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Abstract—The canonical polyadic decomposition (CPD) can
be used to extract meaningful components from a tensor. Most
existing optimization methods for fitting the CPD use as cost
function the least-squares distance between the tensor and its
CPD. While the minimum of this cost function coincides with
the maximum likelihood estimator for data with additive i.i.d.
Gaussian distributed noise, for other noise distributions, better-
suited cost functions exist. For such cost functions, first-order,
gradient-based optimization methods have been proposed. How-
ever, (approximate) second-order methods, which additionally use
information from the Hessian of the cost function to achieve
faster convergence, are still largely unexplored. In this paper, we
generalize the Gauss–Newton nonlinear least-squares algorithm
to twice differentiable entry-wise cost functions. The low-rank
structure of the problem is exploited to keep the computational
cost low. As a special case, β-divergence cost functions are
examined. We show that quadratic convergence can be obtained
close to the solution with a reasonable extra cost in memory
and computation time, making the proposed method particularly
useful when high accuracy of the decomposition is desired.

Index Terms—Tensors, CPD, beta-divergence.

I. INTRODUCTION

Tensors—higher-order generalizations of matrices—are
used extensively in machine learning and signal processing [1],
[2]. In contrast to matrices, tensors preserve higher-order
structure that is present in the data. Building on the well-
established field of matrix decompositions, different types
of tensor decompositions have been proposed to reveal the
underlying information in the tensor in a compact way. Sev-
eral algebraic and optimization-based algorithms have been
developed for tensor decompositions such as the canonical
polyadic decomposition (CPD) [3]–[6]. The CPD is a popular
tensor decomposition due to its simplicity and mild uniqueness
conditions [7], [8] and therefore, its computation has been
intensively studied. Still, optimization-based algorithms for
computing the CPD of a tensor have mainly considered least-
squares (LS) cost functions. They minimize the Frobenius
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norm of the difference between the tensor and its CPD model.
This is indeed optimal if the noise on the tensor data is
additive, independent and identically distributed (i.i.d.) and
follows a Gaussian distribution, as the LS solution is the
maximum likelihood estimator (MLE) under these assump-
tions for the noise [9]. However, using a different criterion
could be better if the noise is differently distributed [10]–[12].
While methods exist that allow the use of β-divergence [11],
[12] or general [10] cost functions, these are all first-order
methods that use only gradient information to determine the
next optimization step. Second-order methods additionally use
curvature information from the Hessian of the cost function.
Consequently, every iteration is typically more costly than for
first-order methods, but the use of second-order information
can lead to fewer iterations and better convergence in general.
In practice, the robustness with respect to initialization is often
increased as well. If used naively, however, these methods
quickly become prohibitively expensive in computation time
and memory. We therefore propose a method for computing
the CPD for arbitrary twice differentiable entry-wise cost
functions that uses Hessian information and exploits the mul-
tilinear structure of the problem. The method obtains fast local
convergence, while at the same time keeping storage and time
requirements reasonably low.

We fix notation and give basic definitions in the remaining
of this section. In Sec. II, we propose a second-order optimiza-
tion algorithm to compute the CPD of a tensor for general
cost functions. By exploiting the low-rank structure of the
CPD, the curvature information in the Hessian can be used
efficiently. We then focus on β-divergences as an example
of an alternative cost function in Sec. III. Lastly, numerical
experiments are shown in Sec. IV. We will consider only third-
order tensors, although, with minor modifications, the results
apply to higher-order tensors as well.

A. Notation

We denote scalars, vectors and matrices by lowercase (a),
bold lowercase (a) and bold uppercase letters (A), respec-
tively. Tensors are written in calligraphic script (A). Powers,
divisions and logarithms of matrices are entry-wise throughout
the text. For matrices X and Y the former is written as
X•a, for the other two their scalar notation is used: X

Y and
log(X), respectively. The transpose of a matrix X is written
as XT and Diag(x) forms a square matrix that has x as
its diagonal. The M × M -identity matrix is written as IM .
When using subscripts to specify certain entries of a tensor
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T , a colon refers to all entries of a specific mode, e.g. t1:2
is a vector holding all entries of the third-order tensor T
which have 1 and 2 as their first and third index, respectively.
The vectorization of the tensor T ∈ RI×J×K maps tijk to
t = vec(T )q , with q = i+ (j − 1)I + (k − 1)IJ . Its inverse
(with context-implied dimensions) is denoted by unvec(t). The
vectorization vec(X) ∈ RIJ×1 of a matrix X ∈ RI×J can
be seen as a special case. A mode-n vector of a tensor is a
vector obtained by fixing all indices but the nth. The mode-n
unfolding T(n) of a tensor T is constructed by stacking all its
mode-n vectors as columns of a matrix. For example, ti1i2i3
is mapped to

(
T(2)

)
i2,q

, with q = i1 + (i3 − 1)I . We also
introduce the permutation matrices Π(n) ∈ {0, 1}IJK×IJK
for vectorizations of T ∈ RI×J×K . The matrix Π(n) permutes
the modes of T directly in its vectorization by bringing the
nth mode to the first position. Thus Π(1) = IIJK , and Π(2)

and Π(3) change the mode order from (1, 2, 3) to (2, 1, 3) and
(3, 1, 2), respectively. The inverse permutation is denoted by
Π(n)T

, thus bringing the first mode to the nth position. Again,
Π(1)T

= IIJK , while Π(2)T
and Π(3)T

change the mode order
from (1, 2, 3) to (2, 1, 3) and (2, 3, 1), respectively.

The Kronecker product of matrices A ∈ RI×J and B ∈
RK×L is defined as

A⊗B =

[
a11B ··· a1JB

...
. . .

