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Abstract 25 

Recent population-based1–4 and clinical studies5 have identified a range of factors 

associated with human gut microbiome variation. Murine quantitative trait loci6, human twin 

studies7 and microbiome genome-wide association studies (mGWAS)1,3,8–12 have provided 

evidence for genetic contributions to microbiome composition. Despite this, there is still poor 

overlap in genetic association across human studies. Using appropriate taxon-specific models 30 

along with support from independent cohorts, we show association between human host 

genotype and gut microbiome variation. We also suggest that interpretation of applied 

analyses using genetic associations is complicated by the likely overlap between genetic 

contributions and heritable components of host environment. Using fecal derived 16S rRNA 

gene sequences and host genotype data from the Flemish Gut Flora Project (FGFP, n=2223) 35 

and two German cohorts (FoCus, n=950, PopGen n=717), we identify genetic associations 

involving multiple microbial traits (MTs). Two of these associations achieved a study-level 

p-value threshold of 1.57x10−10; an association between Ruminococcus and rs150018970 

near RAPGEF1 on chromosome 9, and between Coprococcus and rs561177583 within 

LINC01787 on chromosome 1. Exploratory analysis was undertaken using 11 other genome-40 

wide associations with strong evidence for association (p-value < 2.5x10−08) and a previously 

reported signal of association between rs4988235 (MCM6/LCT) and Bifidobacterium. Across 

these 14 SNPs there was evidence of signal overlap with other GWAS including those for age 

at menarche and cardiometabolic traits. Mendelian randomization (MR) analysis was able to 

estimate associations between MTs and disease (including Bifidobacterium and body 45 

composition), however in the absence of clear microbiome driven effects, caution is needed 

in interpretation. Overall, this work marks a growing catalog of genetic associations which 

will provide insight into the contribution of host genotype to gut microbiome. Despite this, 

the uncertain origin of association signals will likely complicate future work looking to 

dissect function or use associations for causal inference analysis. 50 

 

 
Main 
  Human host-microbiome mGWAS are still in their infancy and feature a paucity of 

overlap for even the most compelling signals across studies13. This is an observation 55 

influenced by environmental variables dominating microbial trait variation1 and the 

complications of variation in sample collection, storage conditions, DNA extraction method, 

PCR primers, and amplicon versus shotgun sequencing14. While recent advances are 
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improving resolution and reliability of microbiome profiles15, inter-study analytical 

methodologies analyzing those profiles vary extensively (Table S1). Microbiota profiles, 60 

being the product of ecological sampling, are often zero-inflated with varying distributions 

across taxa. Consequently, variation in modeling, normalization procedures and choices of 

diversity indicators can greatly influence results across studies.  

In an attempt to identify persistent signals of association between host genetic 

variation and human gut microbiome, we harmonized the analytical pipeline across three 65 

independent studies: an expanded release of the FGFP cohort (Flanders, Belgium; n=2,223) 

and two German cohorts (Food-Chain Plus11 (FoCus; n=950) and the PopGen16 cohort 

(n=717)). Of the initial 499 derived taxon abundances in FGFP (Table S2), 139, across all 

phylogenetic levels, met our analysis criteria and 92 were retained after identifying 

independent phenotypes (Methods; Fig. 1). Microbial taxa were described as relative 70 

abundance (AB) profiles and those with zero-inflated abundance distributions (67% or 62 of 

the 92 retained taxa) were described using a hurdle model11. That is, for taxa where more than 

5% of individuals in FGFP had an abundance measurement of zero, we generated a 

presence/absence (P/A) phenotype and a zero-truncated (all zero values set as missing) 

abundance (AB) phenotype. We note that absence does not indicate non-existence, but that a 75 

taxon is not observed under the current sequencing depth. A comparison of data preparation 

methods led to the choices above, as alternatives used previously1,7,11,12 failed to consistently 

account for skewness and categorical distributions across all outcomes in a GWAS context 

(Supplementary Fig. 1 and 2 and Supplementary Information: Distribution /model choice). In 

addition, we computed the total taxa richness present within each sample (α-diversity), 80 

compositional variation between samples (β-diversity) and the different community 

composition types (enterotypes). A total of 95 continuous (92 AB + three α-diversity), 62 

binary (P/A), one multinomial (enterotype), and one multivariate (β-diversity) traits were 

carried forward to further analysis as microbial traits (MTs).  

We first estimated the proportion of gut microbiota variation explained by genetic 85 

variation among individuals by estimating narrow sense genetic heritability	(h2) for each AB, 

P/A, and α-diversity trait in FGFP (Methods). Heritability ranged from 0 to 0.47, with 13 of 

the 157 continuous and binary MTs tested exhibiting non-zero estimates (likelihood ratio test 

p-value < 0.05; Fig. 1; Table S3). Eight of the 13 MTs noted above are from the phylum 

Firmicutes, five of which are from the family Lachnospiraceae and two from 90 

Ruminococcaceae. The most heritable MT observed was genus Hespellia (h2 = 0.47, se = 

0.18) of family Lachnospiraceae, class Clostridia. Among the highly prevalent genera 
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(present in >98.5% of samples), the most heritable were Dorea (h2 = 0.25, se = 0.14) and 

Anaerostipes (mean h2 = 0.23, se = 0.13), key short-chain fatty acids-producing and health-

associated genera17. Heritability estimates were also generated with log and box-cox 95 

transformed data to allow for comparison with previous work (Table S3). Heritability 

estimates derived from FGFP using other data transformations had Spearman’s rho 

correlation coefficients of 0.95 (rank normal transformation (RNT) vs log2) and 0.53 (RNT vs 

box-cox; Extended Data Fig. 1a and 1b). Inter-study correlation coefficients of 0.28 and 0.23 

were observed when comparing heritability estimates derived with similar data 100 

transformations7,9 (Extended Data Fig. 1c and 1d). The low values are likely driven by poor 

power when estimating heritability across studies, though with temporal, local and individual 

environments influencing MT variation, heritability estimates may be inflated or deflated. 

Larger and/or environmentally controlled designs will be required to increase the power and 

accuracy of MT heritability estimates.  105 

Associations between genetic variants and specific MTs were identified by fitting 

linear (AB + α-diversity; Fig. 2a), logistic (P/A; Fig. 2b), multinomial (enterotype), and 

multivariate (β-diversity) regressions assuming an additive genetic model and accounting for 

genotype uncertainty (Methods). In addition, human autosomal copy number variations 

(CNVs) were tested for associations to MTs in the FGFP data set, but none yielded strong 110 

evidence of association (Table S4; Methods). All single nucleotide variants at an inclusive 

association Score test p-value threshold of <1x10-05 in the FGFP dataset (n=23,735) were 

taken forward into a targeted meta-analysis including two independent German cohorts. 

