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Abstract 

Psychological research often builds on between-group comparisons of (measurements of) 

latent variables; for instance, to evaluate cross-cultural differences in neuroticism or mindfulness. 

A critical assumption in such comparative research is that the same latent variable(s) are measured 

in exactly the same way across all groups (i.e., measurement invariance). Otherwise, one would 

be comparing apples and oranges. Nowadays, measurement invariance is often tested across a large 

number of groups by means of multigroup factor analysis. When the assumption is untenable, one 

may compare group-specific measurement models to pinpoint sources of non-invariance, but the 

number of pairwise comparisons exponentially increases with the number of groups. This makes 

it hard to unravel invariances from non-invariances and for which groups they apply, and it elevates 

the chances of falsely detecting non-invariance. An intuitive solution is clustering the groups into 

a few clusters based on the measurement model parameters. Therefore, we present mixture 

multigroup factor analysis (MMG-FA) which clusters the groups according to a specific level of 

measurement invariance. Specifically, in this paper, clusters of groups with metric invariance (i.e., 

equal factor loadings) are obtained by making the loadings cluster-specific, whereas other 

parameters (i.e., intercepts, factor (co)variances, residual variances) are still allowed to differ 

between groups within a cluster. MMG-FA was found to perform well in an extensive simulation 

study, but a larger sample size within groups is required for recovering more subtle loading 

differences. Its empirical value is illustrated for data on the social value of emotions and data on 

emotional acculturation. 

Keywords: Measurement invariance, multigroup factor analysis, metric invariance, factor loading 

invariance, mixture modeling. 
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1. Introduction 

In psychological research, one often measures latent variables (e.g., personality traits, 

attitudes) for several groups in order to evaluate between-group differences therein. A few 

examples are gender differences in neuroticism (Lynn & Martin, 1997), or cross-cultural 

differences in mindfulness (Christopher, Charoensuk, Gilbert, Neary, & Pearce, 2009). A critical 

assumption in such comparative research is that the same latent variable(s) are measured in exactly 

the same way across all groups. Otherwise, comparing the latent variables across groups would be 

like comparing apples and oranges (Chen, 2008; Greiff, & Scherer, 2018). This assumption is 

referred to as ‘measurement invariance’ (MI) or ‘measurement equivalence’ (Meredith, 1993). 

Specifically, how the latent variables are measured by, for instance, questionnaire items is 

expressed by the so-called ‘measurement model’ (MM), indicating which items measure which 

latent variables, and this MM needs to be invariant across groups. 

The MM is traditionally evaluated with item response theory (IRT; De Ayala, 2013) in case 

of dichotomous or ordinal items, and with factor analysis (Lawley & Maxwell, 1962) when the 

items are considered to be continuous. In this paper, we focus on factor analysis, where the so-

called ‘factors’ ideally correspond to the latent variables of interest. The extent to which an item 

relates to a factor is quantified by a ‘factor loading’. When one wants to impose a priori 

assumptions about which items are measuring which factors (by fixing certain loadings to zero) 

and evaluate the fit of this MM for the data at hand, confirmatory factor analysis (CFA) is used. 

In contrast, when one wants to explore whether and how the intended latent variables are measured 

by the items, exploratory factor analysis (EFA) is used. Regardless of the MM being evaluated 

with CFA or EFA, measurement invariance pertains to the equality (i.e., invariance) of certain 

parameters of the factor model across all groups. The tenability of this invariance is tested by 
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means of multigroup factor analysis (MG-FA; Dolan, Oort, Stoel, & Wicherts, 2009; Jöreskog, 

1971; Sörbom, 1974) with a sequence of progressively more restricted models (see Section 2 for 

more details). Specifically, in multigroup CFA, one starts by inspecting model fit in order to 

evaluate ‘configural invariance’, that is, whether the number of factors and the imposed pattern of 

zero loadings holds across the groups (Meredith, 1993). In multigroup EFA, no specific zero 

loadings are imposed. Next, in both approaches, the tenability of ‘weak’ or ‘metric invariance’ is 

evaluated by restricting the factor loadings to be equal across groups. When metric invariance 

holds, latent structures (e.g., how neuroticism affects another latent variable) are comparable 

across groups. Subsequently, ‘strong’ or ‘scalar invariance’ is tested by also restricting the item 

intercepts to be equal across groups. The finding of scalar invariance is a prerequisite for the 

between-group comparability of latent means (e.g., the mean level of neuroticism). Finally, ‘strict 

invariance’ or invariance of uniquenesses pertains to the equality of the residual or ‘unique’ 

variances of the items across groups. When combined with equal factor variances, this is a test of 

the equivalence of item reliability across groups (Vandenberg & Lance, 2000). Each level of 

invariance is tested by inspecting whether model fit drops significantly when the relevant MM 

parameters are restricted to be equal across groups (Cheung & Rensvold, 2002).  

When a certain level of MI is rejected across groups, one may resort to pairwise 

comparisons of group-specific MM parameters in an attempt to pinpoint sources of non-invariance 

– i.e., which parameters are non-invariant for which groups? – and figure out how to move forward. 

However, the number of pairwise comparisons of group-specific parameters exponentially 

increases as the number of groups increases and, nowadays, the number of groups involved is on 

the rise (Kim, Cao, Wang, & Nguyen, 2017; Rutkowski & Svetina, 2014). The growing abundance 

of large-scale cross-national surveys such as the World Values Survey, European Social Survey, 
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and International Social Survey Programme exemplify this trend. This poses two important 

problems (Byrne & van de Vijver, 2010; Rutkowski & Svetina, 2014): Firstly, the multitude of 

comparisons makes it hard to disentangle invariant and non-invariant parameters and for which 

groups they apply. Secondly, it elevates the chances of falsely detecting non-invariance with 

hypothesis testing. Therefore, after the hard work of collecting data from many groups, researchers 

often cannot proceed with the comparisons of interest, at least not without risking invalid results. 

Though, theoretically, each group may have its own MM, realistically, some groups are 

likely to have the same measurement parameters. Therefore, a few clusters of groups may emerge 

with respect to these parameters. To capture these clusters, we present a new method called 

‘mixture multigroup factor analysis’ (MMG-FA), which is an extension of multigroup factor 

analysis that performs a mixture clustering (McLachlan & Peel, 2000) of the groups based on (a 

specific subset of) the MM parameters, whereas other parameters remain group-specific. 

Specifically, to tackle metric (non-)invariance, the current paper focuses on a variant of MMG-FA 

that clusters the groups purely on their factor loadings, whereas parameters irrelevant for metric 

invariance are estimated per group. Thus, irrespective of other parameter differences, groups with 

(near-)identical factor loadings end up in the same mixture cluster and are modeled with one set 

of cluster-specific factor loadings. Clustering groups based on their MM parameters – i.e., factor 

loadings in this case – not only confines the number of comparisons needed to identify sources of 

non-invariance, the clustering of the countries is an interesting result in itself. Firstly, it indicates 

for which groups metric invariance holds. Secondly, the clustering may indicate substantively 

interesting between-group differences, for instance, cross-cultural differences in the functioning 

of a questionnaire item or in the latent variables measured by the items. Obviously, the mixture 

clustering of groups introduces an important model selection problem, i.e., the user needs to 
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determine the most appropriate number of clusters for a given data set. A solution for this model 

selection problem is discussed and evaluated in this paper. 

In the literature, several methods have been proposed to evaluate measurement (non-

)invariance for many groups, but MMG-FA differs from them in two important respects. Firstly, 

the existing methods are predominantly CFA-based – for an overview, see Kim et al. (2017) – 

whereas EFA has some important advantages when it comes to evaluating MI (Marsh, Morin, 

Parker, & Kaur, 2014): Firstly, assumed MMs often do not hold or not for all groups (i.e., 

configural invariance fails). In that case, respecifying CFA models in an exploratory way 

capitalizes on chance (Browne, 2001; MacCallum, Roznowski, & Necowitz, 1992) and using EFA 

right from the start is the better strategy (Gerbing & Hamilton, 1996). Secondly, even when the 

MM holds, fixed zero loadings are often too restrictive (Asparouhov & Muthén, 2009; Muthén & 

Asparouhov, 2012). For instance, for the well-known Big five model of personality, it was shown 

that zero loadings are untenable (McCrae, Zonderman, Costa, Bond, & Paunonen, 1996). Thirdly, 

model misspecifications can severely bias the estimates of other MM parameters, such as the other 

loadings (Anderson & Gerbing, 1982; Bollen, Kirby, Curran, Paxton, & Chen, 2007), and may 

differ across groups (e.g., Byrne & van de Vijver, 2010; Christopher, Charoensuk, Gilbert, Neary, 

& Pearce, 2009). For all these reasons and to prevent the clustering from being affected by model 

misspecifications, MMG-FA applies EFA for estimating the cluster-specific factor loadings. As a 

result, MMG-FA simultaneously models differences in the pattern of (near-)zero and non-zero 

loadings as well as differences in the strength of the non-zero loadings (i.e., both configural and 

metric non-invariances). 

Secondly, some existing CFA-based (Kim et al., 2017) and EFA-based (De Roover, 

Vermunt, Timmerman, & Ceulemans, 2017) methods apply a mixture approach similar to MMG-
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FA, but neither of them clusters the groups exclusively on specific subsets of the MM parameters. 

The latter is an important step forward as MI is traditionally evaluated in a stepwise manner, where 

different levels of (non-)invariance have different implications in terms of which comparisons are 

(in)valid (Meredith, 1993). To allow for substantive researchers to focus on the level of invariance 

they need for a particular research question or to scrutinize non-invariances in a stepwise manner, 

MMG-FA clusters groups based on their MM parameters in a level-specific way, where metric 

invariance is the focus of this paper. Metric invariance is sufficient for studies where the 

comparability of latent structures is of interest rather than comparing latent means (e.g., Byrne, 

Baron, & Balev, 1998; Byrne & Shavelson, 1986; Cooke, Kosson, & Michie, 2001; Marsh, Hau, 

Artelt, Baumert, & Peschar, 2006). Suggestions on how to continue towards higher levels of MI 

are given in the Discussion. Note that clustering the groups based on all MM parameters at the 

same time (i.e., also on intercepts and unique variances) would imply the rather stringent 

assumption that one clustering is underlying all MM parameters, whereas some parameter 

differences may be explained by another clustering – possibly with a higher number of clusters – 

or they may be group-specific. When this assumption does not hold, the obtained clustering may 

even fail to capture the underlying factor loading differences. For the same reason, MMG-FA also 

sets aside so-called ‘structural’ parameters that are irrelevant to the MI question – such as 

differences in factor (co)variances. Surely, when clustering groups in terms of how the items of a 

questionnaire measured, for instance, neuroticism and extraversion, it is irrelevant how the groups 

differ with respect to the (co)variance of neuroticism and extraversion. Clustering the groups based 

on a specific subset of MM parameters also limits the number of parameter comparisons needed 

to untangle what is different between which clusters, which adds to the insightfulness and 
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efficiency of the method and again lowers the risk of false positives when performing hypothesis 

tests for parameter differences. 

The remainder of this paper is organized as follows: Section 2 recaps MG-FA and discusses 

its extension into MMG-FA, covering details about model specification, model estimation and 

model selection. Section 3 describes an extensive simulation study to evaluate the performance of 

MMG-FA in terms of model estimation and model selection. Section 4 illustrates the added value 

of MMG-FA for cross-cultural data sets on the social value of emotions and on emotional 

acculturation. Section 5 concludes with some points of discussion and directions for future 

research. 

 

2. Method 

2.1. Multigroup factor analysis 

Multigroup factor analysis (MG-FA; Jöreskog, 1971; Sörbom, 1974) operates on data from 

multiple groups (e.g., patient groups, countries). The groups are indicated by g = 1, …, G and the 

subjects by 
gn  = 1, …, Ng. The scores for subject 

gn  on the J items are denoted by the vector 
gnx  

and, per group g, they are gathered in an Ng × J matrix Xg. The factor model for 
gnx is written as: 

 
g g gn g g n n  x τ Λ η ε   (1) 

where 
gτ  indicates a J-dimensional group-specific intercept vector, 

gΛ  denotes a J × Q matrix of 

group-specific factor loadings,
gnη is a Q-dimensional vector of scores on the Q factors and 

gnε is a 

J-dimensional vector of residuals. The factor loadings indicate the linear item-factor associations. 

The factor scores indicate how subject 
gn  scores on the latent variables and are assumed to be 
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identically and independently distributed (i.i.d.) as  ,g gMVN α Φ , independently of 
gnε , which 

are i.i.d. as  , gMVN 0 Ψ . The factor means of group g are denoted by 
gα , whereas 

gΦ  pertains 

to the factor (co)variances and 
gΨ  to a diagonal matrix containing the residual or unique variances 

of the items in group g. The model-implied covariance matrix for group g is 
g g g g g

 Λ Φ Λ Ψ

. In multigroup EFA (MG-EFA; Dolan, Oort, Stoel, & Wicherts, 2009), the group-specific factors 

have rotational freedom which is dealt with by a rotation criterion (De Roover & Vermunt, 2019). 

Estimating Equation 1 per group corresponds to the baseline model for MI testing. To 

partially identify the model, the factor means 
gα  are fixed to zero and the factor covariance matrix 

gΦ  to identity (i.e., orthonormal factors: uncorrelated with variances equal to one) per group g. 

That fact that MG-EFA does not impose specific zero loadings on 
gΛ  makes it more flexible than 

multigroup CFA (MG-CFA; Meredith, & Teresi, 2006; Sörbom, 1974) in terms of the factor 

loading differences that can be found (De Roover & Vermunt, 2019). MI is tested by the following 

sequence of progressively more restricted models (Cheung & Rensvold, 2002; Dolan et al., 2009). 