...
aI1B ··· aIJB

]
∈ RIK×JL.

For A ∈ RI×K and B ∈ RJ×K , the column-wise Khatri–Rao
product is defined as A�B =

[
a:1 ⊗ b:1 · · · a:K ⊗ b:K

]
,

while the row-wise Khatri–Rao product of A ∈ RK×I and
B ∈ RK×J is A �T B =

(
AT �BT

)T
. The Hadamard, or

entry-wise, product of A and B ∈ RI×J is written as A ∗B.
Finally, the outer product of vectors is denoted by ⊗. A third-
order tensor is a rank-1 tensor if it is the outer product of
three nonzero vectors. The minimal number of terms needed
to write the tensor as a sum of rank-1 tensors, is the rank R
of the tensor. Such a decomposition is called a CPD:

T =

R∑
r=1

ar ⊗ br ⊗ cr =: JA,B,CK .

The column vectors ar, br and cr can be collected as columns
of factor matrices A, B and C, respectively.

II. GENERAL COST FUNCTIONS FOR THE CPD

In this section, we show how one can use curvature infor-
mation from the Hessian of the cost function without requiring
an inordinate amount of computational resources. We first
introduce a general cost function for fitting the CPD and derive
efficient expressions for its gradient. Next, we explain that
the Hessian approximation of the generalized Gauss–Newton
method can be expected to perform well for the CPD and
exploit the multilinear structure of the problem to compute
this Hessian approximation cheaply.

Computing the CPD of a tensor is a difficult problem in
general. The cost function is nonconvex and may have spurious
local minima. For the LS cost function, optimization-based
algorithms find a rank-R CPD M = JA,B,CK of a tensor

T ∈ RI×J×K by fitting matrices A ∈ RI×R, B ∈ RJ×R,
C ∈ RK×R that solve minA,B,C f , with

f = min
A,B,C

I∑
i=1

J∑
j=1

K∑
k=1

1

2
(mijk − tijk)

2
. (1)

As the triple sum is simply a sum over all tensor entries, it
can be replaced by a single sum

∑N
n=1, where N = IJK.

We also write z = [vec(A); vec(B); vec(C)] ∈ R(I+J+K)R,
for the vector holding all optimization variables. While the
LS distance is by far the most popular cost function when
fitting a CPD, its solution does not necessarily correspond to
the MLE when the noise on the tensor entries is not additive
i.i.d. Gaussian noise [10]. For more general settings, we may
consider the following extension of (1):

min
z
f = min

z

N∑
n=1

fn(mn(z)).

Note that, for the LS cost function in (1), fn =
1
2 (mn(z)− tn)

2. Here mn(z) is the (unconstrained) CPD
model mapping the variables in z to the tensor elements in
M. In our discussion, the fn may be different for different
tensor entries. They can be any kind of twice differentiable fit
function for the corresponding model entry mn, although the
problem may become significantly harder if the function is
nonconvex. One class of alternative cost functions is given
by β-divergence cost functions, with as special cases the
Kullback–Leibler (KL) divergence x log

(
x
y

)
− x+ y and the

Itakura–Saito (IS) divergence x
y − log

(
x
y

)
−1, where the first

one is convex and the second one is not. A second alternative
cost function is the maximum likelihood estimator for data that
follows a Rician distribution [13]. The entry-wise modulus of a
complex-valued tensor follows such a Rician distribution when
the real and imaginary parts are independently perturbed by
additive Gaussian noise and they have equal noise variance.
As a third alternative cost function, correntropy [14] can be
considered. This function behaves as the LS distance if points
are close, as the 1-norm distance if points are moderately far
apart and as the 0-norm distance if they are far apart, which
makes it robust against outliers. Naturally, many other entry-
wise differentiable cost functions exist.

A. Gradient
The gradient g = ∇zf can be split into terms according

to the factor matrices A, B and C: g = [gA; gB; gC]. The
subgradients gA, gB and gC can be found by applying the
chain rule. We first derive gA:

gA =

N∑
n=1

dfn
dmn

∂mn

∂vec(A)
. (2)

Note that all expressions of the form ∂mn
∂vec(A) are transposed

rows of the Jacobian matrix JA ∈ RIJK×IR for the CPD:

JA =
∂vec

(
A(C�B)T

)
∂vec(A)T =


∂m1

∂vec(A)T

...
∂mN

∂vec(A)T

 = (C�B)⊗ II .

(3)
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By substituting JA = (C � B)⊗ II into (2) and exploiting
the multilinear structure, gA can be computed as

gA = vec
(
R(1)(C�B)

)
,

where the tensor R is of the same dimensions as T and M
and holds the N derivatives ∂fn

∂mn
. For the LS cost function,

R is simply the residual tensor M−T , which is particularly
convenient computationally. For the aforementioned KL and
IS divergences, the tensor R is equal to M−T

M and M−T
M•2 ,

respectively. Using permutation matrices, the Jacobians with
respect to B and C can be written as

JB = Π(2)T
((C�A)⊗ IJ) , and

JC = Π(3)T
((B�A)⊗ IK) . (4)

Using these expressions, the vectors gB and gC can be
computed similarly to gA:

gB = vec
(
R(2)(C�A)

)
and gC = vec

(
R(3)(B�A)

)
.

The matricized tensor times Khatri–Rao products
(MTKRPROD) in gA, gB and gC can be computed efficiently
using specialized routines [15]–[17].

