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Preface

As children we have all been taught to listen politely to others before
speaking ourselves. Unfortunately, sometimes this lesson is forgotten, causing
simultaneous or overlapping speech. Overlapping speech also occurs naturally
when many people are present in the same environment, sometimes referred to
as the cocktail party problem. While normal-hearing individuals can deal with
this to some extent, the same cannot be said for hearing-impaired persons or
hearing-aid users. Machines also struggle with automatic speech processing
in such scenarios. This is unfortunate, as speech is a user friendly way of
communication between human and computer. This PhD thesis addresses this
problem by applying automatic speech separation. More specifically, the link
between speaker characterization and speaker separation will be studied. Who
said what?

I would not be able to present this manuscript without the help of many people
around me. The most important one being Hugo Van hamme, my supervisor.
Probably being one of the university’s most approachable professors, we had
many formal and informal meetings. These discussions, where there were no
limits but our imagination, are the moments I cherish most during my time at
the university.

Tinne Tuytelaars and Alexander Bertrand, as members of my supervisory
committee, have provided useful feedback. I am also glad to have had the
opportunity to co-author with both of them on one or more publications. I
appreciate the time invested in reading my manuscript by them and the other
members of the jury: Sarah Verhulst, Patrick Wambacq and Erik Marchi. I
thank the chair Hendrik Van Brussel.

I acknowledge the SB grant received by FWO, which allowed me to work on
this thesis without distractions. I also acknowledge KU Leuven to allow me to
write and present this manuscript.

I have many great memories of technical, but mostly non-technical discussions,

i



ii PREFACE

moments, activities and coffee breaks with my colleagues of the past and present.
I would like to thank Deepak, Joris, Reza, Alec, Vincent, Lyan, Louis, Yinan,
Wim, Jalil, Bernd, Jinzi, Jakob, Lies, Pu, Quentin and Bagher.

Without the unconditional support of my mother and father, I can’t imagine ever
to have started my engineering education, let alone writing a PhD manuscript.
I would like to thank them from the bottom of my hearth for all the wonderful
opportunities they have given me. I would also like to thank my sister Sofie
as she has been a great example for me. Finally, I would like to thank my
partner Gwen for showing me everything that is important in life outside of the
university.



Abstract

Many speech technology applications expect speech input from a single speaker
and usually fail when multiple speakers are active, especially when speech
overlaps. However, in many situations there are multiple people within reach
of the recording device and therefore there is a high chance of multiple active
speakers. In Speech Source Separation (SSS), the different speech sources
are separated to obtain an audio signal for each speaker. As the sources are
separated, we would also like to know the identity or the characteristics of
the speaker by Speaker Recognition (SR) so we can re-identify the speaker
later on. If both SSS and SR are being applied, we can track a single speaker
throughout, for example, a recording of a business meeting with overlapping
speech. SSS and SR are usually being treated as separate problems. However,
when (blindly) separating a speech mixture, characterization of the sources
is inherently necessary. Moreover, when recognizing speakers in overlapping
speech, every speaker is associated with part of the audio fragment and thus
source separation is inherently active. The main research question of the PhD
thesis is whether a joint approach to SSS and SR makes them constructively
help each other to achieve greater performance. A sequential approach where
first SSS is done, followed by SR, is expected to be less efficient as each step is
optimized independently and neglects the other step.

A first attempt in building such a joint model is done using Nonnegative Matrix
Factorization (NMF). NMF is an often used method in SSS that looks for
spectral patterns in an audio example. An existing multi-channel NMF model
for SSS is adapted such that the same spectral patterns, that were extracted for
SSS, can be used for SR. This model is compared with two sequential baselines
in terms of SR performance in overlapping speech. One sequential baseline
uses NMF, while the other uses i-vectors, a state-of-the-art method for SR in
non-overlapping speech. The joint model is shown to outperform both.

In recent years, Deep Neural Networks (DNNs) have gained considerable
attention in the SSS field. A DNN is shared in a joint model for SSS and
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SR. It is studied how best to learn such a model for multiple tasks. The joint
model outperforms a sequential and a parallel baseline in SR performance.
Furthermore, a first adjustment to the joint model is made such that the SR
task better takes into account the uncertainty of SSS. A second adjustment
allows the model to handle both overlapping and non-overlapping speech, a
useful feature if for some speakers enrollment can be done in a controlled,
single-speaker environment.

One of the major drawbacks of DNNs in general is that due to their nested and
non-linear structure, it is difficult to understand what makes them arrive at
their prediction and therefore DNNs lack explainability. Two novel methods
are developed that are generally applicable to study the memory of Recurrent
Neural Network (RNN)s. These methods allow to restrict the duration that
information is kept in the memory of RNNs. This duration is also referred to
as memory span in this text. It is then measured how the RNN performs on a
specific task for different arbitrarily chosen memory spans. These methods are
applied to the task of SSS to determine to which extent SR and other factors
play a role in a successful separation. By modifying the memory span per
layer in a deep RNN, we discover hierarchical structures in the memory of an
RNN. Furthermore, for a bidirectional RNN, a distinction is made between the
importance of the forward network and the backward network.

Finally, the use of SSS for a neuro-steered hearing aid is studied. In summary,
brain activity of a hearing-aid user is measured in a multi-speaker scenario,
where the user tries to focus on a single target speaker. The measured brain
signals are used to estimate the speech envelope of the attended target speaker
using an Auditory Attention Decoder (AAD). The use of SSS here is twofold.
First, the envelopes of the estimated speech signals are compared with the
decoded speech envelope of the AAD module to estimate the attended speaker.
Secondly, once the target speaker is estimated, this speaker’s separated speech
signal is sent to the hearing aid. A DNN for SSS is compared with a traditional
linear SSS method. The DNN manages to outperform the traditional method
in the most challenging cases.



Beknopte samenvatting

De meeste toepassingen van spraaktechnologieën verwachten een spraakinvoer
waarbij slechts één spreker actief is. Deze toepassingen falen dan meestal
wanneer meerdere sprekers actief zijn, in het bijzonder als de spraak overlapt.
Echter, in vele situaties bevinden er zich meerdere personen in de buurt van
een opnameapparaat en dus is er een grote kans dat meerdere sprekers actief
zijn. Door spraaksignaalscheiding (Speech Source Separation of SSS) worden
de verschillende spraakbronnen van elkaar gescheiden zodat voor elke spreker
een individueel audiosignaal wordt bekomen. Terwijl we de sprekers scheiden,
zouden we graag ook de sprekeridentiteit of de sprekerkarakteristieken leren,
ook wel sprekerherkenning (Speaker Recognition of SR) genoemd. Dit laat
ons toe om later eenzelfde spreker te herkennen. Wanneer SSS en SR worden
toegepast, kunnen we een enkele spreker traceren doorheen bijvoorbeeld een
opname van een meeting met overlappende spraak. Meestal worden SSS en
SR beschouwd als gescheiden problemen. Echter, wanneer de sprekers van
elkaar worden gescheiden op een blinde manier, is karakterisatie van de bronnen
inherent nodig. Verder geldt ook dat wanneer men sprekers tracht te herkennen
in overlappende spraak, men elke spreker moet verbinden aan een deel van
het audiofragment en dus is spraakscheiding inherent nodig. De hoofdvraag
van deze doctoraatsthesis is of een gemeenschappelijke aanpak van SSS en SR
ervoor zorgt dat ze elkaar constructief helpen om een betere performantie te
halen. Een sequentiële aanpak waarbij eerst SSS wordt toegepast, gevolgd door
SR, is waarschijnlijk minder efficiënt aangezien elke stap onafhankelijk van de
andere wordt geoptimaliseerd.

Een eerste poging om een dergelijk gemeenschappelijk model te bouwen, gebeurt
door middel van Nonnegative Matrix Factorization (NMF). NMF is een vaak
gebruikte methode voor SSS die op zoek gaat naar spectrale patronen in
een audiovoorbeeld. Een bestaand meerkanaals NMF model voor SSS wordt
aangepast zodat dezelfde spectrale patronen, die waren ontdekt voor SSS, kunnen
worden gebruikt voor SR. Dit model wordt vergeleken met twee sequentiële
basismodellen in termen van accuraatheid in SR. Het ene basismodel gebruikt
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NMF, terwijl het andere i-vectors gebruikt, een state-of-the-art methode voor
SR in niet-overlappende spraak. Het gemeenschappelijke model blijkt beter te
presteren dan beide basismodellen in termen van SR performantie.

De laatste jaren hebben diepe neurale netwerken (Deep Neural Networks of
DNNs) veel aandacht gewonnen in het domein van SSS. Een gemeenschappelijk
DNN wordt gebruikt voor SSS en SR. Er wordt onderzocht hoe een dergelijk
model het best kan leren van beide taken. Het gemeenschappelijk model
blijkt beter te presteren dan een sequentieel en een parallel basismodel in
termen van SR performantie. Bovendien zorgt een eerste aanpassing aan het
gemeenschappelijk model ervoor dat de SR taak beter de onzekerheid van
het SSS deel in beschouwing neemt. Een tweede aanpassing laat het model
toe om zowel overlappende als niet-overlappende spraak te verwerken. Dit
kan handig zijn indien voor sommige sprekers de sprekerkarakteristieken op
voorhand kunnen worden geleerd in een gecontroleerde omgeving waarbij enkel
die spreker actief is.

Een van de grote nadelen van DNNs in het algemeen is dat, door hun geneste
structuur, het moeilijk is om te begrijpen hoe DNNs tot hun uiteindelijke
beslissing komen. Twee nieuwe methodes worden ontwikkeld die algemeen
toepasbaar zijn om de geheugenwerking van een recurrent neuraal netwerk
(Recurrent Neural Network of RNN) te onderzoeken. Deze methodes laten toe
om een beperking te plaatsen op de tijd dat informatie in het geheugen van het
RNN wordt gehouden. Er kan dan worden gemeten hoe het RNN presteert op
een bepaalde taak, afhankelijk van verschillende toegestane geheugentijden. Deze
methodes worden toegepast op de SSS taak om te onderzoeken in welke mate SR
en andere factoren een rol spelen in een succesvolle sprekerscheiding. Door de
geheugenrestricties aan te passen per laag in een diep RNN, worden hiërarchische
structuren in het geheugen van het RNN ontdekt. Verder ontdekken we dat
voor een bi-directionieel RNN, een onderscheid kan worden gemaakt tussen het
belang van de voorwaartse en de achterwaartse richting.

Ten slotte wordt het gebruik van SSS in een neurologisch gestuurd gehoorap-
paraat bestudeerd. In een dergelijk gehoorapparaat wordt de hersenactiviteit
van een gebruiker van een gehoorapparaat gemeten. Deze gebruiker probeert
te focussen op een enkele spreker in overlappende spraak. De gemeten
hersensignalen worden gebruikt om de spraakenveloppe van de gefocuste spreker
te reconstrueren aan de hand van een auditieve aandachtsdecoder (Auditory
Attention Decoder of AAD). SSS wordt hier voor twee redenen gebruikt.
Ten eerste, de enveloppes van de gescheiden spraaksignalen kunnen worden
vergeleken met de gedecodeerde spraakenveloppe van de AAD om te schatten
naar welke spreker de gebruiker aan het luisteren is. Ten tweede, eens de
relevante spreker is bepaald, kan het gescheiden spraaksignaal van deze spreker
worden doorgestuurd naar het gehoorapparaat. Een DNN voor SSS zal worden
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vergeleken met een traditionele, lineaire SSS methode. Het DNN zal beter blijken
te presteren dan de traditionele methode in de meest uitdagende scenarios.
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Chapter 1

Introduction

Automatic speech processing is a major research area since it allows a user
friendly way of communication between human and computer. When multiple
sound sources are active, the processing of the speech signal(s) from a recording
is more difficult compared to a so-called clean speech signal where only one
sound source is present. For example, a speech signal can become corrupted in a
crowded bar or even at home, which hinders applications such a voice assistants,
automatic transcriptions and hearing aids. Many of these applications expect
speech input from a single source and usually fail when multiple sources are
active, especially when they overlap in time. In Source Separation (SS) the
original source signals are estimated from such a multi-source audio recording,
also called a mixture. This is particularly difficult when all sources are speech
sources, which will be referred to as Speech Source Separation (SSS). Often the
speakers are unknown and SSS is performed blindly, called Blind SSS (BSSS).
As the speech sources are separated, it is often beneficial to look for speaker
characteristics such that the speaker can be re-identified later on, using Speaker
Recognition (SR). If both BSSS and SR are being applied we can track a single
speaker throughout, for example, a recording of a business meeting.

BSSS and SR are usually being treated as separate problems. Specialists in SR
mostly consider single speaker audio recordings. In case of overlapping speech
they rely on BSSS specialists to convert the multi-speaker audio recording
into multiple single-speaker tracks, or they simple ignore this type of data. A
BSSS specialist, on the other hand, will consider his task done after successfully
separating all speech sources in an audio recording. However, when blindly
separating a speech mixture, characterization of the sources seems inherently
necessary for a consistent mapping of speech fragments to the correct source.

1



2 INTRODUCTION

Moreover, when recognizing speakers in overlapping speech, every speaker is
associated with part of the audio fragment and thus BSSS seems inherently
active. The two problems seem to be linked. The main research question of
this doctoral thesis is whether a joint approach to BSSS and SR makes them
constructively help each other to achieve greater performance. A sequential
approach [113] where first BSSS is done, followed by SR, seems less efficient as
each step is optimized independently and neglects the other step.

Chapters 2 and 4 of the thesis will look for such joint models and indeed find
that they outperform sequential approaches. In Chapter 2 this is done using
Nonnegative Matrix Factorization (NMF), while in Chapter 4 Deep Neural
Networks (DNNs) are used. Given that they reach related conclusions, it is
expected that the dependencies between BSSS and SR are independent of the
model choice and rather intrinsic to the tasks themselves. Chapters 3 and 5 will
not explicitly search for a joint model, but will rather show that indeed speaker
characteristic information is inherently required when performing SS. Finally,
Chapters 6 and 7 will consider more applied and practical aspects of BSSS.

The remainder of this chapter introduces some basic concepts used in this thesis
text. In Section 1.1 the tasks of BSSS and SS will be described, as well as
the joint BSSS-SR problem. Sections 1.2, 1.3 and 1.4 will describe the NMF
method, i-vectors and DNNs, respectively. NMF and DNN can be used for both
BSSS and SR and are therefore suited for building a joint model. The i-vector
method is used for SR but has no direct application in BSSS. Finally, in Section
1.5 a short introduction to each chapter will be given.

1.1 Problem statement

The tasks of (B)SSS and SR will be briefly explained in Sections 1.1.1 and 1.1.2,
respectively. In Section 1.1.3 the joint problem will then be defined.

1.1.1 Speech Source Separation

The cocktail party problem, where multiple sound sources, usually speakers, are
simultaneously active, has been studied in the speech community for decades
[20]. The problem is especially challenging when few assumptions are made.
For a general solution we want to be speaker independent, text independent,
using a single channel and so on. Source Separation (SS) refers to the task of
retrieving the original sound signal of multiple sound source objects that have
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been recorded in a mixture. More specifically, this task focuses on the case
when the sound sources are (partially) active at the same time.

SS can be divided into two domains: speech vs. noise separation and speech
vs. speech separation. In the former, typically only speech is of interest and
therefore it is also called Speech Enhancement (SE). In this text, the latter is
referred to as Speech Source Separation (SSS) to stress that multiple speech
sources are present. An illustration of (B)SSS is given in Figure 1.1. A mixture,
or recording, of S speech sources in its simplest form can be defined as

yrns “
S
ÿ

s“1
xsrns (1.1)

where yrns is the microphone signal, xsrns is the audio signal of source s as
received by the microphone and n is the sample index of the microphone. The
formulation of (1.1) will be used in the remainder of the text when mixture is
mentioned, unless stated otherwise. We give two additional formulations of the
mixture as they will be used in some chapters. In noisy speech mixtures, also
non-speech signals are present and these will be bundled in the noise term nrns.

yrns “
S
ÿ

s“1
xsrns ` nrns (1.2)

In Chapters 6 and 7 noisy mixtures will be considered. Separating a noisy
mixture into its source components, can be seen as a combination of the SE and
SSS tasks. In (1.1) and (1.2) xsrns was defined as the audio signal of source s
as received by the microphone. However xsrns can also be defined as the audio
signal measured at the source. (1.2) is then changed to

yrns “
S
ÿ

s“1
hsrns˚ xsrns ` nrns (1.3)

where hsrns is the Room Impulse Response (RIR) of source s to the microphone
and ˚ is the convolution operation.

The above formulations were done in the time-domain. However, it is often
more useful to consider speech or audio signals in the time-frequency domain.
The Short-time Fourier Transform (STFT) is used to transform a time-domain
signal into the time-frequency domain. In the time-frequency domain (1.1)–(1.3)
become

ypt, fq “
S
ÿ

s“1
xspt, fq (1.4)

ypt, fq “
S
ÿ

s“1
xspt, fq ` npt, fq (1.5)
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.

Figure 1.1: An illustration of (B)SSS for S “ 3

ypt, fq “
S
ÿ

s“1
hspfqxspt, fq ` npt, fq, (1.6)

respectively, with xspt, fq, ypt, fq, npt, fq and hspfq the STFT of xsrns, yrns,
nrns and hsrns, respectively. Here, hspfq is considered time-invariant and
therefore independent of t. For ease of notation, (1.4) can also be written in
matrix notation as

Y “

S
ÿ

s“1
X s (1.7)

A recording device needs not be limited to one microphone, but in general has
J microphones. For this multi-channel set-up (1.6) would be extended to

ypt, fq “
S
ÿ

s“1
hspfqxspt, fq ` npt, fq (1.8)
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with ypt, fq “ ry1pt, fq, y2pt, fq, . . . , yJpt, fqs
T and similar for hspfq and

npt, fq.

The goal of (B)SSS is to find an estimate X̂ s for every source signal X s from
the mixture Y. The estimated signal x̂srns in the time domain can then be
found using the Inverse Short-time Fourier Transform (ISTFT). Most BSSS
approaches do not try to find the estimate X̂ s directly, but rather estimate a
mask M̂s and then find the estimate X̂ s as

X̂ s “ M̂s ˝Y (1.9)

or
x̂spt, fq “ m̂spt, fqypt, fq. (1.10)

with ˝ the Hadamard product. Typically, the masks are constrained to 0 ď
m̂spt, fq ď 1 and

řS
s“1 m̂spt, fq “ 1. The latter constraint is usually not applied

in the case of an additive noise source npt, fq. Furthermore, it is common
that the mask M̂s is real-valued such that the magnitude is estimated as

ˆ|X |s “ M̂s ˝ |Y | and the phase or argument is taken from Y ( ˆ=X s “ =Y).
When x̂spt, fq « ypt, fq, the phase will thus be reasonably approximated. Since
speech spectra are sparse [110], it is actually rare that multiple sources have
high energy in a given time-frequency bin and usually a bin is dominated by a
single source. For this dominant source, the phase of ypt, fq is thus a reasonable
approximation for the phase of xspt, fq. For the other sources it is not, but
since the optimal mask estimates ms1‰spt, fq for those non-dominant sources
should be close to zero, the estimate of the phase is of less importance. In fact,
some BSSS approaches (like Deep Clustering (DC) in Section 1.4.2) estimate
binary masks where for each time-frequency bin the mask for one source is
set to 1 and all others are set to 0. However, mask approaches will always
suffer, to some extent, from these phase prediction errors. Recently, some BSSS
approaches that work directly in the time domain (using (1.1)) have shown to
exceed the upper bound performance of an ideal mask [158, 159].

For the multi-channel case (1.10) is generalized to

x̂spt, fq “ m̂H
s pt, fqypt, fq (1.11)

with .H the Hermitian transpose. In the multi-channel case, often m̂ is in the
complex domain to facilitate beamforming.

Two methods for BSSS will be discussed in this thesis: Nonnegative Matrix
Factorization (NMF) in Section 1.2.1 and Deep Neural Networks (DNNs) in
Section 1.4.2. Other methods like Computational Auditory Scene Analysis
(CASA) [180, 156], Wiener filtering [114], spectral subtraction [19], factorial
Hidden Markov Models (fHMMs) [178, 79, 125] and Independent Component
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Analysis (ICA) [98] exist but their use for BSSS has been limited since DL
methods have become state-of-the-art. One of the major advantages of a
DNN is that it manages well to perform single-channel BSSS, where as others
have to impose restrictions on the speakers or vocabulary or have to resort to
multi-channel approaches.

The general input-output notation used in these models is X and Ŷ. To avoid
confusion, the reader is reminded that for BSSS, the mixture spectrogram Y is
given and speech source spectrograms X s are to be estimated. For instance,
often used inputs to BSSS models are the power spectrogram X “ |Y |.2, with .2
the element-wise square, or the log spectrogram X “ logp|Y |q, while the output
is typically a collection of masks Ŷ “ rM̂1, M̂2, . . . , M̂ss to be used with (1.9)
to estimate X s.

The performance of a BSSS algorithm depends on how well xsrns approximates
x̂srns. The most straightforward and most used evaluation metric is the
Signal-to-Distortion Ratio (SDR) [102]. The bss_eval toolbox [176] is used
to determine the SDR in all BSSS experiments in this text. Other evaluation
metrics exists that focus more on speech intelligibility and perceptual evaluation,
such as PESQ [144] and STOI [168, 100]. However, it is important to note that
these are still determined by algorithms and do not contain human assessors.

1.1.2 Speaker Recognition

In Speaker Recognition (SR), one wants to recognize a speaker from an utterance.
There are two stages in an SR problem: the enrollment stage and the test stage,
where the latter is also called the evaluation or inference stage. In the enrollment
phase, a set of I known speakers is built where enrollment data is required for
each speaker. In the test phase, a previously unused audio fragment has to be
matched to one of the I speakers1. An illustration of SR is given in Figure 1.2.

Two types of SR can be distinguished: Speaker Identification (SID) and Speaker
Verification (SV). In SID the identity of the speaker in a test utterance is
requested, given a set of I enrolled speakers. SID can thus be seen as a
classification problem with I classes. In SV one wants to determine whether
the utterance belongs to a specific speaker or not. Most SV models output a
score, when asked if a test utterance belongs to a specific speaker. If this score
exceeds a certain threshold, the trial is classified as positive. Naturally, these
two SR tasks are linked and often methods developed for SID can be used for
Speaker Verification (SV) (and vice versa).

1In some cases, the test fragment can belong to none of the I known speakers and the
system is asked to provide an out-of-set trigger. However, this is outside the scope of the
thesis.
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Figure 1.2: An illustration of SR for I “ 5

For many years, the i-vector approach has been the most used approach in the
SR field (Section 1.3). Only recently DNN approaches have been outperforming
i-vectors (Section 1.4.3). Finally, there have been some attempts to use NMF
for SR, although these have been rather limited (Section 1.2.2).

Since SID is a classification problem, the classification accuracy (or speaker
recognition accuracy) can be used for system evaluation. For SV, two types
of errors can be made: false positives and false negatives, also known as type
I and type II errors. By tuning the score threshold for a positive decision,
different false positive and false negative rates can be achieved. When a higher
threshold is chosen, the false positive rate will decrease and the false negative
rate will increase. When determining the false positive and false negative
rates for different thresholds, a result as in Figure 1.3 can be achieved. When
evaluating a SV system, it can be cumbersome to consider the false negative
and false positive rates for many different thresholds. The Equal Error Rate
(EER) metric tries to summarize this in a single number. It is defined as the
false positive rate for the threshold were the false positive rate equals the false
negative rate (see Figure 1.3).
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.

Figure 1.3: Illustration of the false positive rate and false negative rate for an
SV system. Each blue circle indicates a different threshold. The EER metric
can be used to summarize the figure.

1.1.3 Joint BSSS and SR

A BSSS model should be capable to separate a multi-speaker mixture into
its source components. On the other hand, an SR model should be able to
recognize a previously enrolled speaker. A joint model should be able to do
both. It should thus be able to separate the speech signals of Senr previously
unknown speakers and learn the speakers. When a new mixture is presented,
the speech signals should again be separated and for each of the Stest speech
signal estimates, a speaker identity should be estimated corresponding to one of
the I enrolled speakers. An illustration of joint BSSS and SR is given in Figure
1.4.

It is noted that the terms Blind Speech Source Separation and Speaker
Recognition might seem contradictory when used in the same context as blind
implies there is no prior information on the speakers to separate, while SR
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Figure 1.4: An illustration of joint BSSS and SR. Senr “ Stest “ 3 and I “ 5.
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requires enrollment data for each speaker in the set. To clarify, SSS is only
strictly blind when there is overlapping speech during the enrollment phase and
it is technically not considered blind during the speaker recognition evaluation
phase.

1.2 Nonnegative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a frequently used factorization
method to identify patterns in data. It was originally developed to recognize
parts-based representation in images [103] and has since been used in various
fields such as bioinformatics [63], noise-robust automatic speech recognition
[66] and age and gender estimation [10]. It has been used for SR tasks and
obtained comparable results to state-of-the-art i-vector based approaches, for
small speaker sets [89, 57]. Moreover, NMF has been used in many scenarios of
SS and music transcription [35, 179]. Multi-channel extensions of NMF have
been developed with applications to BSSS [151, 131]. These approaches combine
spatial cues from phase differences between microphones and the segmentation
strength from NMF without any prior knowledge of the sources.

In NMF a non-negative matrix X P RFˆT` is approximated by a factorization
using a non-negative dictionary matrix T P RFˆK` and a non-negative activation
matrix Q P RKˆT` , such that

X « X̂ fi TQ (1.12)

or

xt « x̂t fi
K
ÿ

k“1
qkttk. (1.13)

For example, in speech processing X “ |X |.2 can be a speech power spectrogram.
X is a matrix with F frequency bins (or features) and T time frames. NMF tries
to capture the most frequent patterns of the speech in K F -dimensional basis
vectors that form a dictionary T for the speech. The matrix Q contains the
coefficients of the linear combination and thus indicates how the kth basis vector
is activated in the tth time frame. Usually K ă minpF , T q such that NMF
is a rank reduction operation. A discrepancy measure is chosen between the
original X and the reconstruction X̂ and can be minimized by finding optimal
dictionaries and activations. The Euclidean distance, the Kullback-Leibler (KL)
divergence and the Itakura-Saito (IS) divergence are well known measures. In
this chapter the IS divergence will be used since it has a multi-channel extension
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(see Section 1.2.1)

dISpxft, x̂ftq “
xft
x̂ft

´ log

ˆ

xft
x̂ft

˙

´ 1. (1.14)

To minimize this divergence, multiplicative iterative update formulas with
convergence guarantees have been derived [126]

tfk Ð tfk

g

f

f

e

ř

t
xft

x̂ft

qkt

x̂ft
ř

t
qkt

x̂ft

(1.15)

qkt Ð qkt

g

f

f

e

ř

f
xft

x̂ft

tfk

x̂ft
ř

f
tfk

x̂ft

, (1.16)

where the sub-indices refer to the corresponding element in the matrix. To avoid
scaling ambiguities the columns of T are to be normalized: tfk Ð tfk{

ř

f 1 tf 1k
2.

1.2.1 NMF for SSS

NMF has shown good performance in supervised SS problems, both for SE and
SSS.

NMF for supervised SSS

In non-blind SSS the speakers that will be present in the mixture are known
beforehand. For every speaker i some training data Xtrain

i is present and a
speaker dependent dictionary Ttrain

i can be obtained by iteratively applying
(1.15) and (1.16)3. The learnt speaker dictionaries will be used during evaluation
and hence Ttrain

i “ Ttest
i “ Ti. All dictionaries are then collected in a library

Ttot “ rT1,T2, . . . ,TI s. During evaluation, a reconstruction X̂test
s has to be

estimated for every speaker, from a mixture input Xtest (e.g. Xtest “ |Ytest|.2).
This can be done by iteratively estimating Qtest

tot using (1.16) and keeping the
dictionary Ttot fixed. The library activations can then be decomposed to find
the speaker dependent dictionary activations Qtest

i . X̂ can then be found using
2It has been suggested that this normalization should be included while deriving the

update formulas, rather than applying it afterwards [101]. However this is outside the scope
of this text.

3The activations Qtrain
i will also be obtained but will no longer be of interest.
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(1.12) as

x̂i,ft “
ÿ

kPκi

ttot
fk q

tot,test
kt “

Ki
ÿ

k“1
ti,ktq

test
i,kt (1.17)

where κi indicates the dictionary elements of speaker i in the library Ttot and
Ki is the number of dictionary elements in dictionary Ti. The source signal
estimates x̂ipt, fq can be found using Wiener filtering [179] via the mask based
approach of (1.10) and

m̂ipt, fq “
x̂ipt, fq

řI
i1“1 x̂i1pt, fq

. (1.18)

Not all I known speakers need to be active in the test mixture (S ď I). In
that case ideally x̂i,ft « 0 for all speakers i not active in the mixture. In fact,
in Chapter 2 a novel method will be described that allows to determine the
identity of each active speaker s in the test mixture.

The problem with NMF for BSSS

For blind or unsupervised SSS, no library Ttot can be built prior to separation.
Instead Ttest

tot and Qtest
tot have to be estimated directly from Xtest using (1.15)-

(1.16). However, it is unclear how to determine to which speaker s each basis
vector k belongs. Therefore, (1.17) cannot be applied.

Multi-channel NMF for BSSS

Usually one resorts to multi-channel NMF techniques in the BSSS case, where
Time Difference of Arrival (TDOA) is a cue for Direction of Arrival (DOA)
which can be used to assist the source separation.

We again consider (1.8) but leave out the noise term (although this can also be
included in the NMF formulation [9]). Sawada et al. proposed a multi-channel
IS divergence [151]

DISpX, tT,Q,H,Cuq “
F
ÿ

f“1

T
ÿ

t“1
dISpXft, X̂ftq

dISpA,Bq “ trpAB´1q ´ logdetpAB´1q ` J

(1.19)

where trpq is the trace of a matrix, logdetpq is the natural logarithm of the
determinant of a matrix, Xft “ yfty

H
ft with yft as a J-dimensional vector as
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in equation (1.8). X̂ft is set to be

X̂ft “

Kmix
ÿ

k“1

˜

S
ÿ

s“1
Hfscsk

¸

tfkqkt “
Kmix
ÿ

k“1

S
ÿ

s“1
csktfkqktHfs. (1.20)

The same interpretations are given to tfk and qkt as in single-channel NMF. csk
is a latent speaker-indicator under the constraints 0 ď csk ď 1 and

ř

s csk “ 1.
It can be interpreted that the kth basis vector belongs to speaker s if csk is
close to 1. Kmix is the total number of basis vectors, to be partitioned over
the S active speakers. Hfs is a J ˆ J Hermitian positive semi-definite matrix
with on its diagonals the estimated power gain of the sth speaker to each
microphone, at the f th frequency bin. Hfs is assumed independent of the time
t. The off-diagonal elements include the estimated phase differences between
microphones and thus contain spatial information of the speaker. In fact, Hfs

can be interpreted by using the rank-1 convolutive model [59] as follows

Hfs “ ĥfsĥ
H

fs (1.21)

with ĥfs an estimate for hfs as in (1.8).