Weak or metric invariance is evaluated by comparing the fit of the baseline model and the model 

with invariant loadings, i.e., 
g Λ Λ  for g = 1, …, G. For the latter model, orthonormality of the 

factors is no longer imposed per group but, e.g., for the mean factor (co)variances across groups; 

1

1 G

g g

g

N
N 

 Φ I  where I refers to a Q × Q identity matrix. Strong or scalar invariance is tested by 

also restricting the intercepts 
gτ  to be equal across groups, while freely estimating factor means 

gα  for all groups but one. Strict invariance is assessed by restricting the unique variances, i.e., the 

diagonal of 
gΨ , to be the same across groups. Several criteria are available to evaluate whether a 
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drop in fit when moving towards a more restricted model is statistically or practically significant. 

Since ² - difference tests for nested models are strongly affected by sample size, we focus on 

other fit indices such as the CFI and RMSEA. Lack of invariance is indicated when the decrease 

in CFI (CFI) is larger than .01 and the increase in RMSEA ( RMSEA) exceeds .01 when 

imposing invariant MM parameters (Chen, 2007; Cheung & Rensvold, 2002). However, for 

detecting metric non-invariance across many groups, more liberal cut-off values should be used, 

i.e., CFI < –.02 and RMSEA > .03 (Rutkowski & Svetina, 2014).  

In case of metric non-invariance – the focus of this paper –  one can return to the baseline 

model and compare group-specific loadings to locate non-invariances (e.g., De Roover & 

Vermunt, 2019), but this becomes infeasible and problematic when more than a few groups are 

involved (see Introduction). For instance, comparing factor loadings for five groups implies only 

10 pairwise comparisons, but 10 groups require 45 comparisons and 47 groups (as in the empirical 

example; Section 4) result in 1,081 comparisons. To tie down the number of comparisons needed 

to identify non-invariances, we present mixture multigroup factor analysis. 

2.2. Mixture multigroup factor analysis 

2.2.1. Model specification 

Mixture multigroup factor analysis (MMG-FA) aims to gather groups into a few clusters 

according to the equivalence of their MM parameters; specifically, their factor loadings. To this 

end, the observations 
gnx  are assumed to be sampled from a mixture of K multivariate normal 

distributions where all observations of a group are assumed to be sampled from the same normal 

distribution. Thus, the mixture clustering operates at the group level, which is an important 

difference from the well-known factor mixture modeling (Lubke & Muthén, 2005). In the 
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remainder of the paper, the K mixture components will be referred to as ‘clusters’. Formally, the 

MMG-FA model for group g is written as follows: 

    
1 1 1

; ; ( ; )
g

g

g

NK K

g k gk g gk k n g gk gk k gk k g

k k n

f f MVN with 
  

     X X x μ Λ Φ Λ Ψ    (2) 

where f is the total population density function, and θ refers to the total set of parameters. The 

mixing proportions (i.e., prior probabilities of a group belonging to each of the clusters) are 

indicated by k , with 
1

1
K

k

k




 , whereas fgk refers to the kth cluster-specific density function for 

group g and θgk to the corresponding set of parameters. It is important to note that the means are 

group-specific and the covariance matrices are both group- and cluster-specific. A combination of 

group- and cluster-specific parameters is applied such that the clustering of the groups is driven 

exclusively by the parameters relevant to metric invariance, i.e., the factor loadings. How to deal 

with higher levels of MI is described in the Discussion. Specifically, the covariance matrices are 

modeled by means of cluster-specific factor loadings kΛ , group- and cluster-specific factor 

(co)variances 
gkΦ , and group-specific unique variances on the diagonal of 

gΨ . The fact that 
gkΦ  

is not only group-specific but also varies across clusters within groups needs some additional 

explanation. Because the latent factors have a different meaning across clusters, and moreover 

have rotational freedom per cluster, it is too restrictive to assume the factor (co)variances of a 

group to be the same in all clusters. As shown in Appendix A, these factor (co)variances can be 

estimated for every cluster despite the fact that the mixture model itself assumes that each group 

belongs to only one cluster. This holds even when group g is assigned to cluster k with a probability 

of zero. The resulting 
gkΦ  should be interpreted as the factor (co)variances conditional on group 
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g belonging to cluster k. For each group g, the factor (co)variances for the clusters the group does 

not belong to may be regarded as nuisance parameters. 

Thus, in MMG-FA, the (exploratory) factor model is conditional on the cluster membership 

of group g, indicated by 
gkz , as follows: 

 | 1
g g gn gk g k n k nz    

 
x τ Λ η ε  (3) 

where  ,
gn k gkMVNη 0 Φ  and  ,

gn gMVNε 0 Ψ . Note that, because the factor means are equal 

to zero per group within each cluster, the item intercepts 
gτ  are equal to the means 

g  in Equation 

2. To set the scale of the cluster-specific factors, the mean factor variances are fixed to one over 

all groups within a cluster k, i.e., 
1

1
ˆ

G

k g gk gk

gk

N z
N 

 Φ Φ I , where
1

ˆ
G

k g gk

g

N N z


 . Note that this 

restriction also fixes the factor covariances to zero over all groups within a cluster, which implies 

that the initial rotation is orthogonal for each cluster. Afterwards, the cluster-specific factors can 

be (orthogonally or obliquely) rotated to facilitate interpretation and comparability. 

Note that the existing method that is most similar to MMG-FA, as specified above, is 

mixture simultaneous factor analysis (MSFA; De Roover, Vermunt, Timmerman, & Ceulemans, 

2017). Like MMG-FA – and unlike multilevel factor mixture modeling (Kim et al., 2017) – MSFA 

sets apart the means as group-specific parameters and uses EFA within the clusters. This implies 

that the mixture clustering is also unaffected by intercept or factor mean differences and that it is 

equally flexible in the factor loading differences it can capture (i.e., both configural and metric 

non-invariances). However, MSFA differs from MMG-FA in that the covariance matrix depends 

entirely on the cluster, i.e., 
k k k k

 Λ Λ Ψ . This implies that it assumes factor (co)variances and 

unique variances to be the same for groups within a cluster, which is too restrictive when looking 
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for clusters of groups wherein metric invariance holds. Thus, the MSFA clustering also captures 

between-group differences in factor (co)variances and unique variances, rendering this method 

less focused on loading differences than MMG-FA. 

2.2.2. Model estimation 

The unknown parameters θ of the MMG-FA model are estimated by means of maximum 

likelihood (ML) estimation. This involves maximizing the logarithm of the likelihood of the data: 

 
 

   

 
   

1

1/2/2
11 1

1

1/2/2
1 1 1

1 1
log log exp

22

1 1
log exp ,

22

g

g g

g

g

g g

g

NG K

k n g gk n gJ
kg n

gk

NG K

k n g gk n gJ
g k n

gk

L 







 



  

 
      

  
 

 
      

  
 

 

  

x μ Σ x μ
Σ

x μ Σ x μ
Σ

 (4) 

where 
gk  is decomposed as specified in Equation 2. Note that obtaining the parameter estimates 

̂  by means of Newton-Raphson, Fisher scoring or Quasi-Newton optimization methods – i.e., 

methods that are used in commercial software such as Latent Gold (Vermunt & Magidson, 2013, 

2016) and Mplus (Muthén & Muthén, 2005) – is very slow due to the very large number of 

parameters and very sensitive to starting values. To find the parameter estimates in a time-efficient 

and stable manner, we developed an expectation-conditional maximization (ECM) algorithm (see 

Appendix A) and implemented it in Matlab R2017a, R (see 

https://github.com/KimDeRoover/MixtureMG_FA), and Latent Gold 6.0 (see Appendix B). An 

R-package for MMG-FA will be developed in the near future. Because the algorithm may end up 

in a local maximum, a multistart procedure (based on several random partitions of the groups or 

several sets of random initial values for the parameters) is applied to increase the probability of 

obtaining the global maximum (see Appendices A and B). As an indication of computation time, 

the estimation of MMG-FA with three clusters and two factors for the emotion values data set 
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(Section 4.1) took 43 seconds with the Matlab algorithm, 188 seconds with the algorithm in R, and 

160 seconds in Latent Gold 6.0 (where the latter includes a more elaborate multistart procedure 

and the computation of standard errors), when using 25 random starts (pre-selected from a set of 

250 starts, see Appendices A and B). Note that repeating the same analysis in Latent Gold without 

the new ECM algorithm – thus, with Fisher scoring to estimate the factor parameters – took more 

than 7 hours. 

2.2.3. Model selection 

In this paper, we focus on the case where the number of factors is assumed to be known 

and equal for all groups, and thus for all clusters. Thus, the model selection problem is confined 

to selecting the most appropriate number of clusters K for a given data set. For enumerating the 

number of clusters in related mixture models, minimizing the Bayesian Information Criterion 

(BIC; Schwarz 1978) is often the recommended method (Nylund, Asparouhov, & Muthén, 2007; 

Tay, Diener, Drasgow, & Vermunt, 2011; Tein, Coxe, & Cham, 2013). The BIC takes into account 

model complexity in addition to the log L and penalizes a model with more parameters and larger 

sample size as follows: 

 BIC 2log log( )L fp N    (5) 

where fp refers to the number of free parameters and N refers to the total sample size 
1

G

g

g

N


 . For 

MMG-FA, fp is equal to the sum of the number of mixing proportions (minus one restriction), the 

cluster-specific factor loadings (corrected for rotational freedom), the factor (co)variances for each 

group (minus identification restrictions), and the group-specific intercepts and unique variances: 

1 ( ( 1) 2) ( ) ( 1) 2 2fp K K JQ Q Q G K Q Q GJ         . Note that only one set of factor 

(co)variances is counted for each group, because the remaining factor (co)variances (i.e., for the 
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clusters they don’t belong to) are nuisance parameters that do not contribute to the model fit (see 

Section 2.2.1). 

Several authors (Kim, Joo, Lee, Wang, & Stark, 2016; Lukočienė, Varriale, & Vermunt, 

2010) suggested that, for group-level clusters, it is better to use the number of groups G for the 

sample size in the computation of BIC instead of the number of subjects N. In case of small sample 

size and low cluster separation in multilevel mixture modeling, it was found that the Akaike 

Information Criterion (AIC; Akaike, 1973) outperformed the BIC (Kim et al., 2017; Lukočienė & 

Vermunt, 2010). For growth mixture models, Bauer (2007) and McNeish and Harring (2017) 

indicated that in less ideal – but empirically more realistic – conditions (e.g., non-normality), BIC 

(and AIC) may overselect the number of clusters.   

Finally, Bulteel, Wilderjans, Tuerlinckx, and Ceulemans (2013) showed that the Convex 

Hull procedure (CHull) is a valuable alternative to BIC and AIC in the context of mixtures of 

factor analyzers. The CHull (Ceulemans & Van Mechelen, 2005; Ceulemans & Kiers, 2006) is a 

generalization of the scree test (Cattell, 1966). Specifically, the CHull procedure balances fit and 

complexity by comparing the log L and fp of the obtained solutions and selecting the one with the 

highest scree ratio. Note that, like a scree test, CHull cannot select the least complex model and 

thus always selects at least two clusters. But since we are focusing on cases where factor loading 

invariance was rejected, and loading differences are thus expected to be present, we don’t regard 

this to be a problem. Furthermore, visual inspection of the CHull plot may still lead to the 

conclusion that no clear elbow is present and thus that an underlying clustering is unlikely. How 

these methods perform in terms of selecting the correct number of clusters for MMG-FA is 

evaluated in Section 3. 
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3. Simulation Studies 

In this section, we first present a large simulation study to evaluate the performance of 

MMG-FA, both in terms of model estimation and model selection, when clusters of groups with 

metric invariance are underlying the data. Then, a smaller simulation study is presented to evaluate 

MMG-FA, specifically in terms of model selection, when no such clusters are underlying the data 

and metric invariance holds across all groups (i.e., the number of clusters equals one). 

3.1. Simulation Study 1 

Problem. 

The goal of Simulation Study 1 is, on the one hand, to evaluate the performance of MMG-

FA with respect to the recovery of the clustering of the groups and of the cluster-specific factor 

loadings when the correct number of clusters is known and to compare this performance to that of 

MSFA. On the other hand, it is evaluated to what extent the model selection procedures described 

in Section 2.2.3 select the correct number of clusters for MMG-FA. We manipulated six factors 

that were expected to affect the cluster separation and/or the stability of parameter estimates, and 

thus the performance of MMG-FA and its model selection: (1) the number of groups, (2) the group 

sizes, (3) the number of clusters, (4) the cluster sizes, (5) the number of factors, and (6) the type 

and size of the loading differences. 

Specifically, in terms of their effect, we hypothesize the following: The number of groups 

(1) determines how many groups end up within each cluster. Because more groups within a cluster 

implies more information on that cluster-specific MM (i.e., a higher within-cluster sample size), 

we hypothesize the performance to improve with a higher number of groups. A higher number of 

observations per group (2) increases the within-cluster sample size and thus the performance. It 
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also implies more information on each of the cluster memberships and thus a higher cluster 

separation (Lukočienė, Varriale, & Vermunt, 2010). Relatedly, a higher number of clusters (3) 

lowers the within-cluster sample size (for a given number of groups) and is thus expected to lower 

the performance. It also increases the number of cluster memberships (posterior probabilities) to 

be determined for each group and thus makes their recovery more intricate. The cluster sizes (4), 

corresponding to the mixing proportions, pertain to the groups being equally or unequally divided 

across the clusters. In the unequal case, larger cluster(s) will compete with smaller cluster(s) and 

the smaller ones will be much harder to recover both in terms of cluster memberships and factor 

loading estimates. With respect to the number of factors (5), a higher number of factors – given 

the same number of variables – implies a lower factor overdetermination and thus probably a lower 

performance. Finally, the type and size of loading differences (6) greatly determines the extent to 

which the cluster-specific MMs differ from one another (i.e., cluster separation) and thus affects 

the recovery of the cluster memberships. For instance, a primary loading that shifts to another 

factor is a large difference that would be easier to recover than a small difference in the size of a 

primary loading or crossloading. 