B. Hessian approximation

While gradient descent methods use the direction of the
negative gradient to obtain a new intermediate solution zk+1 =
zk + αp, second-order optimization methods find the next
iterate by solving the system Hp = −g for the step direction
p. They thus require, besides the gradient, also (a good approx-
imation of) the Hessian H = ∇2f ∈ R(I+J+K)R×(I+J+K)R.
The Hessian can be computed as the Jacobian of the gradient
g, so we take the derivative of g with respect to the variables
z again. The chain rule for derivatives gives:

H =

N∑
n=1

∂

∂z

(
dfn
dmn

∂mn

∂z

)

=
N∑
n=1

∂

∂z

(
dfn
dmn

)
∂mn

∂z
+

dfn
dmn

∂

∂z

(
∂mn

∂z

)

=

N∑
n=1

(
∂mn

∂z

)
d2fn
dmn

2

(
∂mn

∂z

)T

+
dfn
dmn

(
∂2mn

∂z2

)

=

N∑
n=1

JT
n:

d2fn
dmn

2
Jn: +

dfn
dmn

(
∂2mn

∂z2

)
,

where J = [JA,JB,JC]. Note that the second term of the
Hessian consists of two factors. The factor dfn

dmn
, i.e., the

change in cost function, is expected to become small as we
move closer to the (global) optimum. The factor

(
∂2mn
∂z2

)
is

sparse for the CPD model, as every tensor entry depends
only on a limited number of model entries [4]. One can
therefore argue that the generalized Gauss–Newton (GGN)
method, which approximates the Hessian by only its first term∑N
n=1 JT

n:
d2fn
dmn2 Jn:, will give a good approximation [17]–[19].

The values d2fn
dmn2 can be collected in a tensor D of the same

dimensions as T ,M and R. The Hessian approximation can

then be written as H = JTZJ, where Z = Diag (vec(D)) ∈
RIJK×IJK . Note that, for the LS cost function, D has all
entries equal to 1, which means that Z = IIJK . For this
cost function, the Hessian approximation is thus simply the
Gramian of the Jacobian, and we recover the standard Gauss–
Newton method for the CPD, as described in [4]. Although
we would like the Hessian approximation JTZJ to be positive
semidefinite (PSD), i.e., having only nonnegative eigenvalues,
this does not hold in general. For nonconvex cost functions
fn, negative values can occur in Z when moving away from
the optimum, possibly introducing negative eigenvalues in
JTZJ as well. Special care should be taken when this occurs
to ensure that a descent direction is chosen and continued
convergence of the optimization algorithm is guaranteed. This
can be done either by modifying f , by using an algorithm that
can handle indefinite Hessian approximations or by modifying
JTZJ to make it PSD. See Sec. III-A for an extended discus-
sion. The step obtained from solving the system Hp = −g
can be combined with the (first-order) Cauchy point within
a (dogleg) trust-region approach [20] to guarantee global
convergence of the method. In this case, the step is restricted
to a small region around the previous iterate, wherein the local
second-order approximation of the cost function can be trusted.

C. Computing JTZJ

Naively computing the Hessian approximation JTZJ of a
rank-R (I × I × I)-tensor requires the multiplication of the
matrix JT, the diagonal matrix Z and the matrix J and requires
O(I5R2) flop, which already becomes costly for moderate
values of I and R. However, by exploiting the sparsity and
multilinear structure in J, this computation can be made more
efficient; see Sec. II-A. The full Hessian approximation JTZJ
consists of nine blocks in a 3-by-3 grid. (For a tensor of order
M , the Hessian approximation has M2 blocks in a M -by-M
grid.) The diagonal and off-diagonal blocks are of the form
JT
mZJm and JT

l ZJm with m 6= l, respectively, where J1 =
JA, J2 = JB and J3 = JC. Due to symmetry, only the
blocks with m ≥ l need to be computed. Efficient approaches
to obtain the diagonal and off-diagonal blocks are given below.

1) Diagonal blocks: We show how the diagonal blocks
of the GGN Hessian approximation can be computed while
exploiting their specific structure and sparsity. For m = 1, the
diagonal block G(1,1) of JTZJ ∈ RIR×IR is given by:

G(1,1) = JT
AZJA = ((C�B)⊗ II)

T
Z ((C�B)⊗ II) .

The Kronecker product with the identity matrix II introduces
many zeros into the Jacobian which in turn lead to zeros in
G(1,1). We can exploit this sparsity by only computing the
nonzero values of G(1,1). Denote by G

(1,1)
nz the matrix of

dimensions (I ×R2) holding these nonzero values. One can
obtain G

(1,1)
nz from the MTKRPROD

G(1,1)
nz = D(1)

(
(C�T C)� (B�T B)

)
,

where the matrices C�T C ∈ RK×R2

and B�T B ∈ RJ×R2

hold all pair-wise Hadamard products of columns of C and
B, respectively. The proof can be found in Appendix A. As
C�T C and B�T B only have R(R+ 1)/2 unique columns
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and G
(1,1)
nz has the same repetition pattern, the latter also has

only R(R+1)/2 unique columns, which can be exploited. The
matrix G(1,1) ∈ RIR×IR can then be obtained from G

(1,1)
nz ∈

RI×R2

by reshaping and reintroducing the zeros. Similarly
G

(2,2)
nz and G

(3,3)
nz are computed as

G(2,2)
nz = D(2)

(
(C�T C)� (A�T A)

)
, and

G(3,3)
nz = D(3)

(
(B�T B)� (A�T A)

)
.