Multiplicative update formulas have been found in [151, eq. (42)-(47)] that
minimize the divergence in (1.19)4:

tfk Ð tfk

g

f

f

f

e

ř

t

ř

s cskqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

t

ř

s cskqkttr
´

X̂´1
ft Hfs

¯ (1.22)

qkt Ð qkt

g

f

f

f

e

ř

f

ř

s csktfktr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

s csktfktr
´

X̂´1
ft Hfs

¯ (1.23)

csk Ð csk

g

f

f

f

e

ř

f

ř

t tfkqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

t tfkqkttr
´

X̂´1
ft Hfs

¯ (1.24)

To update Hfs an algebraic Riccati equation is solved

HfsAHfs “ B (1.25)

A “
ÿ

t

ÿ

k

csktfkqktX̂´1
ft (1.26)

4A modified algorithm is derived in Appendix A.1
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B “ H1
fs

˜

ÿ

t

ÿ

k

csktfkqktX̂´1
ft XftX̂´1

ft

¸

H1
fs (1.27)

where H1

fs is the Hfs of the previous update. To avoid scale ambiguity these
normalizations should follow: Hfs Ð Hfs{trpHfsq, tfk Ð tfk{

ř

f 1 tf 1k and
csk Ð csk{

ř

s1 cs1k.

The separated signals are then, similar to (1.18), obtained through Wiener
filtering where the mask is obtained as

m̂s,ft “

˜

Kmix
ÿ

k“1
csktfkqkt

¸

HfsX̂´1
ft , (1.28)

which can be used with (1.11) to obtain the source signal estimates x̂spt, fq.

1.2.2 NMF for Speaker Recognition

When using NMF for SR, every speaker i requires training or enrollment
data Xtrain

i , similarly as in non-blind SSS. Xtrain
i is then factorized using

(1.15) and (1.16). The obtained dictionaries Ti, for each of the I enrolled
speakers, are assumed to be speaker dependent and are collected in the library
Ttot “ rT1,T2, . . . ,TI s.

During testing the identity of the speaker, in a previously unseen utterance
Xtest, has to be found. NMF is applied to this utterance with a fixed library
Ttot and the activations Qtest

tot are found iteratively using (1.16). The activation
matrix quantitatively indicates the activation of each basis vector for each
enrolled speaker in each time frame. The combined activity of all basis vectors
in a speaker’s dictionary is a measure of the activity of the enrolled speaker
in the test segment. A simple way of estimating the speaker identity is to
determine the enrolled speaker for which the sum of the activations, over all its
basis vectors and over all the time frames, is maximal. This way of classification
can be seen as a per frame speaker activity estimation where the final estimation
is a weighted average over all frames, giving more weight to frames with higher
activation or more energy

ˆID “ arg max
i

ÿ

kPκi

T
ÿ

t

qtot
kt “ arg max

i

Ki
ÿ

k“1

T
ÿ

t

qtot
i,kt. (1.29)

This approach has been applied in [57] and will also be used in Chapter 2. It is
possible to include Group Sparsity (GS-NMF) constraints on the activations
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Qtest
tot to enforce solutions where it is unlikely that basis vectors from different

speakers are active at the same time frame [104, 87, 25]. However, this is outside
the scope of this thesis.

1.3 i-vectors for SR

A speaker representation that is often used for speaker identification tasks is
the i-vector [51, 68]. To obtain such an i-vector, first a Universal Background
Model (UBM), built using a Gaussian Mixture Model (GMM), is trained on
development data. For each utterance, the UBM is adapted, using the data
samples of the utterance, as shown in Figure 1.5. A supervector s is derived
for each utterance, using the UBM, by stacking the speaker-adapted Gaussian
mean vectors. s is then represented by an i-vector w and its projection based
on the total variability space,

s « m`Tw, (1.30)

where m is the UBM mean supervector, w is the total variability factor or i-
vector and T is a low-rank matrix spanning a subspace with important variability
in the mean supervector space and is trained on development data [51, 68].

Linear Discriminant Analysis (LDA) can be used to further reduce the dimension
of the i-vector. LDA is a rank reduction operation that tries to minimize intra-
class variance and maximizes inter-class variance. Here, each class is represented
by a single speaker. LDA tries to find the orthogonal directions d that optimize
the following ratio:

Jpdq “ dTSbd
dTSwd (1.31)

with Sb the intra-speaker variance and Sw the inter-speaker variance. The
following Generalized Eigenvalue Decomposition (GEVD) can then be considered

Sbv “ λSwv, (1.32)

with v the eigenvector and λ the eigenvalue. The eigenvectors with the highest
eigenvalues are then stored in the projection matrix A and the LDA i-vectors
w˚ are then obtained as follows

w˚ “ ATw. (1.33)

Thus, a vector with inter-speaker discriminating dimensions is found.
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Figure 1.5: Illustration a speaker-adapted GMM. In gray a UBM-GMM with
two mixture components is shown. This is UBM is determined on data samples
from development data. The speaker samples from an utterance, marked with
red crosses, allow for a speaker-adapted GMM, which are shown as black ellipses.
Based on [32].
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1.4 Deep neural networks

Deep Neural Networks (DNNs) are used in a wide variety of speech and non-
speech related tasks and are often considered state-of-the-art in these domains
[80]. This is also the case for BSSS and SR, although for the latter i-vector
approaches are also still common (see Section 1.3). The training of such a DNN
is referred to as Deep Learning (DL). The concepts of Deep Neural Network
and Deep Learning are often used interchangeably. Section 1.4.1 gives a general
description of DNNs and Sections 1.4.2 and 1.4.3 describe how DNNs can be
used for BSSS and SR, respectively.

1.4.1 Background

The most fundamental building block of a DNN was originally described by
McCulloch and Pitts in 1943 where it was used as a mathematical model of
a biological neuron [115]. It was later on extended by Rosenblatt to what is
now called a single-layer perceptron [145]. In its simplest form the perceptron’s
input-output behaviour can be described as

ξpx,Θq “ Wx` b (1.34)

ŷ “ fpξpx,Θqq (1.35)
where x and ŷ are the input and output of the model, Θ “ tW,bu are the
model’s parameters called weights and biases, respectively, ξ is the activation
and fpq is a non-linear activation function. Often used non-linearities (which
are differentiable) are:

• The sigmoid σ function
σpxq “

1
1` e´x (1.36)

• The hyperbolic tangent tanh function

tanhpxq “ ex ´ e´x

ex ` e´x
(1.37)

• The rectified linear unit ReLU function

ReLUpxq “ maxp0, xq (1.38)

• The softmax function (which can only be applied to a vector)

softmaxpxq “ ex
ř

i e
xi

(1.39)
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(a)

(b)

Figure 1.6: a) A block diagram illustration of a single-layer perceptron. b) A
block diagram illustration of a 2-layer feedfoward neural network or multi-layer
perceptron.

with xi the ith element of x. Note that from the above non-linearities, only
the softmax function does not have an element-wise behaviour, meaning
that its ith output is not only dependent on the ith input.

The output of a perceptron can be used as input to another perceptron to
create a two layer perceptron. In fact, it has been shown that such a depth-2
perceptron is a universal approximator. However, it could take an exponential
amount of units to achieve a desired accuracy, making it a very wide network
[111]. Typically, multiple layers are stacked to create a multi-layer perceptron
or a feedforward neural network.

The feedforward neural network or multi-layer perceptron is a stacking of
multiple single layer perceptrons, where the input of layer l is set to be the
output of layer l ´ 1 below. Such a network with L layers can be described as

hl “ f lpξlq “ f lpWlxl ` blq for l “ 1 . . . L (1.40)
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xl “ hl´1 for l “ 2 . . . L (1.41)
with xl the input of layer l, hl the output or hidden units of layer l, Wl the
weights connecting the hidden units hl´1 with hl, bl the bias for layer l, ξl

the activations of layer l and f lpq the non-linearity of layer l (although this
is typically chosen to be the same for all layers, hence f lpq “ fpq). A block
diagram illustration of the feedforward neural network can be seen in Figure
1.6. Finally, we set

x1 “ x (1.42)
ŷ “ hL (1.43)

as the input and output of the model.

The goal (for supervised learning) is to find the model parameters (Wl and
bl) such that the model has a desired input-output behaviour. For this, N
labeled training examples (xtrain

n , ytrain
n for n “ 1 . . . N) are needed as well as a

differentiable loss function Ltrain
n pytrain

n , ŷtrain
n pxtrain

n ,Θqq that scores how well
the output ŷtrain

n matches the targets ytrain
n for a given input xtrain

n and set of
parameters Θ. The loss function over the complete data set is then

Ltrain
Θ “

1
N

N
ÿ

n

Ltrain
n pytrain

n , ŷtrain
n pxtrain

n ,Θqq. (1.44)

In the remainder of this section we will omit the superscript train for ease of
notation. An example of such a loss function is the Mean Square Error (MSE)
loss:

LΘ “
1
N

N
ÿ

n

‖ŷnpxn,Θq ´ yn‖2. (1.45)

Since (1.40) and the loss function LΘ were chosen to be differentiable, the
gradient BLΘ{Bθ for each parameter θ in the model with respect to the loss
function LΘ can be found and thus standard optimization techniques can be
used. To determine this gradient BLΘ{Bθ, the backpropagation algorithm is
used [75]. The backpropagation starts by determining the gradient of the output
with respect to the loss function and then works its way down to the input.
The gradient BLΘ{Bŷ “ BLΘ{BhL of the output of the network with respect to
the loss function is usually straightforward. For example, using the MSE loss of
(1.45) would give

BLΘ

Bŷ “
2
N

N
ÿ

n

pŷnpxn,Θq ´ ynq. (1.46)

The gradient of the loss function LΘ with respect to the activation of the last
layer ξL is then

BLΘ

BξL
“
BLΘ

Bŷ
Bŷ
BξL

“
BLΘ

Bŷ diag
”

f 1pξLq
ı

, (1.47)
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with f 1 the derivative of the activation function, diag ras a diagonal matrix with
a as diagonal entries. In the last step (1.40) was used and an element-wise
non-linearity, such as (1.36)-(1.38), was assumed. The gradient of the loss
function with respect to the activations of the penultimate layer L´ 1 can be
found as

BLΘ

BξL´1 “
BLΘ

BξL
BξL

BξL´1 “
BLΘ

BξL
BξL

BhL´1
BhL´1

BξL´1 “
BLΘ

BξL
WLdiag

”

f 1pξL´1
q

ı

.

(1.48)
where (1.40) and (1.41) were used in the last step. When applying this iteratively,
the gradient of the loss function with respect to the activation of layer l can be
found as

BLΘ

Bξl
“
BLΘ

BξL

L´1
ź

l1“l

˜

Bξl
1
`1

Bξl
1

¸

“
BLΘ

BξL

L´1
ź

l1“l

´

Wl1`1diag
”

f 1pξl
1

q

ı¯

. (1.49)

The gradients of the weights and biases of the layer l with respect to the loss
function can then be found as

BLΘ

Wl
“
BLΘ

Bξl
Bξl

BWl
“
BLΘ

Bξl
hl´1 (1.50)

BLΘ

Bbl “
BLΘ

Bξl
Bξl

Bbl “
BLΘ

Bξl
, (1.51)

where (1.40) was used in the last step of (1.50) and (1.51).

Now that the gradients of the loss function with respect to all parameters have
been found, optimization algorithms can be used to search for the optimal
parameters. The most straightforward optimization algorithm is the iterative
gradient descent where the following iterative update formula is used for a
parameter θ until some stopping or convergence criterion is met.

θ Ð θ ´ η
BLΘ

Bθ
(1.52)

where the step size η is arbitrarily chosen and θ is randomly initialized at
the start. However, for very large data sets determining BLΘ{Bθ can become
computationally infeasible. Stochastic Gradient Descent (SGD) splits the
training set into B mini-batches with Nb examples each. Every optimization
iteration calculates gradients with respect to the loss of a single mini batch Lb

θ Ð θ ´ η
BLb,Θ
Bθ

(1.53)

bÐ b` 1. (1.54)
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When b exceeds B, it is reset to 1. Since Lb is only an approximation for L (for a
well balanced mini-batch), so is (1.53) for (1.52). Therefore, the number of steps
before convergence is typically larger for SGD, but each step is much cheaper to
evaluate. SGD has some additional advantages such as better generalization to
unseen examples and avoiding local minima [70]. In this text mini-batching will
always be used, but for ease of notation Lb,Θ is written as LΘ in the remainder
of the text.

There are many optimization algorithms that address some of the problems of
SGD [146]. One of these is Adam [93], which will be used in all DL experiments
in this text. Adam, short for adaptive momentum estimates, estimates first
and second order momentum terms of the gradient, to counter the oscillation
behaviour of SGD [141]. The Adam algorithm is defined as follows

mθ,1 Ð β1mθ,1 ` p1´ β1q
BLΘ

Bθ
(1.55)

mθ,2 Ð β2mθ,2 ` p1´ β2q

ˆ

BLΘ

Bθ

˙2
(1.56)

m̂θ,1 Ð
mθ,1

?
1´ β1

(1.57)

m̂θ,2 Ð
mθ,2

?
1´ β2

(1.58)

θ Ð θ ´
η

a

m̂θ,2 ` ε
m̂θ,1. (1.59)

where β1 and β2 are arbitrarily chosen, ε a small number to avoid division by
zero and mθ,1 and mθ,2 are set to 0 at the start. An additional advantage
of Adam is that step updates are invariant to the scaling of the loss (i.e. the
parameter updates remain unchanged when changing the loss function from
Lb,Θ to αLb,Θ). This property will be used in Section 4.1.2 when discussing
multi-task learning.

Recurrent neural networks

The feedforward neural network assumes input of a fixed size and is therefore
not suited for a sequential input X “ rx0, . . . ,xt, . . . ,xT´1s, where examples
have varying length T . Even if all sequences in the data set are equally long,
the number of parameters of the model still scales with input length T and
quickly causes overfitting or computational issues. That is why RNNs where
introduced. In RNNs the hidden units are not only dependent on the hidden
units of the layer below, but also on the hidden units of the previous time step.
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RNNs give state-of-the-art performance in many speech [11, 97] and non-speech
[165, 157] related tasks.

There are many different type of RNN cells. For the standard RNN cell (1.40)
is expanded to

hlt “ f lpξltq “ f lpWlxlt `Rlhlt´1 ` blq for l “ 1 . . . L, (1.60)
with R the weights for the recurrent connection. (1.41)–(1.43) are kept, but we
add the time subindex for clarity

xlt “ hl´1
t for l “ 2 . . . L (1.61)

x1
t “ xt (1.62)

ŷt “ hLt . (1.63)

The parameters Θ “ tW,R,bu are independent of the time t. They are thus
shared over all time steps and the network size is independent of the sequence
length. The block diagram of an RNN can be seen in Figure 1.7. The recurrent
connection (Rlhlt´1) allows to use information from the previous time step,
which in turn is dependent on the time step before. This, theoretically, allows
the RNN to use any information from the past.

It is possible to also use information from the following time step by using
a backward (time) RNN. The same equation as (1.60) is used but the t ´ 1
subscript is changed to t ` 1. In a backward RNN the input is processed
from end to start and is thus only feasible for non real-time applications or
applications where a delay is allowed. A bidirectional RNN uses both forward
and backward layers. We use ÝÑh l

t and
ÐÝh
l

t to denote the hidden units of the
forward and backward layer, respectively. There are two ways to combine the
outputs from the forward and backward direction: either after every layer or
only after the last layer. If the latter is chosen (1.41) becomes

ÝÑx l
t “

ÝÑh
l´1
t

ÐÝx l
t “

ÐÝh
l´1
t . (1.64)

If inputs are instead combined after every layer we get

ÝÑx l
t “

«

ÝÑh
l´1
t

ÐÝh
l´1
t

ff

ÐÝx l
t “

«

ÝÑh
l´1
t

ÐÝh
l´1
t

ff

. (1.65)

A block diagram of the latter can be found in Figure 1.8. In our experiments
it was found that it is better to combine outputs after every layer, even if the
total number of trainable parameters is kept unchanged. In both cases, for the
final output of the network, (1.63) becomes

ŷt “

«

ÝÑh
L

t
ÐÝh
L

t

ff

. (1.66)
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(a)

(b)

Figure 1.7: a) A block diagram illustration of a standard RNN cell. b) A block
diagram illustration of a 2-layer RNN for a sequence of T “ 9.

Figure 1.8: A block diagram illustration of a 2-layer bi-directional RNN for
a sequence of T “ 9. To prevent cluttering of the image, only the forward
direction of the second layer is shown.
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Gradient problems

The training of the RNN is done similar to a feedforward neural network.
However there is an additional backpropagation requirement over the recurrent
step, called Backpropagation Through Time (BPTT) [185]. It was already
mentioned that RNNs are theoretically capable to remember any input from
the past and use this information as it sees fit. However, it is found that their
memory time span (the duration for which information is kept in memory) is
actually relatively short. This is caused by vanishing and exploding gradients,
which occur during BPTT [15, 124, 81], a problem also observed in very deep
networks (see (1.49)). This problem can be illustrated by considering the
derivative Bξlt{Bξlt´τ of a forward time RNN, which is required for determining
the gradients of the parameters.

Bξlt

Bξlt´τ
“

t
ź

t1“t´τ`1

Bξlt1

Bξlt1´1
“

t
ź

t1“t´τ`1
Rldiag

”

f
1l
´

ξlt1´1

¯ı

(1.67)

If eigendecomposition is applied to the Jacobian Bξl
t1

Bξl
t1´1

and the most dominant
eigenvalue λ1,t1 is retained, two special cases can be considered:

1. λ1,t1 ă 1 @t1: Bξli,t{Bξlt´τ will quickly go towards 0, making it difficult to
learn long-term dependencies. This problem is called vanishing gradients.

2. λ1,t1 ą 1 @t1: Bξlt{Bξlt´τ will quickly diverge, causing oscillations in
parameter updates and making it difficult to converge to a satisfactory
optimum. This problem is called exploding gradients.

Long short-term memory

The long short-term memory RNN (LSTM-RNN or LSTM for short), was
developed specifically to counter these gradient problems. The LSTM cell
introduces the concept of a cell state ct. The output ht of the cell is determined
from the cell’s state via the output gate ot. At each time step novel information
jt can be added to this cell state. The amount of this new information that is
added to the cell state is controlled by the input gate it. At the same time old
cell state information that is no longer deemed relevant can be forgotten via
the forget gate ft. The LSTM cell is defined in (1.68)–(1.73), replacing (1.60).

f lt “ σpWl
fxlt `Rl

fhlt´1 ` blf q, (1.68)

ilt “ σpWl
ixlt `Rl

ihlt´1 ` bliq, (1.69)



DEEP NEURAL NETWORKS 25

(a)

(b)

Figure 1.9: a) A block diagram illustration of a LSTM cell. Based on [36]. b)
A block diagram illustration of a 2-layer LSTM-RNN for a sequence of T “ 9.

olt “ σpWl
oxlt `Rl

ohlt´1 ` bloq, (1.70)

jlt “ tanhpWl
jxlt `Rl

jhlt´1 ` bljq, (1.71)

clt “ clt´1 d f lt ` jlt d ilt, (1.72)

hlt “ tanhpcltq d olt. (1.73)

(1.61)–(1.66) are kept. The block diagram of an LSTM-RNN can be seen in
Figure 1.9.
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Constant error carousel

To counter the exploding and vanishing gradients encountered in standard
RNNs, the LSTM-RNN uses the principle of the constant error carousel[82]. To
illustrate this ilt, jlt, olt and f lt are assumed independent of clt´1. Then, similarly
to (1.67), the following gradient is considered

Bclt
Bclt´τ

“

t
ź

t1“t´τ`1

˜

Bclt1
Bclt1´1

¸

“

t
ź

t1“t´τ`1
diag

“

f lt1
‰

(1.74)

If f lt1 would be set to 1 the gradient would further simplify to I, hence the name
constant error. In this case the problem of vanishing or exploding gradients is
avoided. Typically the bias blf is initalized to 1 to encourage a f lt1 close to 1
(since a sigmoid activation is used, 0 ď f lt1 ď 1).

Although some major assumptions were made to show the principle of the
constant error carousel, experimental analysis has shown that LSTM-RNNs are
able to use information from the far past, much better than standard RNNs
do. In fact, for theoretical experiments the LSTM-RNN is able to remember
input seen over a thousand time steps ago [82]. Chapter 5 will give an in-depth
analysis of the LSTM memory for BSSS.

1.4.2 DNNs for BSSS

In recent years there have been many studies in DL approaches for SS. Examples
in SE are [188, 184, 182, 201, 3] and for SSS there have been studies for male
- female SSS [84] and speaker dependent SSS [85]. All these works handle an
inter-class separation problem since distinctive classes can be defined: speech
and noise; male and female; Alex and Bob. In blind or unsupervised (gender
independent) SSS, no assumptions on the sources can been made and only
a single class can be defined, namely a speaker class. This makes BSSS an
intra-class separation problem, which is intrinsically harder than the other
problems discussed. While beamforming approaches using multi-channel data
can be very useful for this problem, it also imposes hardware requirements on
the recording system. To be as general as possible, this section handles single
microphone problems.

To use DNNs for BSSS, a differentiable loss function can be defined to assess
the quality of the speech estimates

L “
S
ÿ

s“1

ÿ

t,f

Dp|x̂spt, fq|, |xspt, fq|q, (1.75)



DEEP NEURAL NETWORKS 27

with D some discrepancy measure. In Section 1.1.1 it was discussed that typically
only the modulus of xspt, fq is estimated (and the phase of the input signal is
retained). This is reflected in (1.75). However, phase-aware loss functions exist
as well [123]. Instead of directly estimating x̂spt, fq, one can also estimate masks
m̂spt, fq which are then used to obtain x̂spt, fq via (1.10), a technique often
used in SSS methods. When using the Frobenius norm for D and combining
(1.75) and (1.10) the following loss function is obtained

L “
S
ÿ

s“1

ÿ

t,f

pm̂spt, fq|ypt, fq|´ |xspt, fq|q2. (1.76)

However, since an intra-class separation task is executed and no prior information
on the speakers is assumed to be known, there is no guarantee that the network’s
assignment of speakers is consistent with the speaker labels of the targets. This
is referred to as the label ambiguity or permutation problem [78]. To cope with
this ambiguity, a loss function has to be defined that is independent of the order
of the target speakers (i.e. the loss function does not change when the ordering
of the speaker labels is changed). During evaluation time the same permutation
problem occurs and should be taken into account.

Different approaches to solve this BSSS problem have been proposed, all of
which try to cope with the permutation problem. In Deep Clustering (DC),
every time-frequency bin of a mixture’s spectrogram is mapped to an embedding
vector and these are then clustered per speaker using K-means [78, 88]. Another
approach is to directly estimate each source signal via masks estimates and use
utterance Permutation Invariant Training (uPIT) to cope with the permutation
problem [97]. Deep Attractor Networks (DANet) can be seen as a combination
of DC and uPIT as they, similar to DC, estimate embeddings, but the clustering
is done in the netwerk itself via attractors, so that masks can be estimated
directly [30], as is done in uPIT.

Deep Clustering

In DC, a D-dimensional embedding vector vtf is constructed for every time-
frequency bin as vtf “ gtf p|Y |q, where vtf has unit length and gtf is typically
a DNN. A (TF ˆ D)-dimensional matrix V is then constructed from these
embedding vectors. Furthermore, a (TF ˆ S)-dimensional target matrix Z is
defined. If target speaker s is the dominant speaker for bin pt, fq, then zs,tf “ 1,
otherwise zs,tf “ 0. Speaker s is dominant in a bin pt, fq if s “ arg max

s1
|Xs1pt, fq|.

An illustration of DC is given in Figure 1.10. A permutation invariant loss
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Figure 1.10: An illustration of DC when using a (B)RNN with a linear output
layer.

function is then defined as

L “ ‖VVT ´ ZZT ‖2
F “

ÿ

t1,f1,t2,f2

pvt1f1 ¨ vt2f2 ´ zt1f1 ¨ zt2f2q
2, (1.77)

where ¨ is the inner product or dot product operation and ‖.‖2
F is the squared

Frobenius norm. Since ztf is a one-hot vector,

zt1f1 ¨ zt2f2 “

#

1, if zt1f1 “ zt2f2

0, otherwise
. (1.78)
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The ideal angle φt1f1,t2f2 between the normalized vectors vt1f1 and vt2f2 is thus

φt1f1,t2f2 “

#

0, if zt1f1 “ zt2f2

π{2, otherwise
. (1.79)

At this stage a model can be trained to minimize (1.77), but it does not produce
the signal masks m̂spt, fq directly. After estimating V, all embedding vectors
are clustered into S clusters using K-means. The mask estimates are then
constructed as follows

m̂spt, fq “

#

1, if vtf P cs
0, otherwise

, (1.80)

with cs a cluster from K-means. (1.10) can then be used to estimate x̂spt, fq.

In practice, it is found that speech spectra are sparse [110] and therefore often
no speaker is active in a certain time-frequency bin. This is not properly
represented in the label ztf . Therefore, in (1.77) only the time-frequency bins
were ytf exceeds an arbitrary threshold are considered. Similarly for K-means,
only the bins with sufficient energy are considered to find the cluster centers.
However, once the cluster centers have been found, the low energy bins can still
be assigned to a cluster for (1.80).

The network architecture is independent of the number of speakers present
in the mixture (the number of output nodes is dependent on the embedding
dimension D, which is independent of S) and can thus be used for a mixture of
any number of speakers. However, for the K-means clustering, the number of
clusters (or speakers) has to be known. This property will be used in Section
6.1.

Utterance-level Permutation Invariant Training

uPIT has a loss function directly based on (1.76), but it has been adjusted to
cope with the label ambiguity. The loss is defined as

L “ min
p PPS

S
ÿ

s“1

ÿ

t,f

pm̂spt, fq|ypt, fq|´ |xspt, fq|q2 (1.81)

with PS the set of all possible permutations for S members. An illustration of
uPIT is given in Figure 1.11.

Since every mask requires its own output nodes, the network is dependent on
the number of speakers. The number of permutations to check in equation
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Figure 1.11: An illustration of uPIT when using a (B)RNN.

(1.81) is S!, but can be implemented to have a computational complexity of
S2. This could still give computational problems for large S, but that seems
unrealistic for the task of BSSS.

Deep Attractor Networks

DANets also use (1.76). At train time the label ambiguity problem for DANets
is solved by using oracle information to cluster the embeddings per dominant
speaker. The embeddings are again estimated by a DNN as was done in DC. The
mask of the corresponding speaker is then used to estimate the reconstructions.
The cluster centers, called attractors a, are the average of the embeddings of
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Figure 1.12: An illustration of DANet when using a (B)RNN for S “ 2 and
using softmax for mask estimation. as“1 and as“2 are determined via (1.82)
and Q is determined via (1.83)
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the time-frequency bins dominated by a particular speaker:

as “
ř

t,f vtfzs,tf
ř

t,f zs,tf
. (1.82)

An embedding closer to a speaker’s attractor is considered more likely to be
dominated by this speaker. The intermediate variable qs,tf is defined as the dot
product or cosine similarity of attractor as and embedding vtf :

qs,tf “ as ¨ vtf (1.83)

The masks for (1.76) are based on this qs,tf and a non-linearity such that its
range is between 0 and 1. For the non-linearity, usually the softmax function of
(1.39) is taken, such that the masks for each time-frequency bin sum to 1. An
alternative non-linearity is the sigmoid function of (1.36). An illustration of
DANet is given in Figure 1.12.

By minimising loss function (1.75), using the masks derived from qs,tf , the
network learns to form an attraction point as in the embedding space for each
speaker, that attracts embedding vectors vtf associated with this source.

At evaluation time, the labels zs,tf are not available and thus (1.82) cannot
be found directly. Instead, the embeddings V are estimated from the trained
network and are once again clustered using K-means. The found clusters are
then used as the attractor points as in (1.83).

For DC, the loss function and the K-means clustering only considered time-
frequency bins with sufficient energy. This also applies for DANet when
determining the attractors as in (1.82) and when determining the cluster
centers using K-means.

Similarly to DC, DANets estimate embeddings where embeddings that are closer
together are more likely to belong to the same speaker. However it uses the
concept of attractors to be able to directly minimize the reconstruction loss of
(1.75), like in uPIT. Identical to DC, the network architecture is independent
of the number of speakers present in the mixture and can thus be used for a
mixture of any number of speakers. However, for the K-means clustering, the
number of clusters has to be known.

1.4.3 DNNs for SR

Before DNNs were introduced in the field of SR, the i-vector paradigm detailed
in Section 1.3 was the most used solution. New DL approaches replaced parts
of the i-vector system with DNNs [167]. In one of the first of such approaches,
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Figure 1.13: Illustration of the d-vector approach. The d-vector, here indicated
with b, is the averaged output of the main network. The speaker probabilities are
estimated from this d-vector using an identification network, which is typically
a single layer with softmax.

bottleneck features of a DNN-based Automatic Speech Recognition (ASR)
system were used to replace the supervector s (see (1.30)) in the i-vector
framework [105, 61, 143].

The d-vector approach went one step further and replaced the i-vector (w in
(1.30)) itself by the units of the last hidden layer of a DNN, trained using a
speaker classification cross-entropy loss [175, 112]. This approach is illustrated
in Figure 1.13.

Finally, end-to-end DNN approaches exist, where the network takes as input an
evaluation utterance and some enrollment utterances and is trained to directly
predict whether they belong to the same speaker or not [76].
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1.5 Thesis overview

To conclude the first chapter of this text, the thesis’s main research question
is recapitulated: do (B)SSS and SR rely on one another in the presence of
overlapping speech and is a joint model for both problems the most efficient?
Chapters 2 and 4 of the thesis will look for such joint models and indeed find that
they outperform sequential approaches. In Chapter 2 this is done using NMF,
while in Chapter 4 DNNs are used. Given that they reach related conclusions,
it is expected that the dependencies between BSSS and SR are independent of
the model choice and rather intrinsic to the tasks themselves. Chapters 3 and
5 will not explicitly search for a joint model, but will rather show that indeed
speaker characteristic information is inherently required when performing BSSS.
Finally, Chapters 6 and 7 will consider more applied and practical aspects of
BSSS. In the remainder of this section, each chapter is introduced shortly.

• Chapter 2: Joint Speaker Separation and Recognition using
NMF
The NMF method seemed the most suited to build a joint model for BSSS
and SR. For years it had been used in many SS problems. Furthermore,
the speaker-dependent spectral characteristics contained in the NMF
dictionaries, seemed directly applicable to SR, as was shown in [57].
However, NMF requires multi-channel data for a BSSS task, as otherwise
there is no direct way to assign each basis vector to a specific speaker.
This is in contrast with the DNN solutions used in Chapters 3-7 which
can handle single-channel setups. An existing multi-channel NMF model
for BSSS is extended to allow for joint BSSS and SR.
This chapter is based on: Zegers, J., and Van hamme, H. Joint sound
source separation and speaker recognition. In Interspeech 2016 (2016),
ISCA, pp. 2228–2232.