Design. 

These factors were systematically varied in a complete factorial design: 

1. the number of groups G at 2 levels: 12, 60; 

2. the group sizes Ng (i.e., number of observations per group) at 5 levels: 30, 50, 100, 300, 

500; 

3. the number of clusters K at 2 levels: 2, 4; 

4. the cluster sizes at 2 levels: equal, unequal; 

5. the number of factors Q at 2 levels: 2, 4; 

6. the type and size of loading differences at 5 levels: primary loading shift, crossloading of 

.40, crossloading of .20, primary loading decrease of .40, primary loading decrease of .20. 
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The number of variables J was fixed at 20 and the cluster-specific factor loading matrices 

were generated by inducing changes to the same simple structure loading matrix. In this ‘base 

loading matrix’, the variables are equally distributed over the factors, i.e., each factor gets 10 non-

zero loadings when Q = 2 (Table 1) and five non-zero loadings when Q = 4 (Table 2). Given that 

the unique variances vary around .40 (see below), the non-zero loadings are equal to .60  to 

obtain total variances that vary around one. From the common base, K different cluster-specific 

loading matrices are derived by altering the loadings for a different pair of variables for each cluster 

(see Tables 1 and 2). Specifically, depending on the type and size of loading differences, the 

loadings of two variables were altered as follows: In case of a primary loading shift, when Q = 2, 

the loadings .6 0 
   of the base matrix are replaced by 0 .6 

   or vice versa (Table 1). When Q 

= 4, primary loadings are shifted similarly between factors 1 and 2, leaving factors 3 and 4 

unaffected; e.g., .6 0 0 0 
   becomes 0 .6 0 0 

  . In case of the crossloading differences, the 

loadings    .6 0 0 0 
   become    .6 .4 0 0 

   or    .6 .2 0 0 
   depending on the size of 

the crossloadings (Table 2). Note that a crossloading of .20 may be considered ‘ignorable’, whereas 

one of .40 is not (Stevens, 1992). To manipulate a primary loading decrease, the loadings 

   .6 0 0 0 
   are replaced by    .6 .4 0 0 0 

   or    .6 .2 0 0 0 
   depending on the size 

of the decrease (Table 3). A primary loading decrease of .40 is considered a large non-invariance 

(Stark, Chernyshenko, & Drasgow, 2006) that can lead to incorrect statistical inference and biased 

parameter estimates (Hancock, Lawrence, & Nevitt, 2000). Please observe the following: Firstly, 

a primary loading shift maintains the item’s communality whereas a crossloading increases it and 

a primary loading decrease lowers it. Secondly, primary loading shifts and crossloadings are 
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violations of configural invariance and thus differences that are very hard to trace by any of the 

existing CFA-based methods (Kim et al., 2017).  

[ Insert Tables 1 to 3 about here ] 

Note that the number of groups of 12 and 60 nicely correspond to the range of group 

numbers that are generally encountered in large-scale surveys (Rutkowski & Svetina, 2014). In 

case of equal cluster sizes, the groups are equally divided across the clusters, i.e., each cluster 

contains 50% of the groups in case of two clusters or 25% in case of four clusters. In the unequal 

cluster size conditions, the groups are divided over the clusters such that one cluster contains 75% 

of the groups, whereas the remaining groups are equally divided over the other clusters. Thus, in 

case of two clusters, 75% of the groups are in one cluster and 25% in the other one. In case of four 

clusters, each of the three smaller clusters contains 8.33% of the groups. Note that the latter 

correspond to singleton clusters (i.e., including only one group) in case of 12 groups, whereas in 

case of 60 groups they hold five groups each. The cluster memberships were generated by 

randomly assigning the correct number of groups to each cluster, according to these cluster sizes. 

The group- and cluster-specific factor correlations are randomly sampled from a uniform 

distribution between −.50 and .50, i.e.,  .50,.50U  , and factor variances from  .50,1.50U . 

Whenever a resulting 
gkΦ  is not positive definite, the sampling is repeated. Group-specific unique 

variances (i.e., diagonal of 
gΨ ) are sampled from  .20,.60U . Factor scores are sampled from 

 , gkMVN 0 Φ  and residuals from  , gMVN 0 Ψ , according to the specified group sizes. The group 

size of 100 corresponds to the absolute minimal sample size for obtaining accurate factor loading 

estimates (Gorsuch, 1983), whereas higher sample sizes are recommended in case of lower factor 

overdetermination and/or item communalities (Fabrigar, MacCallum, Wegener, & Strahan, 1999; 
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MacCallum, Widaman, Zhang, & Hong, 1999). Note that, for MMG-FA, the accuracy of the factor 

loadings will be determined by the sample size of a cluster of groups, rather than of a single group, 

whereas the accuracy of the factor (co)variances of groups within a cluster may depend on the 

group sizes. To evaluate the extent to which MMG-FA can find loading differences among really 

small groups, we included the group sizes of 30 and 50. Finally, the simulated data are created 

according to Equation 3. The intercepts 
gτ  are zero, since the focus is on loading differences. 

According to this procedure, 50 data sets were generated per cell of the design, using 

Matlab R2017a. Thus, 2 (number of groups) × 5 (group sizes) × 2 (number of clusters) × 2 (cluster 

sizes) × 2 (number of factors) × 5 (type/size of loading differences) × 50 (replications) = 20 000 

data sets were generated. The data were analyzed by the ECM algorithm for MMG-FA detailed in 

Appendix A, using the correct number of factors Q and using 25 starts. On the one hand, the correct 

number of clusters K was specified to evaluate the performance of the algorithm itself. On the 

other hand, for the first five replications of each cell of the design (i.e., for 2,000 data sets), MMG-

FA analyses were performed with numbers of clusters between one and six to evaluate the 

performance of the model selection procedures described in Section 2.2.3. No convergence 

problems were encountered in this simulation study. The analyses were performed on a 

supercomputer consisting of Xeon E5-2680 v2 processors with a clock frequency of 2.8 GHz and 

with 64 GB RAM. The average CPU time for MMG-FA with the correct number of clusters K was 

80 seconds and, for the model selection procedure, estimating the six models with an increasing 

number of clusters took about 9 minutes1. To compare the performance of MMG-FA to that of 

                                                   
1 These are the average CPU times for the conditions with group sizes of 100, 300 and 500. The group sizes 

of 30 and 50 were added for the revision and, on an i7 processor with 8GB RAM, the average CPU time 

for these conditions was 44 seconds for estimating the model with the correct number of clusters and 8 

minutes for estimating models with one to six clusters. 
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MSFA, the data sets were also analyzed by MSFA with the correct K and Q and 25 starts (for 

details, see De Roover et al., 2017). 

Results. 

Sensitivity to local maxima. 

To evaluate the frequency of local maximum solutions, we should compare the log L value 

of the best solution obtained by the multistart procedure (i.e., starting from 25 random partitions; 

see Appendix A2) with the global ML solution for each simulated data set. Because of sampling 

fluctuations, the global maximum is unknown, however. Therefore, we made use of a ‘proxy’ of 

the global ML solution; i.e., the solution that is obtained when the algorithm starts from the true 

clustering of the groups. The final solution from the multistart procedure was considered to be a 

local maximum when its log L value is smaller than the one from the proxy. To exclude mere 

calculation precision differences, we only considered such differences with an absolute value 

higher than .0001 as a local maximum. By this definition, 3,002 (15.0%) local maxima were 

detected over all 20,000 simulated data sets. Most of these occurred in case of four clusters; i.e., 

2,844 of the 3,002 local maxima are found when K = 4. Not surprisingly, the sensitivity to local 

maxima also depends strongly on the group sizes. Specifically, the percentage of local maxima 

equals 19.7%, 19.4%, 18.8%, 9.8% and 7.5% for groups of 30, 50, 100, 300 and 500 subjects, 

respectively. Note that, for 1,176 out of these 3,002 data sets, re-running the analysis with 50 starts 

(i.e., starting from 50 random partitions) was sufficient to avoid the local maxima, reducing the 

percentage of local maxima to 9.1% across all data sets. Per group size, it reduced to 13.0%, 12.6%, 

11.7%, 5.3%, and 3.1% for groups of 30, 50, 100, 300, and 500, respectively. 

Goodness of cluster recovery. 
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To examine the goodness of recovery of the cluster memberships of the groups, we 

compared the modal clustering (i.e., assigning each group to the cluster for which the posterior 

classification probability is the highest) to the true clustering by means of the Adjusted Rand Index 

(ARI; Hubert & Arabie, 1985). The ARI equals 1 if the two partitions are identical, and equals 0 

when the overlap between the two partitions is at chance level. According to Steinley (2004), ARI 

values greater than .90 indicate excellent recovery, whereas values greater than .80 indicate good 

recovery and values greater than .65 are considered moderate recovery. The mean ARI over all 

data sets amounted to .82 (SD = .31), which indicates a good recovery. The ARI was equal to 1 for 

67.5% of the data sets. Table 4 presents the mean ARI values (for the analyses with 25 starts) in 

function of the simulated conditions. Clearly, and not surprisingly, the recovery of the clustering 

depends very strongly on the group sizes and on the size of the between-cluster loading differences. 

On the one hand, the mean ARI is .95 and .97 for groups of 300 and 500 subjects, but only .86 for 

group sizes of 100 and smaller than .80 for group sizes of 30 and 50. On the other hand, the ARI 

is .95 for the primary loading shift differences, around .89 for loading differences (crossloadings 

or primary loading decreases) of .40 and around .67 for the differences of .20. Note that the latter 

still indicates a moderate recovery according to the guidelines in Steinley (2004) for loading 

differences so small that they may be considered ignorable (Stevens, 1992). On top of that, the ARI 

results were affected by the local maxima detected in Section 3.3.1. Out of the 6,508 solutions 

with at least one incorrect cluster assignment, 2,994 were in fact a local maximum. After replacing 

the 3,002 local maxima (obtained with 25 starts) by the solutions obtained with 50 starts (see 

Section 3.3.1), the number of data sets with incorrect assignments reduced from 6,508 to 5,751 

and the overall mean of the ARI amounted to .84 (SD = .30).  

[ Insert Table 4 about here ] 
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To have a more detailed look at how the recovery of the clustering is affected by the above 

mentioned aspects, Table 5 presents the mean ARI values for all combinations of the group sizes 

on the one hand and the other simulated conditions on the other hand. In addition to the results for 

MMG-FA with 25 random starts, it also includes the ARI results after replacing the 3,002 local 

maxima by the solutions obtained with 50 starts. When inspecting the latter results, we find that, 

for each level of the group sizes, the cluster recovery depends most on the size of the loading 

differences. It is interesting to see how this recovery improves with increasing group sizes. For 

loading differences of .20, the recovery is very bad for group sizes of 30 but becomes moderate 

(mean ARI of .77 or .78) when the groups contain 100 subjects and excellent (mean ARI of .94 to 

.97) when the groups contain 300 or 500 subjects. For loading differences of .40, the recovery is 

moderate (mean ARI of .77) for the smallest group sizes and it quickly improves for larger group 

sizes, with a good recovery (mean ARI of .88) when groups contain 50 subjects each and excellent 

to perfect recovery when groups contain at least 100 subjects. For the primary loading shift 

differences, the mean ARI exceeds .90 – indicating excellent recovery – for all group sizes. Other 

important factors are the number of groups, the number of clusters and whether the clusters are of 

equal size or not. Specifically, in addition to larger groups, having more groups, less clusters and/or 

clusters of equal size increases the amount of information that is available on the cluster-specific 

MMs (i.e., the within-cluster sample size) and thus improves the cluster recovery. On top of that, 

the cluster recovery is better in case of two rather than four factors. To scrutinize this further, Table 

6 shows the ARI values separately for the conditions with two and four factors and for the two 

smallest group sizes (i.e., 30 and 50), crossed with the type and size of loading differences. 

Additionally, for comparison, we simulated 1,600 additional data sets with one factor only and 

group sizes of 30 or 50 and added the resulting ARI values to Table 6. Note that, in case of one 



MIXTURE MULTIGROUP FACTOR ANALYSIS  24 

factor, primary loading decreases are the only relevant loading differences. Table 6 clearly shows 

that, in case of two factors, even group sizes of 30 are sufficient to achieve an excellent cluster 

recovery for primary loading shift differences (mean ARI of .98) and a good recovery for 

crossloadings or primary loading decreases of .40 (mean ARI of .83 and .85, respectively). The 

recovery for the differences of .40 becomes excellent (mean ARI of .94 or .95) with group sizes of 

50. In case of one factor, the mean ARI for primary loading decreases of .40 equals .90 even with 

group sizes of 30.  

[ Insert Tables 5 and 6 about here ] 

To examine the occurrence of classification uncertainty, we computed the minimum 

posterior probability with which a group was assigned to a cluster (according to the modal cluster 

assignments), i.e., the minimum ‘classification certainty’ or ‘CCmin’, for each data set. For the data 

sets with a perfect cluster recovery (i.e., ARI = 1), CCmin varied between .50 and 1.00, with a mean 

of .9979 (SD = .02). For the data sets with at least one misclassification, CCmin varied between .32 

and 1.00 with a mean of .93 (SD = .12). Thus, for the simulated conditions, classification 

uncertainty is quite infrequent and hardly related to misclassification. 

Finally, we compared the cluster recovery of MMG-FA to that of MSFA. Over all data 

sets, the mean ARI of MSFA amounted to .57 (SD = .43) and the ARI was equal to 1 for only 43% 

of the data sets. Thus, the performance of MSFA is clearly inferior to that of MMG-FA when it 

comes to recovering the clustering that is underlying the between-group loading differences. Table 

4 includes the mean ARI values for MSFA in function of the simulated conditions. It is obvious 

that MSFA performs almost as well as MMG-FA when it comes to picking up the largest loading 

differences (i.e., primary loading shifts) and that its performance becomes inferior when the 



MIXTURE MULTIGROUP FACTOR ANALYSIS  25 

loading differences are smaller, probably because the clustering then focuses on the differences in 

factor (co)variances and/or unique variances. 

