, Patrick Wambacq and Erik Marchi. I
thank the chair Hendrik Van Brussel.

I acknowledge the SB grant received by FWO, which allowed me to work on
this thesis without distractions. I also acknowledge KU Leuven to allow me to
write and present this manuscript.
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I would like to thank Deepak, Joris, Reza, Alec, Vincent, Lyan, Louis, Yinan,
Wim, Jalil, Bernd, Jinzi, Jakob, Lies, Pu, Quentin and Bagher.

Without the unconditional support of my mother and father, I can’t imagine ever
to have started my engineering education, let alone writing a PhD manuscript.
I would like to thank them from the bottom of my hearth for all the wonderful
opportunities they have given me. I would also like to thank my sister Sofie
as she has been a great example for me. Finally, I would like to thank my
partner Gwen for showing me everything that is important in life outside of the
university.



Abstract

Many speech technology applications expect speech input from a single speaker
and usually fail when multiple speakers are active, especially when speech
overlaps. However, in many situations there are multiple people within reach
of the recording device and therefore there is a high chance of multiple active
speakers. In Speech Source Separation (SSS), the different speech sources
are separated to obtain an audio signal for each speaker. As the sources are
separated, we would also like to know the identity or the characteristics of
the speaker by Speaker Recognition (SR) so we can re-identify the speaker
later on. If both SSS and SR are being applied, we can track a single speaker
throughout, for example, a recording of a business meeting with overlapping
speech. SSS and SR are usually being treated as separate problems. However,
when (blindly) separating a speech mixture, characterization of the sources
is inherently necessary. Moreover, when recognizing speakers in overlapping
speech, every speaker is associated with part of the audio fragment and thus
source separation is inherently active. The main research question of the PhD
thesis is whether a joint approach to SSS and SR makes them constructively
help each other to achieve greater performance. A sequential approach where
first SSS is done, followed by SR, is expected to be less efficient as each step is
optimized independently and neglects the other step.

A first attempt in building such a joint model is done using Nonnegative Matrix
Factorization (NMF). NMF is an often used method in SSS that looks for
spectral patterns in an audio example. An existing multi-channel NMF model
for SSS is adapted such that the same spectral patterns, that were extracted for
SSS, can be used for SR. This model is compared with two sequential baselines
in terms of SR performance in overlapping speech. One sequential baseline
uses NMF| while the other uses i-vectors, a state-of-the-art method for SR in
non-overlapping speech. The joint model is shown to outperform both.

In recent years, Deep Neural Networks (DNNs) have gained considerable
attention in the SSS field. A DNN is shared in a joint model for SSS and
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SR. It is studied how best to learn such a model for multiple tasks. The joint
model outperforms a sequential and a parallel baseline in SR performance.
Furthermore, a first adjustment to the joint model is made such that the SR
task better takes into account the uncertainty of SSS. A second adjustment
allows the model to handle both overlapping and non-overlapping speech, a
useful feature if for some speakers enrollment can be done in a controlled,
single-speaker environment.

One of the major drawbacks of DNNs in general is that due to their nested and
non-linear structure, it is difficult to understand what makes them arrive at
their prediction and therefore DNNs lack explainability. Two novel methods
are developed that are generally applicable to study the memory of Recurrent
Neural Network (RNN)s. These methods allow to restrict the duration that
information is kept in the memory of RNNs. This duration is also referred to
as memory span in this text. It is then measured how the RNN performs on a
specific task for different arbitrarily chosen memory spans. These methods are
applied to the task of SSS to determine to which extent SR and other factors
play a role in a successful separation. By modifying the memory span per
layer in a deep RNN, we discover hierarchical structures in the memory of an
RNN. Furthermore, for a bidirectional RNN, a distinction is made between the
importance of the forward network and the backward network.

Finally, the use of SSS for a neuro-steered hearing aid is studied. In summary,
brain activity of a hearing-aid user is measured in a multi-speaker scenario,
where the user tries to focus on a single target speaker. The measured brain
signals are used to estimate the speech envelope of the attended target speaker
using an Auditory Attention Decoder (AAD). The use of SSS here is twofold.
First, the envelopes of the estimated speech signals are compared with the
decoded speech envelope of the AAD module to estimate the attended speaker.
Secondly, once the target speaker is estimated, this speaker’s separated speech
signal is sent to the hearing aid. A DNN for SSS is compared with a traditional
linear SSS method. The DNN manages to outperform the traditional method
in the most challenging cases.