• Chapter 3: Improving Source Separation via Speaker Represen-
tations
With the use of DNNs for single-channel BSSS in recent years, an attempt
was made to exploit the hypothesised dependencies between BSSS and
SR. This was done by blind multi-speaker adaptation by appending the
i-vectors (Section 1.3) of the speakers to the input of the DNN. This
way an explicit speaker characterization is presented to be used for BSSS.
This can be done using oracle i-vectors (derived from the single speaker
utterances, normally not present during inference), or the i-vectors can
be derived from the estimated signals by a first-pass BSSS network. The
main question is whether the DNN would benefit from this explicit speaker
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characterization or whether its internal speakers representation is sufficient
for the BSSS task.
This chapter is based on: Zegers, J., and Van hamme, H. Improving
source separation via multi-speaker representations. In Interspeech 2017
(2017), ISCA, pp. 1919–1923.

• Chapter 4: Joint Speaker Separation and Recognition using
Deep Learning
The postulation of this chapter is similar to that of Chapter 2, only DNNs
will be used instead of NMF. The choice of a new model also causes a
different approach to building a joint model. The speaker dependent BSSS
dictionaries of NMF are directly applicable to SR, due to the spectral
speaker characteristics contained in these dictionaries. This is not directly
possible with DNNs. More precisely, the bin embeddings vtf for BSSS
cannot be directly used for SR. Instead, a multi-task learning approach is
used, common in many situations where DNNs are applied. In this case,
some or most of the hidden representations in the network are shared,
believing that the tasks rely on partly the same information.

• Chapter 5: Analysis of Memory in RNNs for Blind Speech
Source Separation
One of the major drawbacks of DNNs is that due to their nested and
non-linear structure, it is difficult to understand what makes them arrive
at their prediction and therefore DNNs lack explainability [149]. This
chapter will look for insights in the memory of the LSTM-RNN. Novel
methods will be presented that are generally applicable to study the
memory of RNNs. These methods will be applied to the task of BSSS to
determine to which extent SR and other factors play a role in a successful
separation.
This chapter is based on: Zegers, J., and Van hamme, H. Memory
time span in LSTMs for multi-speaker source separation. In Interspeech
2018 (2018), ISCA, pp. 1477–1481
and on: Zegers, J., and Van hamme, H. Analysis of memory in
LSTM-RNNs for source separation, 2020.

• Chapter 6: Increasing Separation Robustness in Realistic
Conditions
After reading Chapters 3, 4 and 5, one might rightfully wonder if the data
set used in these chapters is representative. Until now only two-speaker
English mixtures were used without any background noise. This chapter
addresses this limitation, as it was generally missing in the DL domain
for BSSS. Models will be developed that can cope with a variable number
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of speakers in the mixture. The performance of the DL algorithms of
Section 1.4.2, until now only evaluated on English data, will be measured
for different languages. The generalization of these models to unseen
languages will be studied. Finally, extensions to the DL methods will be
presented to cope with background noise. Although this chapter focuses on
BSSS and no SR experiments are performed, it was considered important
to add such a chapter to the thesis to increase the viability and the
relevance of the discussed matter.
This chapter is based on: Zegers, J., and Van hamme, H. Multi-
scenario deep learning for multi-speaker source separation. In IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2018), IEEE, pp. 5379–5383
and on: Appeltans, P., Zegers, J., and Van hamme, H. Practical
applicability of deep neural networks for overlapping speaker separation.
In Interspeech 2019 (2019), ISCA, pp. 1353–1357.

• Chapter 7: Speech Separation for EEG-informed Attention
Decoding
There are many application were BSSS plays a role. These can be roughly
divided into two categories:

1. As a preprocessing step. At the start of the text it was mentioned that
many speech technologies, such as ASR, SR, languague recognition,
emotion recognition , etc. assume only a single speaker to be present
in the audio recording. If this is not the case, BSSS is needed as a
preprocessing step.

2. As a speech enhancement method. Listening to a recording
with multiple speakers can hamper speech intelligibility. This is
particularly the case for hearing-aid users that struggle in cocktail
party scenarios [40].

This chapter addresses a particular application that fits in both categories
as it studies the concept of a neuro-steered hearing aid. In summary, brain
activity of a hearing-aid user is measured via Electroencephalography
(EEG), where the user is asked to focus on a single target speaker in a multi-
speaker scenario. This EEG data is used to estimate the speech envelope of
the attended target speaker using an Auditory Attention Decoder (AAD).
Until recently, this speech envelope was then compared with the oracle
envelopes extracted from the single speaker audio recordings to decide
which of the active speakers the listener wants to attend to. In a realistic
setting, these single speaker audio envelopes should be estimated using
BSSS. Once the attended speaker is selected, the estimated speech signal
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can be sent to the hearing-aid user. This chapter compares linear and DL
approaches for BSSS.
This chapter is based on: Das, N., Zegers, J., Van hamme, H.,
Francart, T., and Bertrand, A. Linear versus deep learning methods
for noisy speech separation for EEG-informed attention decoding. Journal
of Neural Engineering 17, 4 (August 2020).

• Chapter 8: Conclusion
This chapter concludes the thesis by listing the original contributions and
directions for future research.





Chapter 2

Joint Speaker Separation and
Recognition using NMF

This chapter is based on the following publication:
Zegers, J., and Van hamme, H. Joint sound source separation and speaker
recognition. In Interspeech 2016 (2016), ISCA, pp. 2228–2232.

The goal of the thesis, as described in the previous chapter, is to find a model
that jointly performs (B)SSS and SR. In this chapter it will be shown that NMF
is inherently capable of solving these two problems jointly. The dictionaries
found in Section 1.2.1 for BSSS and the dictionaries of Section 1.2.2 for SR can
be shared over both tasks.

The remainder of this chapter is organized as follows. Section 2.1 shows how
NMF can be used to jointly solve these SSS and SR problems. Experiments are
shown in Section 2.2 and a conclusion is given in Section 2.3.

2.1 Joint approach

To build a joint multi-channel NMF model for BSSS and SR, we retake (1.20)
of Section 1.2.1.

X̂ft “

Kmix
ÿ

k“1

S
ÿ

s“1
csktfkqktHfs, (2.1)

39
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which allowed for multi-channel BSSS. Here tfk models the value of the kth

basis vector for the f th frequency index. The activation of a basis vector k at
time t is given by qkt, Hfs models the frequency response for the sth speaker to
the different microphones and csk is a latent speaker-indicator which links the
kth basis vector to the sth speaker if csk is close to 1. Kmix is the total number
of basis vectors, to be partitioned over the S speakers. We would like X̂ft to
be close to Xft where Xft “ yfty

H
ft.

For the joint model, this formulation is kept during the enrollment phase. For
each enrollment mixture, the kth basis vector is then assigned to the sth latent
speaker for which csk is maximal. The dictionaries of all speakers are collected
in the library Ttot “ rT1,T2, . . . ,TI s. The total number of basis vectors in the
library is referred to as Ktot. For instance, consider N enrollment mixtures,
with S active speakers each. If all S speakers in all N enrollment mixtures are
unique, then I “ NS. If each mixture has Kmix basis vectors, to be partitioned
over its S speakers, then Ktot “ KmixN .

While testing, a novel source separation algorithm is used, which is similar to
(2.1). Ttot remains fixed and SSS is no longer blind. The subscripts of C are
changed to cik (compared to csk in (2.1) and Section 1.2.1) since all speakers I
in the library are considered. As stated in Section 1.2.1, not all I speakers seen
during enrollment have to be present in the test mixture Xtest (S ď I). A new
latent variable indicator zsi is introduced, which maps a complete dictionary
Ti and its corresponding speaker identity to an active test speaker s, under the
constraints 0 ď zsi ď 1 and

ř

s zsi “ 1. This allows to detect which of the I
speakers are active in the test mixture. Furthermore, it also links a speaker
identity i, to a speech signal estimate from the test mixture. This will be
detailed later on.

The variable X̂ft from (2.1) is then reformulated as follows

X̂ft “

Ktot
ÿ

k“1

I
ÿ

i“1

S
ÿ

s“i

zsiciktfkqktHfs. (2.2)

It is shown in Appendix A.1 that the update formulas of (1.22)-(1.27) are then
extended to

tfk Ð tfk
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f

f
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ř

t

ř

i

ř

s zsicikqkttr
´

X̂´1
ft XftX̂´1
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¯
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t

ř

i

ř

s zsicikqkttr
´

X̂´1
ft Hfs

¯ (2.3)

qkt Ð qkt
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ř

i

ř

s zsiciktfktr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

i

ř

s zsiciktfktr
´

X̂´1
ft Hfs

¯ (2.4)
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zsi Ð zsi

g
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f

f

e
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f

ř

t

ř

k ciktfkqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

t

ř

k ciktfkqkttr
´
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ft Hfs

¯ (2.5)

cik Ð cik

g

f

f

f

e

ř

f

ř

t

ř

s zsitfkqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

t

ř

s zsitfkqkttr
´

X̂´1
ft Hfs

¯ (2.6)

To update Hfs an algebraic Riccati equation is solved

HfsAHfs “ B (2.7)

A “
ÿ

t

ÿ

k

ÿ

i

zsiciktfkqktX̂´1
ft (2.8)

B “ H1
fs

˜

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqktX̂´1
ft XftX̂´1

ft

¸

H1
fs (2.9)

where H1

fs is the Hfs of the previous update. To avoid scale ambiguity these
normalizations should follow: Hfs Ð Hfs{trpHfsq, tfk Ð tfk{

ř

f 1 tf 1k, zsi Ð
zsi{

ř

i1 zsi1 and cik Ð cik{
ř

i1 ci1k.

The above equations give the general update rules, but when used in the test
phase of the considered application, T (or rather Ttot) will be kept fixed.
Furthermore, cik is also kept fixed as a basis vector k should stay in the
dictionary i it was trained for1. Therefore, cik “ 1 only if the kth basis vector
belongs to the jth dictionary, otherwise cik “ 0.

The separation masks, similar to (1.28), can then be found as

m̂s,ft “

˜

I
ÿ

i

Ktot
ÿ

k

zsiciktfkqkt

¸

HfsX̂´1
ft . (2.10)

The estimated ID for speaker s is i for which zsi is maximal

ˆIDs “ arg max
i

zsi. (2.11)

Through Hfs, m̂s,ft and zsi, the SR of (2.11) links together the identity, the
spatial position and the signal estimate of speaker s in the test mixture.

It was previously mentioned that not all enrolled speakers need to be active in
the test mixture (S ď I). However, in the experiments of Section 2.2, this will

1Otherwise zsi would no longer hold any meaning and no SR would be possible.
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Figure 2.1: Example of zsi of the iterative process during the test phase.

be the case (S “ I, Ktot “ Kmix). Therefore, the latent variable indicator zsi
no longer indicates whether an enrolled speaker i is present in the text mixture,
as they all are. However, the link between the identity, the spatial position and
the signal estimate of speaker s still holds in case of a successful SR in (2.11).

In Figure 2.1 an illustration is given of the values zsi during the iterative process
in the test phase. For each speaker s in the mixture (or rather the speaker fixed
to the position s via Hfs and the signal estimate via m̂s,ft), a different plot
is made. Although the reader is reminded that these are found jointly in the
iterative process. When looking at the plot for s “ 1, it becomes clear, after
some iterations, that the algorithm believes that for this example the identity
of speaker s “ 1 of the mixture corresponds to the one belonging to dictionary
i “ 1 in the library as z11 ą z12 and z11 ą z13. Similarly, s “ 2 will be mapped
to i “ 3 and s “ 3 to i “ 2.

2.2 Experiments

2.2.1 Data and set-up

The CHiME corpus [31] has been used to perform the experiments in this
chapter. It contains 34 speakers with 500 spoken utterances per speaker and
a vocabulary size of 52 words. Each utterance is about 1.5 seconds long. A
mixture in the time domain is simulated with a microphone array of J “ 2
microphones and three randomly chosen speakers (I “ S “ 3) on randomly
chosen spatial positions that are at least 20˝ apart. The RIR for each speaker
to the microphones is determined via its spatial angle to the microphone array
and some mild reverberation (RT60 = 280 ms) [21]. The microphones are placed
15 cm apart and sample at 16kHz. A Generalized Cross Correlation with Phase
Transform (GCC-PHAT) is used to estimate the DOA and to perform a source
count [95]. Thus, aside from SSS and SR, also information on the number of
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sources and an initial estimate of their location will be known. It has already
been shown that such a GCC-PHAT is useful to initialize the multi-channel
NMF [120]. Here it will be used to set up the initial off-diagonal elements of
Hfs.

For mixtures of 1.5 seconds, the GCC-PHAT finds the correct number of sources
in about 85% of the cases. This goes to 100% for longer mixtures. Since this
chapter is not about source counting, mixtures with a false estimate of the
number of sources will not be included in the results of the experiments in this
chapter. A spectrogram for each microphone is calculated using an STFT with
a window length of 64 ms and an overlap of 32 ms.

During the enrollment/training phase each person speaks Utr utterances, without
moving. The library Ttot is learned according to Section 1.2.1 in 1000 iterations.
For each speaker Ks “ K basis vectors are assigned, giving a total of Ktot “
Kmix “ KS basis vectors. Random initializations are used for T and Q. Basis
vectors are fixed in a dictionary, belonging to a speaker on a certain location,
by setting the speaker-indicators C as follows.

csk “

#

1 if k P κs

0 otherwise
(2.12)

Through csk and the spatial information in Hfs, a basis vector is then fixed
to a speaker on a certain location. In preliminary experiments, it was found
that when C is not fixed but updated via (1.24), it naturally converges to a
solution where ck is one-hot encoded. The major difference of this solution
compared to (2.12) is that the number of basis vectors Ks in a dictionary can
vary per speaker. While it could be advantageous to allow this parameter to
be speaker dependent (e.g. for speakers with more enrollment data or a larger
speech variety), for practical reasons it was chosen to keep this fixed and follow
(2.12).

In the test phase the same speakers as in the training phase are used pI “ S “ 3q,
but placed on different virtual locations. Each person speaks Utest “ 1 utterance,
without moving. The algorithm in Section 2.1 is applied and 1000 iterations
are used. The library Ttot is taken from the training phase, Q is initialized
randomly and H is again initialized using GCC-PHAT. The estimated IDs are
determined by using (2.11). 50 such test mixtures are created and for each
three speakers have to be estimated. This gives a total of 150 recognition tasks
per training set. In total 20 independent training sets are created and their
recognition accuracies are averaged to cope with the training variability.

Pure SR performance is analyzed in the single speaker scenario, where no SSS
takes place and dictionaries are learned from non-reverberated speech. The joint
approach (Section 2.1), which can be applied during either or both, testing and
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Ncomp Divec
5 10 15 20 50 100

256 68.3 73.7 74.6 74.5 62.5 62.4
512 66.1 74.8 74.8 73.4 68.8 66.5
1024 60.9 75.2 75.4 75.2 71.9 68.4
2048 55.4 68.5 70.6 72.7 73.8 72.2

Table 2.1: i-vector based SR accuracies (in %) for the full simultaneous scenario.

training, is compared with a single speaker scenario and a sequential scenario.
In the single speaker scenario, the dictionaries are trained or tested on non-
reverberated speech of a single speaker, without applying SSS. In the sequential
approach, SSS is first applied on speaker mixture data, then dictionaries are
trained or tested on the segregated streams. In the remainder of the chapter,
the scenario where both training and testing are performed on simultaneous
speech, will be referred to as the full simultaneous scenario. In the full single
scenario both training and testing are performed on a single speaker.

2.2.2 i-vector baseline

A second baseline for a sequential approach is also presented which uses i-vectors
for the SR part. The MSR Toolbox is used to set up the speaker recognizer
[147]. First a UBM and the total variability space are determined using 25
speakers not used in the enrollment phase. For every universal background
speaker 500 single speaker utterances are used. Source separation was performed
on mixtures using the multi-channel NMF with dictionary size K “ 10. The
STFT features of the separated signals are transformed to MFCC features with
differentials (MFCC∆) and accelerations (MFCC∆∆). i-vectors are determined
from the separated signals, the total variability space and the UBM. A test
segment is classified using the cosine distance between the test i-vector and
the training i-vectors. Table 2.1 shows how the speaker recognition accuracies
in the full simultaneous scenario depend on the number of UBM components
Ncomp and the dimensionality of the i-vector Divec. The optimal values were
found to be Ncomp “ 1024 and Divec “ 15. This is comparable to the values
found in [57].



EXPERIMENTS 45

Figure 2.2: Average speaker recognition accuracy (in %), depending on the
dictionary size, using the joint approach in the full simultaneous scenario.

2.2.3 Results

In Figure 2.2 SR accuracies relative to the dictionary size K are plotted for
the full simultaneous scenario. The number of training utterances per speaker
Utr was taken at 20 utterances. Results were obtained using the joint solution.
There is little influence of the dictionary size on the recognition accuracy if K is
between 8 and 30. In the remainder of the chapter the dictionary size is taken
at K “ 10.

Speaker recognition accuracies for the different scenarios and used methods,
using the above found optimal parameters (K “ 10, Ncomp “ 1024 and Divec “
15), are shown in Table 2.2(a) for NMF-based speaker recognition and Table
2.2(b) for i-vector based speaker recognition. In the full single scenario i-vector
based SR performs slightly better then NMF based SR. However, in simultaneous
scenarios, i-vectors struggle with the crosstalk after SSS. The same problem
occurs for NMF when a sequential approach is used in, either or both, training
and testing. This problem is circumvented when the joint approach for NMF in
the full simultaneous scenario is used. The Speaker Error Rate (SER) for the
joint approach (12%) is substantially lower than a sequential approach using
i-vectors for the SR (24%).

Figure 2.3 shows how the recognition accuracy increases with the amount of
training data. The optimal parameters above are used again. The recognition
accuracy only decreases for very low amount of training utterances. The
sufficiency of a limited amount of training data is probably due to the limited
vocabulary size in the CHiME corpus. Notice that increasing the amount of
training is beneficial to the recognition accuracy in two ways. SSS is improved
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Train Test
single seq joint

single 98.0 86.4 73.2
seq 88.8 76.1 62.5
joint 80.2 61.3 87.9

(a) NMF based SR.

Train Test
single seq

single 98.4 78.5
seq 91.2 76.0

(b) i-vector based SR.

Table 2.2: SR accuracies (in %) for different training and testing scenarios. In
seq and joint 3 speakers are active simultaneously. Single uses data from one
speaker at a time.

Figure 2.3: Average speaker recognition accuracy, depending on the training
size Utr, in the full simultaneous case. Results are shown for the joint approach
(circles) and for a sequential approach using NMF (squares) or i-vectors
(diamonds).

(see Table 2.4) and the amount of patterns seen in training data is increased,
which allows the speakers to be better characterized and more easily recognized.
To cope better with the increasing amount of seen patterns, the dictionary size
could also be increased. This way the extra detected patterns can be stored in
the dictionary. A system is chosen that can cope with any training size and
thus the dictionary size is fixed.

As this chapter analyzes joint SR and SSS, an evaluation metric for the SSS
quality is also considered. SDR, SIR and SAR between the original source
signal and the signal separated from the mixture, are calculated and are shown
in Table 2.4 [176]. Three different situations are shown: a mixture where each
person speaks 20 utterances, a mixture where each person speaks 1 utterance
and a mixture where each person speaks 1 utterance that is separated using
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previously learned dictionaries. 20 independent runs are used to calculate
the ratios and the average is shown. As expected, the SSS results are better
when the mixture is longer. NMF has more examples to recognize recurring
patterns and build distinctive dictionaries per speaker which enhances the
separation quality. However, performing SSS using learned and fixed dictionaries
decreases performance. If a pattern is not seen in the training stage or is not
frequent enough to fit in the dictionary, it cannot be used during testing for the
reconstruction of the signal and will thus degrade the reconstructed signal. A
solution is to allow flexibility in the trained dictionaries when testing, but this
would interfere with the speaker recognition.

SDR SIR SAR
SSS on 20 utts 6.93 12.50 9.36
SSS on 1 utt 4.28 7.99 8.26
SSS on 1 utt using learned dicts 3.08 5.62 8.81

Table 2.4: SSS performance for different scenarios measured in SDR, SIR and
SAR (dB).

2.3 Conclusion

In this chapter it was shown that in simultaneous speech environments for three
overlapping speakers, a joint approach for BSSS and SR outperforms sequential
approaches for both NMF and i-vector based SR. This benefit is inherent to the
(multi-channel) NMF as the same speaker patterns that are learned to perform
segregation can be used to recognize speakers. Nonetheless, a similar goal will
be set in the next chapters where DNNs will be used.





Chapter 3

Improving Source Separation
via Speaker Representations

This chapter is based on the following publication:
Zegers, J., and Van hamme, H. Improving source separation via multi-
speaker representations. In Interspeech 2017 (2017), ISCA, pp. 1919–1923.

In this chapter an attempt is made to improve BSSS by informing the
model on the identities and characteristics of the speakers via blind speaker
adaptation, thereby again attempting to show the link between BSSS and
speaker characterization. It is also the first chapter that uses DNNs. All
subsequent chapters will also be using DNNs.

3.1 Introduction

In speaker adaptation a system is adapted to better suit the characteristics of
the target speaker. Speaker adaptation has been successfully applied in ASR
tasks using DL. There are several ways to incorporate speaker information in a
network.

• One can apply a space transform to the input features depending on
the speaker identity, such as feature-space Maximum Likelihood Linear

49
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Regression (fMLLR) [154, 190]. The network can then be trained as usual
to learn from this speaker information.

• In model-based adaptation, the whole network or parts of the network
are adapted to a specific speaker by retraining the model to adaptation
data of that specific speaker [166, 107, 193, 189]. It is possible to perform
so-called blind speaker adaptation by clustering speakers together via
their i-vector representation [202]. For each cluster a network is adapted.
At test time an utterance is first assigned to a cluster and then decoded
with the according network. The term blind is used, since the identity
of the speaker is not known a priori, but still a network is used that is
thought to be more adapted to the unknown speaker.

• Another way to adapt the network is to add speaker characterizing features,
such as an i-vector to the input [150]. In fact, this can also be seen as
a speaker dependent space transform in a broad sense. The advantage
of such an i-vector is that it models speaker variability and can also be
determined blindly, without any prior knowledge of the speaker [72].

In this chapter an attempt is made to perform blind speaker adaptation for
BSSS. There are two main challenges. The first challenge is that the network is
to be adapted to more than a single speaker. Secondly, there is no direct way
to extract an i-vector for all speakers, since they are speaking simultaneously.
A multi-speaker representation is sought that can be added to the input of
the network. The general idea is to first perform blind source separation, then
extract i-vectors on all estimated sources and use these to adapt a second
network, extract the i-vectors on the new estimates of the second network and
so on. A similar idea was used by Zhang et al. [200] for noise suppression in
presence of speech. They used speech enhancement to get a better estimate
of the pitch, which they in turn fed in a subsequent network for better speech
enhancement, which allowed for better pitch estimation and so on. If the i-vector
extraction procedure is performed by a neural network, it is possible to do a
final end-to-end training of the complete network. However, this will not be
implemented in this chapter.

After original publication of this chapter, another approach called SpeakerBeam
was introduced [52]. It uses single speaker enrollment data of a target speaker
to adapt a network to filter out the speech of that specific speaker in a multi-
speaker test mixture. Since it uses enrollment data, it is not considered a blind
adaptation. Furthermore, it is not a multi-speaker adaptation, since only a
single speaker is of interest.

While i-vector extraction on signal estimates could allow for SR in multi-speaker
scenarios, the focus of this chapter is on source separation quality. The rest
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of this chapter is organized as follows. In Section 3.2 a method is proposed to
perform blind multi-speaker adaption for source separation. Experiments are
presented in Section 3.3 and a conclusion is given in Section 3.4.

3.2 Blind multi-speaker adaptation

To perform blind multi-speaker adaptation, first an estimate of the source signals
is found by estimating a binary mask using DC, as explained in Section 1.4.2.
Subsequently, an i-vector is extracted from each speech estimate. Optionally,
the dimensionality of the i-vector can be reduced using LDA (see Section 1.3).
All (LDA) i-vectors are then repeated over all time frames of the mixture
and, together with the mixture spectrogram, are then fed into another neural
network, which is thus trained with explicit speaker information. The last two
steps can be repeated iteratively. The proposed iterative architecture is shown
in figure 3.1. The network of level 0 is trained on the mixture spectrogram and
is the baseline for this chapter. The network of level l is trained on the mixture
spectrogram and the (LDA) i-vectors of level l ´ 1.

A level l ` 1 network can only be expected to bring further improvement
compared to a level l network if the i-vectors presented at the input are less
noisy (extracted from a level l network and level l ´ 1 network, respectively).
The extracted i-vectors can only be expected to be of better quality if the
following two conditions are met:

1. The separation performance of the level l network is better than the level
l ´ 1 network. In that case it can be expected that the extracted i-vector
from level l will be less noisy than those extracted from the level l ´ 1
network.

2. The separation performance of the level l network is worse than a network
that is trained with oracle i-vectors, determined on the single speaker
utterances, as the latter can be seen as an upper bound. If the level
l network reaches this upper bound, no further improvements can be
expected.

In the experiments that were performed, it was usually concluded that the
separation performance of the level 1 network matches that of the upper bound
and therefore no results for L ą 1 networks are given in this chapter.
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Figure 3.1: Proposed iterative architecture. BM refers to the binary masks
estimated by DC.

3.3 Experiments

3.3.1 Experimental set-up

The experimental set-up for this chapter will be detailed quite extensively as it
is the first chapter that uses DNNs. The experimental set-ups in the following
chapters will try to mirror the set-up detailed in this section.

For the BSSS task, mixtures of two speakers (S “ 2) were used from the corpus
introduced in [78]. These mixtures were artificially created by mixing single
speaker utterances from the Wall Street Journal 0 (WSJ0) corpus [64]. A gain
for the first speaker compared to the second speaker was randomly chosen
between 0 and 5 dB. Utterances were sampled at 8 kHz and the length of the
mixture was chosen equal to the shortest single speaker utterance in the mixture
to maximize the overlap. The training and validation sets contained 20 000
mixtures („30h) and 5 000 mixtures, respectively from 101 speakers, while the
test set contained 3 000 mixtures from 16 held-out speakers. An STFT with a
32 ms window length and a hop size of 8 ms was used.

DC was used as BSSS algorithm (see Section 1.4.2). The DNN consists of
two fully connected bidirectional LSTM-RNN layers, with 600 hidden units
each in each direction. Hidden units of both directions are concatenated before
being passed to the next layer, as was expressed by (1.65). The DC embedding
dimension was chosen atD “ 20 and since the frequency dimension was F “ 129,
the total number of output nodes was DF “ 20 ˚ 129 “ 2580. According to the
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principles of curriculum learning [14, 78], the networks were first trained on
segments of 100 time frames, before training on the full mixture. The weights
and biases were optimized with the Adam learning algorithm described in
(1.55)-(1.59), with β1 “ 0.9, β2 “ 0.999 and ε “ 10´8. For the 100-frame stage
the learning rate was kept constant at 10´3. For the full mixture training stage
the learning rate decreased exponentially, starting at 5 ˚ 10´4 and reducing
with a factor 0.85 each epoch. The log-magnitudes of the STFT coefficients
were used as input features and was mean and variance normalized. Zero
mean Gaussian noise with standard deviation 0.2 was applied to the training
features to avoid local optima. Unlike in [88], dropout on the feedforward
weights did not improve results, so it was not used in the experiments. Time-
frequency bins with magnitude lower than -40 dB, compared to the maximum
of the utterance, were omitted in the loss function of (1.77) to prevent the
network from learning on empty or low-energy bins. All networks were trained
using TensorFlow [2] and the code for all the experiments can be found here:
https://github.com/JeroenZegers/Nabu-MSSS.

The K-means clustering, after estimating the embeddings V, was done with the
Scikit-learn library [135]. For each clustering, 10 random initializations were
done, choosing the version with lowest total sum of distances. Again, time-
frequency bins with magnitude lower than -40 dB, compared to the maximum
of the utterance were omitted.

Performance for BSSS is measured by the average SDR improvements on the test
set, using the bss_eval toolbox also used in Chapter 2 [176]. When comparing
the average SDR improvements between two models, the following statistical
consideration can be taken into account. The sample standard deviation is
roughly 4.0 dB, determined on 6,000 samples (S “ 2 evaluations for each of the
3,000 test mixtures). When assuming these samples to be independently and
identically distributed, according to Student’s t-test a sample mean difference
of 0.09 dB is then significant for a significance level of α “ 0.05 [164].

In this chapter, each experiment was run 3 times, and the median score of the
sample means is reported. This was done to cope with some variability due to
the applied input noise and the random initialization of the networks.

For the i-vectors, the si_tr_s set of WSJ1 [1] was used as development data to
train the UBM, the total variability matrix T and the LDA projection matrix
A (see Section 1.3). 13-dimensional MFCCs are used as features and a VAD
was used to leave out the silence frames. The UBM has 256 Gaussian mixtures.
If LDA is applied, w is 400-dimensional. The MATLAB MSR Identity Toolbox
v1.0 [148] was used to determine the UBM, T and A and to obtain the (LDA)
i-vectors.
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Figure 3.2: SDR improvements (in dB) for oracle and realistic experiments

3.3.2 Results

Results for the multi-speaker adapted networks are shown in figure 3.2. The
baseline DC system did not use any speaker adaptation and was based on
Section 1.4.2. The oracle i-vectors were determined from the single speaker
utterances before mixing. This information is normally not present in realistic
applications, but allows to find an upper bound for the performance of the
presented system. Estimated i-vectors were achieved via the procedure of Figure
3.1.

In general it can be concluded from Figure 3.2 that the addition of i-vectors to
the input of the BSSS network has little or no beneficial effect to the separation
performance, compared to the baseline. This is in contrast with the observation
made in the original publication [195]. The baseline there was roughly 3 dB
lower than in Figure 3.2, although comparable with other papers at that time1.
Including i-vectors in the old baseline model did improve separation performance.
There it was concluded that the baseline DNN’s internal speaker characterization
for BSSS was not optimal. Apparently, as the baseline model improved, so
did its internal speaker characterization, and the addition of external speaker
vectors has little effect.

Taking this in consideration, the addition of external speaker vectors might still
be useful in cases where the DNN struggles more. For example, in the case
of very high background noise or when the DNN is much smaller. The latter

1Over the years many different hyper parameters have been tuned to achieve this 3 dB
difference in baseline performance.
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baseline oracle ivecs dim 10 est. ivecs dim 10 shared model
6.24 6.72 6.68 6.56

Table 3.1: SDR improvements (in dB) where the networks have 50 hidden units
per directional layer.

is tested by considering a baseline model with 50 units per directional layer
(compared to the 600 units used for the results in Figure 3.2). The performance
of this model with and without (oracle) i-vectors of dimension 10 is given in
table 3.1. When comparing the baseline result with the network were the
estimated i-vectors were added, an improvement of 0.44 dB is found. However,
it can be argued that this comparison is not fair as the latter uses roughly twice
the amount of trainable parameters (l “ 0 and l “ 1 networks), compared to
the baseline (only l “ 0 network). Therefore, an additional experiment was
performed with a joint model where the parameters of the l “ 0 and l “ 1
networks were shared2. The result for this shared model, when in l “ 1 mode, is
still better than the baseline (+0.32 dB). It is therefore concluded that speaker
characterization is relevant for the task of BSSS and if the model does not
sufficiently succeed in building an internal speaker characterization, it can be
helped by providing explicit external speaker vectors.