Intermediate results of the form DT
(3)

(
C�T C

)
can be reused

instead of recomputing all MTKRPRODs from scratch using
dimension trees [21], as D(1)

(
(C�T C)� (B�T B)

)
and

D(2)

(
(C�T C)� (A�T A)

)
can be derived from it. These

matrices are also needed for the off-diagonal blocks.
2) Off-diagonal blocks: The off-diagonal blocks of the

Hessian approximation can be computed efficiently as well
using a similar yet slightly more involved approach as for the
diagonal blocks. The (1, 2) off-diagonal block of JTZJ has
dimensions (IR× JR) and is of the form

G(1,2) = JT
AZJB

= ((C�B)⊗ II)
T

ZΠ(2)T
((C�A)⊗ IJ) ,

where JA and JB are substituted using (3) and (4). In
Appendix B, it is shown that G(1,2) can be computed as

G(1,2) =

 a:1b
T
:1 ··· a:RbT

:1

...
. . .

...
a:1b

T
:R ··· a:RbT

:R

 ∗W(1,2),

where the matrix W(1,2) is obtained by rearranging the entries
of the matrix DT

(3)(C �
T C) ∈ RIJ×R2

into an (IR × JR)-
matrix; see Appendix B.

For the (1, 3)- and (2, 3)-blocks of the Gramian, G(1,3) and
G(2,3) are analogously computed as:

G(1,3) =

 a:1c
T
:1 ··· a:RcT

:1

...
. . .

...
a:1c

T
:R ··· a:RcT

:R

 ∗W(1,3),

and

G(2,3) =

 b:1c
T
:1 ··· b:RcT

:1

...
. . .

...
b:1c

T
:R ··· b:RcT

:R

 ∗W(2,3).

Analogously to the (1, 2)-block, the matrices W(1,3)

and W(2,3) are now obtained by rearranging the
entries of the matrices DT

(2)(B�
T B) ∈ RIK×R2

and
DT

(1)(A�
T A) ∈ RJK×R2

into (IR×KR)- and (JR×KR)-
matrices, respectively. As for the diagonal blocks, the
computation of the MTKRPROD in W(1,2) can be sped up by
using dimension trees [21].

3) Complexity: The computational complexity of comput-
ing one diagonal block for an (I × I × I)-tensor is dominated
by the complexity of the MTKRPROD that is used to compute
G

(m,m)
nz , which is O(I3R2) flop when computed straightfor-

wardly. Likewise, the computation of one off-diagonal block
is dominated by the MTKRPROD that is used to compute
W(l,m) and requires O(I3R2) flop. Adding the costs of the
three diagonal and the three off-diagonal blocks together, the
efficient computation of JTZJ requires a total of O(I3R2)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

−0.5

0

0.5

1

1.5
22.5β = 3

y

dβ(1, y)

Fig. 1. Plot of dβ(1, y) as a function of y for different values of β. These
functions are only convex for β ∈ [1, 2]. For other values of β, they are only
locally convex in a neighborhood of their minimum.

flop. Thus, compared to the O(I5R2) flop for the naive
computation, the exploitation of the multilinear structure offers
an efficiency gain of two orders of magnitude.

III. β-DIVERGENCES

The LS cost function does not perform optimally when
the tensor is perturbed by noise that is not i.i.d. additive
Gaussian. For this purpose, we consider in this section β-
divergences dβ . These divergences, a special class of Bregman
divergences [22], are defined for β ∈ R and interpolate
between the Itakura–Saito (IS) divergence (β = 0), Kullback–
Leibler (KL) divergence (β = 1) and the LS distance (β = 2):

dβ(x, y) =


xβ+(β−1)yβ−β(xy(β−1))

β(β−1) β ∈ R \ {0, 1},
x log

(
x
y

)
− x+ y β = 1,

x
y − log

(
x
y

)
− 1 β = 0.

Note that they are not distances, except for β = 2, as they are
not symmetric and do not satisfy the triangle inequality.

Where for the LS distance, only the absolute difference
between two values x and y is considered, other β-divergences
also take the size of x and y themselves into account, meaning
that dβ(x+ c, y+ c) 6= dβ(x, y) for β 6= 2. More specifically,
we can see from the property dβ(kx, ky) = kβdβ(x, y), with
k > 0, that the parameter β controls the relative importance
of the magnitude of x and y. If β = 0, the divergence is scale
invariant, meaning that d0(x, 2x) is the same for any value of
x. If β > 0, dβ(x, 2x) will be larger for large values of x,
while for β < 0, dβ(x, 2x) will be larger for small values of x.
See Fig. 1 for a visual representation of the β-divergence cost
function for some specific values of β. Here x is the target
value and y is its approximation. As can be seen from the
figure, β-divergences are convex for β ∈ [1, 2]. Outside this
interval, dβ(x, y) is only locally convex, i.e., when x ≈ y.

If β < 2, β-divergence cost functions penalize errors on
small entries more heavily compared to the LS distance, while
for values of β > 2, the converse is true. Because of this, β-
divergences perform well on data with entries of different mag-
nitudes, such as audio data. For such data, β-divergence cost
functions (with β < 2) manage to capture the low intensity
components of the signals better than the LS cost function.
β-divergence cost functions have been used extensively in
nonnegative matrix factorization (NMF) of audio spectra [23].
Where the LS cost function inherently assumes additive i.i.d.
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Gaussian noise, NMFs with the KL and IS-divergence have
been shown to give the maximum likelihood estimation under
the assumption of Poisson-distributed entries or multiplicative
Gamma noise, respectively [24]. As a generalization of NMF,
β-divergence cost functions have been used to compute non-
negative CPDs of tensors [10], [12], [25]–[28]. Only the latter
method, however, updates all factor matrices at the same time.
Additionally, none of these methods uses Hessian information
and several are only applicable for specific values of β. In
contrast, all three properties are satisfied for the method from
Sec. II, which we particularize for β-divergence cost functions
in this section. If R = 1, the computations can be made
particularly efficient by exploiting the multilinear structure and
the specific form of the β-divergence cost function; see [29].