Beknopte samenvatting

De meeste toepassingen van spraaktechnologieén verwachten een spraakinvoer
waarbij slechts één spreker actief is. Deze toepassingen falen dan meestal
wanneer meerdere sprekers actief zijn, in het bijzonder als de spraak overlapt.
Echter, in vele situaties bevinden er zich meerdere personen in de buurt van
een opnameapparaat en dus is er een grote kans dat meerdere sprekers actief
zijn. Door spraaksignaalscheiding (Speech Source Separation of SSS) worden
de verschillende spraakbronnen van elkaar gescheiden zodat voor elke spreker
een individueel audiosignaal wordt bekomen. Terwijl we de sprekers scheiden,
zouden we graag ook de sprekeridentiteit of de sprekerkarakteristieken leren,
ook wel sprekerherkenning (Speaker Recognition of SR) genoemd. Dit laat
ons toe om later eenzelfde spreker te herkennen. Wanneer SSS en SR worden
toegepast, kunnen we een enkele spreker traceren doorheen bijvoorbeeld een
opname van een meeting met overlappende spraak. Meestal worden SSS en
SR beschouwd als gescheiden problemen. Echter, wanneer de sprekers van
elkaar worden gescheiden op een blinde manier, is karakterisatie van de bronnen
inherent nodig. Verder geldt ook dat wanneer men sprekers tracht te herkennen
in overlappende spraak, men elke spreker moet verbinden aan een deel van
het audiofragment en dus is spraakscheiding inherent nodig. De hoofdvraag
van deze doctoraatsthesis is of een gemeenschappelijke aanpak van SSS en SR
ervoor zorgt dat ze elkaar constructief helpen om een betere performantie te
halen. Een sequentiéle aanpak waarbij eerst SSS wordt toegepast, gevolgd door
SR, is waarschijnlijk minder efficiént aangezien elke stap onafhankelijk van de
andere wordt geoptimaliseerd.

Een eerste poging om een dergelijk gemeenschappelijk model te bouwen, gebeurt
door middel van Nonnegative Matrixz Factorization (NMF). NMF is een vaak
gebruikte methode voor SSS die op zoek gaat naar spectrale patronen in
een audiovoorbeeld. Een bestaand meerkanaals NMF model voor SSS wordt
aangepast zodat dezelfde spectrale patronen, die waren ontdekt voor SSS, kunnen
worden gebruikt voor SR. Dit model wordt vergeleken met twee sequentiéle
basismodellen in termen van accuraatheid in SR. Het ene basismodel gebruikt
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NMF, terwijl het andere i-vectors gebruikt, een state-of-the-art methode voor
SR in niet-overlappende spraak. Het gemeenschappelijke model blijkt beter te
presteren dan beide basismodellen in termen van SR performantie.

De laatste jaren hebben diepe neurale netwerken (Deep Neural Networks of
DNNs) veel aandacht gewonnen in het domein van SSS. Een gemeenschappelijk
DNN wordt gebruikt voor SSS en SR. Er wordt onderzocht hoe een dergelijk
model het best kan leren van beide taken. Het gemeenschappelijk model
blijkt beter te presteren dan een sequentieel en een parallel basismodel in
termen van SR performantie. Bovendien zorgt een eerste aanpassing aan het
gemeenschappelijk model ervoor dat de SR taak beter de onzekerheid van
het SSS deel in beschouwing neemt. Een tweede aanpassing laat het model
toe om zowel overlappende als niet-overlappende spraak te verwerken. Dit
kan handig zijn indien voor sommige sprekers de sprekerkarakteristieken op
voorhand kunnen worden geleerd in een gecontroleerde omgeving waarbij enkel
die spreker actief is.