3.4 Conclusion

In this chapter it was shown that indeed BSSS is dependent on the SR subtask,
when using DNNs. State-of-the-art BSSS models succeed in building a sufficient
internal speaker characterization and adding external i-vectors does not bring
gains in separation performance. However, it is noted that these models work in
highly idealized settings, e.g. no reverberation and no background noise as well
as assuming there is sufficient data to train a large number of parameters and
sufficient computational capabilities to allow inference with a large model. It
was found that a small model did have trouble with finding the optimal speaker
representations and adding external speaker characterizations, did substantially
help in this case. In Chapter 5 it will be shown that the same applies to RNNs
with limited memory. This suggests that in (very) challenging scenario’s (high
background noise and/or reverberation) models might struggle to sufficiently

2To prevent the need for i-vector extraction during each training step, i-vectors were
extracted from the baseline model. These extracted i-vectors were then fed to the joint model
when in l “ 1 mode. For the results in Table 3.1, the shared model is in l “ 1 mode, with
i-vectors extracted from the l “ 0 mode.
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tackle the SR subtask and putting an external focus on this can be beneficial.
This is a suggestion for future research. In that case it could also be relevant to
reconsider the use of L ą 1 networks.



Chapter 4

Joint Speaker Separation and
Recognition using Deep
Learning

In Chapter 2 a joint NMF model for BSSS and SR was found that had better SR
performance compared to two sequential NMF models, thereby supporting the
main hypothesis of the thesis that indeed BSSS and SR for overlapping speech
are best tackled jointly. In this chapter, the same hypothesis will be tested,
using DNN approaches instead of NMF. If the hypothesis is again confirmed, it
is expected that the dependencies between BSSS and SR are independent of
the model choice and rather intrinsic to the tasks themselves.

For this, the model from [58] will be used that allows for both BSSS and SR,
where the main part of the model is shared over both tasks. A modification will
be proposed that improves performance of the model, as well as an extension
that allows the SR part to be used for a combination of overlapping and non-
overlapping speech fragments. Furthermore experiments will be used to show
how best to perform the joint learning.

The remainder of this chapter is organized as follows. Section 4.1 will describe
how a joint approach to BSSS and SR can be achieved with DNNs. In Section
4.2 some experiments will be reported and in Section 4.3 a conclusion will be
given.

57



58 JOINT SPEAKER SEPARATION AND RECOGNITION USING DEEP LEARNING

4.1 Joint approach

4.1.1 Basic joint model

The basic joint BSSS and SR model will be based on [58], which is an extension
to DANet described in 1.4.2. An illustration of this model is given in Figure
4.1. The BSSS part of this model is identical to DANet (see Figure 1.12): BSSS
embeddings vtf are estimated using a linear output layer and BSSS attractors
as are formed using (1.82). For the SR part, a separate output layer is used to
estimate SR embeddings utf . Then SR attractors bs are estimated, similarly
to (1.82) as

bs “
ř

t,f utfzs,tf
ř

t,f zs,tf
. (4.1)

The SR attractor per speaker bs can then be processed similarly as in Figure 1.13
in Section 1.4.3: Pass bs to an identification network which estimates speaker
posteriors using a softmax which allows to determine the cross-entropy loss.
Notice that since S speakers are present, S cross-entropy losses are determined
and averaged. The SR attractor bs can then be used as speaker identification
vector (or d-vector, see Section 1.4.3).

In Section 1.4.2 it was mentioned that when determining as using (1.82), only
time-frequency bins with sufficient energy were considered. The same applies
for bs when using (4.1).

Notice that the permutation problem discussed in Section 1.4.2 also applies to
the (cross-entropy) SR loss when multiple speakers are active. The permutation
problem is solved similarly as in DANet (see Section 1.4.2).

In a true joint spirit, one might wish to use a single type of embedding (and
attractor) for BSSS and SR, i.e. vtf “ utf (and as “ bs). However, it was
experimentally found that this does not work well and it is much better to
have a different embedding space per task1. This conclusion will also be made
in Section 6.1, where a separate embedding space for 2-speaker and 3-speaker
mixtures is preferred.

1The same conclusion is made in [58].
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Figure 4.1: An illustration of the basic joint model when using a (B)RNN for
S “ 2. as“1 and as“2 are determined via (1.82) and Q is determined via (1.83).
bs“1 and bs“2 are determined via (4.1).
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4.1.2 Multi-task learning

To train the joint model, multi-task learning has to be applied. The advantages
of multi-task learning for DNNs are well known [23, 22]. The BSSS loss of
(1.76) and the cross-entropy loss for SR should both be optimized.

For single task learning a loss LΘpY, ŶpX,Θqq as in (1.44) is defined, based on
the model inputs X, the model targets Y and the model parameters Θ. After
each training batch, a parameter θ is updated as follows

∆θ “ g

˜

BLΘpY, ŶpX,Θqq
Bθ

¸

(4.2)

where gpq is specific to the learning algorithm. For instance for SGD, according
to (1.52)

gSGD

ˆ

BLΘ

Bθ

˙

“ ´η
BLΘ

Bθ
. (4.3)

For the Adam learning algorithm we find according to (1.59)

gAdam

ˆ

BLΘ

Bθ

˙

“ ´
η

b

m̂θ,2
`

BLΘ
Bθ

˘

` ε
m̂θ,1

ˆ

BLΘ

Bθ

˙

(4.4)

with m̂θ,1
`

BLΘ
Bθ

˘

and m̂θ,2
`

BLΘ
Bθ

˘

as defined in (1.55)-(1.58).

For multi-task learning, consisting of J tasks, a solution would be to define a
joint loss LΘ,m as

LΘ,mpYm, ŶmpXm,Θqq “
J
ÿ

j“1
αjLΘ,jpYj , ŶjpXj ,Θqq (4.5)

and take α1 “ 1, with LΘ,jpYj , ŶjpXj ,Θqq the loss of task j. In the remainder
of this section LΘ,jpYj , ŶjpXj ,Θqq is referred to as LΘ,j , to simplify notations.
(4.2) can then be applied as usual. However, J ´ 1 meta parameters α have to
be chosen, e.g. by tuning them using a validation set.

A good choice of αj can be important, as is also pointed out in [92]. For example,
the joint model in Section 4.1.1 uses the loss of (1.76) and the cross-entropy
loss, which are of a totally different scale. Neglecting to find the proper αj by
simply setting them to 1, could mean that one loss would be dominant over the
other (in scale) and therefore effectively training on one loss rather than both.
To alleviate part of the problem, one could roughly guess the magnitude m̂j of
the optimal loss of all tasks and use this as normalization

LΘ,mpYm, ŶmpXm,Θqq “
J
ÿ

j“1

αj
m̂j

LΘ,jpYj , ŶjpXj ,Θqq. (4.6)
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This might give a better solution for the αj “ 1 case but still seems far from
optimal.

Alternatively, to circumvent all this, a parameter update can be found for each
task individually and then summed as follows

∆mθ “
J
ÿ

j“1
∆jθ “

J
ÿ

j“1
g

ˆ

BαjLΘ,j

Bθ

˙

“

J
ÿ

j“1
g

ˆ

αjBLΘ,j

Bθ

˙

. (4.7)

If a learning algorithm is chosen that is independent of the scale of the gradients,
or in other words gpαBLΘ{Bθq “ gpBLΘ{Bθq, like the Adam algorithm, (4.7)
simplifies to

∆mθi “
J
ÿ

j“1
g

ˆ

BLj
Bθi

˙

(4.8)

which is independent of the loss scale factors α so that they no longer have to
be tuned. If each task calculates a parameter update using the Adam algorithm,
the relative magnitudes of the losses between tasks no longer play a role due
to the invariance to the magnitude of the loss for Adam. Notice, if a learning
algorithm like SGD would be chosen, the parameter updates would scale to the
magnitude of the losses and the global update would be the same as using (4.5).

If requested, it it still possible to use a tuneable parameter αj in (4.8) to give
one task more importance than the other. This would give

∆mθi “
J
ÿ

j“1
αjg

ˆ

BLj
Bθi

˙

. (4.9)

However in this case parameter updates are weighted, rather than the losses or
the gradients. Setting αj “ 1 will then give equal importance to all tasks, while
this might not be the case when doing this for (4.5).

It is possible that some losses Lj are independent of some parameters θi. For
example, the BSSS loss will not depend on the parameters in the identification
network of the joint model of Section 4.1.1. As a consequence, g

´

BLj

Bθi

¯

“ 0.
If all αj1‰j were taken very small, for instance to give much importance to
the BSSS task in our example, then ∆mθi « 0. It can therefore be preferred
to make the scale factors dependent on the parameters and use the following
normalization

∆mθi “
1

řJ
j1 αj1δij1

J
ÿ

j“1
αjδijg

ˆ

BLj
Bθi

˙

(4.10)

where δij “ 1 if loss Lj is dependent on parameter θi and δij “ 0 otherwise.
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In most multi-task works, the sum of the task losses (or the task gradients) using
(4.5) is taken [191, 28, 27, 39, 83]. Other work sums the parameter task updates
using (4.7), but chooses SGD as the learning algorithm, making it equivalent
to (4.5) [106, 96]. In Section 4.2.3, an experimental comparison between (4.5),
(4.9) and (4.10) will be made for the joint BSSS-SR model. It will be shown
that when performing a full search for the optimal αj all three approaches give
similar results. However, αj “ 1 for (4.9) and (4.10) will give a performance
close to the optimal αj , while this might not be the case when summing the
task losses. This makes a hyperparameter search required for the latter. It is
noteworthy that in [92] a way was found to optimize the αj during training.

4.1.3 Modifications to the basic joint model

In this section two modifications to the basic joint model of Section 4.1.1 will be
presented. The first will aim at a better general performance, while the second
modification will allow to include single speaker audio as well as overlapping
speech.

Coping with BSSS uncertainty

In Section 4.1.1 the bin target labels zs,tf were used to obtain the SR attractors
bs in (4.1), similar to obtaining the BSSS attractors as in (1.82). This
information is only present during training. During evaluation zs,tf is estimated
by setting it to 1 if the embedding vtf is assigned to K-means cluster cs and
0 otherwise. However, this creates a train-test mismatch and the model will
not take the uncertainty on zs,tf into account during training. Therefore, it is
proposed to also use estimates of zs,tf during training for (4.1) instead of zs,tf
itself.

bs “
ř

t,f utf ẑs,tf
ř

t,f ẑs,tf
(4.11)

ẑs,tf “

$

&

%

1, if s “ arg max
s1

m̂s1,tf

0, otherwise
(4.12)

where m̂s,tf can be found by applying the softmax activation to (1.83). The
extended training algorithm is visualized in Figure 4.2.

It was found in initial experiments that a similar idea also helps for BSSS. In
that case, the masks m̂s,tf are estimated in a first pass, by using zs,tf for (1.82)
to find as and then applying the softmax activation to (1.83) with the found
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Figure 4.2: An illustration of the extended joint model when using a (B)RNN
for S “ 2.
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as. In a second pass, ẑs,tf is determined via (4.12) which then replaces zs,tf
in (1.82) to find the second pass as. This second pass as are used to find the
second pass masks m̂s,tf by applying the softmax activation to (1.83).

Allowing single speaker audio

While overlapping speech is a significant problem for speech processing, as
explained in Chapter 1, in most applications it can be expected that a large
part of audio recordings will contain single speaker audio. In fact, these single
speaker segments can be advantageous to better model the speakers for SR.
Therefore, a modification to the use of the basic model of Section 4.1.1 is
proposed to allow for single speaker processing. This is visualized in Figure
4.3. When handling an audio fragment with a single speaker, the BSSS part
of the model is not used. SR embeddings utf for each time-frequency bin are
still estimated. However, since only one speaker is active, they can simply be
averaged to obtain b. The same identification network as for the basic joint
model is then used to estimate the speaker posteriors.

By training the model with examples of both S “ 1 and S “ 2, the SR
attractors or speaker identification vectors b can be used for both situations.
For example, the enrollment of a speaker could be done using single speaker
audio and the obtained benr could then directly be compared to a btest found
from an overlapping speech segment.

It is proposed to estimate b for a single speaker audio fragment by averaging
over all utf . However, since only one speaker is active, there is no longer a
need to estimate this on the time-frequency level. In fact, a separate linear
output layer could be trained to estimate a single embedding every time step
and these could then be averaged over all time steps to obtain b (or simply
take the embedding of the last time step). Since the identification network, to
estimate the speaker posteriors, would still be shared for both S “ 1 and S “ 2,
b is expected to hold the same speaker information in both cases. However, this
did not give improvements in our experiments. In the experiments of Section
4.2 b will thus be determined as in Figure 4.3 for S “ 1 when using the joint
model.

We do wish to clarify that in this section it is assumed that it is known whether
a segment contains one or more speakers. Either this has to be provided as
metadata, or a module has to be designed that estimates this. We leave it to
further research to find such a model.
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Figure 4.3: An illustration when using the joint model for S “ 1.
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4.2 Experiments

4.2.1 Experimental set-up

The BSSS part of the experimental set-up for the WSJ experiments (Sections
4.2.2 and 4.2.3) is the same as in the previous chapter (Section 3.3.1). For the
SR part, the dimension of utf was chosen equal to vtf (D “ Dv “ Du “ 20).
For the identification network 2 feedforward layers with 100 units each were
chosen. The output layer of this small identification network had Itr “ 101
units, one for each speaker in the training set.

In Section 4.2.4, the SRE data set will be used. This contains data from the
NIST SRE 2004, 2005 and 2006 challenges, as well as the Fisher dataset and the
Switchboard Cellular dataset2. It was specifically developed for SR experiments.
The mixing of single speaker utterances to a mixture was done similarly as in
Section 3.3.1. The single speaker utterances of SRE are typically a couple of
minutes long, including large parts of silences. Therefore, they were first divided
into segments with length between 7 and 15 seconds. Furthermore, mixtures
were chosen with at least 60 % speech overlap. The training set consisted
of 150 000 mixtures from Itr “ 7702 speakers. 20 000 mixtures were used as
validation set and 15 000 mixtures were used for testing on held-out speakers.

To measure SR accuracy, the cosine similarity between an enrollment and an
evaluation b is computed and thresholded to obtain the EER metric as discussed
in Section 1.1.2. For all test mixtures3, all bs are determined. Random target
and non-target trials are then generated such that each bs has 5 positive trials
and 5 negative trials4. It was found that mean and variance normalizing the 10
cosine similarities before thresholding, improved results. This is quite similar to
the approach taken in [8]. However, this requires more enrollment data for each
speaker and is therefore not always possible. The EER score obtained using
score normalization will be given in brackets in Section 4.2.2.

After finishing all experiments it was found that excluding the SR loss for early
stopping, improved results5. For Section 4.2.2, the experiments were redone
by excluding the SR loss for early stopping. For Sections 4.2.3 and 4.2.4 the
experiments were not redone due to time constraints. However, it is assumed
that all conclusions still hold.

2This was based on the Kaldi [139] implementation for the NIST SRE2008 challenge [90].
The Linguistic Data Consortium codes of all datasets used are: LDC2006S44, LDC2011S01,
LDC2011S04, LDC2011S09, LDC2004S13, LDC2005S13, LDC2001S13 and LDC2004S07

33 000 for the WSJ experiments and 20 000 for the SRE experiments.
4Note that the same bs can be used for enrollment and for evaluation in different SV trials.
5this was due to early stopping caused by the SR loss during the pretraining on 100 frame

segments for the curriculum learning.
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4.2.2 Joint BSSS and SR experiments

The following models have been trained and evaluated:

1. Single speaker SR model: A model trained on single speaker utterances
using the speaker identification cross-entropy loss. At each time step t
one SR embedding ut is estimated by the linear output layer, which is
then averaged over time to obtain b.

2. Sequential baseline: Two models have been trained for the sequential
baseline: a BSSS model and an SR model. The BSSS model is trained
on overlapping speech using the DANet loss of (1.76). The SR model is
trained on the speech estimates |X̂ s| of the BSSS model. Together, the
two models of the sequential baseline, perform both BSSS and SR, but
possibly in a less efficient manner than the joint model, although having
roughly twice the amount of trainable parameters.

3. Parallel baseline: Similar to the Sequential baseline but the input of the SR
model is the mixture spectrogram |Y |, rather than the speech estimates
|X̂ s|. utf is then estimated and used to determine bs, where M̂s from
the BSSS part is used during evaluation. An alternative way of viewing
this model is by comparing it to the Basic joint model, but without any
shared parameters. Again, this baseline has roughly twice the amount of
trainable parameters compared to the joint model.

4. Basic joint model: The model as explained in Section 4.1.1.

5. Extended joint model: The extended joint model as explained in the first
paragraph of Section 4.1.3.

6. S “ 1 and S “ 2 model: The joint model that also allows for single
speaker utterances as explained in the second paragraph of Section 4.1.3.

The SR and BSSS scores for these models are shown in Table 4.1. First, the
SR performance (in EER) will be discussed. Only the raw scores without score
normalization will be considered, but the same conclusions can be made for the
normalized scores.

The most important thing to note is that in terms of EER, the basic joint model
indeed performs better than the sequential baseline (-2.96% absolute and -23.5%
relative), even though the sequential approach has roughly twice the amount of
parameters compared to the joint model and the two parts of the sequential
baseline are optimized individually. When comparing with the parallel baseline,
it is found that the basic joint model again performs better (-0.39% absolute
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Model enr. - test scenario SDR
single - single single - multi multi - multi

Single speaker SR 7.51 (4.87) - - -
Sequential - - 12.57 (9.61) 8.60
Parallel - - 10.00 (6.94) 8.70
Basic joint - - 9.61 (6.25) 8.50
Extended joint - - 8.89 (6.04) 8.62
S “ 1 and S “ 2 4.34 (2.39) 8.44 (4.44) 10.34 (7.00) 8.63

Table 4.1: EER (in %) for different enrollment and testing scenarios. The results
in brackets are obtained after score normalization. The last column shows the
BSSS SDR performance (in dB), evaluated on the test scenario with multiple
speakers (S “ 2). The joint models were trained by excluding the SR loss for
early stopping.

and -3.9% relative). It is also noted that the proposed extended joint model
substantially outperforms the basic joint model (-0.72% absolute and -7.5%
relative). It thus seems indeed important to consider the imperfect BSSS mask
estimates for SR. As new BSSS approaches become better and Ẑ more closely
resembles Z, the difference between the extended joint model and the basic joint
model (as well as the sequential baseline and the parallel baseline for a matter of
fact), is expected to decrease. However, as state-of-the-art BSSS performance
improves, more challenging scenarios like noisy or reverberant conditions can
be considered and the difference between Ẑ and Z will again become larger.

None of the considered models in a multi-speaker enrollment setting with a
multi-speaker test setting, perform as well as the single speaker SR model in
a single-speaker enrollment setting with a single-speaker test setting. This is
expected as in the multi-speaker scenario the interfering speaker makes it more
difficult to estimate the identity of the target speaker.

When using the S “ 1 and S “ 2 model in a multi-speaker enrollment setting
with a multi-speaker test setting, an increase in EER is noted compared to
the basic joint model (+0.73% absolute and +7.6% relative). However, this
model allows enrollment in a single-speaker setting to then later be tested in
a multi-speaker setting. If single-speaker enrollment is possible, this indeed
substantially improves EER performance (-1.17% absolute and -12.2% relative).

It is remarkable that the S “ 1 and S “ 2 model considerably outperforms
the single speaker SR model in a single-speaker enrollment setting with a
single-speaker test setting. This might indicate overfitting of the Single speaker
SR model. In fact, by tuning some model hyper parameters, to reduce the
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number of trainable parameters, more than 1% absolute EER reduction could
be obtained for the single speaker SR model, which is still worse than the S “ 1
and S “ 2 model. Possibly, further EER reduction would be possible for the
single speaker SR model with more tuning or regularization. Nonetheless, it
remains an interesting observation that including multi-speaker data in the
model helps regularize and improve performance for the single-speaker case.

When considering the SDR measure in Table 4.1, it is noticed that joint models
do not improve compared to the baseline models.

The joint model clearly improves SR performance compared to the sequential
approach. An extension to this model gives even further gains. It seems
important for SR in a multi-speaker setting to know which parts of the audio
signal belong to the same speaker and have to be considered jointly to estimate
that speaker’s identity. Apparently, an estimate of this does not suffice and it
is better to approach the problem jointly. However, the same cannot be said for
BSSS performance, where the performance of the joint model is on-par with
the model that was trained towards BSSS only. This is consistent with the
observation of Chapter 3 where explicitly adding speaker information to the
input of the BSSS model, had little impact.

Similarly as in Chapter 3 one can question whether this conclusion still holds in
more challenging scenarios. Therefore, the analysis is redone where the BLSTM
part of the model only has 50 units per layer, compared to the 600 units for
the results in Table 4.1. It was found that the baseline 50 units model achieves
an SDR of 6.27 dB, while the basic joint 50 units model achieves an SDR of
6.71 dB or a 0.44 dB absolute improvement. We thus conclude, consistent with
Chapter 3, that in a more challenging case the BSSS can be improved with an
auxiliary SR task.

4.2.3 Joint learning experiments

In this section the design choices in multi-task learning (Section 4.1.2) will
be considered. Three alternatives were discussed in Section 4.1.2: summing
the losses of the tasks (equivalent to summing the gradients of the tasks) via
(4.5), summing the individual parameter updates of the tasks via (4.9) and an
additional normalization and dependency check via (4.10). In all cases a meta
parameter α can be used to indicate the relative importance between the tasks.
Due to the scaling ambiguity, the α for the SR loss was set to 1 and the α for
the BSSS loss was optimized. A higher α will thus give more importance to
the BSSS task. Instead of using (4.5) directly, (4.6) was used where m̂j was set
equal to the validation task losses of a model trained with (4.9) and with α “ 1.
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Figure 4.4: SDR and EER performance for the three training methods when
training the basic joint model. ‘sum losses’, ‘sum steps’ and ‘sum steps normalize’
correspond to (4.6), (4.9) and (4.10), respectively. The values obtained for α “ 1
are indicated in red, while the values obtained for the optimal α are indicated
in green.

SDR and EER performances, for all three methods, are shown in Figure 4.4
when training the basic joint model, using different α. The same is done in
Figure 4.5 for the extended joint model. The values obtained for α “ 1 are
indicated in red, while the values obtained for the optimal α are indicated in
green. The names ‘sum losses’, ‘sum steps’ and ‘sum steps normalize’ are used
to refer to (4.6), (4.9) and (4.10), respectively.

Performance in Figure 4.4 (basic joint model) and Figure 4.5 (extended joint
model) is similar but the EER is generally better for the extended joint model,
as was expected from Table 4.1. When comparing the three multi-task learning
methods, using for instance Figure 4.5, it is noted that they achieve similar
performance for optimal α. Furthermore, for ‘sum steps’ and ‘sum steps
normalize’, the performance when α “ 1 (red) is close to the performance of
the optimal α (green). However this is clearly not the case for ‘sum losses’.
This shows that summing losses of the tasks together, makes the joint model
much more dependent on a good choice for α, while this is much less the case
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Figure 4.5: SDR and EER performance for the three training methods when
training the extended joint model. ‘sum losses’, ‘sum steps’ and ‘sum steps
normalize’ correspond to (4.6), (4.9) and (4.10), respectively. The values
obtained for α “ 1 are indicated in red, while the values obtained for the
optimal α are indicated in green.

for ‘sum steps’ and ‘sum steps normalize’. Finally, it is noted that for high α
performance substantially degrades for ‘sum steps’, while this is not the case for
‘sum steps normalize’, making the latter preferred when losses are independent
on parts of the model’s parameters.

When further focusing, on for example Figure 4.5 ‘sum steps normalize’, similar
observation as in Table 4.1 can be made. It is beneficial for SR to be trained
together with BSSS, since for low α (more importance towards the SR task)
an increase in EER is observed. Note that when αÑ 0, the shared part of the
model over both tasks, is only optimized towards SR. However, it again seems
that BSSS does not need to be jointly trained with SR for optimal performance,
as the best SDRs are achieved for αÑ8.
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Data set Itr # tr. Model EER SDR
single multi

WSJ-2spk
101 20k

Single speaker SR 7.51 - -
Seq. baseline - 12.57 8.60
Basic joint - 10.43 8.07

SRE-2spk

Single speaker SR 13.53 - -
Basic joint - 16.64 7.45

7702

Basic joint - 18.79 6.92

150k

Single speaker SR 8.49 - -
Seq. baseline - 11.67 11.78
Basic joint - 11.39 10.92

Basic joint Du “ 150 - 10.06 10.90
Ext. joint Du “ 150 - 9.78 10.74

Table 4.2: EER (in %) and SDR (in dB) for different data sets and training
set-ups.

4.2.4 Experiments for generalization of SR

The results in Section 4.2.2 were obtained from models trained on a speaker set
of Itr “ 101 speakers. This is considered quite small for SR [90]. Nevertheless,
decent EER scores were obtained. However, it must be noted that the WSJ0
data was recorded in an ideal studio environment from read speech. The NIST
SRE challenges [90] include spontaneous speech from telephone conversations
and generally include more speech and speaker diversity compared to WSJ. In
this section, experiments are done using the NIST SRE dataset to study the
capabilities of the joint models in more realistic settings. Experiments were done
for different number of training speakers Itr and different number of training
mixtures and are shown in Table 4.2.

Firstly, when keeping the number of training speakers (Itr “ 101) and the
number of training mixtures (20 000) fixed, it is observed that the SRE-2spk
models perform much worse than the WSJ-2spk models in terms of EER
(+6.21% absolute and +59.5% relative)6. Simply including many more speakers
(Itr “ 7702) does not give performance improvement. Only when also the
number of training mixtures is increased (150 000), do the SRE-2spk models
achieve similar SR performance as the WSJ-2spk models. From this it is
concluded that, when sufficient and diverse training data is provided, the joint
approach is also suitable for more challenging and realistic scenarios. Further
gains in EER can be achieved by increasing the utf embedding dimension to
Du “ 150 and by using the extended joint model from Section 4.1.3.

6The test sets for both models are also different.
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4.3 Conclusion

A joint DNN model was built for BSSS and SR. The SR performance improved
compared to a sequential and a parallel baseline. By including separation
uncertainty for the SR task, further improvements were obtained. However, the
joint model was not beneficial in terms of separation performance, consistent
with the observations in Chapter 3. It is again noted that BSSS is performed
in highly idealized settings, e.g. no reverberation, no background noise and
a large amount of trainable parameters. It was found that for a small model,
considerable improvements in separation performance could be found. Again,
this is consistent with the observation in Chapter 3, where it was found that a
small BSSS model does not sufficiently build an internal characterization of the
active speakers.

Different styles of joint learning were compared and it was concluded that
aggregating the weight updates of the tasks is preferred to summing the losses
or the gradients. Finally, SR experiments were done on the more challenging
SRE-2spk dataset and with sufficient training data, similar performance can be
achieved compared to the WSJ dataset.





Chapter 5

Analysis of Memory in RNNs
for Blind Speech Source
Separation

This chapter is based on the following publications:
Zegers, J., and Van hamme, H. Memory time span in LSTMs for multi-
speaker source separation. In Interspeech 2018 (2018), ISCA, pp. 1477–1481.
Zegers, J., and Van hamme, H. Analysis of memory in LSTM-RNNs for
source separation, 2020.

One of the major drawbacks of DNNs is that due to their nested and non-
linear structure, it is difficult to understand what makes them arrive at their
predictions and therefore they lack explainability [149]. This chapter will look
for insights in the memory of the LSTM-RNN. Two novel methods will be
presented that are generally applicable to study the memory of RNNs, or more
specifically memory time spans. The first approach, called the leaky approach,
is easy to implement and the additional computational cost compared to a
standard LSTM-RNN is negligible. The disadvantage of this method is that
timings of memory spans are only approximated. This is in contrast with the
reset approach, where timings are exact, but at the cost of higher computation
complexity. Both methods will be applied to the task of BSSS to determine to
which extent SR and other factors play a role in a successful separation.
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5.1 Introduction

In Section 1.4.1 it was explained how RNNs are suited for sequential processes
like speech. It was also mentioned that standard RNNs have difficulty with
learning long-term dependencies due to the exploding and vanishing gradient
problem, making their memory time span (the duration for which information is
kept in memory) relatively short. This problem is countered with the constant
error carousel principle in LSTM-RNNs. It has been shown that LSTM-RNNs
can learn long-term dependencies of over a thousand time steps for simple,
artificial tasks [82]. However, it can be expected that this memory time span
depends on the network architecture as well as on the complexity of the data
and the task. It is thus unknown how long the memory time span for LSTM
cells is for real and complex tasks like speech processing.

The aim of this chapter is to examine the time span and importance of internal
dynamics in the LSTM memory. This will be done by removing information
from the LSTM memory over time. To the best of our knowledge, three different
approaches exist that allow for the removal of information over time: the leaky
approach, the reset approach and the segment approach. The difference between
these approaches will be discussed in Section 5.2.

By gradually reducing this memory removal frequency, or reset frequency, bigger
memory time spans are allowed. The networks are evaluated for different reset
frequencies and the task performance differences can be used to assess the
importance of the different memory spans. Furthermore, it is possible to use
different memory spans for different layers in the LSTM-RNN. This allows to
confirm or reject the hypothesis that deeper layers in RNNs bring higher level
abstractions of the data and therefore use a bigger time span [33]. Finally,
different memory spans can be used for the forward and backward direction of
a bidirectional LSTM-RNN which allows to distinguish between the importance
of the directions.

The task of BSSS seems well suited for this analysis as it has been shown that
both long-term and short-term effects are important [196]. Nonetheless, the
proposed methodology can be applied to any task using RNNs. Specifically, we
would like to answer the following research questions with regards to BSSS:

• Which order of time spans are important when using an LSTM-RNN
for BSSS and can time spans be linked with descriptions of speech like
phonetics, phonotactics, lexicon, prosody and grammar?

• Since it is has been shown in Chapters 3 and 4 that speaker characterization
is relevant for the task, can we find the amount of context necessary for
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the LSTM-RNN to sufficiently characterize the speakers in overlapping
speech?

• For BSSS, do we observe the same hierarchical property that deeper layers
have longer time dependencies, as was found by [33]?

• In bidirectional LSTM-RNNs, would either direction be more important
than the other for BSSS?

The rest of this chapter is organized as follows. In Section 5.2 an overview of
memory constraining methods for RNNs will be given. The leaky approach is
described in Section 5.3, followed by some leaky experiments in Section 5.4.
Similarly, the memory reset LSTM cell is described in Section 5.5 and is again
followed by the relevant experiments in Section 5.6. A final conclusion is given
in Section 5.7.

5.2 Memory constraining methods

Three different approaches exist that allow for the removal of memory
information over time in an RNN: the leaky approach, the reset approach
and the segment approach.

The leaky approach is a novel method to assess the relative importance of
different memory span lengths. A fraction of the LSTM cell state is leaked, on
purpose, at every time step. This forces the LSTM to forget information of the
past over time. The leaky approach can be seen as a soft reset compared to the
hard reset of the reset approach discussed below. The amount of computations
in a leaky LSTM cell remains unchanged, while the computational load, for
both the reset and segment approach, scale with the width of the memory span.
The leaky approach is thus more interesting from a computational standpoint,
but since the reset is soft, the timings found will not be exact.