Three genera were not present in the German cohorts, a likely product of using a different 

hypervariable region of the 16S rRNA locus, limiting our meta-analysis to 153 MTs and 115 

23,067 variants to analyze.  

Two variants showed evidence of association that exceeded a study-wide meta-

analysis p-value threshold of 1.57x10−10 (Table 1, Fig. 2c, Table S5, Extended Data Fig. 2). 

The strongest of these was between Ruminococcus (P/A) and rs150018970, an intergenic 

variant 33 kilo-bases upstream the RAPGEF1 gene on chromosome 9. RAPGEF1 encodes a 120 

protein factor that transduces signals from G-protein-coupled receptors (GPCRs), which are 

likely involved in the regulation of the physiology of the gastrointestinal tract18. GPCRs 

detect metabolites derived from commensal bacteria and have been proposed to be key 

mediators of host–microbial interactions18 Relative to homozygous reference allele 

individuals, heterozygous individuals were less likely to have Ruminococcus (OR=0.111, 125 

95% CI=0.062-0.197, meta-analysis p-value=6.68x10-14), core members of the gut 
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microbiota. The second association was Coprococcus (P/A) and rs561177583 on 

chromosome 1, sitting in the intron of the non-protein coding RNA LINC01787; with 

individuals heterozygous for the effect allele also being less likely to have Coprococcus in 

their sample (OR=0.161, 95% CI =0.09-0.28, meta-analysis p-value=1.10x10-10). Despite the 130 

strength of their association, heterogeneity between the studies for these effects was high and 

further investigation is required to confirm and characterize these signals (Extended Data Fig. 

2).  

Following stringent filters for lead association signals, we also examined the 

properties of results with strong evidence for reliability. Satisfying a GWAS evidence 135 

threshold meta-analysis p-value < 2.5x10−08, 11 associations showed low heterogeneity in 

meta-analysis (Table 1, Fig. 2c, Table S5, Extended Data Fig. 2). These contained the 

butyrate-producing genus Butyricicoccus associated with an eQTL (in multiple tissues 

including brain, data from GTEx portal) for SLC5A11 on chromosome 16 (rs72770483, meta-

analysis p-value=5.54x10-10; Fig. 2f)19. SLC5A11 encodes a sodium-dependent myo-140 

inositol/glucose cotransporter20, highly expressed in the brain and intestine, where it 

participates in appetite control and glycemic regulation21,22. Observations here suggest a role 

for Butyricicoccus in the formation of glycemic traits and is consistent with studies 

suggesting that butyrate-producing bacteria are associated with blood glucose regulation23 

and insulin sensitivity in mice24. Separately, P/A of Veillonella was associated with 145 

rs117338748 (meta-analysis p-value=2.42x10-08; Fig. 2e) an eQTL for LIPC (in multiple 

tissues including thyroid, data from GTEx portal), which encodes the hepatic lipase enzyme 

involved in regulation of low-density lipoproteins (LDLs) and the transport of high-density 

lipoproteins (HDLs)19. Bacteria of the genus Veillonella are typical lactate fermenters that 

produce acetate, a substrate for lipogensis25, and propionate, which inhibits lipid synthesis26. 150 

Using data from FGFP (Table S6) to test for association with LDL levels (Methods and 

Supplementary Information), we observed that presence of Veillonella was observationally 

associated with a decrease in LDL-cholesterol by 5.39mg/dL after accounting for sex, age 

and the top 10 genetic principle components (F-test, p-value=5.99x10-04). 

We assessed overlap with previously reported mGWAS for (1) equivalent SNP-to-MT 155 

associations and (2) the strongest association regardless of the MT in the FGFP mGWAS 

(Tables S7-S9). We found a strong association overlapping with two genetic variants reported 

previously7. Located on chromosome two, they are rs4988235 (MCM6/LCT) and rs6730157 

(RAB3GAP1), 701 kilo-bases apart. Both variants are associated with Bifidobacterium 

abundance and located within a block of linkage disequilibrium (CEPH European : CEU r2 = 160 
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0.81)27. The association between rs4988235 and Bifidobacterium abundance is the only 

previously replicated mGWAS signal1,7,8,10–12. This association does not meet our study-wide 

or genome-wide threshold (meta-analysis β=-0.128, se=0.026, p-value=1.34x10-06), but as the 

only association seen in multiple studies, it remains the most reliable host genetic 

contribution to MT7. To highlight regions that potentially contribute to multiple MTs, we 165 

additionally queried if previously reported variants (n = 5221,7,8,10–12) gave evidence of 

association with any MT. Of all results residing outside the LCT region, five SNP-MT 

associations have p-values that survive Bonferroni correction in this targeted analysis (Score 

test p-value < 0.05/522; Supplementary Information)1. 

We searched PhenoScanner V228 for previously identified associations across variants 170 

with strong evidence for reliability (Table 1) and for rs4988235 at the MCM6 locus (Tables 

S10 and S11). Ten of those 14 variants have associations with other phenotypes at a p-value 

< 1x10-5 (Bonferroni p-value = 0.05/5000 phenotypes in database). Two of those variants 

have associations with other phenotypic traits that surpassed a p-value threshold of 2.5x10-8. 

They are unclassified Firmicutes:rs11788336 associated with age at menarche (p-value = 175 

1.7x10-10) and Bifidobacterium:rs4988235 associated with total cholesterol (p-value 

=3.98x10-14), low density lipoprotein (p-value = 3.22x10-11), forced vital capacity (2.27x10-

10), body fat percentage (1.10x10-9), and numerous other obesogenic traits. To expand this 

bioinformatics screen, we also identified gene expression and biological pathway 

enrichments for the 1,361 genes closest to sites with improved evidence of association in 180 

meta-analysis (+/- 250kb) using GENE2FUNC and integrated hypergeometric tests of the 

FUMA platform29 (Table S12). Gene expression enrichment (GTEx v7; Methods) was 

suggested for 30 tissues highlighted by brain (false discovery rate (FDR)=2.25x10-34), kidney 

(FDR=1.10x10-24), colon (FDR=4.42x10-15), stomach (FDR=7.62x10-14), and small intestine 

(FDR=2.44x10-05). Abundant enrichment was observed in the GWAS Catalog for 438 gene 185 

sets, including the top category obesity-related traits (FDR=1.12x10-31) and in addition, 137 

Canonical Pathways showed evidence for enrichment (FDR < 0.05), Table S12). 