Een van de grote nadelen van DNNs in het algemeen is dat, door hun geneste
structuur, het moeilijk is om te begrijpen hoe DNNs tot hun uiteindelijke
beslissing komen. Twee nieuwe methodes worden ontwikkeld die algemeen
toepasbaar zijn om de geheugenwerking van een recurrent neuraal netwerk
(Recurrent Neural Network of RNN) te onderzoeken. Deze methodes laten toe
om een beperking te plaatsen op de tijd dat informatie in het geheugen van het
RNN wordt gehouden. Er kan dan worden gemeten hoe het RNN presteert op
een bepaalde taak, afhankelijk van verschillende toegestane geheugentijden. Deze
methodes worden toegepast op de SSS taak om te onderzoeken in welke mate SR
en andere factoren een rol spelen in een succesvolle sprekerscheiding. Door de
geheugenrestricties aan te passen per laag in een diep RNN, worden hiérarchische
structuren in het geheugen van het RNN ontdekt. Verder ontdekken we dat
voor een bi-directionieel RNN, een onderscheid kan worden gemaakt tussen het
belang van de voorwaartse en de achterwaartse richting.

Ten slotte wordt het gebruik van SSS in een neurologisch gestuurd gehoorap-
paraat bestudeerd. In een dergelijk gehoorapparaat wordt de hersenactiviteit
van een gebruiker van een gehoorapparaat gemeten. Deze gebruiker probeert
te focussen op een enkele spreker in overlappende spraak. De gemeten
hersensignalen worden gebruikt om de spraakenveloppe van de gefocuste spreker
te reconstrueren aan de hand van een auditieve aandachtsdecoder (Auditory
Attention Decoder of AAD). SSS wordt hier voor twee redenen gebruikt.
Ten eerste, de enveloppes van de gescheiden spraaksignalen kunnen worden
vergeleken met de gedecodeerde spraakenveloppe van de AAD om te schatten
naar welke spreker de gebruiker aan het luisteren is. Ten tweede, eens de
relevante spreker is bepaald, kan het gescheiden spraaksignaal van deze spreker
worden doorgestuurd naar het gehoorapparaat. Een DNN voor SSS zal worden
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vergeleken met een traditionele, lineaire SSS methode. Het DNN zal beter blijken
te presteren dan de traditionele methode in de meest uitdagende scenarios.
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Chapter 1

Introduction

Automatic speech processing is a major research area since it allows a user
friendly way of communication between human and computer. When multiple
sound sources are active, the processing of the speech signal(s) from a recording
is more difficult compared to a so-called clean speech signal where only one
sound source is present. For example, a speech signal can become corrupted in a
crowded bar or even at home, which hinders applications such a voice assistants,
automatic transcriptions and hearing aids. Many of these applications expect
speech input from a single source and usually fail when multiple sources are
active, especially when they overlap in time. In Source Separation (SS) the
original source signals are estimated from such a multi-source audio recording,
also called a mixture. This is particularly difficult when all sources are speech
sources, which will be referred to as Speech Source Separation (SSS). Often the
speakers are unknown and SSS is performed blindly, called Blind SSS (BSSS).
As the speech sources are separated, it is often beneficial to look for speaker
characteristics such that the speaker can be re-identified later on, using Speaker
Recognition (SR). If both BSSS and SR are being applied we can track a single
speaker throughout, for example, a recording of a business meeting.

BSSS and SR are usually being treated as separate problems. Specialists in SR
mostly consider single speaker audio recordings. In case of overlapping speech
they rely on BSSS specialists to convert the multi-speaker audio recording
into multiple single-speaker tracks, or they simple ignore this type of data. A
BSSS specialist, on the other hand, will consider his task done after successfully
separating all speech sources in an audio recording. However, when blindly
separating a speech mixture, characterization of the sources seems inherently
necessary for a consistent mapping of speech fragments to the correct source.
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Moreover, when recognizing speakers in overlapping speech, every speaker is
associated with part of the audio fragment and thus BSSS seems inherently
active. The two problems seem to be linked. The main research question of
this doctoral thesis is whether a joint approach to BSSS and SR makes them
constructively help each other to achieve greater performance. A sequential
approach [113] where first BSSS is done, followed by SR, seems less efficient as
each step is optimized independently and neglects the other step.

Chapters 2 and 4 of the thesis will look for such joint models and indeed find
that they outperform sequential approaches. In Chapter 2 this is done using
Nonnegative Matrix Factorization (NMF), while in Chapter 4 Deep Neural
Networks (DNNs) are used. Given that they reach related conclusions, it is
expected that the dependencies between BSSS and SR are independent of the
model choice and rather intrinsic to the tasks themselves. Chapters 3 and 5 will
not explicitly search for a joint model, but will rather show that indeed speaker
characteristic information is inherently required when performing SS. Finally,
Chapters 6 and 7 will consider more applied and practical aspects of BSSS.