Goodness of loading recovery. 

To evaluate the recovery of the cluster-specific loading matrices, we obtained a goodness-

of-cluster-loading-recovery statistic (GOCL; De Roover, Ceulemans, Timmerman, Vansteelandt, 

Stouten, & Onghena, 2012) by computing congruence coefficients   (Tucker, 1951) between the 

loadings of the true and estimated factors and averaging across factors and clusters as follows: 
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where kqλ  and ˆ
kqλ  indicate the true and estimated loading vector of the q-th factor for cluster k, 

respectively. The rotational freedom of the factors per cluster was dealt with by an oblique 

procrustes rotation of the estimated towards the true loading matrices. To account for the 

permutational freedom2 of the cluster labels (also referred to as ‘label switching’; Tueller, Drotar, 

& Lubke, 2011), the estimated clusters were matched to the true clusters such that the GOCL value 

was maximized. The GOCL statistic takes values between 0 (no recovery at all) and 1 (perfect 

recovery). For the simulation, the average GOCL is .9940 (SD = .01), which corresponds to an 

excellent recovery that is hardly affected by the manipulated conditions – probably because 

misclassifications of groups occur mostly when between-cluster loading differences are small. 

Model selection. 

                                                   
2 Permutational freedom refers to the fact that different combinations of the estimated and true clusters are 

possible. 
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Since the cluster recovery was not even moderate with group sizes of 30 (i.e., mean ARI < 

.65), we only report model selection results for group sizes of 50 or larger. Per data set, the number 

of clusters with the optimal balance between log L and the number of free parameters fp was 

determined according to four model selection procedures (Section 2.2.3): BIC using the number 

of subjects N as the sample size (BIC_N), BIC using the number of groups G as the sample size 

(BIC_G), AIC and CHull. For BIC_N, the percentage of data sets for which the correct number of 

clusters was chosen is 55.6%. Specifically, BIC_N has a tendency to select one cluster. BIC_G 

selects the correct number of clusters for 76.3% of the data sets, whereas AIC and CHull do so for 

79.9% and 81.4% of the data sets, respectively. For these three criteria, most of the model selection 

mistakes pertain to the number of clusters being underestimated. 

The main effects of the simulated conditions on the performance of the four criteria are 

given in Table 7. Because BIC_N performed clearly inferior, we focus on the other three criteria 

in what follows. When looking at the effect of the type and size of the loading differences, it 

becomes clear that BIC_G, AIC and CHull show comparable performances in case of the more 

pronounced primary loading shift differences, with percentages correct of 92.5%, 91.3% and 

91.6%, respectively. The performance drops when loading differences become more subtle. For 

crossloading differences or primary loading decreases of .40, all three criteria still selected the 

number of clusters with an accuracy of about 87%. When differences are as subtle as .20, the 

accuracy of BIC_G and AIC drops to about 56% and 66%, respectively, whereas the accuracy of 

CHull is 68.4 to 72.2%. It is also interesting to note that, for all three criteria, the performance 

depends strongly on the group sizes and that CHull outperformed BIC_G and AIC when groups 

consist of only 50 subjects. 

[ Insert Table 7 about here ] 
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Of course, one may argue that the comparison of CHull to the other two criteria is not 

entirely fair, since AIC and BIC_G may select just one cluster in case of very subtle differences, 

whereas CHull always selects at least two clusters. Therefore, we checked the performance of AIC 

and BIC_G when only considering solutions with two or more clusters. By doing so, the overall 

accuracy of BIC_G and AIC increased to 80.3% and 82.1%, respectively, which is comparable to 

the 81.4% of CHull. 

3.2. Simulation Study 2 

The goal of Simulation Study 2 is to investigate the performance of the MMG-FA model 

selection criteria when metric invariance exists among all groups and, thus, the number of clusters 

is one. To this aim, we simulated data as detailed in Simulation Study 1, with five replications per 

cell of the design and retaining the following manipulated factors: (1) the number of groups, (2) 

the group sizes (excluding the smallest group sizes of 30), and (3) the number of factors. 

Additionally, we manipulated: (4) exact or approximate metric invariance across groups. To 

achieve exact metric invariance across all groups, the loadings of each group were made equal to 

the so-called ‘base loading matrix’ from Simulation Study 1 (i.e., no loading differences were 

induced). Approximate metric invariance (Muthén & Asparouhov, 2013) was achieved by 

inducing small differences across groups for each loading, sampled from a normal distribution 

with a mean of zero and a variance of .0009. In this way, the ±2 SD difference in the loadings 

between groups was between −.064 and .064, which is considered to be negligible (Kim et al., 

2017). The resulting 160 data sets were analyzed with MMG-FA with one to six clusters. 

Out of the 80 data sets with exact invariance, BIC_G selected one cluster for all of them 

and AIC selected one cluster for 78 data sets. Thus, AIC overestimated the number of clusters for 

two data sets; specifically, two clusters were selected for both of them. For the 80 data sets with 
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approximate invariance, BIC_G and AIC selected one cluster for 52 and 22 data sets, respectively. 

For the other data sets, BIC_G mostly selected two or three clusters, whereas AIC selected up to 

six clusters. Furthermore, BIC_G only selected more than one cluster in case of large group sizes 

(i.e., 300 or 500), whereas AIC does so for all simulated conditions. 

Because no scree ratio can be computed for the least complex solution, CHull automatically 

selects at least two clusters. Specifically, across the 160 data sets, CHull selected two clusters for 

55 data sets, three clusters for 47 data sets, four clusters for 31 data sets and five clusters for 27 

data sets. However, upon visual inspection of the CHull plot, one may still conclude that the elbow 

for the selected number of clusters is barely visible and thus that an underlying clustering is 

unlikely. Since visual inspection for all simulated data sets is infeasible, we examined the scree 

ratio’s for the selected number of clusters (i.e., the highest scree ratio) for all data sets. An elbow 

that is hardly visible would correspond to a scree ratio that is close to one. On average, the selected 

scree ratio was equal to 1.37 (SD = .20) in case of exact invariance and 1.42 (SD = .17) in case of 

approximate invariance. Boxplots of the scree ratio’s are given in Figure 1. For comparison, the 

selected scree ratio was on average equal to 40.37 (SD = 118.85) for the data sets from Simulation 

Study 1 and the corresponding boxplots are included in Figure 1, per number of clusters K and 

type and size of loading differences. Note that the smallest selected scree ratio’s occurred for the 

crossloadings and primary loading decreases of .20: on average, they were 9.91 for K = 2 and 4.33 

for K = 4. In general, we conclude that the scree ratio of the selected solution is (a lot) larger – and, 

thus, that the elbow is more outspoken – when K > 1 than when K = 1. 

[ Insert Figure 1 about here ] 

3.3. Conclusion 
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Regarding the sensitivity to local maxima, we conclude that the multistart procedure of 

MMG-FA with 25 starts is sufficient to largely avoid local maxima, but that it is certainly advisable 

to increase the number of starts to at least 50 when the number of clusters is higher or when group 

sizes are small. The recovery of the cluster memberships of the groups was excellent for large 

loading differences (i.e., primary loading shifts) but depended strongly on the simulated conditions 

for loading differences of .40 or .20. Especially when detecting loading differences of .20 and/or 

when the number of factors is higher, a larger within-cluster sample size is essential (i.e., more 

groups, larger groups, and/or less clusters). However, it is important to note that these differences 

are so small that they are not harmful (Stevens, 1992) and that the insufficient group sizes of 30 

and 50 would be even more problematic for a standard MG-FA (i.e., because groups are not 

clustered together). Anyhow, MMG-FA clearly outperformed MSFA in terms of cluster recovery, 

especially for smaller loading differences. The recovery of the cluster-specific factor loadings was 

excellent overall.  

For selecting the most appropriate number of clusters, BIC_G, AIC and CHull were found 

to perform quite similarly, at least for the simulated conditions in Simulation Study 1. BIC_G and 

AIC have the added value that they can automatically distinguish between one cluster (i.e., metric 

invariance across all groups) and more clusters (i.e., metric non-invariance across all groups), but 

CHull makes no distributional assumptions and, thus, may perform better for empirical data. From 

Simulation Study 2, we conclude that, when K equals one but the metric invariance across groups 

is approximate rather than exact, AIC usually overestimated the number of clusters, whereas 

BIC_G did so in case of large groups3. For both exact and approximate metric invariance across 

                                                   
3 Of course, strictly speaking, we cannot speak of overselection of clusters in case of approximate metric 

invariance, because the ‘true’ number of clusters is larger than one due to the small loading differences, 

which are not captured within the clusters of MMG-FA. However, for the sake of parsimony, we are 
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groups, the selected CHull scree ratio was close to one, which indicates that the selected elbow 

would hardly be visible in the CHull plot. Therefore, our recommendation is to use BIC_G and 

AIC in combination with CHull whenever possible. For performing CHull, one can use the free 

software presented by Wilderjans, Ceulemans, and Meers (2013) or the R-package that can be 

downloaded from https://cran.r-project.org/package=multichull. 

 

4. Applications 

4.1. Social Value of Emotions 

To illustrate the empirical value of MMG-FA, we applied it to cross-cultural data on how 

much experiencing certain emotions is socially valued. The data was collected as part of the 

International College Survey 2001 (Diener et al., 2001; Kuppens, Ceulemans, Timmerman, 

Diener, & Kim-Prieto, 2006), which included 10,018 participants out of 48 different nations. Each 

of them rated, among other things, how much each emotion of a given set is appropriate, valued 

and approved in their society, using a 9-point likert scale (1 = “people do not approve it at all”, 9 

= “people approve it very much”). This data set was used by Bastian, Kuppens, De Roover, and 

Diener (2014) to show that living in a country that places more social value on positive emotions 

is related to a higher life satisfaction, even when allowing for an interaction with the frequency of 

experiencing positive and negative emotions. Such an association was not found for the social 

value of negative emotions. Specifically, they included the following positive emotions: happy, 

love, cheerful, pride, and gratitude. The negative emotions were: sad, jealousy, worry stress, anger, 

guilt and shame. Bastian et al. (2014) excluded Egypt from the analysis (for an unspecified reason) 

                                                   
optimistic about the fact that often only one cluster was selected. In Section 5, we discuss how the MMG-

FA solution can be used to evaluate whether exact or approximate invariance holds within the clusters. 

https://cran.r-project.org/package=multichull
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and, therefore, we also excluded it from the analyses reported below. For the remaining countries, 

participants with missing data were omitted, so that 8,773 participants were retained in the data 

set. The countries included in the analyses (with their retained sample size between brackets) are: 

Australia (171), Austria (119), Bangladesh (89), Belgium (112), Brazil (234), Bulgaria (122), 

Cameroon (85), Canada (98), Chile (339), China (328), Colombia (331), Croatia (135), 

Cyprus (90), Georgia (98), Germany (138), Ghana (135), Greece (211), Hong Kong (174), 

Hungary (514), India (106), Indonesia (236), Iran (171), Italy (280), Japan (164), South Korea 

(177), Kuwait (64), Malaysia (351), Mexico (298), Nepal (91), Netherlands (37), Nigeria 

(264), Philippines (187), Poland (527), Portugal (221), Russia (104), Singapore (89), Slovakia 

(100), Slovenia (270), South Africa (26), Spain (311), Switzerland (138), Thailand (182), 

Turkey (115), Uganda (106), United States (340), Venezuela (196), Zimbabwe (99). 

Before computing social value indices for positive emotions and for negative emotions per 

country, measurement invariance testing is necessary to avoid drawing invalid conclusions. 

Bastian et al. (2014) performed invariance tests for positive and negative emotions separately and 

found the factor loading of ‘pride’ to be non-invariant across the countries, which was thus 

excluded from their index of social value of positive emotions. By testing for factor loading 

invariance per factor, i.e., for the positive and negative emotions separately, the possibility of 

crossloadings between the two factors – and the misfit that may result from restricting them to zero 

– was disregarded. To properly evaluate the tenability of the measurement model with the two 

factors – i.e., ‘social value of positive emotions’ (POS) and ‘social value of negative emotions’ 

(NEG) – and potentially gain more insight in the non-invariance of the loadings for ‘pride’, we 

performed a multigroup CFA by means of the R-packages lavaan 0.6-5 and semTools 0.5-2 

(Rosseel, 2012). We specified one factor with non-zero loadings of happy, love, cheerful, pride 

and gratitude, and a second factor with non-zero loadings of sad, jealousy, worry stress, anger, 

guilt and shame. Even though the emotions are rated on a Likert scale, Dolan (1994) showed that 

ordinal data can be considered continuous and the ML estimator is quite robust when the number 
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of response categories is at least five and when the data is not severely non-normal. Because the 

ratings have nine response categories and none of the variables have a skewness or kurtosis outside 

of the acceptable range (i.e., skewness < 2 and kurtosis < 7; George & Mallery, 2010), we expect 

ML parameter estimates to be robust. However, to stay clear of biased standard errors and ² -

based fit indices, we report Satorra-Bentler corrected fit indices (Satorra & Bentler, 1994). Note 

that, due to the very large sample size across the 47 countries, the ² -tests of exact model fit as 

well as the ² - difference tests for comparing nested models (Satorra & Bentler, 2001) were 

significant for all analyses reported below. Therefore, we evaluate model fit based on the CFI and 

RMSEA indices and consider CFI ≥ .90 and RMSEA ≤ .08 as indicators of acceptable model fit 

whereas CFI ≥ .95 and RMSEA ≤ .06 would indicate very good model fit (Hu & Bentler, 1999). 

When imposing invariant loadings, we make use of the guidelines reported by Rutkowski and 

Svetina (2014) to evaluate metric invariance and check whether CFI ≥ –.02 and RMSEA ≤ 

.03. 