Lastly, to explore the potential for associated microbiome variants to be used in causal 

inference methods30, we performed a series of analyses to examine the utility of signals in a 

causal analysis framework known as Mendelian randomization (MR). Eleven metabolic 190 

health, inflammatory and neurological traits were selected a priori for this analysis and 

variants with strong evidence for reliability (Table 1 and the replicated lactase persistence 

variant, rs4988235) where used as proxies for microbiome variation in two-sample, bi-

directional, MR analyses30 (Extended Data Fig. 3). Analyses were able to estimate 
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relationships between 5 MTs and 7 outcomes (Table 2, Tables S13 and S14). Amongst other 195 

hypothesis generating results, the strongest evidence from this analysis suggests that a lower 

Bifidobacterium abundance increases waist circumference (β=0.149SD, se=0.0290, Wald test 

p-value=2.82x10-07) and body mass index (BMI) (β=0.124SD, se=0.027, Wald test p-

value=3.37x10-06) (Table 2, Table S13). However, other than analytical power and instrument 

strength, a complication of these analyses and potentially for all future MR analyses of this 200 

nature, is the likely impact of indirect or disease driven effects being upstream of microbiome 

variation. For example, each additional copy of the lactase persistent allele at rs4988235 is 

estimated to decrease Bifidobacterium abundance and as such, individuals liable to be lactase 

persistent have reduced Bifidobacterium abundance. This association could be the product of 

a direct effect of rs4988235 on Bifidobacterium abundance, however it could equally reflect a 205 

reverse effect where a host environment matching an ability to metabolize lactose alters 

microbiome profile. Consequently, using rs4988235 as a proxy marker for Bifidobacterium to 

generate estimates of causal effect(s) may be providing information about Bifidobacterium 

effects, but could equally be reporting on the impact of variation in dietary habits. Indeed, the 

prominence of host environmental effects in host mGWAS (exemplified by the abundant 210 

overlap with GWAS catalog traits - Table S11 and S12), may be a common theme observed 

in genetic signals and ultimately the most parsimonious explanation for apparently causal 

effects in naïve MR analysis. 

Using a targeted meta-analysis framework, including the largest cross-sectional study 

with host genetics and microbiome data available, combined with distinct modeling of 215 

different MTs, we have detected evidence for host genetic associations to the gut 

microbiome. While environmental effects are likely to preside over host genetics as source of 

variation, this work illustrates that, even in the presence of unavoidable study-based 

heterogeneity, standardized and appropriate analytical protocols allow signal detection. We 

note that this study is limited to genus-level microbiome traits and that host-microbial 220 

interaction signals might be more pertinent at species or strain levels, but strain-level GWAS 

require much larger population sizes and metagenomic sequencing. Additionally, we have 

shown that associated loci can be deployed in frameworks designed to explore function and 

causality in otherwise observational associations between MTs and human phenotypes. To 

that end, future large-scale meta-analyses will likely advance this type of endeavor by 225 

providing larger catalogues of genetic variants associated with microbiome, however this 

approach is unlikely to be straightforward. It appears likely that signals captured in this type 

of mGWAS reflect a microbial footprint of disease or behavior and this complexity will need 
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to be accounted for in future analyses aiming to use human genetics to target causal effects of 

the gut microbiome31. Despite this, with a further expanded catalog of reliable loci 230 

contributing to microbiome variation, there will be greater insight into the contribution of 

host genotype to gut microbiome variation and better understanding of the relationship 

between gut microbiota, host molecular biology and disease. 
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Tables and Figures 
 Table 1: Meta-supported genetic variants. 

 

Genetic variants, representing LD-tagged loci, associated with 16S gut microbiome phenotypes at a meta-p-value smaller than 2.5x10-08. Presented are the microbial 270 
taxa, the trait model type - abundance (AB) or presence/absence (P/A) - the reference SNP identifier (rsID), the SNP ID composed of chromosome, base pair (build 

hg19), alternative allele and effect allele, chromosome, position (bp), the effect allele frequency (EAF), the meta estimated effect size (β; presented as odds ratios for 

P/A, and in SD units of change for AB outcomes), standard error (se, in log(OR) scale for P/A outcomes), two-sided inverse variance fixed effect meta p-value, meta-

sample size (N), Cochran’s Q heterogeneity statistic (Q), the heterogeneity p-value (hetP), the proportion of variation among studies due to heterogeneity (I2) and the 

physically closest gene (+/- 250kb). P, C, O, F, G preceding taxa names indicate the classification levels phylum, class, order, family and genus, while u indicates 275 

Taxon Model rsID SNP ID Chromosome Position (bp) EAF β se p-value N Q hetP I2 Closest gene 

G_Ruminococcus P/A rs150018970 9:134648925_G_A 9 134,648,925 0.010 0.111 0.294 6.68x10-14 3890 10.763 0.005 81.417 RAPGEF1 

G_Coprococcus P/A rs561177583 1:96741622_G_A 1 96,741,622 0.012 0.161 0.283 1.10x10-10 3890 22.036 0.000 90.924 NA 

G_Butyricicoccus AB rs55808472 16:24931691_G_A 16 24,931,691 0.073 0.257 0.041 5.54 x10-10 3890 1.248 0.536 0.000 ARHGAP17 

F_Sutterellaceae P/A rs4494297 11:44145588_G_T 11 44,145,588 0.011 0.144 0.314 6.80 x10-10 3890 3.478 0.176 42.497 EXT2 

G_Dialister P/A rs7118902 11:121440231_G_
A 11 121,440,231 0.306 0.734 0.053 4.14 x10-09 3890 0.684 0.710 0.000 SORL1 

G_u_F_Porphyromonadacea
e AB rs35980751 13:96011248_G_T 13 96,011,248 0.259 0.196 0.034 5.07 x10-09 2094 1.090 0.580 0.000 ABCC4 

G_Parabacteroides AB rs13207588 6:41519430_G_A 6 41,519,430 0.229 -0.180 0.031 6.89 x10-09 3890 5.120 0.077 60.938 FOXP4 

G_u_F_Erysipelotrichaceae P/A rs6733298 2:56450856_A_G 2 56,450,856 0.891 1.640 0.085 6.91 x10-09 3890 1.739 0.419 0.000 CCDC85A 

C_Gammaproteobacteria AB rs116865000 15:95639861_G_A 15 95,639,861 0.025 0.555 0.096 8.41 x10-09 3213 1.847 0.397 0.000 NA 

G_u_P_Firmicutes AB rs11788336 9:111688387_T_C 9 111,688,387 0.273 -0.143 0.025 1.66 x10-08 3485 5.388 0.068 62.882 IKBKAP 

G_u_P_Firmicutes P/A rs34656657 6:16613223_G_A 6 16,613,223 0.022 0.294 0.218 1.82 x10-08 3890 2.845 0.241 29.710 ATXN1 

G_u_O_Bacteroidales P/A rs116135844 4:168179343_G_A 4 168,179,343 0.043 2.109 0.134 2.32 x10-08 3890 1.969 0.374 0.000 SPOCK3 

G_Veillonella P/A rs117338748 15:58714239_G_A 15 58,714,239 0.019 2.887 0.190 2.42 x10-08 3890 2.109 0.348 5.178 LIPC 
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unclassified. Genetic variants are sorted by significance (p-value), with the top two surpassing the study-wide meta-analysis p-value shaded in blue. Taxon names 

include abbreviated taxonomic levels, where “G” represents genus, “F” family, “O” order, “P” phylum, and “u” unclassified. 
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Table 2: Bi-directional Mendelian Randomization. 
 