The remainder of this chapter introduces some basic concepts used in this thesis
text. In Section 1.1 the tasks of BSSS and SS will be described, as well as
the joint BSSS-SR problem. Sections 1.2, 1.3 and 1.4 will describe the NMF
method, i-vectors and DNNs, respectively. NMF and DNN can be used for both
BSSS and SR and are therefore suited for building a joint model. The i-vector
method is used for SR but has no direct application in BSSS. Finally, in Section
1.5 a short introduction to each chapter will be given.

1.1 Problem statement

The tasks of (B)SSS and SR will be briefly explained in Sections 1.1.1 and 1.1.2,
respectively. In Section 1.1.3 the joint problem will then be defined.

1.1.1 Speech Source Separation

The cocktail party problem, where multiple sound sources, usually speakers, are
simultaneously active, has been studied in the speech community for decades
[20]. The problem is especially challenging when few assumptions are made.
For a general solution we want to be speaker independent, text independent,
using a single channel and so on. Source Separation (SS) refers to the task of
retrieving the original sound signal of multiple sound source objects that have
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been recorded in a mixture. More specifically, this task focuses on the case
when the sound sources are (partially) active at the same time.

SS can be divided into two domains: speech vs. noise separation and speech
vs. speech separation. In the former, typically only speech is of interest and
therefore it is also called Speech Enhancement (SE). In this text, the latter is
referred to as Speech Source Separation (SSS) to stress that multiple speech
sources are present. An illustration of (B)SSS is given in Figure 1.1. A mixture,
or recording, of S speech sources in its simplest form can be defined as

S
= Z xs[n] (1.1)
s=1

where y[n] is the microphone signal, xzs[n] is the audio signal of source s as
received by the microphone and n is the sample index of the microphone. The
formulation of (1.1) will be used in the remainder of the text when mizture is
mentioned, unless stated otherwise. We give two additional formulations of the
mizture as they will be used in some chapters. In noisy speech mixtures, also
non-speech signals are present and these will be bundled in the noise term n[n].

s
= Z zs[n] + nln] (1.2)

In Chapters 6 and 7 noisy mixtures will be considered. Separating a noisy
mixture into its source components, can be seen as a combination of the SE and
SSS tasks. In (1.1) and (1.2) xs[n] was defined as the audio signal of source s
as received by the microphone. However zs[n] can also be defined as the audio
signal measured at the source. (1.2) is then changed to

Z hs[n] % xs[n] + n[n] (1.3)
where hg[n] is the Room Impulse Response (RIR) of source s to the microphone
and sk is the convolution operation.

The above formulations were done in the time-domain. However, it is often
more useful to consider speech or audio signals in the time-frequency domain.
The Short-time Fourier Transform (STFT) is used to transform a time-domain
signal into the time-frequency domain. In the time-frequency domain (1.1)—(1.3)

become
s

s=1

S
Yt f) =D ws(t. f) +n(t, f) (1.5)
s=1
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Figure 1.1: An illustration of (B)SSS for S = 3

S

y(t, f) = Z Has(t, ) +n(t, f), (1.6)

respectively, with a;(¢, f), y (¢, f) n(t, f) and fis(f) the STEFT of x4[n], y[n],
n[n] and hs[n], respectively. Here, fis(f) is considered time-invariant and
therefore independent of ¢. For ease of notation, (1.4) can also be written in
matrix notation as

y=>a, (1.7)

A recording device needs not be limited to one microphone, but in general has
J microphones. For this multi-channel set-up (1.6) would be extended to

En Yas(t, f) + n(t, f) (1.8)
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with y (¢, f) = [ui(t, £),y2(t, f),...,us(t f)]* and similar for A ,(f) and
n(t, f).