In the reset approach, the state of the LSTM cell is reset at particular time
intervals. It has a similar concept as the leaky approach, but rather than
gradually leaking memory over time, it applies a hard reset at a certain reset
frequency. This has the advantage that the timings found are exact. To our
knowledge [160] is the only work where a similar reset approach to ours is given.
In their paper a multi-stream system with an LSTM component for video action
detection is described. However, they only consider a single unidirectional
LSTM layer. In this chapter we extend to bidirectional multi-layer LSTMs
where we allow layer dependent reset periods (Section 5.5.2) and a method
to reduce computational burden for longer reset periods (Section 5.5.3). This
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makes the state reset algorithm far more complex, yet flexible compared to the
unidirectional single layer reset. Furthermore, the memory reset in [160] was
done during testing only, causing a train-test mismatch. In this work memory
reset will be done during training and testing.

A final approach, called the segment approach in this chapter, has a similar
aim to restrict the LSTM memory span [122, 26, 170]. Segments are created by
shifting a window by one time step over the input data. Each segment is passed
through the LSTM and the output of the LSTM at the last time step within
the segment is retained. The output of each segment has been produced with
an LSTM with a memory span equal to the length of the window. It has been
verified in our experiments that the reset approach and the segment approach
give the same results.

The segment approach was first applied in [122] on the spectral input of an ASR
task. They found that the Word Error Rate (WER) of the acoustic LSTM-RNN
saturated relatively quickly. Therefore it was concluded that the main strength
of the RNN is the frame-by-frame processing rather than the ability to have a
large memory span. However, we found that for the task of BSSS long-term
dependencies were, in fact, important for the separation quality.

The segment approach was also used on a language modeling task in [26] and
[170], where it was claimed that perplexity scores did not improve by increasing
the memory span over 40 time steps (words). Similarly, WER converged at 20
time steps. In both works the number of different memory lengths evaluated was
rather limited and they were mainly interested in the performance saturation
point. There was no analysis on the importance of different time scales within
the model.

The above approaches focus on analysis of the memory span by limiting memory
capabilities. There are multiple works that give no explicit in-depth time
analysis but adapt or restrict the memory span of the RNN in order to improve
performance on a task. In [33] and [60] the soft reset of the forget gate was
replaced with a hard reset implementation. The network tries to learn the
optimal reset frequency. Other approaches, like the clockwork RNN, have
different, fixed update frequencies for different cells in the network. Memory
restrictions are made on a cell level, rather than on a network or layer level.
The idea is that some cells should focus on long-term effects and some should
focus on short-term [99, 5, 128].
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Figure 5.1: Schematic of a leaky LSTM. The only difference with Figure 1.9a,
is the addition of the leaky scalar a.

5.3 Deep Leaky LSTM

A leaky LSTM is an LSTM that is designed to leak cell state memory. First,
the architecture of the leaky LSTM is explained. Afterwards, a description is
given of the memory flow in a deep network with LSTM-RNNs and how this
flow can be controlled.

5.3.1 The leaky LSTM

A leaky LSTM is a regular LSTM where the forget gate is multiplied by a
positive constant a smaller than 1 such that not all cell state information from
the previous time steps can be retained, as 0 ď af lt ď a1 ă 1, and thus part of
the memory is leaked. (1.72) changes to

clt “ clt´1 d af lt ` jlt d ilt, (5.1)

as is indicated in Figure 5.1.

In (5.1) only the first term seems to contain temporal information since only clt´1
has the t´ 1 subscript. The component of the cell state containing temporal
information from time t´ 1 can thus be described as
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c̄lt,t´1 “ clt´1 d af lt . (5.2)

The maximal information transfer will be achieved when f lt “ 1. In this case
the contribution from time t´∆T in the current cell state is given by

c̄lt,t´∆T “ a∆T clt´∆T

“ e∆T {τclt´∆T ,
(5.3)

where the last equality is written in exponential decay form with τ “ ´1{ logpaq.
τ is called the lifetime and when ∆T “ τ 69% of the initial value has been lost,
which will be used as a rough estimate for the allowed time span of the memory.

5.3.2 Temporal information flow

It was claimed that temporal information in (5.1) was only present in the c̄lt,t´1
term. However, the second term in this equation has two factors that indirectly
depend on previous time steps via (1.69) and (1.71). For instance, if clt´1 “ 1,
f lt “ 1 and the network would like clt “ clt´1`∆clt, it could obtain this via (5.1)
by making jlt d ilt “ p1´ aq `∆clt (with the restriction that ´1 ď jlt d ilt ď 1).
This information flow is indicated with the red arrow in Figure 5.2. This is
an unwanted flow since it bypasses the memory leakage. This flow can be
stopped by cutting the red dotted connections and thus removing the temporal
information in jlt and ilt. (1.69) and (1.71) then become

ilt “ σpWl
ihl´1
t ` bliq (5.4)

jlt “ tanhpWl
jhl´1

t ` bljq, (5.5)

respectively.

However, in these equations hl´1
t can also contain temporal information for

l ě 2 via (1.73) and (1.69,1.71,1.70,1.72) as is indicated by the blue arrow in
Figure 5.2. This second order flow can be stopped by also cutting the blue
dotted connections. (5.4) and (5.5) are retained and (1.68) and (1.70) become

f lt “ σpWl
fhl´1

t ` blf q (5.6)

olt “ σpWl
ohl´1

t ` bloq (5.7)

respectively.
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Figure 5.2: Schematic of flow of temporal information in a bidirectional deep
leaky LSTM-RNN and how it can be interrupted by cutting connections. The
red line shows how recurrent information can bypass the leakage and how this
can be countered by removing the red dashed connections. Similar for blue.

Memory leakage has only been considered on clt while a standard RNN has no
cell state and is also able to memorize (even though less effective) via it cell’s
output hlt. Cutting the blue and red connection also removes this temporal flow
as hlt´1 is never used.

Note that the cutting of recurrent connections is only done to gain more control
over the memory leaking process to better define the memory time span. It is
not intended to gain performance for the presented task. The research question
could be generalized to exploring temporal information used in RNNs with
LSTM-like cells.

5.4 Leaky LSTM experiments

Networks were trained and tested for different values of a and for the different
architectures as depicted by the dotted cuts in Figure 5.2. The same
experimental set-up as in Section 3.3.1 is used. There it was mentioned that an
STFT with a 32 ms window length and a hop size of 8 ms were used. This means
that τ “ ´1{ logpaq ˚ 8ms, when expressed in milliseconds. Some networks were
given the 10-dimensional oracle i-vectors of both single speech signals used in
the mixture (see Chapter 3). Results are shown in Figure 5.3.

For all curves a rapid decrease in performance is found for τ ă 100 ms. Here the
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Figure 5.3: BSSS results with LSTM leakage. The memory time span is given
by the lifetime τ “ ´1{ logpaq ˚ 8 ms.

leaky LSTMs might have difficulty with tracking the formants of the 2 speakers
which span roughly 100 ms [65, 171]. For τ ą 100 ms the networks without i-
vectors steadily keep increasing in performance, while the networks with i-vectors
have a higher performance which is roughly constant. This seems to indicate
that with a bigger time span, the networks without i-vectors manage better
to find their own internal speaker representations. For no leakage (τ “ 8) an
i-vector is still a better speaker representation than the internal representation
in the LSTM. This small difference was also observed in Chapter 3 for oracle
i-vectors of dimension 10. When leakage is absolute (τ “ 0), performance
is better when i-vectors are used, indicating that speaker information aids
separation if no context is given and assignment is more consistent over frames.

Since the curves for the LSTMs with i-vectors are flat between τ “ 100 ms and
τ “ 300 ms the network seems to give little importance to phonotactic and
lexical information for the task of BSSS.

The shapes of the curves for all three types of LSTMs are quite similar, indicating
that the bypass mechanisms of temporal information flow as described in section
5.3.2 are limited. The performance drop when cutting connections is expected
as the model capacity is reduced by removing parameters (see Table 5.1) and
LSTM gates are more difficult to control.

Experiments were also done where no leakage was applied during training but
only during testing. Results differed from those shown in Figure 5.3. For
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Basic Red cut Blue cut
a ą 0 15.25 12.37 9.49
a “ 0 12.21 9.33 7.89

Table 5.1: The number of trainable parameters in the network in millions. Note
that for a “ 0, the forget gate is effectively removed and so are its trainable
parameters.

example, no temporal information can be used if the LSTM with blue cuts and
full leakage (τ “ 0) is used at test time. However, if the network was trained
without leakage the SDR was found to be 4.7 dB which is 2.0 dB below the
performance obtained when it is also trained with full leakage, although both
networks have no memory during testing. This indicates it is indeed necessary
to apply leakage also at training time to avoid mismatch.

5.5 Memory reset LSTM

In this section, the memory reset LSTM cell is introduced. Afterwards, it is
described how this memory reset LSTM cell can be used in an RNN. Derivations
are given in Appendix B. Finally, we discuss how computational costs for
experiments can be reduced by using the grouped memory reset approach.

5.5.1 Memory reset LSTM cell

To limit the recurrent information, the cell state clt and hidden units hlt will
be reset using a fixed reset period Treset. This assures that only information of
the last Treset frames can be used (or Treset ´ 1 context frames). However, the
time frame after such a reset would see no recurrent information at all. In fact,
at every time step, an output should be produced based on Treset frames of
information. To achieve this, K “ Treset different instances of the cell state and
hidden units are kept, each reset at different moments in time. The instance
that will be reset at time t is the instance k˚t for which

k˚t “ t mod K, (5.8)

with t “ 0, . . . , T ´ 1.
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Figure 5.4: Illustration of a memory reset LSTM cell with Treset “ 4. It keeps
K “ 4 instances of the hidden units and cell state, which can be reset according
to (5.9). The LSTM cell is used to process each instance.

The reset operation can be formulated as

´

h̄k,lt´1, c̄
k,l
t´1

¯

“

#

p0,0q , if k “ k˚t or t “ 0
´

hk,lt´1, c
k,l
t´1

¯

, otherwise
, (5.9)

with k “ 0, . . . ,K ´ 1. (1.68)–(1.73) are updated to (5.10)–(5.15).

fk,lt “ σpWl
fx

k,l
t `Rl

f h̄
k,l
t´1 ` blf q, (5.10)

ik,lt “ σpWl
ix
k,l
t `Rl

ih̄
k,l
t´1 ` bliq, (5.11)

ok,lt “ σpWl
ox
k,l
t `Rl

oh̄
k,l
t´1 ` bloq, (5.12)

jk,lt “ tanhpWl
jx
k,l
t `Rl

jh̄
k,l
t´1 ` bljq, (5.13)

ck,lt “ c̄k,lt´1 d fk,lt ` jk,lt d ik,lt , (5.14)

hk,lt “ tanhpck,lt q d ok,lt . (5.15)
A visualization for K “ 4 is given in Figure 5.4.
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Figure 5.5: Example of a unidirectional memory reset LSTM-RNN with L “ 2,
K “ 4 and T “ 9. Color coding is according to (5.16). An instance is colored
red when it is reset (k “ k˚t , according to (5.8)). Connections between layers
are according to (5.17). The final output follows (5.18). When following the
orange dashed line, indicating the data dependencies, backward, one can verify
that indeed exactly K frames are used to produce an output.

5.5.2 Deep memory reset LSTM-RNN

For multi-layer memory reset LSTM-RNNs, instances need input from instances
of the layer below. In other words, an equivalent for (1.61) has to be found
for the memory reset LSTM-RNNs. We introduce a new variable τk,lt which is
equal to how long ago instance k of layer l was last reset (or how many context
frames instance k of layer l considers at time t). (B.2) shows that1

τk,lt “ pt´ kq mod K. (5.16)

The value of τk,lt is color coded in Figure 5.5 for K “ 4. If an instance is
colored light green, then τk,lt “ 0. If an instance is colored dark blue, then
τk,lt “ 3 p“ K ´ 1q. An instance should receive input from the instance of the
layer below with the same number of context frames τk,lt . The orange dashed
line in Figure 5.5 shows that this way no information further than K frames
can be used. (B.3) shows that for a unidirectional memory reset LSTM-RNN,
this is obtained when instance k receives input from instance k from the layer
below. (1.61) generalizes to

xk,lt “ hk,l´1
t . (5.17)

We introduce a new simplified notation k1 Ð k2, stating that instance k1 of
layer l receives input from instance k2 of layer l ´ 1. In this notation (5.17)

1The context is restricted at the edges of the data sequence. τk,l
t can never exceed t. This

is not a restriction of the memory reset approach but intrinsic to the data sequence.
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Figure 5.6: Similar to Figure 5.5 but for bidirectional memory reset LSTM-RNN.
To prevent cluttering of the image, only the forward direction of the second
layer is shown and connections are only drawn for t “ t3, 4, 5u.

becomes k Ð k. The final output of the network at time t is the instance with
the maximum number of context frames at that time. This is the instance that
will be reset at time t` 1 (see (B.4)). (1.63) generalizes to

ht “ h
k˚

t`1,L

t . (5.18)

For bidirectional LSTM-RNNs we apply the same equal context method to find
the following connections, replacing (1.65)

ÝÑ
k Ð

„ ÝÑ
k

ppT ´ 1q ´ 2t`ÐÝk q mod K



, (5.19)

ÐÝ
k Ð

„

p´pT ´ 1q ` 2t`ÝÑk q mod K
ÐÝ
k



. (5.20)

(5.19)-(5.20) are derived in (B.13)-(B.14) and can be verified in Figure 5.6.

The reset period Treset needs not be the same for every layer. For instance, we
could allow the lower levels to operate on short-term information and let the
higher layers cope with the long-term dependencies. By connecting an instance
with the correct instance of the previous layer at every time t, we can still make
sure the the number of context frames per layer is limited to a chosen value.
(5.19)-(5.20) generalize to (B.19)-(B.21).
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Figure 5.7: Example of a unidirectional memory reset LSTM-RNN using groups
with L “ 2, K “ 2, G “ 2 and T “ 9. Treset “ 4, just as in Figure 5.5.
Color coding is according to (B.23). An instance is colored red when it is reset
(k “ k˚t , according to (5.21)).

5.5.3 Grouped memory reset LSTM

Until now, a different instance is reset at every time step such that each instance
is reset every K time steps. The number of instances K is therefore equal to the
reset period Treset and the computational requirements for experiments grow
as the reset period (or the memory span) becomes larger. By using the reset
operation only every G time steps, an instance will only be reset every KG
time steps and thus the reset period becomes Treset “ KG. Then the number of
instances can be reduced with a factor G, for the same Treset. (5.8) is changed
to

#

k˚t “ pt{Gq mod K, if t ” 0 pmod Gq
no reset otherwise

(5.21)

A visualization of the grouped memory reset approach is given in Figure 5.7.
The downside is that instead of allowing the LSTM to use Treset “ KG frames
of input, it will use between KG´ pG´ 1q and KG frames of input, as shown
in (B.32)-(B.33) (also see output layer in Figure 5.7). However this need not
be a concern, since the computational problems arise only for large number
of instances and then KG ąą G. A similar approach was taken in [60] where
frame grouping for the segment approach was used to reduce the computational
burden. Derivation for the connections between grouped memory reset LSTM
layers is given in Appendix B.2.
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5.6 Memory reset experiments

The memory reset LSTM-RNN is used to gain insights in the importance of the
memory span of the LSTM on the BSSS task performance. The first experiment
(Section 5.6.1) is solely to verify that indeed for large Treset we can allow
G ą 1 and still measure the memory effect correctly. This allows us to use the
grouping technique in the other experiments for computational efficiency. The
next experiment (Section 5.6.2) analyses the importance of different memory
spans, with and without externally provided speaker information. This gives
insights into what the LSTM tries to remember. The third experiment (Section
5.6.3) uses a short memory span for the first layer and a large one for the
second layer. We find little difference with a network where both layers have
large memory spans. This confirms the existence of hierarchy in memorization.
Finally, in Section 5.6.4 we look at the differences between the effect of the
forward memory and the backward memory on the task performance.

The experimental set-up is the same as in Section 3.3.1. There it was mentioned
that an STFT with a 32 ms window length and a hop size of 8 ms was used.
This means that the context span is defined as Tspan “ pTreset´1q˚8 ms. Notice
that for bidirectional networks, this memory span is used for both the left and
right context. When estimating the performance of a network for a certain
reset frequency Treset, always two networks, with different initializations, were
trained an tested to cope with variance on the evaluated performance. Some
networks were given the 10-dimensional oracle i-vectors of both single speech
signals used in the mixture (see Chapter 3).

5.6.1 Verification of grouping technique

In Figure 5.8 the separation performance for networks with different memory
time spans (without grouping) are given in blue. Notice that no networks
were trained for Tspan ą 400 ms since the computational memory requirements
became too large for K ą 50. In orange, a group factor of G “ 5 (“ 40 ms)
was applied.

It is clear that a group factor of G “ 5 can be used for Tspan ą 100 ms (since
100 ms ąą 40 ms), without loss of performance. Thus, the grouping method
is a valid way to break the linear dependence of the computational memory
requirements on the reset period for large reset periods. In the remainder of the
section, results for Tspan ď 400 ms will be given without the grouping approach
and results for Tspan ą 400 ms will be given with a group factor of G “ 5.
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Figure 5.8: Average separation results for networks trained and evaluated for
different memory time spans. The blue curve uses no grouping (G “ 1), the
orange curve uses a grouping factor of 5 (G “ 5). Every experiment was
performed twice to cope with variance on the evaluated performance.

5.6.2 Memory span with and without speaker information

Figure 5.9 shows the average separation performance for same gender (male-male
and female-female) mixtures, with and without the i-vectors of both speakers
appended to the input. Figure 5.10 shows the male-female results for the same
networks. Since the results are clearly different, the figures will be discussed
separately.

In Figure 5.9 the blue curve quickly rises when the memory span is extended
from 0 ms to 400 ms. This effect is also noted for the models where i-vectors
were appended to the input (orange curve). For the orange curve, the increase
in performance cannot be explained by a better speaker characterization, since
the information is already present in the i-vectors. Therefore, the increase in
performance of the blue curve cannot solely be explained by a better speaker
characterization. The separation task seems to take phonetic information (about
100 ms [65, 171]) into account. Features like common onset, common offset
and harmonicity playing a central role in auditory grouping in humans [20] are
compatible with this observed time scale as well. Information spanning several
100 ms also seems important. In this range, effects like phonotactics, lexicon
and prosody can play a role but further research is necessary to determine to
which extent each of these are individually important for BSSS. In Section
6.2.2 it will be shown that models trained on one language generalize to some
extent to a different language, making it unlikely that lexical information is key
for BSSS. If the memory span is restricted to Tspan ă 400 ms, there is a clear
difference between the networks with and without i-vectors at the input. If the
memory is restricted, it is difficult to characterize and separate speakers with
the same gender. Using i-vectors helps to solve this problem.
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Figure 5.9: Average separation results for networks using different memory time
spans, evaluated on same gender mixtures. In blue, the results are given without
using i-vectors. In orange, the results when the i-vector of both speakers are
appended to the input of the network.

For Tspan ą 400 ms, the SDR without i-vectors keeps increasing with increasing
time span, while the curve with i-vectors remains approximately flat. This
indicates that when further increasing the memory span at this point, the
LSTM-RNN without i-vector can only learn to model the speakers better. On
the other hand, grammatical information, which is expected to span much
longer than 400 ms [117], is not considered in the LSTM for the BSSS task
(otherwise, the orange curve would increase for Tspan ą 400 ms). In [122], using
the segment approach, it was found that performance for an ASR task did not
improve for Tspan ą 250 ms (500 ms is mentioned, but this includes both left
and right context). We notice that this is not the case for BSSS and conclude
that the need for a longer time span is mainly caused by the subtask of speaker
characterization.

Both curves for the male-female mixtures (Figure 5.10) quickly converge to
the result without memory restrictions. There is also a limited difference
between results with and without i-vectors at the input, indicating that it
is indeed easy to distinguish a male from a female speaker. The result for
Tspan “ 0 ms is far above the optimal result for same gender mixtures (Figure
5.9). Instantaneous pitch and formant information seems to achieve most of
the effect. Male and female speakers are easily separable, even without any
context. Since we are interested in how the LSTM-RNN uses this context,
only same gender separation results will be reported in the remainder of this
section. However, it is observed that while there is no substantial difference
between the reset with and without i-vectors for Tspan ă 30 ms, there is a slight



MEMORY RESET EXPERIMENTS 91

Figure 5.10: Average separation results for networks using different memory
time spans, evaluated on male-female mixtures. In blue, the results are given
without using i-vectors. In orange, the results when the i-vector of both speakers
are appended to the input of the network.

improvement to be found when including the i-vectors for Tspan ą 30 ms. This
might indicate that most different-gender mixtures can be separated based on
local information (pitch, formants), while for some cases, more sophisticated
speaker characterization at longer time span is required. In the latter case,
unsurprisingly, i-vectors help.

To conclude this section, the results between the leaky approach (Section 5.4)
and the reset approach can be compared. While the leaky approach was more
interesting from a computational point-of-view, the timings found were not
exact. In fact, when comparing Figure 5.3 (yellow curve) and Figure 5.82, it
is noted that τ in (5.3) is not a good estimate of the memory span. A better
approximation would be 3τ 3.

5.6.3 Layer wise reset

The orange curve in Figure 5.11 shows the performance when memory reset
is only applied to the first layer of the network. Naturally, performance is
better compared to resetting both layers (blue curve). However, it is interesting
to note that optimal performance is already approximately achieved with a
memory time span of less than 50 ms. This confirms the hypothesis in [33] that
it is sufficient to allow larger time spans only in the deeper layers to model the
higher level abstractions.

2both figures include same gender and different gender mixtures.
3When ∆T “ 3τ in (5.3), 95% of the initial value of cl

t´∆T
is lost. This can be compared

to the 69% when ∆T “ τ
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Figure 5.11: Average separation results for networks using different memory
time spans, evaluated on same gender mixtures. The blue curve is identical to
the blue curve in Figure 5.9. The orange curve shows the result when memory
reset is only applied to the first layer and the second layer has no memory
restrictions. The results at infinity, colored in black, use no memory reset.

5.6.4 Forward and backward reset

To our knowledge, there has been very little analysis on the relative importance
between the forward direction and backward direction of a bidirectional RNN.
Early results for a forward-only and backward-only model are given in [153] and
[71]. Figure 5.12 shows the difference in performance between a bidirectional
LSTM-RNN when memory reset is applied only on the forward direction (blue
curve) compared to only on the backward direction (orange curve). For the
blue curve, the networks evaluated at Tspan “ 0 ms, essentially correspond
to a backward-only RNN. As Tspan is increased, more forward information is
allowed but the backward direction remains dominant since it has no memory
restrictions. It is noted that at Tspan “ 0 ms, the backward-only LSTM-RNN
slightly outperforms the forward-only LSTM-RNN. This small but consistent
difference is kept as the time span for the non-dominant direction increases to
400 ms.

While looking for reasons that could explain this difference, we found that
speakers in WSJ0 ended their utterance with “period”, often taking a short
break before pronouncing it4. This leads to some asymmetry in the speech
activity as is shown in Figure 5.13, when measuring with a VAD [169]. After

4For instance, in the 4th CHiME challenge [177] this part is removed from the utterance.
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Figure 5.12: Average separation results for networks using different memory
time spans, evaluated on same gender mixtures. The blue curve shows the result
when memory reset is only applied to the forward direction and the backward
direction layer has no memory restrictions. The orange curve applies memory
reset only to the backward direction. The results at infinity, colored in black,
use no memory reset.

combining single speaker utterances to mixtures, this leads to less overlapping
speech near the end of the mixture and might explain the difference we observe
in Figure 5.12. Furthermore, as “period” is pronounced at the end of every
utterance, it might behave as a prompt for text-dependent speaker recognition
[175]. To exclude these unwanted effects, the LibriSpeech (LS) data set [132],
which does not contain verbal punctuation, was used to artificially create
mixtures5. To ensure symmetry in speech activity, leading and trailing silence
in the single speaker utterances were cut (see Figure 5.14 bottom). The forward-
backward experiment was repeated on the newly created data set and results
are shown in Figure 5.15. We see a similar trend as for Figure 5.12 and retain
our conclusion that the backward direction is slightly more important than the
forward direction for BSSS.

However, the question of what causes this difference remains unanswered. It
seems to suggest that cues in speech for BSSS are partly asymmetric. It has
been found that voice onset time (VOT) is a predictive cue for post-aspiration
[94, 109], while similar conclusions have been drawn for voice offset time (VoffT)
[161, 138]. Furthermore, it has also been observed that there is an acoustical
asymmetry in vowel production [133]. Finally, reverberation could also play a
role in a realistic cocktail party scenario, but this is expected not to be relevant
in our experiments, considering the recording set-up for WSJ0 and LS. We leave
it to further research to indicate to which extent these asymmetric cues help in
BSSS.

5This data set has also been used by other papers for BSSS [162, 121]
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Figure 5.13: Speech activity percentage of clean WSJ0 utterance when audio
length normalized is to 1. For the original utterances (top) and when cutting
leading and trailing silence (bottom).

Figure 5.14: Speech activity percentage of clean LS utterance when audio length
is normalized to 1. For the original utterances (top) and when cutting leading
and trailing silence (bottom).
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Figure 5.15: Similar to Figure 5.12, but on the LS mixture data set.

Comparing the result without memory restrictions (black colored results at
Tspan “ 8) with the backward constrained results (orange curve), gives an
indication on the SDR drop when only limited backward data is available. This
can be relevant for near real-time applications with limited allowed delay. It
is noted that online implementations with limited delay (shorter than 100 ms)
loose roughly 1.5 dB in SDR for same gender mixtures, compared to offline
implementations.

5.7 Conclusion

A leakage approach was developed to be applied to the LSTM memory cell to
find the importance in different time spans for the task of BSSS. A short-term
effect for formant tracking and a long-term effect for speaker characterization
were found. However, the lifetime τ was later found not to be representative
for the memory span and 3τ would be a better estimate.

The memory reset approach was developed and applied to the same problem.
Compared to the leaky approach, it provides exact timings, although being
much more computationally expensive. Short-term linguistic processes (time
spans shorter than 100ms) have a strong impact on the separation performance.
Above 400ms the network can only learn better speaker characterization and
other possible separation cues like grammar are not exploited by the LSTM.

Furthermore, the reset method allowed us to verify that performance-wise it is
sufficient to implement longer memory in deeper layers. Finally, we found that
the backward direction is slightly more important than the forward direction
for a bidirectional LSTM-RNN.

The next step of this research would be to use the insights we have gained
to adapt the architecture of the (LSTM-)RNN. We would like to encourage
other researchers to apply a similar timing analysis for RNNs in their field.
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Either with the leaky approach (straightforward implementation, but no exact
timings) or the memory reset or segment approach (less trivial implementation
with higher computational burdens, but assuring exact timings). Moreover,
these methods allow to assess the memory implications on the RNN for a
certain subtask. For our task, the importance of speaker characterization was
determined by comparing results with and without adding oracle i-vectors
to the input of the network. This technique is generalizable to other tasks.
For instance, in language modeling for e.g. French, the gender of the subject
must be remembered, possibly over many words, to conjugate the perfect tense
accordingly. An oracle binary input (male/female) depending on the gender of
the relevant subject could be provided. Comparing results with and without this
additional binary input, could give an idea on the importance of this subtask
on the memory of the RNN.



Chapter 6

Increasing Separation
Robustness in Realistic
Conditions

This chapter is based on the following publications:
Zegers, J., and Van hamme, H. Multi-scenario deep learning for multi-
speaker source separation. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2018), IEEE, pp. 5379–5383.
Appeltans, P., Zegers, J., and Van hamme, H. Practical applicability of
deep neural networks for overlapping speaker separation. In Interspeech 2019
(2019), ISCA, pp. 1353–1357.

In Chapters 3 and 4 DC and DANet were used for BSSS on artificially created
2-speaker mixtures. While this type of data is excellent for fundamental research
on BSSS, it can also be very different from realistic application data. In this
chapter an attempt is made to see how well these DL based BSSS approaches
will work in more realistic scenarios, something that is generally lacking in the
DL field for BSSS. This allows to expand the application range for BSSS and
increases the viability and the relevance of DL for BSSS.

There are of course many aspects to consider in realistic scenarios. In this
chapter we will consider how well DC, DANet and uPIT work for mixtures
with more than 2 speakers (Section 6.1), other languages besides English
(Section 6.2) and in the presence of background noise (Section 6.3). While it
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algorithm train task test task
2spk 3spk 2+3spk

SG BG av av av

DC
2spk 6.7 11.3 9.1 2.0 5.6
3spk 6.0 10.7 8.4 6.1 7.3

2+3spk 5.9 10.8 8.5 5.6 7.1
DC sep out 2+3spk 7.0 11.4 9.4 6.4 7.9

uPIT
2spk 5.6 10.8 8.4 - -
3spk - - - 6.4 -

2+3spk 6.0 11.0 8.6 6.6 7.6

Table 6.1: SDR improvement results for DC and uPIT for different train/test
sets. For the 2spk case, the results are broken down into same gender mixtures
(SG), mixtures with both genders (BG) and all mixtures (av). Entries with ‘-’
refer to a result that was not plausible.

is important to consider these 3 in realistic settings, there are of course many
more relevant aspects. The author suggests that in particular reverberation
should be considered in future research.

6.1 Variable number of speakers

In Section 1.4.2 DNN methods have been described that use a model for mixtures
of S speakers. If a solution is requested for multiple scenarios (e.g. both mixtures
of S1 and S2 speakers), a simple solution would be to train separate models for
each task. However, this has the disadvantage that a model can only be trained
on data for a specific scenario, while data of the other scenarios could still be
relevant. Furthermore, the solution would contain as many models as there are
tasks and for each presented mixture, the requested model would have to be
selected.

Therefore a multi-task solution, based on Section 4.1.2, is proposed for two
methods of Section 1.4.2: DC and uPIT. This allows the model to learn from
more data and only a single model has to be retained for all tasks. In [88] a
small initial experiment in this context has already been done by evaluating
a model, trained to 2-speaker mixtures, on 3-speaker mixtures. Finally it is
noted that this section does not consider the special case of S “ 1, but a joint
solution for S “ 1 and S “ 2 has already been discussed in Chapter 4. The
experimental set-up for Sections 6.1.1 and 6.1.2 are the same as described in
Section 3.3.1.
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6.1.1 Single task learning

First, some single task learning experiments are performed using DC. Models
are trained on 2 or 3 speakers and testing is done on 2 and 3 speakers and the
results are shown in Table 6.1. It is noticed that testing on 3 speakers when only
seen mixtures of 2 speakers during training, drastically degrades performance
compared to training on 3 speakers (-4.1 dB). However, when reversing the
training and test task, the drop in performance is much lower (-0.7 dB). Being
able to separate 3 speakers seems to partly rely on the subtask of separating 2
speakers.

Secondly, the performance of uPIT and DC are compared and it is concluded
that DC outperforms uPIT for 2 speaker mixtures and uPIT is better for 3
speaker mixtures. Differences are rather small and possibly dependent on the
chosen network architecture.