 280 
 

 

 

 

 285 
 

 

 

 

 290 
 

 

 

 

Results from bi-directional Mendelian randomization analysis querying causal relationships between microbial traits (MTs) on each trait and each trait on MTs. The 295 
exposure identifies the independent variable in the analysis, while the outcome is the dependent variable. Presented are the trait model type - abundance (AB) or 

presence/absence (P/A) and the number of SNPs used as “instruments” for the exposure (nSNP). Primary MR results were limited to two MR models, namely the 

inverse variance weighted (IVW) and Wald ratio methods. All other models were considered sensitivity analysis and can be found in Table S13. The beta, se, and p-

value provide the effect estimate (risk ratios for binary outcomes (*) and SD units of change for continuous outcomes), standard errors (in log(OR) scale for binary 

outcomes), and uncorrected two-sided model p-values for that analysis, respectively. Analyses were restricted to those MTs found in Table 1, with rank normalized 300 
Bifidobacterium (shaded in grey) as an addition. Sample sizes for each previously published GWAS disease trait can be found in Table S14.

 Exposure model Outcome nSNP MR method beta se p-value 

M
T 

->
 d

ise
as

e 

G_Dialister P/A Alzheimer's disease* 1 Wald ratio 0.810 0.055 1.35x10-04 
G_Butyricicoccus AB Inflammatory bowel disease* 1 Wald ratio 0.748 0.126 2.17x10-02 
G_u_P_Firmicutes AB Waist circumference 1 Wald ratio 0.070 0.033 3.34x10-02 
G_Butyricicoccus AB Alzheimer's disease* 1 Wald ratio 0.790 0.116 4.17x10-02 

G_u_F_Erysipelotrichaceae P/A Type 2 diabetes* 1 Wald ratio 0.906 0.049 4.48x10-02 
G_Dialister P/A Major depressive disorder* 1 Wald ratio 1.160 0.074 4.63x10-02 

G_Bifidobacterium AB Waist circumference 1 Wald ratio -0.149 0.029 2.82x10-07 
G_Bifidobacterium AB Body mass index 1 Wald ratio -0.123 0.027 3.37x10-06 
G_Bifidobacterium AB Waist-to-hip ratio 1 Wald ratio -0.060 0.029 3.74x10-02 

D
ise

as
e -

> 
M

T  Alzheimer's disease P/A G_Dialister* 5 IVW 1.809 0.239 1.33x10-02 
Parkinson's disease P/A G_u_P_Firmicutes* 1 Wald ratio 0.386 0.391 1.47x10-02 

Type 2 diabetes P/A G_u_P_Firmicutes* 10 IVW 0.636 0.195 2.02x10-02 
Crohn's disease P/A G_u_P_Firmicutes* 21 IVW 0.813 0.092 2.46x10-02 

Parkinson's disease AB G_Bifidobacterium 1 Wald ratio 0.225 0.107 3.46x10-02 
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Figure Legends 

 

Figure 1: MT-associated loci and heritability. Maximum likelihood phylogenetic tree of 305 

gut microbial genera used in association analysis. Circle sizes along the branches and nodes 

of the tree indicate the number of loci observed to be associated to microbial traits at that 

genus, family, order, class, or phylum levels. Core genera, as defined by Falony et al4, are 

starred. Bootstrap values over 60 are shown on branches. The length of the scale bar 

represents nucleotide substitutions per site. For illustrative purposes the number of associated 310 

loci, greater than 10 were set to the size 10, those larger than 100 were set to size 15. Bar 

plots on the right describe the prevalence (or proportional sample size n, where a prevalence 

of 1 = 2257) and the standardized mean abundance of the bacterial genera in the FGFP 

population, and the estimated heritability (bars represent standard errors, point estimates are 

in white; arrows identify those observations determined to be different from zero given a two-315 

sided GCTA-GREML likelihood ratio test p-value less than 0.05) of AB and P/A traits. All 

summary statistics, sample sizes, and p-values illustrated here can be found in Table S3. 
 

 

Figure 2: Genomic variants associated with microbial traits. Manhattan plots illustrating 320 

negative log10 two-sided (a) F-test or (b) chi-squared p-values derived from the FGFP cohort 

Score test association analysis for (a) rank normal transformed (RNT) abundances and (b) 

presence/absence (Hurdle Binary) states. The genome-wide threshold is indicated by the 

horizontal dashed line. (c) Manhattan plot for our targeted meta-analysis derived from 

Expectation-Maximization (em) parameter estimates. Sites that did not exhibit consistent 325 

effect estimates in meta-analysis are shaded in grey, while those sites that had a smaller two-

sided inverse-variance fixed-effect meta-p-value than the FGFP (em) p-value are colored in 

blue and red for P/A (HB) and RNT (AB) traits, respectively. Loci that achieved study-wide 

significance are highlighted by a blue tower, while those exceeding the genome-wide 

threshold are in shaded in grey. Dashed lines indicate the study-level (black), conventional 330 

genome-wide (grey), and target-meta analysis (red) thresholds of 1.57x10−10, 2.5x10−8, and 

1x10-5, respectively. LocusZoom plots of association results using the FGFP derived two-

sided chi-squared (HB) or F-test (RNT) p-values for three top SNPs that achieved the 

conventional genome-wide level p-value in the meta-analysis (d-f). The LD estimates are 

color coded (D′ ≥0.3 to >0.4 in purple) and recombination rate is indicated by the blue lines 335 
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and the z-axis. The proximal genes to the top SNPs are indicated in the bottom panel. 