The β-divergence cost function for a tensor T and its CPD
M = JA,B,CK is defined as minA,B,C f with

f =
1

β(β − 1)

N∑
n=1

tβn + (β − 1)mβ
n − β

(
tnm

(β−1)
n

)
.

For the special cases (β = 1) and (β = 0), one has

f =

N∑
n=1

tn log

(
tn
mn

)
− tn +mn, β = 1,

f =

N∑
n=1

[
tn
mn
− log

(
tn
mn

)
− 1

]
, β = 0.

When β = 2, the standard LS cost function is recovered. In
the remainder of the paper, we constrain A, B and C to be
nonnegative matrices as β-divergences are only defined for
nonnegative values, except when β ∈ N\{1}. For the gradient
g = [vec

(
R(1)(C�B)

)
; vec

(
R(2)(C�A)

)
; vec

(
R(3)(B�A)

)
],

one finds, for any value of β,

R =
M−T
M•(2−β)

.

As explained above, the Hessian can be approximated by
JTZJ wherein Z = Diag (vec (D)). The tensor D is, for any
value of β, the entry-wise second-order derivative of the β-
divergence cost function:

D =
(β − 1)M− (β − 2)T

M•(3−β)
=

(β − 2) (M−T ) +M
M•(3−β)

.

(5)

A. Indefiniteness of the Hessian approximation

The Gramian of the Jacobian JTJ for the LS distance
is always PSD. Unfortunately, this does not hold for its
generalization JTZJ. To avoid unwelcome modifications to the
algorithm, one could try to force the Hessian approximation to
remain PSD during the computation of the CPD. A sufficient
condition for JTZJ being PSD is that all entries of Z are
nonnegative. This corresponds to the entry-wise condition

(β − 1)M≥ (β − 2)T . (6)

For β ∈ [1, 2], the left hand side of the equation is positive
and the right hand side is negative, so (6) is always satisfied.
For β > 2, the condition becomes M≥ [(β − 2)/(β − 1)]T ,
which bounds the entries of M from below, with the bound

converging to T as the value of β increases. For β < 1, the
condition is M ≤ [(2 − β)/(1 − β)]T , now with the bound
converging to T as the value of β decreases. Thus for values of
β outside [1, 2], the model has to be close enough to the tensor
for D to be nonnegative, which guarantees that the Hessian
approximation will be PSD. Having a good initialization is
thus doubly important, as this not only decreases the number
of iterations of the β-divergence algorithm, but can also avoid
iterations with an indefinite Hessian approximation. We dis-
cuss four strategies to avoid indefinite Hessian approximations.

1) Modifying JTZJ: If all values of D are nonnegative,
then JTZJ is PSD. The easiest way to ensure this is thus
by approximating D with a nonnegative tensor, for example
by setting its negative values to zero or to a small positive
value. A Levenberg–Marquardt modification of JTZJ is also
possible: adding a scaled version of the identity matrix (λI) to
JTZJ can make the Hessian approximation PSD. Of course, if
λ is large, the second-order information is essentially ignored.

2) Tempering β: As noted above, the Hessian approxima-
tion is always PSD for β ∈ [1, 2]. One can leverage this
property by first computing a solution for β = 2, using
standard approaches, to get the model close to the tensor
followed by a few (more expensive) iterations of the algorithm
with the requested value of β. A caveat is that the LS cost
function minimizes the squared error on the tensor entries,
while D also depends on entry size (cf. (6)). This means
that D can still be negative for the extreme (smallest or
largest, depending on β) entries of the tensor when using this
approach. In such cases, gradually increasing or decreasing
β until the requested value is reached can be beneficial. The
tempering approach is also discussed in [30].

3) Weighted least-squares: Depending on the value of β,
smaller (β < 2) or larger (β > 2) tensor entries are fitted more
tightly compared to the LS cost function. We can mimic such
properties of cost functions by initializing with a low-rank
weighted LS approach [31]. A modified problem is solved:

min
A,B,C

1

2
‖W ∗ (JA,B,CK− T )‖2F ,

where W is a low-rank weight tensor of the same dimensions
as M and T . For β-divergences with β < 2, smaller values
are given a larger weight in W and larger values are given a
smaller weight. If β > 2, larger values are given a larger
weight and smaller values are given a smaller weight. An
example of a weight tensor W with these properties can be
obtained by computing for every tensor entry tn a second-
order Taylor approximation to the cost function f around
mn = tn: f ≈ f(tn) + f ′(tn)(mn − tn) + f ′′(tn)

2 (mn − tn)2.
Equating terms with the WLS function w2

n(mn − tn)2 gives:

w2
n ≈

f(tn)

(mn − tn)2
+

f ′(tn)

mn − tn
+
f ′′(tn)

2
.

For the β-divergence cost function (β /∈ {0, 1}), given
as fβ = 1

β(β−1)

(
tβn + (β − 1)mβ

n − βtnm
(β−1)
n

)
, one finds

fβ(tn) = f ′β(tn) = 0 and f ′′β (tn) = t
(β−2)
n , leading to a

weighting factor wn = 1√
2
t
(β−2)

2
n . For values of β > 2, larger

entries are indeed given larger weights, while the converse is
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Fig. 2. The WLS cost function gives a better local approximation to d0.5(3, y)
than the LS cost function.

true for β < 2. For β = 2, the LS cost function is recovered.
In Fig. 2, it can be seen that a WLS cost function with
the proposed weighting factor gives a better local quadratic
approximation to the β-divergence cost function than the LS
cost function. A good choice of weight tensor is, for instance,
the best rank-1 approximation to W = 1√

2
T •

(β−2)
2 , as using a

low-rank weight tensor makes the WLS CPD much less costly.
As an alternative that is cheaper to compute, one can also take