The fit for the configural invariance model – with non-zero loadings as specified above – 

was bad (CFI = .819, RMSEA = .106), indicating that the a priori assumed measurement model 

does not hold or not for all countries. Note that negative unique variances were found for ‘happy’ 

in Russia and for ‘cheerful’ in Uganda. From an inspection of the modification indices, we 

concluded that a crossloading for ‘pride’ on the NEG factor would improve the model fit for many 

groups. With this modification, we obtained a slightly improved model fit; i.e., CFI = .844 and 

RMSEA = .10. For some groups, other crossloadings and residual covariances were suggested by 

the modification indices, but to avoid capitalizing on chance we refrained from further model 

modification (Browne, 2001; MacCallum, Roznowski, & Necowitz, 1992; Silvia, & MacCallum, 

1988). 



MIXTURE MULTIGROUP FACTOR ANALYSIS  33 

To evaluate crossloadings, and differences therein, as well as primary loading differences 

across countries, without making the 1,081 pairwise comparisons across the 47 country-specific 

EFA models, we switch to MMG-FA. To select the most appropriate number of clusters, we 

performed MMG-FA analyses with one up to eight clusters. BIC_G and AIC select eight clusters 

( Table 8), which may be an overselection. According to CHull, the best number of clusters is two 

(with a scree ratio of 2.06) and the second best is three (with a scree ratio of 1.61). From the CHull 

plot given in Figure 2, it becomes clear that the fit still improves considerably by adding a third 

cluster whereas the plot clearly levels off after three clusters. Thus, we looked at both the two- and 

three-cluster solution and found that the two-cluster solution is mainly about differences in the 

loadings of ‘pride’, whereas in the three-cluster solution we also see some interesting differences 

for ‘guilt’ and ‘shame’. Therefore, we chose to report the three-cluster solution.  

[ Insert Table 8 and Figure 2 about here ] 

The clustering of the selected model is given in Table 9. Most countries are assigned to one 

of the clusters with a posterior probability of 1, whereas a small amount of classification 

uncertainty is found for Belgium, Switzerland and India. The first thing to note is that Cluster 1 

mainly contains Western countries, whereas Cluster 3 mainly gathers non-Western countries. 

Cluster 2 contains an interesting mix of Western and non-Western countries. To see which loading 

differences resulted in this clustering, we inspect the cluster-specific loadings in Table 10. For 

each cluster, these loadings are rotated towards a target where the positive emotions make out the 

first factor (with target loadings of ‘1’) and the negative ones the second factor. In each cluster, 

the distinction between positive and negative emotions is found, at least to some extent, such that 

we can label the factors as ‘social value of positive emotions’ (POS) and ‘social value of negative 
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emotions’ (NEG) in all clusters. Some differences clearly stand out, however, the most important 

ones pertaining to the self-conscious or self-reflective emotions ‘pride’, ‘shame’ and ‘guilt’.  

[ Insert Tables 9 and 10 about here ] 

In Cluster 1, consisting of mainly Western countries, ‘Pride’ has a strong loading on ‘POS’ 

and a near-zero loading on ‘NEG’, which corresponds to the fact that ‘pride’ was considered to be 

a positive emotion by Bastian et al. (2014). However, in Cluster 3, ‘pride’ has a strong crossloading 

on ‘NEG’ and, in Cluster 2, it even loads primarily on ‘NEG’ (but still has a strong crossloading 

on ‘POS’). This implies that, in Cluster 2, the value of ‘pride’ is affected more by the value placed 

on negative emotions than by the value of positive emotions. In Cluster 3, the value rating for 

‘pride’ is affected primarily by the ‘POS’ factor, but also to a large extent by the ‘NEG’ factor. 

Thus, in contrast to its positive status in many Western countries, ‘pride’ (also) belongs to the 

negative emotions – in terms of its social value – in the countries of Cluster 2 and 3. 

For ‘guilt’ and ‘shame’, important differences are found as well. Even though they both 

load primarily on ‘NEG’ in all three clusters, the sizes of these loadings as well as the crossloadings 

on ‘POS’ differ across clusters. In Cluster 1, ‘guilt’ and ‘shame’ have small crossloadings on ‘POS’ 

and, in Cluster 2, larger – but still subtle – crossloadings are found and the primary loadings on 

‘NEG’ are somewhat weaker. In Cluster 3, however, the crossloadings are very salient and almost 

as strong as the primary loadings, since the latter are a lot lower than in Clusters 1 and 2. Thus, for 

the (mainly non-Western) countries in Cluster 3, the ratings for ‘guilt’ and ‘shame’ are affected 

both by the value of negative emotions and the value of positive emotions, indicating that they are 

not unambiguously part of the negative emotions in terms of their social value. 

Cross-cultural differences in the appropriateness of the self-conscious emotions have been 

studied extensively. Specifically, guilt and shame were found to be more desirable in countries 
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with collectivistic values (Cole, Bruschi, & Tamang, 2002; Bedford, 2004; Eid & Diener, 2001; 

Moore, Romney, Hsia, & Rusch, 1999; Mosquera, Manstead, & Fischer, 2000), which is explained 

by the fact that they result from violating social norms and failure to fulfill social obligations (Eid 

& Diener, 2001). In contrast, pride is evoked when personal goals are achieved and is thus highly 

valued in individualistic cultures and much less so in collectivistic ones (Eid & Diener, 2001).  

In Figure 3, boxplots of four collectivism measures (which were available for 35 out of the 

47 countries in our data set) are given per cluster of the MMG-FA solution. Specifically, 

institutional and in-group collectivism were measured by the Societal Cultural Practices Scale on 

the one hand and the Societal Cultural Values Scale on the other hand (House, Hanges, Javidan, 

Dorfman, & Gupta, 2004). In-group collectivism pertains to family and friend groups, whereas 

institutional collectivism has more to do with the work environment and society. Cultural practices 

are perceptions of how people behave in a culture (how it is) and cultural values are ideals of a 

culture (how it should be; Frese, 2015). The correlation between cultural practices and values is 

often insignificant or even negative (House et al., 2004). With regard to cultural practices, Cluster 

1 seems to contain the least collectivistic countries, whereas Cluster 3 contains the most 

collectivistic countries and Cluster 2 lies in between. The three clusters overlap to a large degree 

in terms of institutional and in-group collectivism, however. This indicates that collectivism is 

probably not the only dimension that explains cross-cultural differences in value of emotions. For 

instance, the tightness by which cultural norms are enforced on the members of a society may also 

have an impact (Triandis, 1989). Additionally, linguistic factors could play a role in the 

construction of emotional realities (Wierzbicka, 1999). Another interesting thing to note is that 

experiencing ‘pride’ is clearly the least desirable in the countries of Cluster 2, whereas these 

countries are not the ones with the largest crossloadings for ‘guilt’ and ‘shame’. Thus, it seems 
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that the value of ‘pride’ varies independently of the value of ‘guilt’ and ‘shame’. Together with 

the fact that collectivism is not sufficient to explain these differences, this is not only an interesting 

finding in itself but also an incentive for future research.  

[ Insert Figure 3 about here ] 

To conclude, the MMG-FA analyses pointed out some fascinating cross-cultural 

differences in the underlying structure of emotion values, but what would have been our advice to 

Bastian et al. regarding their study? Firstly and most importantly, they were successful in detecting 

and excluding the most important non-invariant item from their index of social value of positive 

emotions: i.e., ‘pride’. Secondly, they failed to detect important factor loading non-invariances 

with respect to ‘guilt’ and ‘shame’. Other non-invariances that are observed when comparing the 

cluster-specific loadings in Table 10 are a lot more subtle. Since ‘guilt’ and ‘shame’ are clearly 

non-invariant in the extent to which they measure the value of negative emotions, they should be 

excluded from the social value index of negative emotions to avoid invalid conclusions about its 

effect on life satisfaction. In fact, by removing ‘pride’, ‘guilt’ and ‘shame’ and assuming that the 

remaining positive emotions have non-zero loadings on ‘POS’ and that the remaining negative 

ones load on ‘NEG’, an acceptable fit is obtained for the configural invariance model, i.e., CFI = 

.933 and RMSEA = .078. When imposing metric invariance, CFI becomes .917 and RMSEA 

amounts to .077. Thus,CFI equals –.016 and RMSEA is .001, which indicate that metric 

invariance holds. Because Bastian et al. (2014) studied the effect of country-level social value 

indices – rather than individual indices – to predict the life satisfaction of its inhabitants, intercept 

or strong invariance was also required. Suggestions on how to move forward to further 

measurement invariance testing and between-group comparisons are given in Section 5. 

4.2. Emotional Acculturation 
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As a second empirical illustration, we re-analyzed data from a study on emotional 

acculturation of immigrants (De Leersnyder, Mesquita, & Kim, 2011). The data pertain to samples 

from two host cultures (i.e., USA and Belgium), immigrant groups in the host cultures, and two 

heritage cultures (i.e., cultures of origin for some of the immigrants), yielding 13 groups in total 

(see Table 11). The participants reported on one to four situations that differed in valence (positive, 

negative), social engagement (engaged, disengaged), and social context (with friends, at 

home/with family, at school/work). The situations were chosen according to three designs. In 

Design 1, participants rated three situations of the same type (e.g., positive disengaging situation) 

for different social contexts. In Design 2, participants rated four different types of situations (i.e., 

positive disengaging, positive engaging, negative disengaging, or negative engaging situation) for 

the same social context. Design 3 was similar to Design 2, but participants only reported on two 

types of situations for the same context. The design was fixed within each group (see Table 11), 

which implies that differences between groups may partly be due to design differences. 

Participants rated on a 7-point Likert scale to what extent each situation elicited each of 17 

emotions (see Table 13). Skewness and kurtosis values are inside the acceptable range (i.e., 

skewness < 2 and kurtosis < 7), except for the emotion ‘relying’ (i.e., skewness = 2.4 and kurtosis 

= 37.6). Subject-situation combinations with missing values were discarded.  

[ Insert Table 11 about here ] 

Again, we assume two factors, pertaining to positive and negative emotions, respectively. 

Interestingly, De Roover, Timmerman, De Leersnyder, Mesquita, and Ceulemans (2014) already 

performed measurement invariance testing on these data, confirming that metric invariance fails 

across groups and that configural invariance holds for almost all groups. In search for sources of 

non-invariance, they used Clusterwise SCA-P (De Roover, Ceulemans, Timmerman, & Onghena, 
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2013). This approach yields a heuristic clustering of groups and applies simultaneous component 

analysis within each cluster of groups. Although it is similar to MMG-FA in many ways, 

Clusterwise SCA-P does not include unique variances, which implies that it does not account for 

differences in unique variances between groups within clusters. To see whether MMG-FA finds 

the same clustering, we performed analyses with one up to eight clusters and two factors per 

cluster. Note that we analyzed the raw data, whereas De Roover et al. (2014) rescaled each variable 

to have a variance of one across all groups4. BIC_G and AIC select seven and eight, respectively, 

as the best number of clusters (Table 12), whereas CHull selects three clusters (with a scree ratio 

of 1.94). The CHull plot (Figure 4) clearly shows that the improvement in fit levels off after three 

clusters, which suggests that BIC_G and AIC may be overestimating the number of clusters. The 

clustering of the groups into three clusters is shown in Table 11 and agrees perfectly with the one 

reported by De Roover et al. (2014). The groups living in the USA are in Cluster 1, together with 

the Koreans. Cluster 2 contains the indigenous Belgian groups as well as the second generation 

Turkish immigrants. Cluster 3 contains the group living in Turkey and the first generation Turkish 

immigrants in Belgium. The fact that the second generation Turkish immigrants were assigned to 

the Belgian cluster suggests that they acculturated with respect to their emotions. 

The fact that each subject rated up to four situations may imply that the conditional 

independence assumption of (M)MG-FA is violated. Retaining only one situation per subject 

drastically reduces the sample size per group, but allows to investigate whether MMG-FA still 

finds the same clustering, despite small sample sizes. To this end, we randomly sampled one 

situation per subject, retaining less than 100 subjects for 10 out of the 13 groups and less than 50 

for five groups (Table 11). We repeated the MMG-FA analyses on this subset of the data. Again, 

                                                   
4 They also centered the data per group, which corresponds to our group-specific treatment of the means. 
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CHull clearly indicated three clusters (see Table 12 and Figure 4), containing exactly the same 

groups. Also, the loadings were highly similar, so we only discuss the loadings for the total data 

set (see Table 13).  

[ Insert Figure 4 and Tables 12 and 13 about here ] 

The loadings of the three clusters were target rotated towards a positive (POS) factor (i.e., 

loadings of ‘1’ for the first eight emotions) and a negative (NEG) factor (i.e., loadings of ‘1’ for 

the remaining nine emotions). When inspecting the rotated loadings, some remarkable between-

cluster differences become apparent. For instance, ‘proud about myself’ has a strong positive 

loading on ‘POS’ in the USA and Koreans and Turkish clusters, whereas, in the Belgian cluster, 

this emotion has a weak loading on ‘POS’ and a stronger negative loading on ‘NEG’. Thus, when 

Belgians experience negative emotions, they feel less proud about themselves than people 

belonging to the other cultural groups. A similar but less outspoken difference is observed for 

‘strong’. As another example, ‘relying’ has a moderate positive loading on ‘NEG’ in the USA and 

Koreans cluster, where this loading is lower for the other clusters. Thus, in this cluster, relying on 

someone else may have a negative connotation. Finally, ‘resigned’ has a lower loading on ‘NEG' 

in the Belgian and Turkish clusters in comparison to the USA and Koreans cluster, while it loads 

primarily on ‘POS’ in the Turkish cluster, which indicates that resignation is regarded as more 

positive by Turkish people. For a more elaborate interpretation, see De Roover et al. (2014).  