Genotype to microbial trait structure for the tagged variant at each locus is illustrated in the 

insert, with (f) illustrating a boxplot (identifying the mean, first and third quartiles and the 

95% confidence intervals) of taxon abundance by genotypic state (homozygous non-effect 

allele (0), heterozygous (1), or homozygous effect allele (2)), while (d) and (e) inserts 340 

illustrate bar plots of the proportion of individuals in each genotypic state where the taxon is 

absent (red) or present (blue) in each of the observed genotypic states. Genotypic state 

sample sizes are (d) n0=1113, n1=927, n2=219, (e) n0=2177, n1=82, (f) n0=1948, n1=292, 

n2=19. Data used to generate these plots can be found on data.bris 

https://doi.org/10.5523/bris.22bqn399f9i432q56gt3wfhzlc) and Table S2. 345 
 
 
**High resolution figures are included as separate files.  
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Methods 
Study recruitment and sample collection 350 

Individuals from the Flanders region of Belgium were recruited into the Flemish Gut 

Flora Project (FGFP) through public announcements in print and social media through the 

FGFP website (www.vib.be/darmflora), from January 2013 onwards. Volunteers provided 

informed consent by mail and FGFP procedures were approved by the medical ethics 

committee of the University of Brussels/Brussels University Hospital (approval 355 

143201215505, 5/12/2012). A declaration concerning the FGFP privacy policy was submitted 

to the Belgian Commission for the Protection of Privacy. Additional information on the age, 

sex, height, weight BMI, waist hip ratio, and low-density lipoprotein distributions for FGFP 

cohort samples are provided in Supplementary Information (Table S6, Supplementary Fig. 3).  

FGFP samples and data was collected as in Falony et al4. In short, stool samples were 360 

collected between June 2013 and April 2016 by mail. Sampling kits were sent to volunteers’ 

home addresses and upon collection samples were stored at -18°C locally, cooled during 

delivery and again stored at -18°C upon arrival at a collection point until long-term storage 

was possible at -80°C at the research facility. A medical questionnaire was completed by 

each volunteers’ general practitioner (GP). The GPs also took new measurements of 365 

volunteers’ height, weight, hip and waist circumference, in addition to blood pressure and an 

eight-hour fasted blood sample.  

Fecal DNA was extracted from the frozen fecal samples using the PowerMicrobiome 

RNA Isolation Kit (MOBIO Laboratories Inc.) following manufacturer’s instructions, with 

the addition of a heating step (10min at 90°C) after vortexing/bead beating to increase DNA 370 

yield, and with the exclusion of DNA removal steps (steps 12 to 16 in the protocol). Further 

information on recruitment, sampling and DNA extraction can be found in Falony et al4. 

 

Sequencing and microbiome data processing 

For 2482 FGFP individuals, the V4 region of the 16S rRNA gene was amplified using 375 

the 515F/806R primer pair (GTGYCAGCMGCCGCGGTAA and 

GGACTACNVGGGTWTCTAAT, respectively), modified to contain a barcode sequence 

between each primer and the Illumina adaptor sequences to produce dual-barcoded libraries32. 

Size selection was performed using Agencourt AMPure to remove fragments below 200 

bases. Sequencing was carried out on the Illumina HiSeq platform at the VIB Nucleomics 380 

core laboratory (Leuven, Belgium) with 500 cycles (sequencing kit HiSeq-Rapid SBS kit, 
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version 2), producing 2x 250bp paired-end sequencing reads. After de-multiplexing with sdm 

as part of the LotuS pipeline33 without allowing for mismatches, fastq sequences were further 

analyzed per sample using DADA2 pipeline (v. 1.6)15. In brief, after inspecting quality, 

sequences were trimmed to remove the primers and the first 10 bases after the primer, 385 

keeping only 200 bases and 130 for the R1 and R2 files, respectively. After merging paired 

sequences and removing chimeras, compositional matrices for each taxonomical level were 

carried out using the Ribosomal Database Project (RDP) training set ‘rdp_train_set_16’. Each 

sample was randomly down-sampled, also known as a rarefaction step, reducing the 

microbiome to a size of 10,000 reads. Classifications with low confidence at the genus level 390 

(<0.8) were organized in an arbitrary taxon of “unclassified_group”. 

 

Microbiome trait preparation 

The DADA2 pipeline yielded count data for 499 taxa across five levels of the 

microbiota phylogeny from phylum to genus (Extended Data Fig. 4a and 4b). Quality control 395 

on an individual level was performed by constructing an initial multi-dimensional scaling plot 

using Bray Curtis distances derived from the vegdist() function of the vegan package, and the 

argument method=”bray”, followed by a Kruskal’s nMDS using the function isoMDS() from 

the MASS package using rarefaction data from genera level counts. Two individual samples 

were identified as outliers in their genus-level microbiome profiles in this analysis 400 

(Supplementary Fig. 4), with the outlier cut-off set at greater than or less than five standard 

deviations (SDs) from the population mean of both nMDS axes. These two individuals were 

removed from all subsequent analysis including all association analyses. 

α- and β-diversity statistics were estimated using the rarefaction data for all 288 

genera level taxa counts. The α-diversity statistics used are (1) the number of genera 405 

observed, defined as the number of non-zero counts observed across all genus-level taxa, (2) 

Shannon diversity as calculated with the function diversity() in the vegan package, using the 

arguments index = "shannon", MARGIN = 1, base = exp(1), and finally (3) Chao diversity 

estimated using the estimateR() function in the vegan package. β-diversity was estimated 

using a two-axis non-metric multidimensional scaling (nMDS) analysis using the function 410 

metaMDS() from the vegan package and the arguments, distance = "bray", k=2, try=20, 

trymax=50, and trace=FALSE. The stress of the nMDS was 0.209 (Extended Data Fig. 4c). 

Enterotyping (or community typing) based on Dirichlet multinomial mixtures (DMM) as 

previously described34 was performed using the DirichletMultinomial package in R. This 
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analysis was performed on the FGFP-genus-level relative abundance matrix rarefied to 415 

10,000 reads (Extended Data Fig. 4c). 

For association analysis, we retained any taxa that met two criteria - (1) make up ≥5% 

of the reads for at least 1 individual and (2) have ≥15% of individuals with non-zero data 

(Extended Data Fig. 5a; Tables S15 and S16). In total, 139 taxa across all phylogenetic levels 

met these criteria. However, given that lower phylogenetic level count data can be exactly, or 420 

very close to, the same as count data at higher phylogenetic levels, we wanted to eliminate 

any statistical redundancies in the mGWAS. As such, we estimated Pearson correlation 

coefficients among all taxa, and any taxa pair with a correlation coefficient greater than 0.985 

had the higher taxon level removed from association analyses. Seventy-three of the taxa 

exhibited such a correlation with at least one other taxa (Extended Data Figs. 5b and 5c). 425 

After removing higher-level taxa, 92 taxa remained for association analyses. The FGFP data 

set was used to identify these 92 taxa. 