W = Ja,b, cK, with a = 1
3√2

(
1
JK

∑JK
q=1 T

• (β−2)
2

(1):q

)
, and with

b and c defined analogously.
4) Shifting: A fourth way to force D to be nonnegative, and

thus to guarantee that the Hessian approximation is PSD, is to
add a constant nonnegative tensor P to both T andM. Instead
of fitting the model M to the tensor T , we thus fit the model
M+ P to the tensor T + P . In this way, we are essentially
shifting our problem to a region where the cost function is
nicer: the shifted problem ideally lies in the locally convex
region of the β-divergence cost function (cf. Fig. 1). Of course,
shifting introduces a bias, as the β-divergence is not shift-
invariant for β 6= 2. We thus want to gradually decrease the
shift back to zero during the optimization process. Revisiting
(6), requiring D to be nonnegative introduces the following
requirement for the shifting tensor P:

P ≥ (β − 2)T − (β − 1)M.

In principle, every entry tn could have its own shift pn, but
taking one common value for certain parts of the tensor or a
common p for all tensor entries can reduce storage require-
ments. A possible shift that satisfies the bound for all entries is
p = kmax(P), with k ≥ 1 and P = (β−2)T − (β−1)M. If
p < 0, the Hessian is already PSD, so we can set p = 0. In the
latter case, setting p = δ > 0 when p is slightly nonnegative
may improve the convergence of the algorithm by increasing
the size of the locally convex domain around the minimum.

The size of the shift, which depends on the residual T −M,
should decrease as the model gets closer to the tensor and
should eventually become zero. The objective function value,
gradient and D are computed with the shifted tensor and model
instead of the original tensor and model, but the algorithm
itself remains exactly the same. The tensor P is computed as
an intermediate result in the computation of D (see (5)), so
the only additional computations that the shifting introduces
are the sums T + P and M + P . As P is a constant, the
shift does not increase the dimensions of the gradient and
Hessian. A nice byproduct of shifting is that it also avoids
possible numerical problems due to tensor entries that are zero.
Shifting works better when β is close to the interval [1, 2].

When β � 1 or β � 2, the bound in (6) becomes tighter and
thus a larger shift is needed. If the required shift is too large,
it could dominate the original tensor entries. If this happens,
it might not be possible to decrease the shift all the way to
zero, making the algorithm converge to a suboptimal solution.

IV. EXPERIMENTS

A number of experiments are performed on synthetic and
real-life data. First, we motivate the use of β-divergence cost
functions by comparing the CPDs for different values of β. We
then analyze the performance of different strategies to handle
the indefiniteness of the Hessian approximation. We show how
the proposed GGN algorithm performs compared to standard
methods from the literature and compare the computational
cost to that of the GN method. Finally, we use our method
to approximate a hyperspectral image. The experiments are
performed on a computer with an Intel Core i7-6820HQ CPU
at 2.70GHz and 16GB of RAM using MATLAB R2016b
and Tensorlab 3.0 [32]. For experiments on synthetic data,
entries of factor matrices are sampled independently from the
uniform distribution on the interval (a, b), denoted by U(a, b).
Writing T̄ for the perturbed tensor T , the signal to noise ratio
(SNR) is defined for all noise types as 20 log10

(
‖T ‖F
‖N‖F

)
, where

N = T̄ − T . When the entries of a tensor T are perturbed
by multiplicative Gamma noise, we have T̄ = T ∗ Nγ . The
entries of the noise tensor Nγ are sampled from a Gamma
distribution with shape α and scale 1

α , hence, the SNR (in
dB) is expected to be 10 log10 (α).

A. Optimal value of β

Three random factor matrices A,B,C in R20×3
+ are gen-

erated with entries sampled from U(1, 10). Then, a rank-
3 tensor T is constructed with these factor matrices, either
additive Gaussian noise or multiplicative Gamma noise is
added and factor matrices Ã, B̃, C̃ are computed with a β-
divergence cost function for different values of β. In Fig. 3,
the mean absolute factor matrix error max(‖A− Ã‖F , ‖B−
B̃‖F , ‖C − C̃‖F ) is shown for an SNR of 40 dB after
matching columns and normalizing all factor matrices such
that ‖a:r‖ = ‖b:r‖ = ‖c:r‖ and ‖ã:r‖ = ‖b̃:r‖ = ‖c̃:r‖
for 1 ≤ r ≤ R. For tensors that are perturbed by additive
Gaussian noise, the smallest errors are obtained for β = 2,
while for multiplicative Gamma noise, the lowest errors are
obtained for β = 0. This is in line with the discussion at the
beginning of Sec. III and motivate the use of different cost
functions depending on the distribution of the noise.
β-divergence cost functions with small values of β fit

small tensor entries tighter than the LS cost function. To
illustrate this, a tensor T = JA,B,CK is generated, where
A,B,C ∈ R10×3

+ with entries sampled as 10x with x sampled
from U(−2, 2). This tensor is then perturbed with a small
amount of noise to show the influence of the parameter β. For
Fig. 4, the tensor is perturbed with additive Gaussian noise
with an SNR of 100 dB and its CPD T̂ is computed for β-
divergence cost functions with β = 0 and β = 4. A high SNR
value is necessary, as the SNR value is dominated by the large
tensor entries. With the large dynamic range of the entries
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Fig. 3. The errors for tensors perturbed by Gamma noise are about 29.4%
larger when using β = 2 compared to β = 0, while for Gaussian noise, using
β = 2 is optimal. The mean (50 trials) absolute factor matrix error is shown
for different values of β for tensors perturbed by multiplicative Gamma noise
and tensors perturbed by additive Gaussian noise, both with an SNR of 40 dB.
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Fig. 4. The cost function with β = 4 performs better for additive Gaussian
noise than the cost function with β = 0. Absolute (left) and relative (right)
error on the tensor entries tijk when fitting a CPD of a low-rank tensor that
is perturbed with additive Gaussian noise. Two different β-divergence cost
functions are used: β = 0 and β = 4. For the former, the relative error is
approximately the same for small and large tensor entries. For the latter, larger
entries tend to have a smaller relative error than smaller entries.