The goal of (B)SSS is to find an estimate X, for every source signal X, from
the mixture Y. The estimated signal £s[n] in the time domain can then be
found using the Inverse Short-time Fourier Transform (ISTFT). Most BSSS
approaches do not try to find the estimate X, directly, but rather estimate a
mask MS and then find the estimate X s as

X,=M,o)y (1.9)

:i;s(t’f) :ms(ta f)y-(taf) (1'10)

with o the Hadamard product. Typically, the masks are constrained to 0 <
ms(t, f) < 1and Zil Mms(t, f) = 1. The latter constraint is usually not applied
in the case of an additive noise source 7 (¢, f). Furthermore, it is common
that the mask M, is real-valued such that the magnitude is estimated as
|X|s = M, o |Y| and the phase or argument is taken from Y (ZX, = £Y).
When &4(t, f) ~ y (¢, f), the phase will thus be reasonably approximated. Since
speech spectra are sparse [110], it is actually rare that multiple sources have
high energy in a given time-frequency bin and usually a bin is dominated by a
single source. For this dominant source, the phase of y (¢, f) is thus a reasonable
approximation for the phase of x4(t, f). For the other sources it is not, but
since the optimal mask estimates my (¢, f) for those non-dominant sources
should be close to zero, the estimate of the phase is of less importance. In fact,
some BSSS approaches (like Deep Clustering (DC) in Section 1.4.2) estimate
binary masks where for each time-frequency bin the mask for one source is
set to 1 and all others are set to 0. However, mask approaches will always
suffer, to some extent, from these phase prediction errors. Recently, some BSSS
approaches that work directly in the time domain (using (1.1)) have shown to
exceed the upper bound performance of an ideal mask [158, 159].

For the multi-channel case (1.10) is generalized to

s(t, f) = (¢, )y (t, f) (1.11)

with .7 the Hermitian transpose. In the multi-channel case, often 1 is in the
complex domain to facilitate beamforming.

Two methods for BSSS will be discussed in this thesis: Nonnegative Matrix
Factorization (NMF) in Section 1.2.1 and Deep Neural Networks (DNNs) in
Section 1.4.2. Other methods like Computational Auditory Scene Analysis
(CASA) [180, 156], Wiener filtering [114], spectral subtraction [19], factorial
Hidden Markov Models (fHMMSs) [178, 79, 125] and Independent Component
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Analysis (ICA) [98] exist but their use for BSSS has been limited since DL
methods have become state-of-the-art. Omne of the major advantages of a
DNN is that it manages well to perform single-channel BSSS, where as others
have to impose restrictions on the speakers or vocabulary or have to resort to
multi-channel approaches.

The general input-output notation used in these models is X and Y. To avoid
confusion, the reader is reminded that for BSSS, the mixture spectrogram Y is
given and speech source spectrograms X g are to be estimated. For instance,
often used inputs to BSSS models are the power spectrogram X = |Y|.2, with .2
the element-wise square, or the log spectrogram X = log(|Y|), while the output
is typically a collection of masks Y = [Ml, Mo, ..., Mg] to be used with (1.9)
to estimate X ;.

The performance of a BSSS algorithm depends on how well z:5[n] approximates
Zs[n]. The most straightforward and most used evaluation metric is the
Signal-to-Distortion Ratio (SDR) [102]. The bss_eval toolbox [176] is used
to determine the SDR in all BSSS experiments in this text. Other evaluation
metrics exists that focus more on speech intelligibility and perceptual evaluation,
such as PESQ [144] and STOI [168, 100]. However, it is important to note that
these are still determined by algorithms and do not contain human assessors.

1.1.2 Speaker Recognition

In Speaker Recognition (SR), one wants to recognize a speaker from an utterance.
There are two stages in an SR problem: the enrollment stage and the test stage,
where the latter is also called the evaluation or inference stage. In the enrollment
phase, a set of I known speakers is built where enrollment data is required for
each speaker. In the test phase, a previously unused audio fragment has to be
matched to one of the I speakers'. An illustration of SR is given in Figure 1.2.

Two types of SR can be distinguished: Speaker Identification (SID) and Speaker
Verification (SV). In SID the identity of the speaker in a test utterance is
requested, given a set of I enrolled speakers. SID can thus be seen as a
classification problem with I classes. In SV one wants to determine whether
the utterance belongs to a specific speaker or not. Most SV models output a
score, when asked if a test utterance belongs to a specific speaker. If this score
exceeds a certain threshold, the trial is classified as positive. Naturally, these
two SR tasks are linked and often methods developed for SID can be used for
Speaker Verification (SV) (and vice versa).

1In some cases, the test fragment can belong to none of the I known speakers and the
system is asked to provide an out-of-set trigger. However, this is outside the scope of the
thesis.
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Figure 1.2: An illustration of SR for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>