To summarize, we found important factor loading differences, indicating that some 

emotions covary differently with the other emotions or are even valued differently in some cultural 

groups. On the one hand, these configural and metric non-invariances preclude comparisons in 

terms of the latent variables between groups of different clusters. On the other hand, these cross-

cultural differences are very interesting in itself, since the data were collected to study differences 
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and similarities in emotional covariation. On top of that, the clustering indicated which cultural 

groups are highly similar, and, thus, which immigrant groups emotionally acculturated. 

 

5. Discussion 

MMG-FA is a promising new method that identifies clusters of groups sharing the same 

factor loadings and allows the user to gain insight in the cluster-specific measurement models that 

are underlying the data. It is especially useful for examining how and which factor loadings differ 

between many groups, because it ties down the number of loading matrices to compare, making it 

easier to identify items and/or groups causing factor loading invariance to fail. For instance, for 

the data on the value of emotions in 47 countries, the comparison of only three cluster-specific 

loading matrices made it obvious that the self-conscious emotions were the main reason why 

configural invariance was already failing. On top of that, the obtained clusters of groups are often 

empirically interesting in itself. For instance, in the empirical example on emotional acculturation, 

the clustering of the host cultures, heritage cultures and immigrant groups indicated which 

immigrant groups had acculturated to their host cultures (i.e., were assigned to the same cluster as 

their host cultures). 

When comparing the cluster-specific factor loadings, it would be interesting to perform 

hypothesis testing to determine which differences in factor loadings are significant and which 

loadings are significantly different from zero in each cluster. To this end, for each cluster, the 

rotational freedom should be resolved in the estimation procedure such that a fully identified model 

is obtained with optimally rotated estimates and proper standard errors. The recently proposed 

multigroup factor rotation (De Roover & Vermunt, 2019) solves this problem for the standard MG-
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EFA with maximum likelihood estimation and optimizes simple structure as well as agreement. It 

would thus be very useful to extend this rotation approach to the more complicated MMG-FA. 

Currently, MMG-FA applies maximum likelihood estimation, which assumes continuous 

items and multivariate normality whereas many questionnaire items are Likert scale items and 

often some deviation from normality is present. Having five or more response categories allows 

for the items to be analyzed as continuous and a large sample size alleviates the effects of non-

normality (Dolan, 1994; Lei & Lomax, 2005). At least, we expect the within-cluster sample sizes 

to be (mostly) large enough when multiple groups are gathered within each cluster. However, to 

properly deal with the non-normal and ordinal nature of items, we will consider extensions with 

robust estimators (Mîndrilaˇ, 2010; Muthén, 1993) on the one hand and IRT-like multinomial logit 

or probit specifications for item responses (Agresti, 2013) on the other hand.  

When one wants to continue towards further measurement invariance testing for the current 

data set and, potentially, between-group comparisons with respect to the latent variables, the 

MMG-FA solution provides the user with a few possibilities to do so. On the one hand, the 

comparison of the cluster-specific factor loadings may indicate that one or a few items are causing 

the non-invariance and, thus, that excluding these items – or making their loadings non-invariant 

to continue with partial invariance – makes it possible to continue with measurement invariance 

testing for all groups in the data set. Of course, one should make sure that the latent concepts of 

interest are still sufficiently reflected in the remaining set of items. On the other hand, the clustering 

may identify a few groups with deviating factor loadings and, in that case, excluding these groups 

is an option. A combination of non-invariant items and countries may be found as well, in which 

case one should consider which (combination of) items or countries to remove based on 

substantive considerations and maximizing the amount of retained data. Finally, when the non-
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invariant items and/or groups are too extensive, one can look into further invariance testing per 

cluster of groups. When one wants to improve the measurement instrument towards future studies, 

MMG-FA provides some useful clues as well. For instance, one could consider to exclude or 

rephrase items that are found to be non-invariant, potentially only for certain groups (e.g., for 

certain cultures or languages) as indicated by the clustering. 

For investigating intercept invariance across many groups, the MMG-FA framework will 

be extended to include a variant that addresses intercept non-invariance in the same way; that is, 

by clustering the groups on intercept differences only. To this end, in addition to making the 

intercepts cluster-specific and imposing invariance of the factor loadings across all groups, group-

specific factor means will be added whereas the factor (co)variances and unique variances will 

remain group-specific. For the time being, the existing method that most closely approximates this 

specification is multilevel mixture factor analysis (MLMFA; Varriale & Vermunt, 2012), with the 

difference that factor means are not group-specific and that – for model identification – the 

clustering of the groups is based either on the intercepts (restricting the factor means to be zero per 

group) or on the factor means (restricting the intercepts to be zero per group). This implies that, 

when using MLMFA for clustering based on the intercepts, between-group differences in factor 

means will also be captured by the clustering and the cluster-specific intercepts.  

To explore covariates of the non-invariances captured by the clustering, MMG-FA can 

easily be extended to allow for the inclusion of covariates; specifically, to model the relation 

between covariates and cluster membership (Lubke & Muthén, 2005). Alternatively, covariates 

can be added after estimating the MMG-FA model by means of the three-step approach (Vermunt, 

2010). This would give researchers the opportunity, for example, to use group-level data, such as 

geographical region or economic, political or cultural indicators, to explain how the measurement 
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model differs across countries. Furthermore, this could even improve the accuracy of the group 

clustering and parameter recovery (Lubke & Muthén, 2007). In the empirical example on the social 

value of emotions, it would have been interesting and potentially advantageous to include 

collectivism, and/or other potential determinants of emotion values, as a covariate. 

Using EFA within the clusters may imply some capitalization on chance, but we believe 

this to be limited and to distort the clustering (and the parameter estimates) less than using CFA 

with potentially misspecified or overly restrictive zero loadings. Also, in the simulation study, the 

recovery of the clusters was shown to be excellent for larger loading differences and good for small 

ones in case of sufficient within-group sample sizes. Of course, for theory building, it would be 

interesting to return to a CFA approach at some point. On the one hand, based on the insights 

gained by MMG-FA, one can evaluate (partial) invariance of the established measurement models 

by MG-CFA for a subset of items and/or countries, where this subset is determined as described 

above. Preferably, this is performed for a new data set or, in case of a large enough sample size, 

by using split-sample crossvalidation for the current data set (Gerbing & Hamilton, 1996). On the 

other hand, a CFA-based variant of mixture multigroup factor analysis (MMG-CFA) could be 

developed, allowing to (cross)validate both the clustering and the cluster-specific model 

specifications. To this end, an extensive evaluation of MMG-CFA’s robustness against cluster-

specific model misspecifications is required. When configural invariance holds, MMG-CFA 

would also allow to investigate violations of metric invariance without including all the 

crossloadings and without the hassle of rotational freedom. 

Furthermore, exact and full invariance of measurement parameters within a cluster may be 

too restrictive and unrealistic, especially in case of many groups. It could be that the countries 

within a cluster are identical with respect to most – but not all – MM parameters (i.e., partial 
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invariance) or that approximate rather than exact invariance exists within clusters (Muthén & 

Asparouhov, 2013). Note that both partial and approximate invariance do not preclude further 

invariance tests or latent variable comparisons (Byrne, Shavelson, & Muthén, 1989; Muthén & 

Asparouhov, 2013). One can investigate partial and approximate invariance by means of existing 

approaches – such as modification indices (Sörbom, 1989), item-deletion strategies (Byrne & van 

de Vijver, 2010; De Roover, Timmerman, & Ceulemans, 2017; De Roover, Timmerman, De 

Leersnyder, Mesquita, & Ceulemans, 2014; Gvaladze, De Roover, Tuerlinckx, & Ceulemans, 

2019) and multigroup Bayesian structural equation modeling (Muthén & Asparouhov, 2013) – 

within each cluster of the MMG-FA solution. 

Finally, MMG-FA with cluster-specific numbers of factors fell beyond the scope of this 

paper, but it is certainly an interesting extension to consider in the future. For instance, in cross-

cultural research, differences in the number of factors are likely to occur when a latent variable is 

more differentiated in one culture than in another (Chen, 2008). For example, the concept of 

individuation is two-dimensional in China, whereas it is unidimensional in the United States 

(Kwan, Bond, Boucher, Maslach, & Gan, 2002). Also, for some groups, an additional factor may 

occur due to response styles (Billiet & McClendon, 2000; Watson, 1992). It is not a straightforward 

extension, however, mainly because it requires tackling a much more extensive model selection 

problem since the best number of factors needs to be selected for each cluster (see, for example, 

De Roover, Ceulemans, Timmerman, Nezlek, & Onghena, 2013). 

To conclude, the proposed MMG-FA approach is an important step in building a very 

promising framework of mixture-based methods for unraveling measurement non-invariances 

across many groups. Its added value lies in the fact that between-group differences and similarities 

in MM parameters are captured by means of a clustering of the groups and for a specific level of 
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measurement invariance. The latter allows the user to examine MM differences that are relevant 

to the required level of invariance for the research question at hand. In combination with existing 

methods, MMG-FA opens up a realm of possibilities to identify non-invariances and figure out 

which parts of the data (i.e., items, groups) are comparable with respect to the latent variables of 

interest. 
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Table 1. Base loading matrix and the first two derived cluster-specific loading matrices, in case 

of two factors and primary loading shifts. Differences are indicated in bold face. When K = 4, 

the third and fourth cluster-specific loading matrices are created by shifting the primary loadings 

of items 3 and 13 and items 4 and 14, respectively. 

 Base loading matrix  Cluster-specific loading 

matrix 1 

 Cluster-specific loading 

matrix 2 

 F1 F2  F1 F2  F1 F2 

V1 .6   0  0  .6   .6  0 

V2 .6  0  .6  0  0 .6  

V3 .6  0  .6  0  .6  0 

V4 .6  0  .6  0  .6  0 

V5 .6  0  .6  0  .6  0 

V6 .6  0  .6  0  .6  0 

V7 .6  0  .6  0  .6  0 

V8 .6  0  .6  0  .6  0 

V9 .6  0  .6  0  .6  0 

V10 .6  0  .6  0  .6  0 

V11 0 .6   .6  0  0 .6  

V12 0 .6   0 .6   .6  0 

V13 0 .6   0 .6   0 .6  

V14 0 .6   0 .6   0 .6  

V15 0 .6   0 .6   0 .6  

V16 0 .6   0 .6   0 .6  

V17 0 .6   0 .6   0 .6  

V18 0 .6   0 .6   0 .6  

V19 0 .6   0 .6   0 .6  

V20 0 .6   0 .6   0 .6  
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Table 2. Base loading matrix and the first two derived cluster-specific loading matrices, in case 

of four factors and crossloading differences. The crossloadings (CL) are either equal to .40 or 

.20. Differences are indicated in bold face. When K = 4, the third and fourth cluster-specific 

loading matrices are created by adding CL for items 3 and 8 and items 4 and 9, respectively. 

 Base loading matrix  Cluster-specific loading 

matrix 1 

 Cluster-specific loading 

matrix 2 

 F1 F2 F3 F4  F1 F2 F3 F4  F1 F2 F3 F4 

V1 .6  0 0 0  .6  CL 0 0  .6  0 0 0 

V2 .6   0 0 0  .6  0 0 0  .6  CL 0 0 

V3 .6  0 0 0  .6  0 0 0  .6  0 0 0 

V4 .6  0 0 0  .6  0 0 0  .6  0 0 0 

V5 .6  0 0 0  .6  0 0 0  .6  0 0 0 

V6 0 .6  0 0  CL .6  0 0  0 .6  0 0 

V7 0 .6  0 0  0 .6  0 0  CL  .6  0 0 

V8 0 .6  0 0  0 .6  0 0  0 .6  0 0 

V9 0 .6  0 0  0 .6  0 0  0 .6  0 0 

V10 0 .6  0 0  0 .6  0 0  0 .6  0 0 

V11 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V12 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V13 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V14 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V15 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V16 0 0 0 .6   0 0 0 .6   0 0 0 .6  

V17 0 0 0 .6   0 0 0 .6   0 0 0 .6  

V18 0 0 0 .6   0 0 0 .6   0 0 0 .6  

V19 0 0 0 .6   0 0 0 .6   0 0 0 .6  

V20 0 0 0 .6   0 0 0 .6   0 0 0 .6  
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Table 3. Base loading matrix and the first two derived cluster-specific loading matrices, in case of two factors 

and primary loading decreases. The primary loading decreases (PLD) are either equal to .40 or .20. Differences 

are indicated in bold face. When K = 4, the third and fourth cluster-specific loading matrices are created by 

decreasing the primary loading for items 3 and 13 and items 4 and 14, respectively. 

 Base loading matrix  Cluster-specific loading matrix 1  Cluster-specific loading matrix 2 

 F1 F2  F1 F2  F1 F2 

V1 .6  0  .6 −PLD  0  .6  0 

V2 .6  0  .6  0  .6 −PLD 0 

V3 .6  0  .6  0  .6   0 

V4 .6  0  .6  0  .6  0 

V5 .6  0  .6  0  .6  0 

V6 .6  0  .6  0  .6  0 

V7 .6  0  .6  0  .6  0 

V8 .6  0  .6  0  .6  0 

V9 .6  0  .6  0  .6  0 

V10 .6  0  .6  0  .6  0 

V11 0 .6   0 .6 −PLD   0 .6  

V12 0 .6   0 .6   0 .6 −PLD 

V13 0 .6   0 .6   0 .6   

V14 0 .6   0 .6   0 .6  

V15 0 .6   0 .6   0 .6  

V16 0 .6   0 .6   0 .6  

V17 0 .6   0 .6   0 .6  

V18 0 .6   0 .6   0 .6  

V19 0 .6   0 .6   0 .6  

V20 0 .6   0 .6   0 .6  
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Table 4. Mean Adjusted Rand Index (ARI) of the estimated clustering of the 

groups in comparison to the true clustering, in function of the simulated 

conditions, for MMG-FA and MSFA. 