6.1.2 Multi-task learning

The DC multi-task learning model (train 2+3spk), just falls short in comparison
with the task specific models (-0.6 dB for test 2spk and -0.5 dB for test 3spk).
However, when a separate output layer is implemented per task and thus a
task specific embedding space is used, denoted by DC sep out, the joint model
even outperforms the task specific models (+0.3 dB for test 2spk and +0.3 dB
for test 3spk). Not only has the model succeeded to use training data from a
task different from the test task, it has also managed to create a mostly shared
model for both test tasks. The latter is emphasized to make a distinction with
the experiment where the BLSTM layers would be fine-tuned to the specific test
task or the task weight parameter α in (4.10) would be fine-tuned towards the
specific test task. In that case possibly better performance could be achieved,
but this would lead again to the need of a model per test task (even though
data from different tasks has been used). The same conclusion can be made for
the uPIT method where the joint model improves over the task specific models
(+0.2 dB for test 2spk and +0.2 dB for test 3spk). Note that because the output
layer of uPIT is dependent on S (see Section 1.4.2), a separate output layer per
task is always required in uPIT.

6.1.3 Conclusion

Generally, a model trained on one type of mixture performs suboptimally on
another type of mixture. In this section it was shown that it is useful for a
single task to include data from another task. Furthermore, we conclude that a
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single model can be used to cope with different tasks without substantial loss
in performance. We hope that other researchers in the BSSS field will consider
multi-task learning and testing in the feature, instead of being restricted to a
single type of mixture.

6.2 Different languages

In the original papers where DC and DANet were described [78, 30], the
separation performance is only evaluated on English speakers. It is therefore
unknown how well these BSSS algorithms are suited for different languages.
This is studied in Section 6.2.1.

Furthermore, generalization of these algorithms to unseen languages is relevant
from a practical point of view. For example if the target language cannot be
determined, if (sufficient) training data is not available for that language or if it
is undesirable to train and store a BSSS model for every individual language.
In such cases it is interesting to know whether a model, that is trained on
one language or one set of languages, can be used for other languages. This
is studied in Section 6.2.2. The experiments in this section will also give an
indication on the robustness against different accents and dialects of a language.
Furthermore, they might give some information on what cues, such as phonetic,
phonotactic, lexical or grammatical, the methods exploit to separate speakers.

6.2.1 Target languages

This section presents experiments with six languages, including a tonal language.
The mixtures are generated using the Global Phone corpus [152] by summing
utterances of two different speakers. The experimental set-up is similar as in
Section 3.3.1, with the difference that Itr “ 70 (instead of 101) speakers and
Itest “ 20 (instead of 16).

Table 6.2 gives the average SDR for DC and DANet for mixtures of two speakers
in respectively Arabic, French, Mandarin, Portuguese, Spanish, and Swedish.
Both methods obtain their best score for Mandarin, which is the only tonal
language in our test set. This might indicate that tonality is a useful feature
for speaker separation but more research with other tonal languages is needed
to support this.
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language DC DANet

Arabic 7.50 7.97
French 7.46 8.20
Mandarin 8.54 8.86
Portuguese 7.24 8.27
Spanish 6.72 7.76
Swedish 6.93 7.83

Table 6.2: The average SDR (in dB) when trained and tested on the same
language.

6.2.2 Generalization to unseen languages

This section will examine how well a network can separate mixtures of a language
not seen during training. The French and Swedish networks from Section 6.2.1,
are reused. The French network is tested on Portuguese mixtures and Mandarin
mixtures. The Swedish network is tested on Arabic and Spanish mixtures. Table
6.3 gives the average separation performance of the methods for the non-target
languages. Also the difference with the score of the network trained with the
considered language (Table 6.2) is given.

It is noticed that for three out of the four test languages (Portuguese, Arabic
and Spanish) the loss in performance compared to the target language model is
relatively mild (roughly -1 dB) and a decent separation quality is retained. For
Mandarin on the other hand the decrease is more substantial, around -4 dB.
This seems to indicate that the performance for non-target languages depends
on the relation of the training and test language.

The fact that the methods do not break completely implies that they do not
create grammatical or lexical models, but at most phonotactic or phonetic
models. They do seem to do more than tracking formants or pitch, which
would make them almost language independent. This is consistent with the
observations that were made in Chapter 5.

Table 6.4 gives the separation quality for the networks trained with multiple
languages, when keeping the total number of training mixtures fixed. The
average SDR is reported for both trained (t) languages and untrained (u)
languages. Again the difference with scores of the networks trained with the
language itself (Table 6.2) is given as well as the difference when training with
a single non-target language, if applicable (Table 6.3). From the results it is
observed that for trained languages (t) it is in most cases disadvantageous
to replace a part of the training data with mixtures in other languages. For
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language DC DANet
French network

Mandarin 4.59 (-3.95) 4.86 (-4.00)
Portuguese 6.33 (-1.13) 7.22 (-0.98)

Swedish network
Arabic 5.98 (-1.52) 7.01 (-0.96)
Spanish 6.01 (-0.71) 7.20 (-0.55)

Table 6.3: The average SDR in dB for DC and DANet for an unseen test
language and the difference with the SDR for matched language training in
Table 6.2.

language DC DANet
{French, Turkish} network

French (t) 6.92 (-0.55) 7.75 (-0.45)
Mandarin (u) 4.89 (-3.65; +0.30) 5.32 (-3.54; +0.46)
Portuguese (u) 6.31 (-1.15; -0.02) 7.24 (-0.96; +0.02)

{French, Turkish, Japanese} network
French (t) 6.35 (-1.11) 7.27 (-0.93)
Mandarin (u) 4.57 (-3.97; -0.02) 5.34 (-3.52; +0.48)
Portuguese (u) 5.94 (-1.53; -0.39) 6.77 (-1.44; -0.45)

{Swedish, Turkish} network
Swedish (t) 7.03 (0.10) 6.97 (-0.87)
Arabic (u) 6.45 (-1.02; +0.47) 6.71 (-1.26; -0.30)
Spanish (u) 6.39 (-0.33; +0.38) 6.99 (-0.77; -0.21)

{Swedish, Turkish, Japanese} network
Swedish (t) 6.75 (-0.18) 7.58 (-0.25)
Arabic (u) 6.49 (-1.02; +0.51) 7.31 (-0.66; +0.30)
Spanish (u) 6.16 (-0.56; +0.15) 7.34 (-0.42; +0.14)

Table 6.4: The average SDR in dB for DC and DANet trained with multiple
languages for trained and untrained languages. In brackets the difference with
the SDR for matched language training (Table 6.2) as well as the difference
with training on a single non-target language (Table 6.3) if applicable.

untrained languages (u) on the other hand , it is in some cases advantageous to
include multiple training languages instead of one.
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6.2.3 Conclusion

DC and DANet are applicable to BSSS in a wide variety of languages, including
tonal languages. Training models with (a combination of) related languages
yields relatively minor performance degradation compared to training on the
target language. This observation supports the results in Chapter 5, which
showed that LSTM models for BSSS mainly exploit information within the
time span of a couple of phones and long span information is limited to speaker
identification while grammatical patterns are ignored.

6.3 Background noise

This section discusses the applicability of the DNN models of Section 1.4.2 in
the presence of background noise. This was lacking in the research field at the
time the experiments were done. A noisy mixture takes the form of (1.5).

Two approaches will be considered for tackling the BSSS problem in the presence
of background noise. The first approach will simply regard the noise signal as
an additional speech signal. I.e. S Ð S ` 1 in (1.77) or (1.76). The second
approach proposes some modifications to the network and this will improve the
performance compared to the first approach.

6.3.1 Modified network architectures

Figure 6.1 shows the proposed modified network architecture. Each time-
frequency bin now not only estimates an embedding vector vtf , but also a scalar
output αtf with the sigmoid non-linearity such that 0 ď αtf ď 1. This scalar is
an estimated ratio mask to suppress the noise in that bin. Before, to train a
model that learns to separate S speech signals, a loss function was required that
was invariant to the order of the labels of the speech signals, as an intra-class
separation task has to be performed (see Section 1.4.2). However, noise can be
considered of a different class than speech and the auxiliary loss function to
optimize αtf does not need to be permutation independent. Taking this into
account, the loss function for DC and DANet will be modified.



104 INCREASING SEPARATION ROBUSTNESS IN REALISTIC CONDITIONS

Figure 6.1: An illustration of a modified network architecture to better cope
with background noise. Compared to Figure 1.10 it has an additional output
layer to estimate αtf .

Deep clustering

The loss function in (1.77) is modified to:

L “ 1
T 2F 2

ÿ

t1,f1,t2,f2

pvt1f1 ¨vt2f2´zt1f1 ¨zt2f2q
2`γ

1
TF

ÿ

t,f

pαtf´α
ideal
tf q2, (6.1)

with αideal the optimal ratio mask to filter the noise. The first term is the same
as (1.77). The second term trains the network to generate ratio masks to filter
out the noise by penalizing the distance between the estimated and the optimal
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noise suppression mask. The latter is set to be

αideal
tf “

˜

S
ÿ

s

|xs,tf |2
¸1{2 ˜

|ntf |2 `
S
ÿ

s

|xs,tf |2
¸´1{2

, (6.2)

as it was shown to perform well in many noisy scenarios [181]. The hyper-
parameter γ weighs the importance of separating the speakers and filtering out
noise. γ is arbitrarily set to one in the experiments in Section 6.3.2.

The procedure to find the mask estimates m̂s,tf during evaluation time is
modified. As before, K-means is used to cluster the embeddings vtf per speaker.
However, only the embeddings where the associated αtf is greater than 0.75
are used to find the cluster centers1. Then, instead of setting the mask to 1
for speaker s that is estimated to be dominant, the mask is set to αtf . This is
equivalent to generalizing (1.80) to

m̂spt, fq “

#

αtf , if vtf P cs
0, otherwise

. (6.3)

Deep attractor networks

For DANet the loss function (1.76) is modified to:

L “
S
ÿ

s“1

ÿ

t,f

pαpt, fqm̂spt, fq|ypt, fq|´ |xspt, fq|q2. (6.4)

During training (1.82) is used to obtain the attractors as, but modified to

as “
ř

t,f vtf z̃s,tf
ř

t,f z̃s,tf
. (6.5)

with z̃s,tf “ 1 if zs,tf “ 1 and αpt, fq ą 0.75 and z̃s,tf “ 0 in all other cases.
Although this hard cut-off introduces discontinuities and local optima in the
cost function, an alternative (smoother) penalty for noisy bins did not lead to
improved performance.

To separate new mixtures, a similar strategy as in Section 1.4.2 is applied, but
as is now estimated as the cluster centers after using K-means when only using
embedding if the corresponding αtf ą 0.75.

1All embeddings vtf are assigned to a cluster. Only the embeddings for which αtf ą 0.75
are used to find the cluster centers.
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6.3.2 Experiments

Similar to the experimental set-up from Section 3.3.1, the utterances were
sampled from WSJ0 data set. The noise signals were chosen from the 3rd

CHiME speech separation and recognition challenge data set [13], which contains
recordings of realistic environment noise. Four new two-speaker mixture sets
were used:

• A noise free training (20 000 mixtures) and development set (5 000
mixtures). The signals are normalised such that the individual speakers
have the same power.

• A noisy training (100 000 mixtures) and development set (5 000 mixtures).
The training set reuses each mixture of the noise free training set five
times, each time with different noise. The new development set is similar
to the noise free variant, only with noise added. The signals of the speakers
and the noise are normalised such that they have the same power.

• A noisy test set of 3 000 mixtures with different speakers and utterances
than in the training and development sets. The noise comes from different
parts of the same recordings as the training and development sets (for the
training and development sets noise is sampled from the first 10 minutes
of the recording, for the test set from the leftover part). The signals of the
speakers and the noise are normalised such that they have equal power.

• A second noisy test set of 3 000 mixtures. Similar to the previous test set
but now the signals are normalised such that both speakers have equal
power and the noise is 3 dB lower than each speaker.

Table 6.5 compares the performance of the following five methods for the two
noisy test sets described above:

• DC trained without noise (DC no noise).
• DANet trained without noise (DANet no noise).
• DC with noise (DC with noise). During training the noise was considered

as third speaker and the network was trained to form three clusters: two
associated with speakers and one associated with the noise. During testing
three reconstructions were created but only the two that most resembled
a speaker were used for scoring.

• Modified DC described in Section 6.3.1 (modified DC).
• Modified DANet described in Section 6.3.1 (modified DANet).
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The recurrent part of the networks trained without noise consisted of two layers
with 800 bidirectional LSTM cells each. For the networks trained with noise
this consisted of four layers with each 800 bidirectional LSTM cells.

Separation performance of the five different models are shown on the two test
sets. The models trained without noise break down on noisy data. Including
noise during training as a third speaker already leads to improved performance.
The best SDRs are obtained with the modified methods of Section 6.3.1. The
SDR improvement w.r.t. ‘DC with noise’ comes at a cost of a few dB in SNR,
which seems less important since noise is not the main source of distortion.

0 dB 3 dB
Method SDR SNR SDR SNR

DC no noise -1.75 5.38 1.99 11.5
DC with noise 4.85 16.5 6.81 19.4
modified DC 5.11 12.8 7.43 17.2
DAN no noise -0.37 5.83 2.67 10.8
modified DAN 5.27 13.5 7.33 17.4

Table 6.5: The average SDR and SNR in dB for the test sets with respectively
the two speakers and the noise equally loud (0 dB) and the two speakers 3 dB
louder than the noise (3 dB).

6.3.3 Conclusion

In this section, DC and DANet were extended with an estimated spectral mask
to cope with noisy mixtures and this showed to give substantial improvement
over the baselines. A limitation of the current experiments is that they only
examine how well the methods perform for noise types for which training data
is available. Future work should consider unseen noise types.

This work was published in the conference proceedings of Interspeech 2019. At
the same conference, a different paper tried to tackle the same problem [186].
They also tried our first approach ‘DC with noise’ where the noise signal is
regarded as a speech signal for the DC algorithm. They proposed an extension
to this where, still the embeddings of the noise dominated bins should be far
away from the embeddings dominated by speech, but they did not request
that the embeddings of the noise dominated bins should be close to each other.
However, their best performance was obtained by simply treating the noise
signal as a speech signal without further extension. Furthermore, in this section
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it was found that applying network and loss modifications improves performance
over simply regarding the noise as an additional speech signal. It is therefore
concluded that the modified architecture and loss is currently the best approach
for BSSS in the presence of background noise.

6.4 Conclusion

Most of the current research on DL approaches towards BSSS consider only
data in highly idealized settings. Therefore many aspects in practical settings
are ignored. This chapter studied the impact of some of these aspects and
proposed modifications to cope with them.

First, a network was presented that can deal with a variable number of speakers,
rather than using a different network per number of active speakers. Then,
state-of-the-art BSSS methods were evaluated on many languages and it was
concluded that these BSSS methods are widely applicable. It was even noticed
that a model trained on one language, generally manages to separate mixtures
form a different language to some extent. Finally, the impact of background
noise on the separation performance was studied. It was found that traditional
approaches suffer considerably in the case of background noise. Using an
additional spectral mask for denoising shows substantial improvements.

While these three aspects are very relevant in realistic settings, there are of
course many more to study. In particular, reverberation seems to be challenging
and seems an interesting direction for further research.



Chapter 7

Linear versus Deep Learning
Methods for Noisy Speech
Separation for EEG-informed
Attention Decoding

This chapter is based on the following publication:
Das, N., Zegers, J., Van hamme, H., Francart, T., and Bertrand,
A. Linear versus deep learning methods for noisy speech separation for EEG-
informed attention decoding. Journal of Neural Engineering 17, 4 (August
2020).
The contribution of the author of the manuscript is in the use of DNNs for BSS.
The AAD module and the M-NICA were implemented by the first author of
the above publication.

In this last chapter one of the many applications where BSSS plays a role, is
studied in depth: A neuro-steered hearing aid. In summary, brain activity of
a hearing-aid user is measured via Electroencephalography (EEG) in a multi-
speaker scenario, where the user is asked to focus on a single target speaker.
This EEG data is used to estimate the speech envelope of the attended target
speaker using an Auditory Attention Decoder (AAD). Until recently, this speech
envelope was then compared with the oracle envelopes extracted from the single
speaker audio recordings to decide which of the active speakers the listener wants
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to attend to. In a realistic setting, these single speaker audio envelopes should
be estimated using BSSS, possibly followed by an audio envelope extractor.
Once the attended speaker is selected, the estimated speech signal can be sent
to the hearing-aid user.

To make relevant conclusions on the feasibility of such a hearing-aid, background
noise will be present in most experiments. Therefore, the term BSS will be used
instead of BSSS, as the latter presumes only speech sources to be active. In
most works on AAD, linear BSS techniques are used to estimate the speaker
audio envelopes, and the use of DNN can only be found in one or two papers.
This chapter will give an extensive comparison between linear and DL methods
for BSS for EEG-informed attention decoding.

7.1 Introduction

In a noisy environment with multiple speakers talking simultaneously, i.e., the
so-called cocktail-party problem, a person with normal hearing has the ability
to focus attention on one speaker and ignore the other speakers and surrounding
noise in a seemingly effortless manner. People with a hearing impairment, on
the other hand, find such situations extremely challenging. Although modern
hearing aids allow to suppress background noise, a major unsolved problem
is to determine which of the speakers is the desired one, and which speakers
should be treated as noise. Existing approaches use unreliable heuristics based
on speaker loudness or other acoustic features or simply assume that the target
speaker is always in the frontal direction.

Recent developments in the field of neuroscience have shown that it is possible
to decode the auditory attention of a listener in a multi-talker environment
from brain signals recorded with magneto- or electro-encephalography (M/EEG)
[55, 130, 4]. This opens up new opportunities to design smarter hearing devices,
augmented with electrodes to record neural signals, that decode to which speaker
a listener is attending, thereby assisting the hearing device to determine and
enhance the attended speaker.

The envelope tracking of speech streams in a listener’s cortical responses, and
more so of the attended speech stream, is well established in the literature
[54, 69, 116]. Furthermore, this differential tracking of attended and unattended
streams is also present in hearing impaired listeners [136, 50, 140]. This fact
can be exploited to design algorithms that perform AAD. Various methods
have been developed to achieve AAD, addressing different kinds of decoders
[130, 118, 48, 49, 34], stimulus features [18, 4, 53], data acquisition [119, 203, 62],
electrode selection and miniaturization strategies [119, 62, 127], etc.
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The aforementioned AAD studies in [130, 118, 48, 49, 18, 4, 53, 119, 203, 62,
127, 54, 69, 116, 136, 50, 140, 34] assume access to the clean speech signals to
perform AAD, which are not available in a practical setting. Indeed, a hearing
aid only has access to noisy microphone recordings in which multiple speech
sources and noise sources are mixed. The first study that aimed for AAD
using BSS was published in [174], where a Multiplicative Nonnegative ICA
(M-NICA) algorithm [16] was used to extract the individual speech envelopes
from a noisy multi-microphone input. The AAD method in [18] was then used
to select the attended speaker, which was then extracted from the microphone
array using a Multi-channel Wiener Filter (MWF) [174]. This pipeline was
later extended in [43] with a twofold MWF (one for each speaker) leading
to better decoding performance and less variation across different acoustic
conditions. However, while in both of these studies, the performance of the
speaker separation algorithm was evaluated for a range of background noise
levels and speaker positions, the EEG signals used for AAD were collected from
subjects who listened to a 2-speaker scenario with 180° speaker separation and
without background noise. Therefore, there was a mismatch between acoustic
conditions in the AAD experiments and the audio processing modules. In [7],
BSS was achieved using binaural Direction of Arrival (DOA) estimators with
Linearly Constrained Minimum Variance (LCMV) beamformers. The AAD
module used EEG signals recorded in two relatively high SNR conditions and
two reverberation conditions.

The BSS audio processing in [174, 43, 7] is based on linear beamforming and
linear source separation techniques, which do not require any training data and
have the advantage of being computationally cheap. In recent years, the DNN-
based approaches of Section 1.4.2, have become a popular alternative to solve the
speaker separation problem, particularly for the challenging single-microphone
scenario [78, 97, 30] and the even more challenging scenario with additional
background noise [6, 186]. When using multiple microphones, separation
performance can be increased by making use of the spatial information of
the sources [183, 29]. In [129, 74], a single-microphone DNN-based approach
was used for speaker separation in an AAD context. However, both of these
studies involved training and testing in noise-free conditions. Furthermore, AAD
was performed on Electro-Corticography (ECoG) data, which is an invasive
approach involving surgery. This is a limiting factor for hearing-aid users.
Non-invasive techniques like EEG are more preferable in this regard.

It is evident that a detailed analysis of neuro-steered BSS under challenging
acoustic conditions is necessary to draw conclusions about its feasibility.
Despite the promising results in the aforementioned studies, all of them have
important caveats, which may lead to overoptimistic conclusions in a context
of demonstrating viability of neuro-steered BSS algorithms. To summarize:
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The audio processing of [174, 43] was tested in various noisy conditions with
different angles between speakers, but the EEG recordings were performed in
a noise-free condition with 180° separation, resulting in a mismatch between
the acoustic conditions of the microphone and neural signals. This mismatch
does not occur in [7], but only mild noisy conditions are considered and the
speaker positions are the same in all conditions. Finally, it is noticed that
in [74] ECoG is used instead of EEG. Furthermore, the authors only report
results in noiseless conditions, using single-microphone recordings(while most
state-of-the-art hearing aids contain multiple microphones), and with competing
speakers of different gender1.

In addition to these practical limitations, the different settings across the
aforementioned studies make it impossible to draw conclusions about the impact
on AAD performance of non-linear (DNN-based) methods like [129, 74], and
linear methods like [174, 43, 7], as well as the effect of using spatial information
from multiple microphones versus single-microphone methods.

The contribution of this chapter is twofold. First, the aforementioned caveats are
avoided by focusing on realistic scenarios involving microphone recordings from a
binaural hearing aid in challenging noisy conditions with same-gender competing
talkers at various relative speaker positions. In each acoustic condition, the audio
and neural data are matched to each other, i.e., the audio signals presented to
the subjects during the EEG recording are the same as those used for the audio
signal processing. Secondly, the potential improvement of using a DNN-based
BSS algorithm compared to a computationally cheap and training-free linear
signal processing algorithm is investigated. The performance of the extended
linear approach is shown to be at par or better than the purely DNN-based
approach. The potential advantage of using a combination of both approaches,
i.e. a DNN-based speech separation to support a linear beamformer, is also
investigated. The superior performance of such a system that combines the best
of both worlds is demonstrated in terms of improvement in Signal-to-Interference-
plus-Noise Ratio (SINR), Perceptual evaluation of speech quality (PESQ) [144]
and AAD accuracy. The study focuses on two representative state-of-the-art
algorithms, i.e., DC as the DNN-based approach and M-NICA+MWF [43] as
the linear method. In both cases, a multi-microphone input is used, which will
substantially improve speech separation compared to a single-microphone input.

The outline of this chapter is as follows. The different neuro-steered BSS
pipelines are presented in Section 7.2. The various experiments used to validate
the different approaches are presented in Section 7.3. In Section 7.4, the results
of the experiments are shown, and the various implications of these findings are

1Note that both AAD and speaker separation are expected to be more difficult when the
competing speakers are of the same gender.
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Figure 7.1: Block diagram of the proposed neuro-steered BSS algorithm for a 2-
speaker scenario, consisting of modules for BSS, with optional Multi-channel Wiener
Filtering, and AAD. The red (dashed) track refers to using the output of the BSS
block directly for AAD. The green track corresponds to additional filtering.

discussed in Section 7.5. The chapter is concluded in Section 7.6.

7.2 Methods

The proposed neuro-steered BSS pipeline is shown in the block diagram of Figure
7.1 for a 2-speaker scenario. Although the analysis in this chapter focuses on
a 2-speaker scenario, the BSS procedure in Figure 7.1 can straightforwardly
be generalized to a larger number of speakers (denoted by S in the text). The
pipeline consists of three steps:

1. In the BSS module, M-NICA or DNN is applied. Optionally, the estimated
speech envelopes obtained from the BSS module can be used as side
information for the semi-supervised MWFmodule, which typically achieves
a better separation and denoising performance. This will be discussed in
Section 7.2.2.

2. In the AAD module, the attended speech envelope from the listener’s EEG
is reconstructed using a pre-trained decoder. This reconstructed speech
envelope is correlated with the speech envelopes of the individual speakers
extracted in step 1, where the speaker with the highest correlation is
selected as the attended speaker. To this end, either the envelopes from
the M-NICA or DNN algorithm can be used directly (red dashed lines in
Figure 7.1), or a new set of envelopes can be extracted from the MWF
outputs (green lines in Figure 7.1). Both cases will be investigated, where
the envelopes in the red dashed lines will be referred to as M-NICA or



114 SPEECH SEPARATION FOR EEG-INFORMED ATTENTION DECODING

DNN envelopes (depending on which algorithm is used in the BSS block)
and the ones in the green lines as MWF envelopes. More details about
the AAD are given in Section 7.2.1.

3. Once the attended speaker has been estimated, the corresponding MWF
output signal is selected as the final output, which ideally consists of
a denoised version of the speech signal corresponding to the attended
speaker. Optionally, the DNN output of the attended speaker can directly
be chosen as final output.

In the remainder of this chapter, it is assumed that the number of speakers S
is known. In practice this would require a supporting algorithm to estimate
S from the microphone recordings, e.g., based on subspace analysis, which is
beyond the scope of this chapter.

7.2.1 Auditory attention decoding

In order to choose which enhanced speech estimate will be presented as output
of the neuro-steered BSS pipeline, it is necessary to know which speech signal
is being attended to by the listener. Towards this goal, an AAD module is
used which consists of a pre-trained spatio-temporal decoder (subject-specific
training) which takes the listener’s EEG data as an input to reconstruct the
speech envelope of the attended speaker. In the training data, the ground truth
about the subject’s attention is known, and the decoder is designed such that
the difference between its output and the attended speech envelope is minimized
in the MSE sense. The algorithm described in [18] was used for our decoder
design. The reconstructed attended speech envelope is given by

p̃pkq “
L´1
ÿ

τ“0

C
ÿ

c“1
dcpτqmcpk ` τq, (7.1)

where mcpkq is the value of the c-th EEG channel at sample time k, and dcpτq
denotes the decoder weight at the c-th channel at time lag τ . All decoder
weights are stacked in a vector d “ rd1p0q, d1p1q, ..., d1pL´ 1q, d2p0q, ..., d2pL´
1q, ..., dCp0q, ..., dCpL ´ 1qsT . Stacking EEG samples of all C channels for L
time lags, we get mpkq “ rm1pkq,m1pk`1q, ...,m1pk`L´1q,m2pkq, ...,m2pk`
L ´ 1q, ...,mCpkq, ...,mCpk ` L ´ 1qsT P RLC . Using this notation, (7.1) can
be written as p̃pkq “ dTmpkq. The optimal decoder that minimizes the MSE
between the reconstructed attended envelope p̃pkq and the attended speech
envelope papkq is given by

d̂ “ R´1
mmRmpa

, (7.2)
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where Rmm “ EtmpkqmpkqT u P RLCˆLC is the EEG covariance matrix,
Rmpa

“ Etmpkqpapkqu P RLC is the cross-correlation vector between the EEG
data and the attended speech envelope, which is known during the training of
the decoder and Et.u denotes the expected value operator. At test time, the
correlation coefficients between p̃pkq and the estimated speech envelope of each
speaker are then computed. The speech envelope that results in the higher
correlation is selected as the attended speech stream.

7.2.2 Blind source separation

The problem of (B)SS has been described in Section 1.1.1. Given a noisy
multi-speaker input ypt, fq, as in (1.5), the goal is to find estimates of the
speech source signals x̂spt, fq, which is typically done by estimating a mask
m̂spt, fq for each speech source, as in (1.10). Multi-channel extensions are given
in (1.8) and (1.11).

Two methods are presented to estimate the masks in (7.6): one that is fully
linear, based on the M-NICA algorithm, and one that makes use of a DNN.
Their use for AAD is summarized here and is detailed further below.

1. The linear multi-channel signal processing approach using M-NICA
provides an estimate of the energy envelope of each individual speaker.
These envelopes can be directly fed to the AAD module (red dashed track
in Figure 7.1) as in [17], or alternatively, they can be used as a VAD
mechanism to design an S-fold MWF which estimates per-speaker masks
m̂spt, fq in (1.11). The envelope of x̂spt, fq from (1.11) can then be fed
to the AAD module as in [43] (green track in Figure 7.1).

2. On the other hand, a DNN can be trained to separate speech mixtures
into individual speech streams. As opposed to M-NICA, the DNN directly
estimates the masks m̂spt, fq to compute (1.11), after which the speech
envelopes can be extracted and directly fed to the AAD module as in
[129, 74] (red dashed track in Figure 7.1). Alternatively, the envelopes
obtained from the DNN can also be used as a VAD to design MWF masks
(green track in Figure 7.1).

Multiplicative non-negative independent component analysis

The M-NICA algorithm was introduced in [16], and has been used to blindly
separate speech envelopes from a multi-microphone input [17, 174]. The M-
NICA algorithm operates in the short-term energy domain, thereby transforming
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the problem into a (non-negative) energy envelope separation problem. To this
end, the short-term energy signal from each microphone signal is computed
over a window of K samples. The M-NICA is applied on the resulting M
energy signals (note that M-NICA operates at a sampling rate that is K times
lower than the microphone signal sampling rate). For more details on the
implementation of M-NICA for demixing speech envelopes, we refer to [16, 17].

M-NICA exploits the inter-channel differences in the energy distributions of
the speech sources in order to extract the energy envelopes of each individual
speaker. In the case of a binaural hearing aid, these differences are mostly due to
head shadow effects. The non-negativity of the underlying sources facilitates the
use of only second order statistics in its computations, in comparison to other
source separation algorithms that use higher order statistics. This, together with
the K-fold reduction in sampling rate, leads to a low computational complexity
which is a desirable factor to incorporate such a source separation scheme in an
actual hearing prosthesis.

MWFs for source separation

The MWF is a data-driven and adaptive linear beamforming algorithm which
allows to efficiently extract a single speaker from a mixture by computing the
mask in (1.11) which results in the linear estimate with the smallest MSE, i.e.,
the Linear minimum MSE (LMMSE) estimate. It is a semi-supervised method
as it requires a VAD for the target speaker, i.e., it needs to know at which times
the target speaker is not active in order to estimate the second-order statistics
of the background noise and interfering speakers. The VAD information can be
straightforwardly extracted by thresholding the speech envelopes obtained from
the M-NICA algorithm (or alternatively using the deep learning algorithm).
The s-th MWF computes the LMMSE mask m̂spt, fq in (1.11) that yields the
estimate x̂spt, fq that is closest to hs,jrefpfqxspt, fq, i.e., the s-th speaker’s
contribution in an arbitrarily-chosen reference microphone jref. The MWF
m̂spt, fq is defined as

m̂spt, fq “ arg min
ms

Et|hs,jrefpfqxspt, fq ´mspt, fq
Hypt, fq|2u. (7.3)

The solution for this LMMSE problem is given by [56]:

m̂spt, fq “ R´1
yyRxsxsejref , (7.4)

where Ryy “ Etypt, fqypt, fqHu, Rxsxs “ Ethspfqhspfq
Hxspt, fq

2u, and
ejref denotes the jref-th column of a J ˆ J identity matrix, which selects the
column of Rxsxs

corresponding to the reference microphone. The ‘speech
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plus interference’ autocorrelation matrix Ryy can be estimated during the
time periods when the s-th speaker is active2. Assuming independence
between all sources, Rxsxs

can be estimated as Rxsxs
“ Ryy ´ Rvv. Here,

Rvv “ Etnpt, fqnpt, fqHu `
ř

s1‰s Ps1pfqhs1pfqhs1pfq
H is the interference

autocorrelation matrix, where Pspfq “ Et|xspt, fq|2u. Rvv can be estimated
by averaging over all STFT frames in which speaker s is not active. Estimating
Rxsxs

as Ryy ´ Rvv can result in poor filters, particularly, if Rvv contains
non-stationary sources. Therefore, in our computations, Rxsxs

was estimated
based on a GEVD of Ryy and Rvv (details in [155]) to ensure robustness. Note
that, while speech is known to be highly non-stationary, the expected values
here are calculated over a long-term window, thereby capturing the average
long-term power spectrum of the speech. Therefore, the MWF will not react
to short-term changes in the speech spectra, it mainly focuses on the (fixed or
slowly varying) spatial coherence across the microphones. To also exploit the
fast spectral changes in the speech, a single-channel Wiener filter which uses
short-term statistics can be added as a postfilter [37], yet this is beyond the
scope of this chapter.