Given the ecological, observational count nature of 16S data, many individuals 

contain zero counts for some taxa. As such, a common feature of this data is zero-inflation, 

which can prove problematic for data transformation and linear modeling (Supplementary 430 

Fig. 1 and 2). To account for this possibility, we identified those taxa that should go through a 

two-step hurdle analysis that includes a presence/absence (P/A) association analysis and a 

zero-truncated abundance (AB) mGWAS. To do so, the proportion of individuals that were 

zero (absent) for each taxon was estimated, and those with greater than 5% zeros were pushed 

through the hurdle analysis. First, all non-zero counts were turned into 1’s for the binary P/A 435 

mGWAS and second, all zero counts were turned into NAs for the zero-truncated AB 

mGWAS. Sixty-two of the 92 retained taxa fit these criteria and were processed in this 

manner. The other 30 MTs were treated as simple abundance phenotypes and also denoted as 

AB. We note that the outcome of this procedure of course is a variety of different sample 

sizes in both the zero-truncated abundance phenotypes and between the number of absent 440 

individuals in P/A traits among taxa. This is an outcome that will introduce variability in 

power among the mGWAS performed here. Again, we note that only the FGFP data set was 

used to identify model type for each taxon.  

In preparation for the association analysis, each abundance phenotype was rank 

normal transformed using the rntransform() function from the GenABEL35 package and fit to 445 

a multivariate linear model, using the function lm() from the stats package, with the following 

covariates: the extraction type (drill or cut), the extraction year, the aliquot year (for 16S 

rRNA sequencing), the person performing the aliquot, the library preparation plate, genotype 
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derived principle components 1-10, genotype predicted sex, and age. Residuals from this 

model were extracted using the function residuals() from the stats package and used in 450 

univariate linear modeling in the association analysis with genotypes, details below. Shapiro-

Wilk W statistics for the raw and residualized data distributions can be found in Tables S17-

S18. Analysis and preparation of the microbial trait data was carried out in R version 3.4.1 

“Single Candle”36. 

 455 

Observational analysis 

 To identify biological phenotypes that may be influenced by gut microbiome variation 

in the FGFP data set (generalized) linear models, as described above, where fit with age, sex, 

and the top ten principle components as covariates along with each of the microbial traits 

(MT) analysed in the GWAS (results not included, but available on request). Human 460 

phenotypes include blood lipids, glycemic traits, anthropomorphic traits, diet and Bristol 

stool score. To identify laboratory batch variables that may have influenced 16S microbiome 

variation, we set all available variables as dependent variables in univariate analysis, with 

each MT set as the response variable to identify those that should be included as covariates in 

the GWAS. Batch variables that exhibited independent effects on at least one MT are the 465 

extraction type (drill or cut), the extraction year, the aliquot year (for 16S rRNA sequencing), 

the person performing the aliquot, and the library preparation plate. Further information and 

results from these analyses can be found in Supplementary Information (Supplementary Fig. 

5).  

 470 

Genotyping 

A total of 2646 FGFP individuals were processed on two different arrays - the Human 

Core Exome v1.0 (N = 576 samples) and the Human Core Exome v1.1 (N = 2112 samples), 

which included repeat measurements. Allele calling was performed using GenomeStudio 

v2.0.4 following manufacturers default recommendations. While running GenomeStudio Log 475 

R Ratio (LRR) and B Allele Frequency (BAF) statistics were also extracted for copy number 

variant (CNV) calling with PennCNV37. Unmapped and duplicate positions were removed, 

and the two batches were merged into a single data set resulting in 545,535 overlapping 

markers.  

Variant quality control (QC) steps included the removal of unmapped variants (n = 480 

777), duplicated sites (n = 6899), variants with >5% missingness (n = 3445), those with 

Hardy-Weinberg equilibrium deviations p-values < 1x10-05 - after accounting for relatedness 
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(n = 404), those with ambiguous alleles (n = 12,095), and those that are tri-allelic or allele 

flip errors (n = 1026). A total of 509,886 variants remained after QC. Sample QC included a 

cross check between genetically predicted sex and available sex information (117 485 

mismatches), removal of array failed samples (n = 5), samples with >5% variant missingness 

(n = 53), samples with heterozygosity ± three SDs from the population mean estimate (n = 

33), the removal of cryptically related (relatedness > 0.025) samples (n = 262) using the 

function in rel-cutoff in plink 1.938, and those with genotypic discordance among replicates (n 

= 8). Data was then merged with that from phase three of the 1000 Genomes Project to 490 

identify those individuals exhibiting ancestry components from populations outside of 

Western Europe (n = 34), using principal component analysis (PCA, Supplementary Fig. 6). 

After QC 2293 individuals remained (Supplementary Fig. 7), 2257 of which were retained 

given the availability of microbiome data. 

FGFP genotype data was phased using SHAPEIT339 and imputed with IMPUTE240 495 

using UK10K and all 1000 Genome Project phase 3 samples as the reference panel41. 

Following imputation the 39,168,681 SNPs were filtered to retain only those sites with a 

minor allele frequency greater than or equal to 1% and with an imputation quality score 

(INFO) greater than or equal to 0.3, as estimated with qctool v2.0 -snp-stats 

(www.well.ox.ac.uk/~gav/qctool). In total 7,711,310 SNPs were retained for the FGFP 500 

mGWAS. A flowchart of this genotyping quality control steps is available in Extended Data 

Fig. 6a. 

To acquire insertion deletion variants, the data was also phased and imputed to 

Genome of Netherlands reference panel using Impute2 v2.3.042. All indels were isolated from 

this imputed data set and run in addition to the imputation data set from above. 505 

Copy number variants (CNVs) were called with PennCNV v1.0.437 using the perl 

script detect_cnv.pl. Cleaning was performed with the perl script clean_cnv.pl, and filtered 

with the script filter_cnv.pl using the flags --numsnp 5 --length 250 -qclrrsd 0.35 -qcnumcnv 

716. Unique CNVs were defined by unique base pair start and stop locations. In total 35,020 

unique CNVs were identified across the FGFP sample; 949 CNVs were shared across 1% or 510 

more individuals. Global CNV burden was estimated for each individual as the number of 

CNVs that do not equal the copy number count of 2. Insertions (>2) and deletions (<2) were 

treated the same. Regional CNV burden was calculated in sliding windows of 200 kilo-bases 

and estimated following the same rules as for global burden estimation. 