in this experiment, the smallest entries would be completely
dominated by the additive Gaussian noise for low SNRs. In
Fig. 5, the same experiment is performed for multiplicative
Gamma noise. In both figures, it can be seen that for the cost
function with large β, the absolute error |tijk − t̂ijk| of all
tensor entries is approximately the same, independently of
their size. As a result, the relative error |tijk − t̂ijk|/tijk is
smaller for larger tensor entries. For the cost function with
small β, the relative error remains about the same along the
range of tensor entries. Of course, this means that the absolute
error is larger for larger tensor entries.

B. Handling indefiniteness

In the following experiment, four different strategies for
handling indefiniteness of the Hessian approximation are com-
pared: LS and WLS initialization (with a relative step size of
10−2 and a relative cost function change of 10−4 as stopping
criteria), random initialization using shifting with one common
shift for the whole tensor (p = 2 max(P)), and random
initialization without shifting. These strategies are discussed in
Subsections III-A3 and III-A4. Three random factor matrices
are generated in R50×5

+ with entries sampled from U(0, 1) and
then the associated rank-5 tensor is constructed. We perturb
the tensor with multiplicative Gamma noise and an SNR of
20 dB. A relative step size of 10−4 and a relative cost function
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Fig. 5. For multiplicative Gamma noise, the cost function with β = 0
performs better. Same setting as in Fig. 4, but with multiplicative Gamma
noise instead. For β = 0, the relative error is approximately the same for
small and large tensor entries. For β = 4, larger entries tend to have a smaller
relative error than smaller entries.

TABLE I
THE LS AND WLS INITIALIZATIONS ENABLE FASTER CPD

COMPUTATIONS, WITH WLS PERFORMING BETTER FOR SMALL β . FOR
RANDOM INITIALIZATIONS, SHIFTING DOES NOT INFLUENCE THE

COMPUTATION TIME MUCH, WHILE IT DOES ASSURE CONVERGENCE. THE
MEDIAN TIME (S) (OVER 20 TRIALS) IS SHOWN TO COMPUTE A CPD OF A
RANK-5 TENSOR T ∈ R50×50×50

+ PERTURBED BY MULT. GAMMA NOISE
WITH AN SNR OF 20 dB WHEN USING FOUR STRATEGIES FOR HANDLING

INDEFINITE HESSIANS. FOR LS AND WLS INITIALIZATION, THE
INITIALIZATION TIME IS ALSO SHOWN. ONLY SUCCESSFUL TRIALS WERE
USED FOR RANDOM INITIALIZATION WITHOUT SHIFTING (12 OUT OF 20).

Time (s) for different β
β

Method -0.5 0 0.5 1 1.5 2.5

Init. with LS 0.273 0.288 0.268 0.283 0.273 0.281
Main GGN 2.704 1.590 1.296 1.043 1.072 1.081

Init. with WLS 0.229 0.234 0.271 0.284 0.315 0.388
Main GGN 1.669 1.070 1.088 0.895 0.906 1.285

Random init. + shifting 3.391 2.143 1.885 1.821 1.605 1.725

Random init. 2.984 2.276 2.058 1.735 1.545 2.020

change of 10−8 are used as stopping criteria. In Tables I and
II, the median runtime and median number of iterations are
shown for 20 tensors and for different values of β. For random
initialization and without shifting, the method failed to con-
verge to the correct solution in 8 of the 20 trials. The reported
numbers do not take these failed trials into account. From the
tables, it can be seen that convergence is much faster, both
in time and in number of iterations after computing a LS or
WLS initialization. The WLS initialization, with as weighting
tensor W a rank-1 approximation to 1√

2
T •(

β−2
2 ), performs

slightly better than the LS initialization. When starting from a
random initialization, shifting generally does not increase the
computation time or number of iterations, while it does fix the
convergence problems for random initialization.

C. Other β-divergence CPD algorithms

The proposed GGN method is compared to the generalized
CPD (GCPD) method [10] for a β-divergence cost function
and to the classical multiplicative update (MU) algorithm
for β-divergences [12]. Random factor matrices A, B and
C ∈ RI×R are generated with entries sampled from U(0, 1),
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TABLE II
WHEN STARTING FROM AN LS OR WLS INITIALIZATION, THE NUMBER OF

REMAINING (COSTLY) GGN ITERATIONS UNTIL CONVERGENCE IS
SIGNIFICANTLY LOWER THAN FOR RANDOM INITIALIZATION. SHIFTING

DOES NOT CHANGE THE NUMBER OF ITERATIONS WHEN STARTING FROM
A RANDOM INITIALIZATION, WHILE IT DOES ASSURE THAT THE METHOD
CONVERGES. THE MEDIAN NUMBER OF ITERATIONS (OVER 20 TRIALS) IS

DISPLAYED FOR THE SAME EXPERIMENT AS IN TABLE I.