To separately estimate Ryy and Rvv, the MWFs require the voice activity
information of the speaker it must enhance. The energy envelopes from the
output of the source separation algorithm (M-NICA or a DNN approach, see
subsections 7.2.2 and 7.2.2, respectively) are used to identify the active and
silent periods of each speaker, for e.g., through a thresholding operation3, and
hence form the VAD tracks that each MWF needs.

Note that the S MWFs work in parallel to enhance the speech streams of S
different speakers. It is important to note that these MWFs can share a large
part of the computations, as the estimation of the matrix inverse R´1

yy is a
common requirement across them. The real-time aspects of such a system will
be discussed in Section 7.5.4.

Deep clustering for source separation

DC for BSSS has been explained in Section 1.4.2. In Section 6.3.1, a modification
to the DC architecture has been proposed to cope with background noise using
(6.1). DC has been developed for single microphone setups, but can easily be
extended to include spatial information Ysp from a multi-microphone setup
[183]. This spatial information is simply appended to the input of the model to
estimate the embeddings (and the noise mask): rvpt, fq, αpt, fqs “ gtf p|Y |,Yspq.

2For the sake of conciseness, the frequency variable f is omitted for autocorrelation matrices
in this section.

3There is also the possibility of using other parameters, speech presence probability [67]
for instance, to make softer VADs, but this is not within the scope of this chapter.
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The IPD between two microphones j1 and j2 is chosen to represent the spatial
information [183]:

ysppt, fq “ rcospθj1,j2pt, fqq, sinpθj1,j2pt, fqqs (7.5)

with θj1,j2pt, fq “ =yj1pt, fq ´=yj2pt, fq and Ysp is the matrix containing the
spatial information ysppt, fq over all time-frequency bins pt, fq. In case there
are more than two microphones (J ą 2), the spatial features can be determined
for all microphone pairs and stacked as a single feature representation.

A single mask for each speaker s is produced, in the same way as was done in
(1.80) or (6.3) which is then copied and applied to each microphone. The mask
is applied to the average of all microphone spectrograms, or equivalently4

m̂spt, fq “

„

m̂spt, fq

J
,
m̂spt, fq

J
, . . . ,

m̂spt, fq

J

T

(7.6)

when using (1.11).

So far we have focused on estimating masks to filter out the interfering speaker
(and noise). The estimated x̂spt, fq can be further enhanced in a secondary
stage as in [88]. To this end, a new DNN is trained, denoted by the function g1,
which estimates an enhanced mask for speaker s based on |Y | and the previous
estimate x̂spt, fq: m̂enh

s pt, fq “ g1tf p|Ypt, fq|, x̂spt, fqq. Notice that the network
used for g1 is shared over the speakers. In the multi-microphone case, the IPD
is again included to obtain m̂enh

s pt, fq similarly to (7.5)-(7.6).

In the next step, the envelopes of the speech sources as estimated from the
mask (7.6) can be used for AAD (red dashed lines in Figure 7.1). There is also
the option of using these envelopes to first compute the VADs for the S-fold
MWFs, and then using the envelopes from these MWF outputs for attention
decoding instead (green lines in Figure 7.1). This would correspond to the
algorithm proposed in [43], where the M-NICA block is replaced with a DNN.
A final option, which will not be further discussed in this chapter, is to use the
masks estimates m̂spt, fq as a weight when determining Ryy and Rvv, similarly
as was done in [192]. Initial experiments with this method gave no significant
improvements in AAD accuracies.

4This corresponds to applying the mask to the output of a forward-steering beamformer.
Other choices are possible (e.g. select only one microphone, or summing magnitude spectra
and adding the phase of one of the microphones), but these were empirically found to not
have a significant impact on the results.
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7.3 Experiments

7.3.1 Experiments setup

AAD setup

18 normal-hearing subjects (of which 6 males) between 20 and 25 years old
participated in the experiment, where each subject had to focus on the speech
stream from a particular direction, in the presence of a competing speaker from
another direction and background noise. Their 64-channel EEG was recorded
at a sampling rate of 8192 Hz. This dataset consists of 138 minutes of EEG
recordings per subject. Further details can be found in [41]. The stimuli and
the corresponding acoustic conditions used in this experiment are described
below, in Section 7.3.1.

RBM Dataset

The RadioBoeken Mix (RBM) dataset was built by mixing parts of 8 Dutch
stories narrated by 8 different female narrators [142], taken 2 at a time as
competing speech streams in the presence of different levels of background
multi-talker (‘babble’) noise. The background babble noise consisted of 9
different 4-talker babble streams (2-male and 2-female) perceived to be coming
from 9 equidistant positions (from -180° to 140° in steps of 40°) around the
listener. The babble was constructed from 36 audiobooks (18 male and 18
female narrators) from LibriVox (a public domain collection of audiobooks)
[108]. Anechoic head-related transfer functions for 6 behind-the-ear microphones
(M “ 6) in a binaural hearing aid set-up [91] (with approximately 7.5 mm
distance between neighbouring microphones) were used for making directional
audio. All audio was sampled at 44.1 kHz. The long term spectrum of the
babble sources was matched with the average spectrum of all the target speech
streams. The experiments included a condition without background babble
noise (referred to as the noise-free case) and two noisy conditions with SNRs5 of
-1.1 dB and -4.1 dB. Note that both SNRs are negative, resulting in challenging
conditions where the signal power of the background babble noise is higher
than the signal power of the attended speaker. Different scenarios regarding
the relative position of both speakers are simulated, namely (-90° (utmost left),
90° (utmost right)), (30°, 90°), (-30°, -90°), and (-5°, 5°) with angle between
speakers 180°, 60°, 60° and 10° respectively.

5In this chapter (input) SNR is defined as the ratio of the power of the target speaker to
the power of background babble. Note that the actual SNR is even lower due to the presence
of an interfering speaker, which is not included in this SNR metric.



120 SPEECH SEPARATION FOR EEG-INFORMED ATTENTION DECODING

This RBM data set is used in all evaluation experiments throughout this chapter,
unless mentioned otherwise.

DNN training dataset

A separate audio dataset was needed to train the model for the speaker
independent deep learning based source separation as explained in 7.2.2. A
novel dataset, called Corpus Gesproken Nederlands Mix (CGNM), was created.
It uses the Corpus Gesproken Nederlands component-o-Flemish (CGN-o-VL)
[173], which contains 150 Dutch speakers of which 102 (51 female and 51 male)
were randomly chosen to build up the training set, containing 27 hours of unique
single-speaker speech in total (16 minutes per speaker on average). 20 000 2-
speakers mixtures were artificially created using randomly selected single-speaker
audio from CGN-o-VL. These mixtures totalled 60 hours of overlapping speech,
to be used as training set. Even though in the RBM dataset (Section 7.3.1)
only female-female mixtures are used, male-female and male-male mixtures are
included in the training set as well for better generalizability. Furthermore,
both speakers can be located anywhere between -100° and 100°, again to make
the network more general. Two types of datasets were made: one containing
the 20 000 mixtures without background babble noise (CGNM-noisefree), and
the same mixtures with background babble noise (CGNM-noise). The SNR for
the background noise for each mixture was uniformly sampled between -4 dB
and 4 dB. Babble speakers were taken from the LibriSpeech corpus [132] and
were positioned in the same way as in 7.3.1. All DNN models in this chapter
are trained on this CGNM dataset. Both CGNM-noisefree and CGNM-noise
were used to train the DNN models, unless specified otherwise.

To assess separation quality, 12 held-out female speakers (totalling 3.2 hours of
unique speech) were chosen to create a test set. The test set consisted of 728
2-speaker mixtures (totalling 2.2 hours of mixed speech). While the RBM set
remains the main dataset for evaluation throughout this chapter, this CGNM
test set is introduced as it is more closely related to the CGNM train set, which
was used to train the DNN models. Comparing DNN separation performance on
the CGNM test set and the RBM set, will allow to address some generalization
issues of the DNN in Section 7.4.1.
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7.3.2 Data preprocessing and design choices

EEG preprocessing

All EEG data was filtered using an equiripple bandpass filter with passband
between 0.5 Hz and 10 Hz, and with passband attenuation of at most 0.5 dB
and stopband attenuation of 20 dB (lower) and 15 dB (upper). Previous studies
[69, 55, 42] have shown that cortical envelope tracking is best within this
frequency range. EEG data was then downsampled to 40 Hz.

M-NICA audio preprocessing

The microphone signals were lowpass filtered with an 800 Hz cut-off and
downsampled to 8 kHz before computing the energy envelopes, since it was found
to be beneficial for the source separation process under low SNR conditions [43].
Energy was computed every 200 samples (25 ms), bringing down the sampling
rate to 40 Hz.

Deep learning design choices

Most of the experimental setup was taken the same as in Section 3.3.1. The
enhancement network g1 is used for the first time in the text and was chosen to
be a BLSTM-RNN with 2 layers using 300 hidden units each. The output layer
had F “ 129 nodes and a sigmoid function was applied on top to estimate the
final masks.

For the single-channel scenario a single microphone was randomly selected. For
the multi-channel scenario the input consisted of the average of the left-ear and
the average of the right-ear microphone signals, as well as the spatial features
(see (7.5)) from 3 microphone pairs (with one pair using a left-ear and a right-ear
microphone and pair 2 and 3 using two left-ear and two right-ear microphones,
respectively).

MWF design choices

For the estimation of MWF coefficients an STFT with a 64 ms window length
(512 samples) and a hop size of 32 ms (256 samples) was applied to the
microphone signals, after they were downsampled to 8 kHz. The thresholds
for estimating the VAD tracks for the different approaches were determined
empirically. For energy envelopes extracted from the M-NICA and DNN-based
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source separation, the 25th percentile of the per sample amplitude of the
envelope was used as the threshold, above which the speaker was considered to
be active.

Audio envelope extraction

The envelope extraction method from [18] was used. Each of the speech streams
used as stimulus were filtered with a gammatone filterbank [134], splitting the
signal into 15 filter bands. In each gammatone band, the absolute value of each
sample was taken after which a power law compression with an exponent of 0.6
was applied. The power law-compressed samples were then bandpass filtered
in the same manner as was done for the EEG signals resulting in subband
envelopes. The subband envelopes were added together and downsampled to
40 Hz to form a single ‘powerlaw subband’ envelope. Power law compression
aims to replicate the non-linear transformation of the stimulus in the human
auditory system, with relatively higher attenuation of higher amplitude signals
[163]. This method of auditory inspired envelope extraction has been found to
result in significantly better attention decoding accuracies than other envelope
extraction methods[18].

Power law subband envelopes were only used in cases where broadband speech
streams where available, i.e., the DNN and MWF envelopes built from the
speech streams obtained with the DNN-based mask (7.6) or the MWF-based
mask (7.4), respectively. Since M-NICA directly extracts energy envelopes
from the broadband speech streams, the gammatone filterbank could not be
applied here. When applying AAD on the M-NICA-envelopes, the square-root
of the extracted energy envelopes was used to transform them to an amplitude
envelope, since energy envelopes are sub-optimal to perform AAD [18].

AAD design choices

In order to perform AAD, EEG data was split into trials of 30 s, resulting
in 276 trials per subject for each of the 3 different angles between speakers
(separations of 180° for (-90°,90°), 60° for (30°,90°) and (-30°,-90°), and 10° for
(-5°,5°) respectively). Decoders were trained (using leave-one-trial-out (LOO)
cross validation) to reconstruct the envelope of the attended speech stream. To
improve decoding accuracy and eliminate the need for regularization, a single
decoder was computed over the entire training set data as in [18], instead of
averaging over per-trial decoders in the training set as in [130].
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noise-free CGNM test noise-free RBM
single-channel 10.0 dB 3.8 dB
multi-channel 12.3 dB 12.3 dB

Table 7.1: SDR improvement results for a single-channel and multi-channel
DNN without noise.

10° 60° 180° avg.
single-channel 2.5 dB 1.7 dB 7.3 dB 3.8 dB
multi-channel 12.7 dB 11.6 dB 12.5 dB 12.3 dB

Table 7.2: SDR improvement results for a single-channel and multi-channel DNN
for the noise-free RBM set, depending on the difference in speaker positions.

7.4 Results

7.4.1 Single-channel and multi-channel source separation

In some cases, for hardware reasons, a single-channel set-up can be preferred
over a multi-channel set-up. The deep learning approaches to noise-free source
separation, both for single-channel and multi-channel setup, were trained on
the CGNM-noisefree train set and evaluated on the CGNM-noisefree test set
and the RBM noise-free set. Results are expressed in SDR [176] improvements
and are shown in Table 7.1.

Notice that for the single-channel case, performance on the noise-free RBM
dataset is much worse than on the CGNM-noisefree test set, even though both
consist of held-out female speakers. The DNN generalizes poorly to other
datasets. A possible reason for this could be differences in the recording set-up,
and the fact that the CGNM-noisefree test set consists of volunteers, while the
RBM dataset consists of children stories told by professional story-tellers. It is
concluded that the single-channel setup does not generalize well across data sets.
Multi-channel separation quality is considerably better than the single-channel
counter part. This was expected as the network can make use of the spatial
information. Furthermore, the SDR results on the CGNM-noisefree test set and
the RBM dataset are also more alike, compared to the single-channel results.
The network uses spatial information to characterize the speakers and does
not need to solely rely on the difference in speaker characteristics to separate
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* *** *

Figure 7.2: AAD accuracies (on 30 s trials) of 18 subjects listening in noise-free
conditions when envelopes from the output of multi-channel DNN and single-
channel DNN were used. Comparisons between the different approaches were
done using Wilcoxon’s signed-rank test [187] with Holm correction. : ‘***’ for
p < 0.001, ‘*’ for p < 0.05.

the speakers, as is necessary in the single-channel case [196]. In Table 7.2, the
SDR results on the RBM dataset are split up per angle between speakers. For
the single-channel setting, it is observed that the model performs much better
for the 180° case compared to the other cases. For the 180° case the speech
amplitudes of both speakers will differ more due to head shadow effects, which
may explain why it is easier for the network to separate both. We believe the
network uses this difference in amplitude to distinguish between the speakers
and once again does not need to solely rely on the spectral characteristics. This
head shadow effect might also happen, although less pronounced, for the 10°
(speakers at -5° and 5°) case, which could explain why it performs slightly
better than the 60° (speakers at 30° and 90°) case, where both speakers are
on the same side of the head. Further research is needed to support these
claims/assumptions.

The absolute envelopes, extracted from the outputs of both single-channel and
multi-channel DNNs performing speaker separation of the stimuli in the RBM
dataset for the noise-free condition, were used for auditory attention decoding of
the EEG data collected under matching acoustic conditions and stimuli. Figure
7.2 shows AAD accuracies over 18 subjects under the noise-free condition, for
the 3 different angles between the speakers. For all angles between speakers, the
multi-channel DNN resulted in significantly higher AAD accuracies compared
to the single-channel DNN, as was expected from the results in Table 7.1. We
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therefore continue with the multi-channel approach for all further analyses.

7.4.2 Linear versus non-linear source separation for AAD

The per-subject AAD accuracies on the RBM dataset were computed for each
of the 3 different angles between speakers and the 3 noise conditions. For each
30 s trial, the correlation of the reconstructed attended envelope was computed
with 5 pairs of envelopes extracted using different BSS methods:

• ‘Oracle’ - powerlaw subband envelopes extracted from the original speech
signals (not mixed)

• ‘M-NICA’ - amplitude envelopes extracted from the output of the M-NICA
source separation algorithm (red dashed track in Figure 7.1)

• ‘DNN’ - powerlaw subband envelopes extracted from the output of the
DNN-based source separation algorithm (also red dashed track in Figure
7.1).

• ‘M-NICA+MWF’ - powerlaw subband envelopes extracted from the output
of MWFs when using the output of the M-NICA based source separation
algorithm to build VAD tracks (green track in Figure 7.1).

• ‘DNN+MWF’ - powerlaw subband envelopes extracted from the output
of MWFs when using the output of the DNN based source separation
algorithm to build VAD tracks (also green track in Figure 7.1).

Figure 7.3 shows the resulting AAD accuracies for the 18 subjects for the noise-
free condition, for -1.1 dB and for -4.1 dB. For each angle between speakers,
comparison between the different approaches were done using Wilcoxon’s signed-
rank test with Holm correction. The green boxplots correspond to the green
lines (MWF envelopes), and the red box plots correspond to the dashed red
lines (M-NICA/DNN envelopes) respectively in Figure 7.1.

An interesting observation from Figure 7.3 is that a training-free linear algorithm
as proposed in [43] (here represented by ‘M-NICA+MWF’) is able to perform at
least on par and often even better than a pre-trained complex deep model (here
represented by ‘DNN’) in all speaker angle and noise conditions. When breaking
down the subcomponents of [43] into M-NICA and MWF separately, or when
using the DNN as support for the MWF, some other interesting observations
can be made, which are briefly reported in the remainder of this subsection.

In the noise-free condition, for 180° and 10° separations, the M-NICA envelopes
result in accuracies that match those when using oracle speech envelopes for AAD
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Figure 7.3: AAD accuracies (on 30 s trials) of 18 subjects for different speech
separation approaches for 3 cases: the noise-free case, -1.1 dB SNR, and -4.1 dB
SNR. The results of using the M-NICA and DNN approaches are compared
with the results when using oracle speech envelopes for AAD. The separated
streams were either directly used for AAD (red boxes here and dashed red lines
in Figure 7.1), or used to generate VAD tracks for MWFs (green boxes here
and green lines in Figure 7.1), the outputs of which were then used for AAD.
The red line indicates the significance level. Comparison between the different
approaches were done using Wilcoxon’s signed-rank test with Holm correction.
: ‘***’ for p < 0.001, ‘**’ for p < 0.01, ‘*’ for p < 0.05, ‘ns’ for no significant
difference.
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while the DNN envelopes perform significantly poorer. On the other hand, for
60° speaker separation, the DNN envelopes outperform M-NICA envelopes, yet
upon including the MWF filtering step, there are no more significant differences
between the 2 source separation approaches. However, the results are still
significantly lower than with oracle speech envelopes. It must be noted that
in the 60° case, the competing speaker positions are on the same side of the
listener’s head ((-30°,-90°) or (30°,90°)). It has already been observed in [43]
that the same 60° case was challenging for M-NICA, indicating difficulty to
extract discriminative spatial features under such conditions

Figure 7.3 also shows AAD accuracies from trials in a noisy condition with
-1.1 dB SNR. For 180° speaker separation, it can be seen that all source
separation approaches, with or without the MWF filtering step, result in similar
AAD performances, but do not match up to that of oracle speech envelopes.
Nevertheless, the performance decrease is minimal, in particular when an MWF
is used. For 10° and 60° speaker separation, the DNN envelopes result in better
performance than the M-NICA envelopes. MWF filtering substantially improves
results for both approaches for the 60° case, where the DNN+MWF combination
even matches performance with the oracle speech envelopes. For the 10° case,
only the M-NICA approach requires MWF filtering to match oracle speech
performance.

For the -4.1 dB SNR (Figure 7.3), which is a highly challenging condition, it is
observed that for 180° separation, the performances of all the approaches do not
differ significantly from each other. However, for the 10° condition, the M-NICA
and DNN envelopes result in accuracies below chance level, and only with the
additional MWF filtering, do the results match up to those of oracle speech
envelopes. In the 60° case, the MWF filtering does improve results for both
the source separation approaches, however only the results of the DNN+MWF
approach match up to those of oracle speech envelopes.

7.4.3 Speech separation performance

To estimate the effectiveness of the MWF for BSS, we looked at the improvement
in the Signal-to-Interference-plus-Noise Ratio (SINR) and PESQ, on the RBM
dataset, at the output of the MWFs when using VAD tracks generated from
3 sources: the oracle speech envelopes, the M-NICA envelopes, and the DNN
envelopes. The SINR is defined as the ratio of the power of the attended
speaker to the total of the power of the unattended speaker and the background
noise. The reference input SINR is taken as the highest SINR among the 6
microphones (note that the achieved SINR improvement will be larger for the
other microphones). For each noise condition and angle between speakers, the
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Figure 7.4: Boxplots showing improvement in SINR of 8 story parts when
the MWFs use VAD tracks extracted from the different speech separation
approaches. The results of using M-NICA and DNN outputs for the VAD are
compared with the results when using oracle speech for the VAD. Comparison
between the different approaches were done using Wilcoxon’s signed-rank test
with Holm correction. : ‘***’ for p < 0.001, ‘**’ for p < 0.01, ‘*’ for p < 0.05,
‘ns’ for no significant difference.

improvement in SINR was computed for 8 story parts to which the subjects
had to listen without interruption. Figure 7.4 shows the improvement in SINRs
of the 8 story parts, for the 3 noise conditions and 3 different angles between
speakers. For the noise-free case, it is observed that the oracle speech envelopes
result in better BSS than M-NICA or DNN envelopes in all separation angles
(although perceptually there is not much difference: the difference between 40dB
and 20dB SINR is hard to notice). However, in the presence of background
noise, the DNN+MWF approach significantly outperforms the M-NICA+MWF
approach, and matches up to the performance with the oracle speech envelopes
in the 10° and 180° cases. For the acoustically more challenging case of 60°
(since the speakers are on the same side of the head), it is observed that the
DNN+MWF approach performs almost similar to the oracle+MWF approach
(although the small differences are still statistically significant), and both of
them substantially outperform the M-NICA+MWF approach.

The results for PESQ, a measure that focuses more on speech intelligibility, are
shown in Figure 7.5. The significance tests are very similar to those of SINR
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Figure 7.5: Boxplots showing PESQ scores of 8 story parts when the MWFs
use VAD tracks extracted from the different speech separation approaches. The
results of using M-NICA and DNN outputs for the VAD are compared with
the results when using oracle speech for the VAD. Comparison between the
different approaches were done using Wilcoxon’s signed-rank test with Holm
correction. : ‘****’ for p < 0.0001, ‘***’ for p < 0.001, ‘**’ for p < 0.01, ‘*’ for
p < 0.05, ‘ns’ for no significant difference.

and thus the above observations for SINR also hold for PESQ.

7.5 Discussion

Previous studies that combine speech (B)SS with AAD investigated only one
type of algorithm (either linear [174, 43, 7] or DNN-based [129, 74]), mostly
in relatively mild acoustic conditions. Furthermore, each study has its own
specific set-up (single- vs. multi-microphone, ECoG vs. EEG, matched or
mismatched acoustic conditions during EEG recordings, etc.) which does not
allow to directly compare the results achieved in these studies. The study in
this chapter was designed to investigate the feasibility of a neuro-steered BSS
pipeline in challenging acoustic conditions with negative SNRs and various
speaker positions, while also comparing different source separation approaches
to produce the speech envelopes used by the attention decoding block. We
investigated the AAD performance of a training-free and purely linear audio
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signal processing algorithm (M-NICA+MWF) on the one hand, and a non-linear
DNN on the other hand, as well as a combination of a linear with a non-linear
approach (DNN+MWF), where the latter acts as a supporting voice activity
detector for the former. In the remainder of this section, we will discuss the
main findings of our study.

7.5.1 Multi-microphone outperforms single-microphone

Existing AAD studies using DNNs for the acoustic source separation were
based on single-microphone recordings [129, 74]. We observed that a single-
channel approach generalizes less well across datasets and that a multi-channel
approach is more robust in terms of separation quality. It was concluded
that single-microphone solutions are reliant on spectral information for speaker
characterization and this might generalize poorly across datasets. This is
another examples were the DNN does not sufficiently learn to internally model
speaker characteristics (see Chapters 3 and 4).

In addition, envelopes extracted from the output of the multi-channel neural
network resulted in AAD accuracies that were more robust to varying speaker
positions compared to those from the single-channel neural network. It is
concluded that a multi-microphone set-up is crucial to obtain a sufficiently high
AAD accuracy in practical settings. Thus, we chose the multi-channel neural
network approach for our comprehensive analysis of the neuro-steered source
separation.

7.5.2 Linear algorithm outperforms DNN

In the literature, several algorithms have been proposed to combine AAD with
speech separation methods. Concerning the speech separation part, two main
strategies can be distinguished; those based on traditional (linear) beamforming
approaches [174, 43, 7] and those based on (non-linear) neural networks [129, 74].
However, these two strategies have never been compared to each other in terms
of the resulting AAD performance. The results in Section 7.4 demonstrate that
the AAD performance with a linear speech separation algorithm (represented
by ‘M-NICA+MWF’ in figure 7.3) is at least on par and often outperforms a
non-linear DNN approach (represented by ‘DNN’ in figure 7.3) in all investigated
conditions. This holds both in terms of AAD performance (Fig. 7.3) and BSS
performance (Fig. 7.4). In addition, the linear method is computationally
cheaper than the DNN approach (in terms of operations per second and memory
size), while also being training-free thereby not depending on representative
training data. Furthermore, implementing the MWF as an adaptive, causal,
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low-latency filter is relatively straightforward, and latencies can be limited to
less than 5 ms [172] (see also Section 7.5.4 below). Speech separation based on
deep clustering on the other hand, usually uses a non-causal network where the
computation of the embedding vector at present time is based on all past and
future time samples, although recently also causal DNNs for BSS have been
proposed [73, 74].

7.5.3 Combining the best of both worlds: DNN and MWF

While linear and non-linear approaches both individually result in good speech
separation, a combination of both - as in the DNN+MWF approach - resulted
in the best AAD performance, particularly in challenging acoustic conditions.
In this case the (non-linear) DNN is used as a VAD mechanism to inform the
(linear) MWF which performs the actual speaker separation and denoising,
thereby combining the best of both worlds. This results in the best AAD
performance as well as the highest SINR improvement.

7.5.4 Real-time aspects

When using a weighted overlap-add (WOLA) procedure [38], the algorithmic
delay of the MWF is equal to the window length used in the STFT computations,
i.e., the number of samples over which the discrete Fourier transform is computed.
For example, for a hearing aid using a sampling rate of 20480 Hz and a 96-point
STFT windowing [172], the algorithmic delay is less than 5 ms. Note that a delay
in the VAD information (e.g. due to possible non-causality of the BSS block
in Figure 7.1), does not have an impact on the overall input-output delay of
the stimulus presented to the user. This is because the adaptation of the MWF
filter coefficients can be decoupled from the actual filtering operation itself,
where the former can lag behind on the latter. This implies that any delay or
non-causality in the M-NICA or DNN block will not create a bottleneck towards
real-time speech processing. It will only add some inertia in the updating of
the MWF coefficients to adapt to changes in the acoustic scenario.

7.5.5 EEG-based AAD is feasible in challenging low-SNR
conditions

The SNRs in this study were chosen such that the speech intelligibility varied
across conditions. The estimated speech recognition threshold (SRT), at which
a normal-hearing subject can understand 50% of the attended story on average,
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was found to be -7.1 dB (see [41] for details of the estimation procedure).
The SNRs -4.1 dB and -1.1 dB were chosen by adding 3 dB steps from the
50% speech intelligibility point. The -7.1 dB condition was excluded from
this study due to the difficulty subjects faced in focusing on the attended
speaker (as reflected in the AAD accuracies under this condition reported in
[41]). Subjective speech intelligibility reported during the recording sessions for
the different angles between speakers show that -4.1 dB and -1.1 dB SNRs also
are not easy listening conditions. Compared to [7] where the noise conditions
are relatively mild (4 dB and 9 dB SNR), [74] where there is no background
noise, and [43] where the EEG recording conditions did not match the acoustic
conditions, our current study provides a holistic view on the performance of a
neuro-steered BSS pipeline under realistic to challenging acoustic conditions. It
is found that not only EEG-based AAD with no access to clean-speech sources is
feasible under challenging acoustic conditions, but also that the AAD accuracies
and improvement in SINRs for DNN+MWF get remarkably close to oracle
performance.

7.5.6 Future outlook

The proposed neuro-steered BSS and its analysis over a range of acoustic
conditions is a step towards effectively incorporating attention decoding and
source separation algorithms in neuro-steered hearing prostheses. With the
field of deep learning expanding and exerting its presence in various scientific
domains, we have tried to address the possibility of deep learning based source
separation in this context and systematically compare it with a classical signal
processing approach. While the realization of neuro-steered hearing prostheses is
still far from being a reality, there are ongoing advancements that can accelerate
this process. In addition to hardware requirements such as miniaturization of
neural recording equipment, better computational and storage capabilities in
hearing devices etc., also newer approaches for improved attention decoding
itself based on DNNs [48, 49, 34], canonical correlation analysis [46] or state-
space modelling [4, 118] can contribute to faster and more robust attention
decoding and hence better neuro-steered BSS. Finally, a limitation of this study
is that it does not include reverberant conditions, which can both affect speech
separation algorithms and the AAD performance.

7.6 Conclusion

In a multi-speaker cocktail party scenario, a hearing aid’s noise reduction
algorithm does not have the knowledge of which speaker the user intends to
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listen to. Incorporating AAD algorithms to detect the attention of the user,
leads to the concept of so-called neuro-steered hearing aids. In this study a
neuro-steered BSS pipeline is presented, without access to clean speech signals
in challenging acoustic scenarios.

The performance of a linear as well as DNN-based speaker separation approach
was analyzed. It was found that a purely linear approach often outperforms
the DNN-based approach. However, the best performance, under challenging
scenarios, was obtained when combining the best of both worlds, i.e., when
using the DNN to provide VAD information to a linear data-driven beamformer.
In addition, for the DNN-based speaker separation, the benefit of using a multi-
microphone system compared to a single-microphone system was demonstrated.
It was concluded that single-microphone solutions are reliant on spectral
information for speaker characterization and this might generalize poorly across
datasets. An additional advantage of using a linear data-driven beamformer
is that it decouples the algorithmic delay in the blind source separation of the
audio signals from the total system delay, thus facilitating robust real-time
speech processing. With this study, we present a proof-of-concept of feasibility
of a neuro-steered BSS pipeline in challenging acoustic conditions.





Chapter 8

Conclusion

To end the thesis an overview of the original contributions is given, as well as
some directions for future research.