 515 
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Heritability 

Chip-based heritability was estimated for each microbiome presence/absence (62) 

abundance (92) and α-diversity metric (3) phenotype used in the association analysis, using 

the GCTA-GREML restricted maximum likelihood (REML) method, and a single genetic 520 

relationship matrix (GRM) as implemented in GCTA version 1.91.1beta43. The GREML 

power calculator was used to estimate the power to detect genetic covariation in the FGFP 

data set (Extended Data Fig. 7)44. For the abundance phenotypes, the residualized data used 

in the association analyses were used in the estimation of heritability. For binary phenotypes, 

the same covariates, mentioned above, were fit to the trait by GCTA. To produce the genetic 525 

relationship matrix (GRM) for running GCTA, we first identified all genotypes with an info 

(imputation quality) score greater than or equal to 0.9, a minor allele frequency greater than 

0.05, and not deviating from Hardy-Weinberg equilibrium. Genotype probability score data 

was converted to hard call plink format data using qctools. SNP variation was linkage 

disequilibrium pruned using plink2 and the flag --indep-pairwise 50 5 0.45. Finally, the GRM 530 

was constructed using GCTA and the flags --grm-cutoff 0.025 --make-grm. In addition, for a 

more direct comparison with previously published studies7, we also performed box-cox 

transformations of the abundance phenotypes and regressed out our covariates.  

 

Primary FGFP association analysis 535 

Following genotype and microbiome QC, 2257 individuals remained, and 2223 

remained after accounting for data missingness among covariates. All microbiome α-

diversity, abundance and presence/absence associations analyses were performed using 

snptest.2.5.045. All abundance traits were regressed on covariates (the aliquoting procedure, 

the extraction year, the aliquot year (for 16S rRNA sequencing), the person performing the 540 

aliquot, the library preparation plate, genotype derived principle components 1-10, genotype 

predicted sex, and age) and residuals were regressed on genotype probability data in a 

univariate fashion, assuming an additive genetic model and using the missing data likelihood 

score test in snptest (snptest flags: -frequentist 1 -method score and -use_raw_phenotypes). 

Presence/absence mGWAS were performed using the same covariates as those described 545 

above for abundance traits in a multivariate analysis again using the same snptest settings. 

These primary analyses were performed as a first pass signal detection step in order to 

determine signals to take forward for meta-analysis and to confirm the ability of score 

analyses to effectively rank the expectation–maximization (em) method (Supplementary Fig. 

8). Association analyses for enterotype were run using a multinomial logistic regression for 550 



 21 

categorical traits as employed by snptest.2.5.4-beta3 and the flags -frequentist add -method 

newml and setting the -baseline_phenotype to “Bacteroides1”. Finally, associations for β-

diversity (a two axis MDS) were run using a bespoke R script and the function manova() 

from the stats package, in a multivariate analysis using the same covariates stated above and 

genotype dosages as derived by qctool v2.0. A flow chart of the mGWAS is provided in 555 

Extended Data Fig. 6b. 

 

Data preparation in German cohorts 

The FoCus11 and PopGen16 cohorts were genotyped using the Illumina Omni Express 

+ Exome array and the Affymetrix Genome-Wide Human SNP Array 6.0, respectively. 560 

Genotyping QC and imputation in these two cohorts were performed following protocols 

defined here: https://github.com/alexa-kur/miQTL_cookbook#chapter-2-genotype-

imputation. SNPs where filtered as a MAF of 0.01 and an INFO score of 0.3, as was done in 

the FGFP cohort. Microbiome census data for the Kiel based cohorts, targeting the 16S V1-

V2 regions, was generated as described previously11. Data processing was performed using 565 

DADA215 modified for V1-V2 (https://github.com/mruehlemann/rep-

cookbook/blob/master/scripts/Seq_dada2_V12_Kiel.R) following the same standardized 

workflow described in the above Microbiome trait preparation section. α- and β-diversity 

metrics, enterotypes, and abundance measures for association analysis were calculated as 

previously indicated. Three genera, Escherichia Shigella, Hespellia, and Methanobrevibacter 570 

were not present in the FoCus or PopGen cohorts (Supplementary Fig. 9). As such, in all 

three instances, their P/A and zero-truncated AB MTs were not available for association and 

inclusion in the meta-analysis. Association analyses were carried out as described below.  

 

Meta-analysis 575 

For the purposes of the meta-analysis, all outcomes were defined as described above 

in the “Primary FGFP association analysis” section, however, the expectation–maximization 

(em) method was used, rather than the score method, to account for genotype uncertainty and 

given the performance of “score” at low allele frequency and phenotype/trait group size 

(Supplementary Information).  580 

The meta analyses were performed using the inverse-variance fixed effects method 

(method 1) as implemented in the software package META46. The imputation quality 

threshold for each SNP was set at 0.3. To identify loci or unique genomic regions defined by 

shared linkage disequilibrium, we clumped all meta-supported markers using plink, the flag –
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clump and the p-values derived from the em meta-analysis. A locus or index tags was only 585 

identified if their meta-analysis p-value was < 0.0001. 

Beta estimations (genotypic effects) for P/A traits are defined as an increase in the log 

odds ratio for each additional effect allele. For AB traits, beta is defined as a change in SD 

units for each effect allele carried. The study-wide p-value threshold was defined as a 

Bonferroni correction assuming 2 million independent genetic association tests across 159 590 

mGWAS (0.05 / (2x1006 x 159) = 1.57x10-10). 

 

Phylogenetic analysis 

Representative 16S rRNA gene sequences of all the genera identified were retrieved 

from the RDP database. Multiple sequence alignments were performed for all taxa and for 595 

genera included in the GWAS analyses using MUSCLE v.3.847. The alignments were used to 

build maximum likelihood trees using FastTree v2.1.048 with default parameters. iTOL49 was 

used for visualizing the trees with corresponding metadata, including the number of loci, 

prevalence of the MT, abundance of the MT and heritability of the AB and P/A trait(s) (Fig. 1 

and Table S3).  600 

 

Functional annotation and enrichment 

Annotation of variants of interest was carried out with the biomaRt R package50 with 

additional linkage disequilibrium based annotation and enrichment analysis with DEPICT51. 

When using biomaRt, we referenced the (feb2014.archive.ensembl.org) Ensembl 75 archive 605 

for GRCh37/hg19 coordinates and identified all genes and the closest gene within 250 kilo-

bases up- and down-stream of each polymorphism. Given that DEPICT utilizes pre-computed 

LD structure from genotypes derived from 1000 Genomes Project Phase 1 CEU, GBR and 

TSI and HapMap Project release 2 and 3 CEU data, a substantial proportion of our SNPs of 

interest were not represented. As such, we identified tag SNPs for our SNPs that are also 610 

present in the DEPICT data set, when possible. To do so, we extracted dosage data for all 

variants +/- 200kb of our variant, using qctools, and then computing r2 using a bespoke R 

script. We kept all variants with an r2 > 0.2 with our SNP of interest and then queried if any 

of those tag SNPs existed in the DEPICT data. If more than one was present, we kept the one 

with the highest r2 value. Subsequently, the list of reference SNP identifiers (rs-ids) 615 

composed of our SNPs of interest, when they existed in the DEPICT data, or alternatively tag 

SNPs, when they were present, were run through the DEPICT framework. Each MTs was run 

individually using FGFP variants associated at a threshold of 1x10-5. Results from these 
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analyses, gene enrichment, tissue enrichment, and gene priority are available in Table S19, 

S20, S21, respectively. 620 

The Gene-Tissue Expression portal (gtexportal.org) was used to determine if 

associated variants, specifically discussed in the text, were also expression quantitative trait 

loci (gtexportal.org). 