 ARI MMG-FA  ARI MSFA 

G = 12 .78  .49 

G = 60 .86  .65 

 

 
  

Ng = 30 .59  .44 

Ng = 50 .73  .51 

Ng = 100 .86  .59 

Ng = 300 .95  .66 

Ng = 500 .97  .67 

 

 
  

equal clusters .87  .66 

unequal clusters .77  .49 

 

 
  

K = 2 .92  .70 

K = 4 .72  .45 

 

 
  

Q = 2 .86  .64 

Q = 4 .78  .50 

    

primary loading shift .95  .95 

crossloading .40 .89  .74 

crossloading .20 .68  .22 

primary loading decrease .40 .90  .73 

primary loading decrease .20 .67  .22 

    

overall .82  .57 
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Table 5. Mean Adjusted Rand Index (ARI) of the estimated clustering of the groups in 

comparison to the true clustering, for all combinations of the group sizes Ng (columns) and 

the other simulated conditions (rows), for MMG-FA with 25 random starts (left) and with 25 

or 50 random starts (i.e., 50 starts when 25 starts resulted in a local maximum; right). Note 

that ‘PLS’ refers to primary loading shifts, ‘CL’ to crossloadings and ‘PLD’ to primary 

loading decreases. 

 ARI 25 starts  ARI 25 or 50 starts 

Ng 30 50 100 300 500  30 50 100 300 500 

            

G = 12 .51 .64 .80 .95 .98  .52 .67 .83 .96 .99 

G = 60 .67 .82 .92 .96 .96  .68 .84 .95 .99 .99 

            

equal clusters .65 .80 .92 .99 1.00  .66 .81 .93 .99 1.00 

unequal clusters .52 .66 .80 .92 .93  .54 .70 .85 .96 .97 

            

K = 2 .73 .88 .97 1.00 1.00  .74 .88 .98 1.00 1.00 

K = 4 .44 .58 .75 .91 .93  .47 .62 .80 .95 .97 

            

Q = 2 .65 .79 .90 .97 .97  .67 .81 .93 .99 .99 

Q = 4 .52 .67 .82 .94 .96  .54 .69 .85 .96 .98 

            

PLS .90 .94 .96 .98 .98  .93 .96 .98 1.00 .99 

CL .40 .74 .85 .92 .98 .98  .77 .88 .95 .99 .99 

CL .20 .29 .50 .75 .91 .95  .29 .51 .78 .94 .97 

PLD .40 .75 .86 .93 .98 .99  .77 .88 .96 1.00 1.00 

PLD .20 .25 .50 .74 .92 .94  .25 .51 .77 .94 .97 

            

overall .59 .73 .86 .95 .97  .60 .75 .89 .98 .99 
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Table 6. Mean Adjusted Rand Index (ARI) of the estimated clustering of the groups in 

comparison to the true clustering, for all combinations of the two smallest group sizes Ng, 

number of factors Q and the type and size of loading differences. Note that ‘PLS’ refers to 

primary loading shifts, ‘CL’ to crossloadings and ‘PLD’ to primary loading decreases. 

 Ng = 30  Ng = 50 

 Q = 1 Q = 2 Q = 4  Q = 1 Q = 2 Q = 4 

PLS  .98 .88   .98 .95 

CL .40  .83 .70   .94 .83 

CL .20  .36 .22   .59 .44 

PLD .40 .90 .85 .69  .95 .95 .82 

PLD .20 .48 .32 .19  .68 .60 .42 
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Table 7. Percentage of data sets for which the model selection procedures (specifically, BIC_N, 

BIC_G, AIC and CHull) select the correct number of clusters K, in function of the simulated 

conditions. 

 BIC_N BIC_G AIC CHull 

G = 12 40.8 71.1 75.1 76.5 

G = 60 70.4 81.4 84.8 86.4 

     
Ng = 50 29.3 51.3 59.8 66.3 

Ng = 100 45.3 73.5 77.3 79.8 

Ng = 300 71.3 88.5 90.5 89.0 

Ng = 500 76.5 91.8 92.3 90.8 

     
equal clusters 65.4 86.1 90.4 91.9 

unequal clusters 45.8 66.4 69.5 71.0 

     
K = 2 72.4 92.0 94.1 97.8 

K = 4 38.8 60.5 65.8 65.1 

     
Q = 2 61.9 80.8 82.9 84.1 

Q = 4 49.3 71.8 77.0 78.8 

     
primary loading shift 87.8 92.5 91.3 91.6 

crossloading .40 65.0 86.9 88.1 87.5 

crossloading .20 31.3 58.4 66.3 72.2 

primary loading decrease .40 64.4 87.2 86.6 87.5 

primary loading decrease .20 29.4 56.3 67.5 68.4 

     

overall 55.6 76.3 79.9 81.4 
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Table 8. Loglikelihood (log L), number of free parameters (fp), BIC_G, AIC and CHull scree 

ratio for MMG-FA models with one to eight clusters for the social value of emotions data set. 

Note that the model with 7 clusters was not on the convex hull. For each criterion, the values for 

the two best models are in bold face. 

Number of clusters log L fp BIC_G  AIC 

CHull scree 

ratio 

K = 1 -207241.6 1289 419446.0 417061.1 / 

K = 2 -206899.9 1310 418843.4 416419.7 2.06 

K = 3 -206734.0 1331 418592.6 416130.1 1.61 

K = 4 -206630.8 1352 418467.0 415965.6 1.26 

K = 5 -206548.6 1373 418383.5 415843.3 1.20 

K = 6 -206480.3 1394 418327.8 415748.7 1.05 

K = 7 -206415.2 1415 418278.4 415660.4 - 

K = 8 -206349.9 1436 418228.6 415571.8 / 
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Table 9. Clustering of the countries of the MMG-FA model with three clusters and two factors 

per cluster for the data on social value of emotions from the 2001 ICS study. All countries are 

assigned to the clusters with a posterior probability ˆ
gkz  of 1, except for Belgium, India and 

Switzerland. The probabilities for the latter countries are given between brackets. 

Cluster 1 

Belgium ( 1
ˆ

gz = .98), Canada, Chile, Colombia, Croatia, Germany, Kuwait, 

Mexico, Netherlands, Slovenia, Spain, Switzerland ( 1
ˆ

gz = .96), Venezuela, 

Zimbabwe 

Cluster 2 

Australia, Austria, Brazil, Cameroon, China, Cyprus, Ghana, Greece, Hong 

Kong, Iran, Italy, Malaysia, Nepal, Nigeria, Philippines, Poland, Portugal, 

Russia, Singapore, South Africa, Turkey, United States 

Cluster 3 

Bangladesh, Bulgaria, Georgia, Hungary, India ( 3
ˆ

gz = .92), Indonesia, Japan, 

Slovakia, South Korea, Thailand, Uganda 
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Table 10. Target rotated loadings of the MMG-FA model with three clusters and two factors per 

cluster for the social value of emotions data set. For each cluster, the loadings are obliquely 

Procrustes rotated toward a target structure representing the a priori assumed distinction between 

positive and negative emotions; i.e., with a ‘1’ for positive emotions on the first factor and for 

negative emotions on the second factor, whereas other entries are equal to zero. Loadings with an 

absolute value greater than .40 are indicated in bold face. 

 Cluster 1  Cluster 2  Cluster 3 

 

Social 

Value of 

Positive 

Emotions 

(POS) 

Social 

Value of 

Negative 

Emotions 

(NEG)  

Social 

Value of 

Positive 

Emotions 

(POS) 

Social 

Value of 

Negative 

Emotions 

(NEG) 

 Social 

Value of 

Positive 

Emotions 

(POS) 

Social 

Value of 

Negative 

Emotions 

(NEG) 

Happy  1.29 -0.03  1.40 -0.20  1.22 -0.14 

Love 1.23 0.05  1.40 -0.15  1.25 -0.03 

Sad 0.16 1.29  0.09 1.28  0.29 1.36 

Jealousy 0.02 1.37  0.17 1.29  0.14 1.18 

Cheerful 1.18 0.02  1.10 -0.16  1.07 -0.01 

Worry 0.30 1.48  0.15 1.49  0.06 1.80 

Stress -0.05 1.77  0.09 1.73  -0.26 1.93 

Anger -0.01 1.60  -0.07 1.69  -0.16 1.70 

Pride 0.93 0.02  0.40 0.94  0.72 0.42 

Guilt 0.14 1.40  0.24 1.18  0.58 0.69 

Shame 0.07 1.33  0.28 1.08  0.54 0.71 

Gratitude 1.02 -0.08  0.89 -0.19  0.98 -0.03 
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Table 11. The 13 cultural groups under consideration and the associated host country. Sample 

size per group Ng is indicated (note: each subject-situation combination counts as one 

observation) after removing observations with missing values and after randomly selecting one 

situation per subject. The last column indicates to which cluster the cultural group is assigned in 

the MMG-FA model with three clusters and two factors per cluster. All countries are assigned 

to the clusters with a posterior probability ˆ
gkz  of 1. 

Cultural group 
Host 

country 
Design 

Ng after removing 

observations with 

missing values 

Ng after 

sampling 1 

observation per 

subject 

MMG-

FA 

clustering 

European Americans 1 USA 1 120 42 1 

Korean immigrants USA 1 126 46 1 

Mexican immigrants USA 1 188 67 1 

East-Asian immigrants USA 2 159 37 1 

Latino immigrants USA 2 142 40 1 

European Americans 2 USA 2 122 32 1 

Koreans Korea 2 298 79 1 

Flemish students 1 Belgium 3 183 183 2 

Flemish students 2 Belgium 3 516 264 2 

Belgian community Belgium 3 166 90 2 

Turkish 2nd generation 

immigrants 
Belgium 3 157 

83 
2 

Turkish 1st generation 

immigrants 
Belgium 3 143 

79 
3 

Turkish students Turkey 3 699 375 3 
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Table 12. Loglikelihood (log L), number of free parameters (fp), BIC_G, AIC and CHull scree 

ratio for MMG-FA models with one to eight clusters for the emotional acculturation data set: 

for the total data set (above) and for the subset (below). For each criterion, the values for the 

two best models are in bold face. 

Number of clusters log L fp BIC_G  AIC 

CHull scree 

ratio 

K = 1 -102484.3 511 206279.3 205990.6 / 

K = 2 -102107.3 542 205604.7 205298.5 1.72 

K = 3 -101888.0 573 205245.7 204921.9 1.94 

K = 4 -101774.8 604 205098.8 204757.6 1.74 

K = 5 -101709.8 635 205048.3 204689.5 1.36 

K = 6 -101661.8 666 205031.9 204655.6 1.06 

K = 7 -101616.7 697 205021.1 204627.3 1.17 

K = 8 -101578.2 728 205023.6 204612.4 / 

K = 1 -47937.8 511 97186.3 96897.6 / 

K = 2 -47793.3 542 96976.7 96670.5 1.05 

K = 3 -47655.1 573 96780.0 96456.3 2.61 

K = 4 -47602.3 604 96753.8 96412.5 1.47 

K = 5 -47566.4 635 96761.5 96402.7 1.12 

K = 6 -47534.3 666 96777.0 96400.7 1.11 

K = 7 -47505.6 697 96798.9 96405.1 1.15 

K = 8 -47480.5 728 96828.4 96417.1 / 
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Table 13. Target rotated loadings of the MMG-FA model with three clusters and two factors 

per cluster for the emotional acculturation data set. For each cluster, the loadings are 

obliquely Procrustes rotated toward a target structure representing the distinction between 

positive and negative emotions; i.e., with a ‘1’ for the first eight emotions on factor 1 and 

for the remaining emotions on factor 2, whereas other entries are equal to zero. Loadings 

with an absolute value greater than .40 are indicated in bold face. 

 

Cluster 1  

(USA & Koreans)  

Cluster 2 

(Belgian)  

Cluster 3  

(Turkish) 

Positive 

(POS) 

Negative 

(NEG)  

Positive 

(POS) 

Negative 

(NEG)  

Positive 

(POS) 

Negative 

(NEG) 

Respect 1.53 -0.30  1.53 -0.07  1.74 -0.26 

Interested 1.47 -0.33  1.19 -0.46  1.39 -0.02 

Helpful 1.55 -0.06  1.22 -0.06  1.31 -0.12 

Close 1.31 -0.47  1.70 0.28  1.56 -0.43 

Strong 1.41 -0.23  0.92 -0.82  1.62 -0.41 

Proud about myself 1.45 -0.49  0.97 -1.26  1.68 -0.53 

Relying 0.96 0.64  1.55 0.31  1.35 -0.11 

Surprised 0.55 0.78  0.54 -0.18  1.32 -0.16 

Ill feelings -0.52 1.10  -0.51 1.08  -0.60 1.13 

Upset -0.78 1.42  -0.57 1.34  -0.70 1.40 

Irritated -0.43 1.42  -0.95 1.03  -0.09 1.46 

Embarrassed 0.20 1.72  -0.22 1.09  0.27 1.77 

Ashamed 0.22 1.72  -0.23 1.38  0.17 1.47 

Guilty -0.05 1.55  -0.13 1.63  -0.05 1.53 

Bored 0.10 0.66  -0.30 0.41  -0.61 1.10 

Indebted 0.87 0.80  0.55 1.42  0.61 0.94 

Resigned -0.23 1.08  0.14 0.52  0.47 0.25 
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Figure 1. Boxplots of the scree ratio’s of the selected number of clusters for the data sets from Simulation Study 2 (true number of 

clusters K equal to 1), for exact and approximate metric invariance across all groups, and for the data sets from Simulation Study 1 (K 

= 2 and K = 4), for each level of the type and size of loading differences. ‘PLS’ refers to primary loading shifts, ‘CL’ to crossloadings 

and ‘PLD’ to primary loading decreases. Note that the scale of the y-axis differs across the subplots.
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Figure 2. Convex Hull (CHull) plot of the loglikelihood in function of the number of free 

parameters for MMG-FA models with one to eight clusters for the social value of emotions data 

set. 
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Figure 3. Boxplots of institutional and in-group collectivism (House, Hanges, Javidan, Dorfman, 