8.1 Original contributions

Joint Speaker Separation and Recognition using NMF

A state-of-the-art multi-channel NMF BSSS model was extended to allow for
joint BSSS and SR in the presence of overlapping speech. This was done by
introducing a latent variable that linked an enrolled speaker’s dictionary to
a speech signal. Estimating this latent variable links the speech signal, the
speaker identity and the speaker’s location. The model outperformed NMF and
i-vector baselines in terms of SR performance.

Improving Source Separation via Speaker Representations

To study the importance of speaker characterization for BSSS when using DNNs,
a blind multi-speaker adaptation model was proposed. This model iteratively
applies BSSS and i-vector estimation. This allowed to verify whether state-of-the-
art DNN based BSSS models build a sufficient internal speaker representation.
It was concluded that large models in scenarios without background noise
and reverberation indeed manage this. However, for a smaller model it was
found that the internal speaker representations were not sufficient and applying

135
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the blind multi-speaker adaptation model improved performance. This blind
multi-speaker adaptation technique was also used in Chapter 5 to study the
importance of the SR subtask in the memory of an LSTM-RNN for BSSS.

Joint Speaker Separation and Recognition using Deep Learning

A joint BSSS and SR model using DL in the presence of overlapping speech
was studied. Different ways to apply multi-task learning were considered and it
was concluded that summing the weight updates over the tasks was preferred
compared to summing the tasks’ losses. Furthermore, it was found that optimal
SR performance is achieved when giving sufficient importance to the BSSS task.
However, the BSSS task was not helped by adding the auxiliary SR task. This
observation is consistent with Chapter 3. Again, a comparison with a smaller
model was made and it was concluded that for this smaller model, the SR task
did help the BSSS task.

An extension to the joint model was made to allow for single speaker audio.
If clean enrollment data for a speaker is available, this improves the SR
performance. Furthermore, an additional extension to the training method was
proposed such that the SR better takes into account the uncertainty on the
BSSS. This improved the SR performance.

Analysis of Memory in RNNs for Blind Speech Source Separation

Two methods, the leaky approach and the reset approach, were developed
to study the importance of different memory time spans in RNNs. If large
computational complexity is allowed, the reset approach is favored. It was
found that for the task of BSSS, short-term linguistic processes have a strong
impact on the separation performance. Above 400 ms the network can only
learn better speaker characterization and other possible separation cues like
grammar are not considered by the LSTM-RNN. Furthermore, it was found that
it is sufficient to only implement longer memory in the deeper layers. Finally,
it was found that the backward direction is slightly more important than the
forward direction for a bidirectional LSTM-RNN for BSSS.

Increasing Separation Robustness in Realistic Conditions

Analysis has been done on practical aspects of BSSS that are relevant in realistic
settings:
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1. A joint model for 2-speaker and 3-speaker mixtures is built, that even
outperforms the task specific models. This avoids the need to build a
different model for each mixture type.

2. The DL based BSSS models are evaluated on different languages and
seem generally applicable to any language. Furthermore, it is noted that
a BSSS model trained on one language generalizes to some extent to a
different language.

3. Extensions to DL based BSSS models are proposed to cope with additional
background noise. An improvement is found compared to simply treating
the noise as an additional speech signal.

Speech Separation for EEG-informed Attention Decoding

The concept of a neuro-steered AAD was studied. The use of BSSS in
this application is twofold. First, the envelopes extracted from the speech
reconstructions can be compared with the envelope estimates of the AAD to
estimated the attended speaker of the subject. Secondly, once the attended
speaker is estimated, the speech reconstruction of this speaker should be sent
to the hearing aid. A traditional linear BSSS approach, M-NICA, is compared
to DL. It was found that the DL based solution, when combined with a MWF,
achieved the best performance for noisy same gender mixtures. However, the
computational complexity of DL compared to M-NICA is an important draw-
back for the application. It was also found that the single-channel DNN had
trouble generalizing to a different dataset, while the multi-channel version was
robust to this.

8.2 Future outlook

This thesis showed that a joint model for BSSS and SR is beneficial for SR
performance (Chapters 2 and 4). Furthermore, the importance of the SR subtask
for BSSS was shown in Chapter 5.

These insights are interesting from an academic point of view, but they can
also be used in order to obtain performance improvement in speech technology
applications. It has been shown in Chapters 2 and 4 that the SR problem in
overlapping speech is addressed more successfully when explicitly taking the
BSSS-SR dependency into account. The same is found for BSSS in Chapters 3
and 4 when considering smaller models. The analysis in Chapter 5 has shown
that both short-term and long-term effects play a role, where the latter focuses
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only on SR. This fact can be exploited in two ways. From a computational
complexity point, one could argue that the hidden units focusing on the long-
term dependencies, do not necessarily need to be updated at every time step.
This point is similar to the one being made in clockwork RNNs [99]. On the
other hand, this insight also allows to propose new architectures that use this
information to obtain better BSSS performance. Such an attempt was made in
[198], written by the same author as this thesis. There, a hybrid CNN-LSTM
model was designed with the idea that the CNN part should focus more on
the short-term dependencies and the LSTM should focus on the long-term
dependencies. An improvement over an LSTM-only model was found.

However, it was also concluded in Chapters 3 and 4 that state-of-the-art BSSS
models do not benefit from an auxiliary SR input or target. It was concluded
that these models build a sufficient internal speaker representation for BSSS.
However, it must be noted that these models were studied in highly idealized
settings, without background noise or reverberation, and that no practical
limitation was set on the size of the models. It was found that for a smaller
network, BSSS is helped by an auxiliary SR input or target. Future research
should focus on whether this conclusion can be generalized to (very) challenging
scenarios, such as background noise or reverberation.

In fact, very recent work on time-domain solutions for BSSS [158, 159] have
surpassed the performance of optimal mask based time-frequency domain
solutions. However, as more realistic and challenging scenarios are considered
(noisy, reverberant, real-time-constraints, . . . ), it remains unknown how these
time-domain solutions will cope as the upper bound of mask based solutions
will be harder to achieve [12, 77]. Furthermore, one can question the added
benefit of achieving a separation performance that exceeds the optimal mask
based solution. In general, two further directions for research in BSSS can be
considered. The first one being to further continue to push the estimated speech
signals to near-perfection in highly idealized, studio-like and artificial scenarios.
Alternatively, future research could focus on more challenging scenarios. This
thesis focused mostly on the first direction (apart from Chapters 6 and 7), since
it allowed fundamental research on DL for BSSS and most BSSS researchers
focus on this domain. However, now that a good understanding and good
separation performance is achieved in these idealized scenarios, it is time to
focus more on the second direction. It is expected that in this case approaches
that help the BSSS, such as a joint approach and adding external speaker
representations, once again become more important.



Appendix A

NMF Derivations

This appendix will derive the update formulas found in Chapter 2. The
derivation is based on [151]. The update formulas will be derived in Appendix
A.1, which will use some basic matrix derivatives that are described in Appendix
A.2.

A.1 Derivation of multi-channel NMF for joint
BSSS and SR

The multi-channel IS divergence of (1.19) is retaken but constant terms are
omitted,

f pT,Q,H,Z,Cq “ DISpX, tT,Q,H,Cuq

“
ÿ

f

ÿ

t

trpXftX̂´1
ft q ` logdetpX̂ftq,

(A.1)

where
X̂ft “

ÿ

k

ÿ

i

ÿ

s

zsiciktfkqktHfs, (A.2)
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as in (2.2). To minimize f pT,Q,H,Z,Cq, the optimization scheme of
majorization is used [24, 47, 151]. An auxiliary function is defined as

f` pT,Q,H,Z,C,R,Uq “

ÿ

f

ÿ

t

»

–

ÿ

k

ÿ

i

ÿ

s

tr
´

XftRH
ftkisH

´1
fs Rftkis

¯

zsiciktfkqkt
` logdetpUftq `

detpX̂ftq ´ detpUftq

detpUftq

fi

fl ,

(A.3)

where Rftkis and Uft are auxiliary variables that satisfy positive definiteness,
Rftkis is constrained to

ř

k

ř

i

ř

s Rftkis “ I with I the identity matrix of size
J , and Rftkis and Uft are Hermitian symmetric. It will be shown that f` has
two properties

1. f pT,Q,H,Z,Cq ď f` pT,Q,H,Z,C,R,Uq

2. f pT,Q,H,Z,Cq “ minR,Uf
` pT,Q,H,Z,C,R,Uq

The function f can then be minimized by iteratively repeating these two steps:

1. Minimizing f` with respect to R and U, which brings f` pT,Q,H,Z,C,R,Uq
closer to f pT,Q,H,Z,Cq (see Section A.1.1).

2. Minimizing f` with respect to T,Q and H, which also minimizes f (see
Section A.1.2).

A.1.1 Minimizing f` with respect to R and U

To minimize f` with respect to R, with the constraint that
ř

k

ř

i

ř

s Rftkis “ I,
Lagrange multipliers Λft are introduced such that

F “ f` `
ÿ

f

ÿ

t

Re

$

&

%

tr

»

–

˜

ÿ

k

ÿ

i

ÿ

s

Rftkis ´ I

¸H

Λft

fi

fl

,

.

-

. (A.4)
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The partial derivative of F with respect to Rftkis is then

BF
BRftkis

“
1

zsiciktfkqkt

Btr
´

XftRH
ftkisH

´1
fs Rftkis

¯

BRftkis
`

BRe
!

tr
”

p
ř

k

ř

i

ř

s Rftkis ´ Iq
H Λft

ı)

BRftkis

“
2H´1

fs RftkisXft

zsiciktfkqkt
`Λft,

(A.5)

where the equality for the first term follows from (A.35) and for the second
term from [137, eq. (103)]. Setting this partial derivative to zero gives

BF
BRftkis

“
2H´1

fs RftkisXft

zsiciktfkqkt
`Λft “ 0 (A.6)

Rftkis “ ´zsiciktfkqktHfsΛftX´1
ft . (A.7)

Since
ř

k

ř

i

ř

s Rftkis “ I and applying (A.7) leads to

ÿ

k

ÿ

i

ÿ

s

Rftkis “

˜

ÿ

k

ÿ

i

ÿ

s

´zsiciktfkqktHfs

¸

ΛftX´1
ft “ ´X̂ftΛftX´1

ft “ I

(A.8)
Λft “ ´X̂´1

ft Xft. (A.9)
Substituting (A.9) in (A.7) gives

Rftkis “ zsiciktfkqktHfsX̂´1
ft . (A.10)

The partial derivative of f` with respect to Uft is given by

Bf`

BUft
“
BlogdetpUftq

BUft
` detpX̂ftq

B 1
detpUftq

BUft

“ U´1
ft `

detpX̂ftq

detpUftq
U´1
ft ,

(A.11)

where (A.32) and (A.33) are used in the second equation in the first and second
term, respectively. Setting this partial derivative to zero gives

Bf`

BUft
“ U´1

ft `
detpX̂q
detpUftq

U´1
ft “ 0 (A.12)
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detpUftq “ detpX̂q. (A.13)

Substituting (A.10) and (A.13) in (A.3) , indeed shows that f pT,Q,H,Z,Cq “
minR,Uf

` pT,Q,H,Z,C,R,Uq.

A.1.2 Minimizing f` with respect to T, Q, Z, C and H

Minimizing f` with respect to tfk gives

Bf`

Btfk
“

»

–

ÿ

t

ÿ

i

ÿ

s

´tr
´

XftRH
ftkisHfsRftkis

¯

zsicikt2fkqkt

fi

fl`
ÿ

t

1
detpUftq

BdetpX̂ftq

Btfk

“
´1
t2fk

»

–

ÿ

t

ÿ

i

ÿ

s

tr
´

XftRH
ftkisHfsRftkis

¯

zsicikqkt

fi

fl`

ÿ

t

detpX̂ftq

detpUftq
tr
˜

X̂´1
ft

ÿ

i

ÿ

s

zsicikqktHfs

¸

“
´1
t2fk

»

–

ÿ

t

ÿ

i

ÿ

s

tr
´

XftRH
ftkisHfsRftkis

¯

zsicikqkt

fi

fl`

ÿ

t

ÿ

i

ÿ

s

zsicikqktdetpX̂ftq

detpUftq
tr
´

X̂´1
ft Hfs

¯

(A.14)

where (A.28) was used in the second equation in the second term. Setting this
partial derivative to zero gives

Bf`

Btfk
“
´1
t2fk

»

–

ÿ

t

ÿ

i

ÿ

s

tr
´

XftRH
ftkisH

´1
fs Rftkis

¯

zsicikqkt

fi

fl`

ÿ

t

ÿ

i

ÿ

s

zsicikqktdetpX̂ftq

detpUftq
tr
´

X̂´1
ft Hfs

¯

“ 0

(A.15)

tfk “

g

f

f

f

e

ř

t

ř

i

ř

s

trpXftRH
ftkis

H´1
fs

Rftkisq
zsicikqkt

ř

t

ř

i

ř

s
zsicikqktdetpX̂ftq

detpUftq
tr
´

X̂´1
ft Hfs

¯ . (A.16)



DERIVATION OF MULTI-CHANNEL NMF FOR JOINT BSSS AND SR 143

When substituting (A.10) and (A.13) in (A.16) this gives

tfk “

g

f

f

f

f

e

ř

t

ř

i

ř

s

pzsicikt1fk
qktq

2tr
´

XftX̂´1H
ft

HH
fs

H´1
fs

HfsX̂´1
ft

¯

zsicikqkt

ř

t

ř

i

ř

s zsicikqkttr
´

X̂´1
ft Hfs

¯

“ t1fk

g

f

f

f

e

ř

t

ř

i

ř

s zsicikqkttr
´

XftX̂´1
ft HfsX̂´1

ft

¯

ř

t

ř

i

ř

s zsicikqkttr
´

X̂´1
ft Hfs

¯

“ t1fk

g

f

f

f

e

ř

t

ř

i

ř

s zsicikqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

t

ř

i

ř

s zsicikqkttr
´

X̂´1
ft Hfs

¯ .

(A.17)

where the Hermitian symmetric properties of Xft, X̂ft and Uft were used
and t1fk is used to denote tfk before the update. With similar derivations the
iterative update formulas for qkt, zsi and cik can be found to be

qkt “ q1kt

g

f

f

f

e

ř

f

ř

i

ř

s zsiciktfktr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

i

ř

s zsiciktfktr
´

X̂´1
ft Hfs

¯ (A.18)

zsi “ z1si

g

f

f

f

e

ř

f

ř

t

ř

k ciktfkqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

t

ř

k ciktfkqkttr
´

X̂´1
ft Hfs

¯ (A.19)

cik “ c1ik

g

f

f

f

e

ř

f

ř

t

ř

s zsitfkqkttr
´

X̂´1
ft XftX̂´1

ft Hfs

¯

ř

f

ř

t

ř

s zsitfkqkttr
´

X̂´1
ft Hfs

¯ . (A.20)

Finally, the partial derivative of f` with respect to Hfs if found to be

Bf`

BHfs
“

«

ÿ

t

ÿ

k

ÿ

i

´H´1
fs RftkisXftRH

ftkisH
´1
fs

zsiciktfkqkt

ff

`
ÿ

t

1
detpUftq

BdetpX̂ftq

BHfs

“ ´H´1
fs

«

ÿ

t

ÿ

k

ÿ

i

RftkisXftRH
ftkis

zsiciktfkqkt

ff

H´1
fs

`
ÿ

t

ÿ

k

ÿ

i

zsiciktfkqkt
detpX̂ftq

detpUftq
X̂´1
ft ,

(A.21)
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where (A.36) was used in the first equality and (A.34) in the second equality.
Setting this partial derivative to zero gives

Bf`

BHfs
“ ´H´1

fs

«

ÿ

t

ÿ

k

ÿ

i

RftkisXftRH
ftkis

zsiciktfkqkt

ff

H´1
fs

`
ÿ

t

ÿ

k

ÿ

i

zsiciktfkqkt
detpX̂ftq

detpUftq
X̂´1
ft “ 0

(A.22)

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqkt
detpX̂ftq

detpUftq
X̂´1
ft “

H´1
fs

«

ÿ

t

ÿ

k

ÿ

i

RftkisXftRH
ftkis

zsiciktfkqkt

ff

H´1
fs .

(A.23)

Hfs

«

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqkt
detpX̂ftq

detpUftq
X̂´1
ft

ff

Hfs “

ÿ

t

ÿ

k

ÿ

i

RftkisXftRH
ftkis

zsiciktfkqkt
.

(A.24)

Substituting (A.10) and (A.13) in (A.24) gives

Hfs

«

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqktX̂´1
ft

ff

Hfs “

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqktH1
fsX̂

´1
ft XftzsiciktfkqktX̂´1H

ft H1H
fs

zsiciktfkqkt
.

(A.25)

Hfs

«

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqktX̂´1
ft

ff

Hfs “

H1
fs

«

ÿ

t

ÿ

k

ÿ

i

zsiciktfkqktX̂´1
ft XftX̂´1

ft

ff

H1
fs,

(A.26)

where H1
fs is used to indicate Hfs before the update.

A.2 Matrix derivatives

This section will give some matrix derivatives that were used in Appendix A.1.
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According to [137, eq. (46)]
BdetpYpxijqq

Bxij
“ detpYqtr

ˆ

Y´1 BY
Bxij

˙

. (A.27)

For Y “ xijA, with A a constant matrix, this gives

BdetpAxijq
Bxij

“ detpAqtr
`

A´1˘ . (A.28)

For Y “ X, (A.27) gives
BdetpXq
Bxij

“ detpXqtr
`

X´1Pij

˘

, (A.29)

with Pij The single-entry matrix, 1 at pi, jq and 0 elsewhere. Since the matrix
product is defined as rABskl “

ř

n aknbnl this gives tr pABq “
ř

j

ř

n ajnbnj
and tr pAPijq “ aji. Using this last equation in (A.29) gives

BdetpXq
Bxij

“ detpXq
“

X´1‰

ji
“ detpXq

“

X´1‰

ij
, (A.30)

where the last equation only holds if X is symmetric. Then we get
BdetpXq
BX “ detpXqX´1. (A.31)

This allows to find the following partial derivatives when using the chain rule
BlogdetpXq

X “
1

detpXqdetpXqX
´1 “ X´1 (A.32)

B 1
detpXq

X “
1

detpXq2 detpXqX
´1 “

X´1

detpXq . (A.33)

Using the same deviation as (A.29)-(A.31) would show that
BdetpaX`Bq

BX “ adetpaX`BqpaX`Bq´1, (A.34)

with a a constant scalar and B a constant matrix.

Finally, it can be shown that

Btr
`

AXHBX
˘

BX “ BHXAH `BXHA “ 2BXA, (A.35)

where the first equality is found in [137, eq. (117)] and the second equality only
holds if X,A and B are Hermitian symmetric. Furthermore in [137, eq. (124)]
it is stated that

Btr
`

AX´1B
˘

BX “ ´X´1H
AHBHX´1H

(A.36)





Appendix B

Layer connections for reset
LSTM-RNN

This appendix will derive the layer connections for reset LSTM-RNNs. Appendix
B.1 will give the general derivations and Appendix B.2 will show the derivations
when using the grouping approach.

B.1 Inter-layer connections

In this section the general inter-layer connections rules for reset LSTM-RNNs
will be derived. First, this will be done for unidirectional LSTM-RNNs in
Appendix B.1.1. Then this will be extended to bidirectional LSTM-RNNs in
Appendix B.1.2. Finally, the connection rules for layer dependent resets will be
derived in Appendix B.1.3.

B.1.1 Unidirectional reset LSTM-RNN

Given (5.8), instance k of layer l will be reset at times tk,l given by

tk,l “ k ` αK, (B.1)

with α a natural number. Therefore, the number of time steps τk,lt between
time t and the last time instance k was reset before time t is given by

τk,lt “ pt´ tk,lq mod K “ pt´ k ´ αKq mod K “ pt´ kq mod K. (B.2)
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A time t instance k of layer l contains τk,lt frames of context. We would like
this instance to receive input from an instance of the layer below with the
same number of context frames τk,lt . In other words, we would like to find the
instance that was reset at time t´ τk,lt in layer l ´ 1. Using (5.8) we find this
to be

k˚,l´1
t´τk,l

t

“ pt´τk,lt qmodK “ pt´pt´kqmodKqmodK “ k modK “ k. (B.3)

This simply means that instance k from layer l should receive input from
instance k from layer l ´ 1. Or in simplified notation k Ð k. Finally, the last
layer of the LSTM-RNN should output a single instance which will be the final
output of the network. We choose this to be the instance with the maximum
number of context frames τmax,Lt “ K ´ 1. This means that the instance was
reset at t´ τmax,Lt “ t´K ` 1. Thus the instance to select is

k˚,Lt´K`1 “ pt´K ` 1q mod K “ pt` 1q mod K “ k˚,Lt`1. (B.4)

B.1.2 Bidirectional reset LSTM-RNN

For bidirectional LSTM-RNNs, we take a similar approach. Equivalent to (5.8),
(B.1) and (B.2), we define

ÝÑ
k
˚,l

t “ t mod Kl, (B.5)

tÝÑ
k ,l

“
ÝÑ
k ` αKl, (B.6)

τ
ÝÑ
k ,l
t “ pt´

ÝÑ
k q mod Kl. (B.7)

For the backward direction we find
ÐÝ
k
˚,l

t “ ppT ´ 1q ´ tq mod Kl, (B.8)

tÐÝ
k ,l

“ pT ´ 1q ´ pÐÝk ` αKlq, (B.9)

τ
ÐÝ
k ,l
t “ ptÝÑ

k ,l
´ tq mod Kl “ ppT ´ 1q ´ t´ÐÝk ´ αKlq mod Kl

“ ppT ´ 1q ´ t´ kq mod Kl.

(B.10)

Again, we want an instance to receive input from an instance in the layer below
with the same number of context frames. For the instances in the forward
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direction these are ÝÑk ˚,l´1

t´τ

ÝÑ
k ,l

t

and ÐÝk ˚,l´1

t`τ

ÝÑ
k ,l

t

. When we use the same reset period

for all layers (K “ Kl “ Kl´1), these are

ÝÑ
k
˚,l´1

t´τ

ÝÑ
k ,l

t

“ pt´ τ
ÝÑ
k ,l
t q mod K “ pt´ pt´

ÝÑ
k q mod Kq mod K

“
ÝÑ
k mod K “

ÝÑ
k .

(B.11)

and
ÐÝ
k
˚,l´1

t`τ

ÝÑ
k ,l

t

“ ppT ´ 1q ´ pt` τ
ÝÑ
k ,l
t qq mod K

“ ppT ´ 1q ´ pt` t´ÝÑk q mod Kq mod K

“ ppT ´ 1q ´ 2t`ÝÑk q mod K,

(B.12)

respectively. As per (1.65), in simplified notation this becomes

ÝÑ
k Ð

„ ÝÑ
k

ppT ´ 1q ´ 2t`ÐÝk q mod K



. (B.13)

Similarly for the backward direction we find the inputs to be

ÐÝ
k Ð

„

p´pT ´ 1q ` 2t`ÝÑk q mod K
ÐÝ
k



. (B.14)

As per (1.66), the final output of the network is a concatenation of the output of
both directions of the last layer. We again choose these to be the instance with
the maximum number of context frames τ

ÝÝÑmax,L
t “ K´1 and τ

ÐÝÝmax,L
t “ K´1 for

the forward and backward direction, respectively. This means that corresponding
instances were reset at t´ τ

ÝÝÑmax,L
t “ t´K ` 1 and t` τ

ÐÝÝmax,L
t “ t`K ´ 1.

Thus the corresponding instances to select are

ÝÑ
k
˚,L

t´K`1 “ pt´K ` 1q mod K “ pt` 1q mod K “
ÝÑ
k
˚,L

t`1 (B.15)
and
ÐÝ
k
˚,L

t`K`1 “ ppT ´1q´pt`K´1qq mod K “ ppT ´1q´pt´1qq mod K “
ÐÝ
k
˚,L

t´1.
(B.16)

Thus (1.66) generalizes to

ht “

»

—

–

ÝÑh
ÝÑ
k
˚,L

t`1 ,L

t

ÐÝh
ÐÝ
k
˚,L

t´1 ,L

t

fi

ffi

fl

. (B.17)
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B.1.3 Layer dependent reset period

If Kl and Kl´1 are different, we would still like an instance to receive input
from the layer below with the same number of context frames. However, this is
not possible when the number of context frames exceeds the maximum number
of context frames in the layer below (bounded by Kl´1 ´ 1). therefore, a new
variable τ̄ is introduced, which is defined as

τ̄
ÝÑ
k ,l
t “ minpτ

ÝÑ
k ,l
t ,Kl´1 ´ 1q. (B.18)

When replacing τ
ÐÝ
k ,l
t with τ̄

ÐÝ
k ,l
t in (B.11) and (B.12), we get

ÝÑ
k Ð

»

–

pt´ τ̄
ÝÑ
k ,l
t q mod Kl´1

ppT ´ 1q ´ t´ τ̄
ÝÑ
k ,l
t q mod Kl´1

fi

fl . (B.19)

Similarly, for the backward direction we define

τ̄
ÐÝ
k ,l
t “ minpτ

ÐÝ
k ,l
t ,Kl´1 ´ 1q, (B.20)

ÐÝ
k Ð

»

–

pt´ τ̄
ÐÝ
k ,l
t q mod Kl´1

ppT ´ 1q ´ t´ τ̄
ÐÝ
k ,l
t q mod Kl´1

fi

fl . (B.21)

With the constraint Kl ě Kl´1 (otherwise, layer l would be allowed less context
than layer l ´ 1. Instances with τk,l´1

t ą Kl ´ 1 would not be connected to the
higher layer and effectively Kl´1 would be set to Kl).

B.2 Grouped inter-layer connections

Using (5.21), instance k of layer l will be reset at times tk,l given by

tk,l “ pk ` αKlqGl. (B.22)

Therefore, the number of time steps τk,lt between time t and the last time
instance k was reset before time t is given by

τk,lt “ pt´ tk,lq mod T lreset “ pt´ kGl ´ αKlGlq mod KlGl

“ pt´ kGlq mod KlGl.
(B.23)

As before, we would like an instance to receive input from an instance in the
layer below, with the same number of context frames. However, this cannot be
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guaranteed as τk,lt increases with steps of G. For the forward input we therefore
select the first instance in layer l´ 1 to be reset at t´ τk,lt or afterwards. (B.22)
shows that resets happen at multiples of Gl´1. Therefore the requested reset in
the forward direction will happen at time

ÝÑγ
ÝÑ
k ,l
t “

»

—

—

—

t´ τ̄
ÝÑ
k ,l
t

Gl´1

fi

ffi

ffi

ffi

Gl´1, (B.24)

where τ̄ is defined as

τ̄
ÝÑ
k ,l
t “ minpτ

ÝÑ
k ,l
t ,Kl´1Gl´1 ´ 1q. (B.25)

Using (5.21), we find that the instance in the forward direction in layer l ´ 1

that will be reset at time ÝÑγ
ÝÑ
k ,l
t is given by

ÝÑ
k
˚,l´1

ÝÑγ
ÝÑ
k ,l

t

“
ÝÑγ
ÝÑ
k ,l
t

Gl´1
mod Kl´1 “

¨

˝

»

—

—

—

t´ τ̄
ÝÑ
k ,l
t

Gl´1

fi

ffi

ffi

ffi

Gl´1

Gl´1

˛

‚ mod Kl´1

“

»

—

—

—

t´ τ̄
ÝÑ
k ,l
t

Gl´1

fi

ffi

ffi

ffi

mod Kl´1.

(B.26)

In the backward direction (5.21) is changed to

ÐÝ
k
˚,l

t “

ˆ

pT ´ 1q ´ t
Gl

˙

mod Kl if pT ´ 1q ´ t ” 0 pmod Glq. (B.27)

The requested reset in the backward direction will happen at time

ÐÝγ
ÝÑ
k ,l
t “ pT ´ 1q ´

¨

˝

»

—

—

—

pT ´ 1q ´ pt` τ̄
ÝÑ
k ,l
t q

Gl´1

fi

ffi

ffi

ffi

Gl´1

˛

‚. (B.28)
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Combining (B.27) and (B.28) gives the instance in the backward direction in

layer l ´ 1 that will be reset at time ÐÝγ
ÝÑ
k ,l
t .

ÐÝ
k
˚,l´1

ÐÝγ
ÝÑ
k ,l

t

“

¨

˝

pT ´ 1q ´ÐÝγ
ÝÑ
k ,l
t

Gl´1

˛

‚ mod Kl´1

“

¨

˚

˚

˚

˚

˝

pT ´ 1q ´
˜

pT ´ 1q ´
˜S

pT´1q´pt`τ̄
ÝÑ
k ,l

t q

Gl´1

W

Gl´1

¸¸

Gl´1

˛

‹

‹

‹

‹

‚

mod Kl´1

“

»

—

—

—

pT ´ 1q ´ pt` τ̄
ÝÑ
k ,l
t q

Gl´1

fi

ffi

ffi

ffi

mod Kl´1.

(B.29)

In shorthand notation this becomes

ÝÑ
k Ð

»

—

—

—

—

–

S

t´τ̄

ÝÑ
k ,l

t

Gl´1

W

mod Kl´1
S

pT´1q´t´τ̄
ÝÑ
k ,l

t

Gl´1

W

mod Kl´1

fi

ffi

ffi

ffi

ffi

fl

. (B.30)

Similarly, for the backward direction we find the inputs to be

ÐÝ
k Ð

»

—

—

—

—

–

S

t´τ̄

ÐÝ
k ,l

t

Gl´1

W

mod Kl´1
S

pT´1q´t´τ̄
ÐÝ
k ,l

t

Gl´1

W

mod Kl´1

fi

ffi

ffi

ffi

ffi

fl

. (B.31)

Finally, we would like to find the final output of the network or a generalization of
(B.17). Ideally, we would like to select the instances with Treset,L´1 “ KLGL´1

number of context frames. Again this cannot be guaranteed as τ
ÝÑ
k ,L
t and τ

ÐÝ
k ,L
t

increase with steps of GL. Instead we will be looking for time ÝÑγ
ÝÝÑmax,L
t and

ÐÝγ
ÐÝÝmax,L
t defined as

ÝÑγ
ÝÝÑmax,L
t “

R

t´ pKLGL ´ 1q
GL

V

GL (B.32)
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and

ÐÝγ
ÐÝÝmax,L
t “ pT ´ 1q ´

ˆR

pT ´ 1q ´ pt` pKLGL ´ 1qq
GL

V

GL

˙

. (B.33)

The corresponding instances are thus

ÝÑ
k
˚,L

ÝÑγ
ÝÝÑmax,L

t

“
ÝÑγ
ÝÝÑmax,L
t

GL
mod KL “

ˆR

t´ pKLGL ´ 1q
GL

V

GL
GL

˙

mod KL

“

R

t´ pKLGL ´ 1q
GL

V

mod KL.

(B.34)

and

ÐÝ
k
˚,L

ÐÝγ
ÐÝÝmax,L

t

“

˜

pT ´ 1q ´ÐÝγ
ÐÝÝmax,L
t

GL

¸

mod KL

“

¨

˝

pT ´ 1q ´
´

pT ´ 1q ´
´Q

pT´1q´pt`pKLGL´1qq
GL

U

GL

¯¯

GL

˛

‚ mod KL

“

R

pT ´ 1q ´ pt` pKLGL ´ 1qq
GL

V

mod KL.

(B.35)
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