When evaluating enrichment for all meta-supported variants as a unit, we extracted 

the closest gene (within +/- 250kb) for each variant and used GENE2FUNC 625 

(http://fuma.ctglab.nl/), and its integrated hypergeometric test, to identify tissue and pathways 

functional enriched, as reported in Table S12. The background set of genes, included in 

hypergeometric test, was 19,283 protein coding genes. The default parameter of GEN2FUNC 

in the FUMA platform29.  

All microbial traits analyzed were also analyzed under the GARFIELD52 framework 630 

for identification of regulatory and tissue enrichments. This analysis uses the complete 

GWAS data set of a trait, so pooling data from multiple traits, as done above, was not carried 

out. Further, the FGFP results only were used in these analyses. The results of these analyses 

are available in Table S22. 

Finally, variants with associations that met our study-wide and genome-wide 635 

confidence thresholds as well as those that may be deemed as replicated from other studies 

were passed through PhenoScanner V2, an online platform to screen for genotype-to-

phenotype associations, expression quantitative loci, and methylation quantitative loci from 

previously published genome-wide -omics association analysis28. All of these results are 

provided in Table S11.  640 

 

Applied analyses 

We undertook two-sample, bi-directional Mendelian randomization30 analyses to 

estimate potentially causal relationships between gut MTs and 11 metabolic health, 

inflammatory and neurological traits. These were selected a priori as they have all been 645 

repeatedly been associated with variation in the gut microbiome and have been the focus of 

credible and accessible GWAS studies. They include waist circumference, waist-hip ratio, 

BMI, and type 2 diabetes; Crohn’s disease, inflammatory bowel disease, ulcerative colitis and 

rheumatoid arthritis; and Alzheimer’s disease, Parkinson’s disease and major depressive 

disorder.  650 

MR analyses interrogating the role of the gut microbiome on each of these outcomes 

were restricted to the gut MTs that had the greatest evidence of a host-genetic contribution - 
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where independent meta-derived genetic variants reaching a genome-wide threshold of 

p<2.5x10-08 were used as “instruments”. In order to assess causality in relationships from 

microbiome to outcome, summary statistics for these genetic variants were obtained from 655 

publicly available genome-wide summary-level data for the 11 metabolic health, 

inflammatory and neurological traits. For analyses assessing causality in relationships from 

each trait to microbiome, independent genetic variants reaching a genome-wide threshold of 

p<5x10-08 in each respective GWAS were used as “instruments” for the relevant trait. 

Summary statistics were obtained from the current mGWAS meta-analysis.  660 

Once all summary-level data was obtained, causal effect estimates were derived using 

the inverse variance weighted (IVW)53 method (or the Wald ratio, if only 1 genetic variant 

was available) alongside sensitivity analyses including the weighted median53, weighted 

mode54 and MR-Egger55 tests (if ≥3 genetic variants were available). All exploratory MR 

analyses were conducted using the TwoSampleMR package 665 

(https://github.com/MRCIEU/TwoSampleMR) in R version 3.4.1 with RStudio, created and 

provided by MR-Base (www.mrbase.org/)56, a large-scale database of GWAS summary-level 

data and automated pipeline for two-sample MR analyses. Summary-level GWAS results for 

the 11 selected metabolic health, inflammatory and neurological traits were obtained from the 

following publications (indicated with pubmed ID): waist circumference and waist-to-hip 670 

ratio (25673412); BMI (25673413); type 2 diabetes (22885922); Crohn’s disease, 

inflammatory bowel disease and ulcerative colitis (26192919); rheumatoid arthritis 

(24390342); Alzheimer’s disease (24162737), Parkinson’s disease (19915575) and major 

depressive disorder (22472876). 

In analyses interrogating the impact of each continuous (AB) MT on each outcome, 675 

effect estimates represent the SD change for continuous outcomes (waist circumference, 

waist-to-hip ratio and BMI) or risk ratio for binary outcomes (type 2 diabetes, Crohn’s 

disease, inflammatory bowel disease, ulcerative colitis, Alzheimer’s disease, major 

depressive disorder, Parkinson’s disease and rheumatoid arthritis) for a SD unit of AB MT 

phenotype. For analyses interrogating the impact of each binary (P/A) MT on each outcome, 680 

effect estimates represent the SD change for continuous outcomes or risk ratio for binary 

outcomes for a doubling of the genetic liability to presence (vs. absence) of each P/A MT 

phenotype. Results reaching a p-value threshold of (p<0.05) are presented (Table 2). 
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Inter-study catalog 685 

 A catalog of previously published associations was compiled starting from the work 

of Rothschild et al1, and includes Blekham et al8, Davenport et al9, Bonder et al10, Goodrich 

et al7, Turpin et al12, and Wang et al11. Data are available in Tables S1, S7, and S8 

(Supplementary Figs. 10 and 11). 

Code Availability 690 

The full analysis pipeline is available at https://github.com/kul-fgfpgwas/rep-

cookbook and includes four parts: (i) microbiome processing; (ii) genotype quality control 

and imputation; (iii) genome-wide association analysis and (iv) phylogenetic analysis. 

 

Data availability 695 

All microbiome GWAS summary statistics are available online at the University of 

Bristol data repository, data.bris, at 

https://doi.org/10.5523/bris.22bqn399f9i432q56gt3wfhzlc. FGFP rarefaction count and 

transformed microbial trait data can be found in Supplementary Table 2. FGFP genotype data 

and host metadata from this study are not open but are available in accordance and in consent 700 

with ethical permission through managed access subject to a data use agreement with the 

Flemish Gut Flora Project and organised via Principal Investigator Jeroen Raes. The process 

of enquiry for data access is outlined as follows: Upon data request by email to 

jeroen.raes@kuleuven.be, the FGFP data access committee will evaluate access permission, 

which will be granted upon signature of a data use agreement between the governing legal 705 

entities. This is outlined on the study website http://www.raeslab.org/companion/fgfp-gwas/. 

Raw 16S data is available at the European Genome/Phenome Archive (https://ega-

archive.org) under accession number EGAS00001004420. The datasets from 

Universitätsklinikums Schleswig-Holstein are available by application through their biobank 

(https://www.uksh.de/p2n/). 710 
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