& Gupta, 2004), as measured by the Societal Cultural Practices Scale (above) and by the Societal 

Cultural Values Scale (below) per cluster of the MMG-FA solution for the social value of emotions 

data set. 
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Figure 4. Convex Hull (CHull) plot of the loglikelihood in function of the number of free 

parameters for MMG-FA models with one to eight clusters for the emotional acculturation data 

set: for the total data set (above) and for the subset (below). 
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Appendix A: ECM algorithm and multistart procedure MMG-FA 

As in all mixture models, log L (Equation 4) – also referred to as the ‘observed-data 

loglikelihood’ – is complicated by the latent clustering of the groups, making it hard to maximize 

log L directly. Therefore, the ECM algorithm makes use of the so-called ‘complete-data 

loglikelihood’, i.e., the likelihood when the cluster memberships 
gkz  of all groups as well as the 

factor scores 
gn kη  are assumed to be known (i.e., the joint distribution of the observed and latent 

data): 
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Ψ Λ η Λ Ψ Λ η η  (7) 

where 
g gn n g x x μ . Because the latent data are unknown, the following expected values of gkz , 

gn kη  and 
g gn k n k

η η  (McLachlan & Krishnan, 2007) are inserted in Equation 7: 
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η η x Φ β Λ Φ β x x β  (10) 

where Equation 8 corresponds to the posterior classification probability ˆ
gkz . In this way, the 

following expected value of log Lc or E[log Lc] is obtained: 
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where 
1

ˆ
G

k gk

g

G z


 , ˆ
gk gk gN z N , 

1

1 g

g g

g

N

g n n

ngN 

 S x x , and 
gk gk gk k gk gk g gk

  Θ Φ β Λ Φ β S β . By 

taking the derivative of E[log Lc] and equating it to zero – using the lagrange multiplier method 

for imposing 
1

ˆ 1
K

k

k




  – we obtain the following parameter updates: 

 
1
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 λ S β Θ  (13) 

 ˆˆ
gk gkΦ Θ  (14) 
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1

1ˆ ˆ ˆ ˆ ˆ ˆ2
K

g g gk k gk g k gk k

kg

diag diag N
N 

  
       

Ψ S Λ β S Λ Θ Λ  (15) 

Note that the factor loadings (Equation 13) are updated per row.  

To set the scale of the cluster-specific factors, the mean factor variances are fixed to one 

over all groups within a cluster k, i.e., 
1

1ˆ ˆˆ
G

k g gk gk

gk

N z
N 

 Φ Φ I , where
1

ˆ
G

k g gk

g

N N z


 . Note that 

this restriction also fixes the factor covariances to zero over all groups within a cluster, which 

implies that the initial rotation is orthogonal for each cluster. Afterwards, one can choose to rotate 

the cluster-specific factors according to an orthogonal or oblique rotation criterion and 

counterrotate the group- and cluster-specific factor covariances accordingly. To impose the above-

mentioned restriction, the factor (co)variances and loadings are rescaled and rotated as follows:  

    
1 1

* 2 2

1

ˆ ˆ ˆ ˆˆ ˆ
G

g k

gk k gk k k g k

g k

N
with

N

 






 
   

 
Φ Θ Φ Θ Θ Θ   (16) 

  
1

* 2ˆ ˆ ˆ
k k kΛ Λ Θ  . (17) 

Note that this can be done either in the final iteration only (i.e., upon convergence), or in each 

iteration. We opted for the latter (see Section A1). 

 

A1. Algorithm  

The group-specific means are determined as 
1

1
ˆ

g

g

g

N

g n

ngN 

 μ x and the algorithm continues 

with the centered data for each group: ˆ
g gn n g x x μ . 

For a user-specified number of starts, perform the following steps for each start: 
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1. Start from a pre-selected random partition (Section A2), i.e., with binary values for ˆ
gkz . 

2. Perform the following initialization of the parameters per cluster k of the random partition, 

based on probabilistic principal component analysis5 (Tipping & Bishop, 1999): 

 2ˆ ˆ
k Q Q Q Λ U V I  for k = 1, …, K and 2ˆ ˆ

g JΨ I  for g = 1, …, G if ˆ
gkz = 1, where 

the columns of UQ correspond to the first Q eigenvectors and the diagonal matrix VQ 

contains the Q largest eigenvalues of the eigenvalue decomposition of 

1 1

1
ˆ

g

g g

g

NG

k gk n n

g nk

z
N  

 
  

 
 

 S x x , 
2̂  is the average of the J − Q smallest eigenvalues, and IQ 

and IJ are Q × Q and J × J identity matrices, respectively. The factor (co)variance matrices 

ˆ
gkΦ  are initialized as IQ. 

3. Iterate the following steps while 1  & 2  > 1×10−4 and v  ≤ 100: 

a. Update the iteration number: 1v v  . 

b. Update the posterior classification probabilities ˆ
gkz  (Equation 8) for g = 1, …, G 

and k = 1, …, K. 

c. Update the mixing proportions ˆ
k  (Equation 12) for k = 1, …, K. 

d. Update the factor loadings ˆ
kΛ  for k = 1, …, K (Equation 13) and the factor 

(co)variance matrices ˆ
gkΦ  for g = 1, …, G and k = 1, …, K (Equation 14) if kN  > 

0. Update the unique variances ˆ
gΨ  for g = 1, …, G (Equation 15). Rescale ˆ

gkΦ  

                                                   
5 These starting values are similar to the maximum likelihood estimates of image factor analysis described by 

Jöreskog (1969). 
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and kΛ (Equations 16 and 17) for g = 1, …, G and k = 1, …, K. To remedy Heywood 

cases, fix unique variances to .0001 when they are smaller than this number. 

e. Compute log Lv value (Equation 4). 

f. Evaluate convergence with respect to log Lv and the parameter estimates ˆv

r : 

1

1 1
1

ˆ ˆ

ˆ

v vR
r r

v
r r

 










  and 

1

2 log logv vL L   . 

4. After (preliminary) convergence is reached (or 100 iterations), check whether the obtained 

solution is the best one in terms of log L (across all starts up to now) and, if so, save the 

parameter estimates ˆ ˆbest v

r r   and iteration number 
bestv v . 

After performing this procedure for all starts, iterate further until full convergence is reached for 

the best solution: i.e., starting from ˆ ˆv best

r r   and 
bestv v , iterate Steps 3a to 3f while 1  & 2  > 

1×10−6 and v  ≤ 1000 (or another user-specified maximal number of iterations). 

A2. Multistart procedure 

Because the ECM algorithm described in Section A1 is not guaranteed to converge to the 

global maximum, a multistart procedure is used to increase the probability of finding the global 

maximum. The multistart procedure applies a tiered testing strategy with respect to several sets of 

starting values. Specifically, given the user-specified number of starts (e.g., 25), it starts from 10 

times as many random partitions of the groups (e.g., 10 × 25 partitions). For each of these 

partitions, the parameter estimates per cluster k are initialized as described in Step 2 of the 

algorithm (Section A1). Subsequently, the parameter estimates are updated once by means of 

Equations 13 to 17 and the log L value (Equation 4) is determined. The 10% most promising 
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partitions (i.e., with the highest log L) are selected as the starts for the algorithm described in 

Section A1. 

Appendix B: Latent Gold 6.0 syntax for MMG-FA 

An example syntax for MMG-FA with three clusters and two factors for a data set with 12 

variables is given and explained below (for more details, see Vermunt & Magidson, 2013): 

options 

   algorithm 

      tolerance=1e-006 emtolerance=0.1 emiterations=1000 nriterations=0 

      emfa; 

   startvalues 

      seed=0 sets=250 tolerance=1e-004 iterations=50 PCA annealing; 

   bayes 

      categorical=0 variances=0 latent=0 poisson=0; 

   missing includeall; 

   output       

      iterationdetail parameters=first standarderrors probmeans=posterior  

      reorderclasses; 

   rotation oblimin; 

variables 

   groupid Country; 

   dependent (V1-V12) continuous; 

   independent Country nominal;  

   latent 

      F1 continuous,  

      F2 continuous,  

      Cluster nominal group 3; // 1–8 to estimate models with 1 to 8 clusters 

equations 

// group- and cluster-specific factor (co)variances 

   F1 | Country Cluster; 

   F2 | Country Cluster; 

   F1 <-> F2 | Country Cluster; 

// logistic regression model for clusters (only intercept) 

   Cluster <- 1; 

// regression models for items: group-specific intercepts and  

// cluster-specific loadings 

   V1 - V12 <- 1 | Country + F1 | Cluster + F2 | Cluster; 

// group-specific unique variances  

   V1 - V12 | Country; 

       

The LG syntax contains three sections, i.e., ‘options, ‘variables’, and ‘equations’. Firstly, 

the ‘options’ section pertains to specifications regarding the estimation process and to output 
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options. The parameters in the ‘algorithm’ subsection indicate when the algorithm should proceed 

with Newton-Raphson instead of EM iterations and when convergence is reached. To apply only 

EM iterations, set ‘nriterations’ to zero, ‘emiterations’ to a high number and ‘emtolerance’ to the 

same value as ‘tolerance’. The new option ‘emfa’ makes sure that the factor model parameters are 

estimated by means of the time-efficient EM procedure detailed in Appendix A. The ‘startvalues’ 

subsection includes the parameters pertaining to the multistart procedure used by LG. Specifically, 

for each set of starting values (the number of sets is specified by ‘sets’), the model is re-estimated 

for as many iterations as specified by ‘iterations’ or until 1  or 2  drops below the ‘tolerance’ 

value. Subsequently, it continues with the 10% (rounded upwards) most promising sets (i.e., with 

the highest log L), performing another two times the specified number of iterations (i.e., 2 × the 

value of ‘iterations’). Finally, it continues with the best solution until convergence. In the example 

syntax above, 250 starts are requested by the user. The thus obtained multistart procedure is 

actually more elaborate than the one evaluated in Section 3, because the clustering and factor 

parameters are updated 50 times before choosing the best 10% most promising sets of starting 

values (as opposed to one update of the factor parameters only). ‘PCA’ prompts LG to use starting 

values for the factor loadings and unique variances that are based on principal component analysis 

(PCA) (Vermunt and Magidson, 2016). More specifically, PCA is performed on the entire data set 

and, to get K different start sets, randomness is added to the PCA solution per cluster k. For more 

details on the PCA-based starting values and the entire multistart procedure see De Roover, 

Vermunt, Timmerman, and Ceulemans (2017). When group sizes are large, the algorithm may be 

prone to local maxima because the posterior classification probabilities quickly approach one and 

zero, even for a clustering that is far from the one that is actually underlying the data. This may 

happen especially when between-cluster loading differences are small. To avoid this, the 
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‘annealing’ option – referring to ‘deterministic annealing’ – is used which implies that an auxiliary 

variable is used to keep the posterior classification probabilities more fuzzy for the first few 

iterations (Zhou & Lange, 2010). It is advised to set the options in the ‘bayes’ subsection to zero 

when using the ‘emfa’ algorithm. Finally the ‘rotation’ option is used to specify how the MMG-

FA parameters should be identified (see below). In the ‘output’ and ‘outfile’ subsections, the 

desired output can be specified by the user. 

Secondly, the ‘variables’ section specifies the different types of variables included in the 

model. Since MMG-FA operates on multilevel data, after ‘groupid’, the variable in the data file 

that indicates the group structure (i.e., the group number for each observation) should be specified, 

using its label in the data file (e.g, ‘Country’). In the ‘dependent’ subsection, the dependent 

variables of the model (i.e., the observed variables) are specified, by means of their label in the 

data file and their measurement scale. Next, the ‘independent’ variables are listed. For MMG-FA, 

one has to include the grouping variable as an independent variable, since parameters will be 

allowed to vary across groups. For MMG-FA, one has to include the grouping variable as an 

independent variable Finally, the ‘latent’ variables of the MMG-FA model are the factors (i.e., 

‘F1’ to ‘F1’ in the example syntax) and the mixture model clustering (i.e., ‘Cluster’). In particular, 

the former are specified as continuous latent variables, whereas the latter is specified as a nominal 

latent variable at the group level with a specified number of categories (i.e., the desired number of 

clusters). For estimating models with, for instance, one to eight clusters, use ‘1–8’. 

In the ‘equations’ section, the model equations are listed. First, the factor variances and 

covariances are specified and they are allowed to differ among groups and cluster by adding ‘| 

Country Cluster’. Next, a logistic regression model for the categorical latent variable ‘Cluster’ is 

specified, which contains only an intercept term in this case. Then, regression models are defined 
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for the observed variables, i.e., which variables are regressed on which factors. Note that all 

variables are regressed on all factors (i.e., EFA is applied) and that an intercept term is included. 

To obtain factor loadings that differ between clusters and intercepts that differ between groups, ‘| 

Cluster’ is added to each regression effect and ‘| Country’ is added to the intercepts. By default, 

factor means are equal to zero and, since no effect is specified to let them differ between groups 

or clusters, they are zero for all groups. Finally, unique variances are added, which are allowed to 

differ across groups. At the end of the syntax, additional restrictions may be specified or starting 

values for all parameters may be given, either by directly typing them in the syntax or by referring 

to a text file.  

The specified MMG-FA model is not identified without additional constraints, but 

identification is achieved using the ‘rotation’ option. The scales of the latent factors are fixed by 

restricting the weighted means of their variances to be equal to 1 across groups within a cluster. 

The rotational freedom is dealt with by applying the specified rotation method (e.g., oblimin) to 

the cluster-specific loadings. As described in De Roover and Vermunt (2019), it is possible to use 

target rotation and to add an agreement term (e.g., ‘procrustes=0.5’) to the rotation criterion. 
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