Number of iterations for different β
β

Method -0.5 0 0.5 1 1.5 2.5

Init. with LS 8.0 8.0 8.0 8.0 8.0 8.0
Main GGN 16.5 11.5 9.0 8.0 7.0 7.5

Init. with WLS 7.5 7.5 8.0 8.0 8.5 7.5
Main GGN 11.0 7.5 7.5 7.0 6.0 8.0

Random init. + shifting 22.0 15.5 13.0 14.0 11.0 12.0

Random init. 19.5 16.0 14.0 13.5 11.0 13.5

and T = JA,B,CK. In practice, one will often use a cheaper
method to get close to the solution, after which the more
expensive GGN method can leverage its fast local convergence
to get to the true solution. Thus, to focus on the convergence
behavior close to the solution, the methods are initialized
by generating random factor matrices with entries sampled
from U(0, 1) and then applying five iterations of the GN
algorithm for β = 2. The CPD is then computed for different
values of β. In Fig. 6, the results of the different methods
are shown for I = 20 and R = 5. The median computation
time, relative factor matrix error and number of iterations are
displayed. All methods use a relative step size of 10−10 as a
stopping criterion. The GGN and GCPD methods both find the
correct solution in all cases. The GGN method requires fewer
iterations than the GCPD method, while the MU method does
not converge within 1000 iterations. The median computation
time of GGN is lower than GCPD, especially when β /∈ [1, 2].

Fig. 7 shows the typical evolution of the cost function
value fβ close to the solution, here for β = 0.5. On the
left, it can be seen that the proposed GGN method converges
to the true solution after very few iterations. In contrast,
the MU-algorithm requires thousands of iterations with slow
improvement before converging to the true solution. GCPD
requires hundreds of iterations to reach the true solution. While
it converges with about the same rate as the GGN method far
from the solution, its convergence is clearly slower close to
the solution, where the GGN method can fully leverage its
second-order information and achieves quadratic convergence.

D. GGN compared to GN

Using a non-LS cost function naturally adds complexity to
the algorithm, as the Hessian approximation JTJ is replaced
by the matrix JTZJ, where Z is a diagonal matrix with vec(D)
on its diagonal. As discussed in Sec. II-C, the structure of
the factors of JTZJ can be exploited in the computation of
this matrix, which drastically lowers its computation time. In
Fig. 8, the computation time of both Hessian approximations
is shown for an (I × I × I)-tensor and a rank-10 CPD. The
computation time for the Hessian approximation of the general
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Fig. 6. The proposed GGN method requires considerably fewer iterations than
the other two methods. The performance with respect to time, relative factor
matrix error and number of iterations is shown for three methods to compute
a rank-5 CPD of a rank-5 (20× 20× 20)-tensor perturbed by multiplicative
Gamma noise with an SNR of 40 dB for different values of β. All methods
are capped at 1000 iterations and medians over 20 trials are shown.
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Fig. 7. The GGN method converges quadratically (until machine precision is
reached) close to the solution, while the other methods converge linearly. The
typical convergence behavior of a β-divergence CPD with β = 0.5 is shown
for the GGN, MU and GCPD methods on a rank-5 (40 × 40 × 40)-tensor.
The cost function value fβ is plotted in function of the iteration number.

cost function is larger, but only by a factor 2. Considering
that the full tensor D has to be computed and included in the
approximation, this is an acceptable price to pay. Actually, the
increase in computation time is much more significant for the
cost function and gradient evaluations when replacing the LS
cost function by a β-divergence cost function, as can also be
seen from Fig. 8. For the LS cost function, the computation
time for these evaluations is almost negligible compared to the
computation time for the Hessian approximation, giving first-
order methods an edge compared to second-order methods.
This is not the case for the β-divergence cost function,
particularly when the tensor is large. As a result, even first-
order β-divergence CPD methods that only evaluate the cost
function and gradient will be significantly more expensive
than LS CPD methods. This makes the proposed second-order
method appealing for general cost functions, as computing the
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Fig. 8. The GGN method (dashed) requires about twice as much time
to compute the Hessian approximation as the GN method (solid). Second,
compared to LS, the β-divergence cost function and gradient evaluations
are much more costly. The mean time (over 20 trials) is shown for the
computation of one cost function evaluation, one gradient evaluation, and one
Hessian approximation in function of the tensor size for the LS (solid) and
β-divergence with β = 1.5 (dashed) cost functions. The GN approximation
is used for the Hessian of the LS cost function, while the GGN approximation
is used for the β-divergence cost function. The tensors have dimensions
(I × I × I) and rank 10 and are approximated by a CPD with rank 10.

Hessian approximation is a relatively smaller extra cost.
Both GN and GGN require the solution of the system

Hp = −g to obtain the step direction. The cost of solving
this system is relatively lower for GGN, as the construction
of its Hessian approximation is more costly. Still, for larger
tensor dimensions, it can be beneficial to solve Hp = −g
approximately using inexact methods [33].

E. Hyperspectral image compression
In this example, a part of the DC Mall hyperspectral

image [34] of dimensions 80×80 is considered, which contains
160 different wavelengths. The (I×J×K)-tensor T represent-
ing the hyperspectral image is thus of dimensions 80×80×160.
See Fig. 9a for an image at one wavelength. Hyperspectral
images can easily become very large, thus to limit the storage
requirements, a compressed image can be stored instead. Here,
we use the CPD to approximate the hyperspectral image,
which can also have a denoising effect on the image [35]. As
Poisson noise can often be expected to be introduced during
the image generation [36], this type of noise was included (see
Fig. 9b) to obtain the tensor T̃ . The noise was introduced using
the MATLAB command T̃ = poissrnd(T p)/p, with p the
requested noise level (higher p means less noise). This tensor
was then approximated by a rank-R CPD, both with an LS and
with a KL-divergence cost function, to obtain a compressed
tensor T̂ . The LS solution was used as an initialization for
the KL-divergence CPD. In Figures 9c and 9d, the results can
be seen. Although the difference is not large, the compressed
image obtained with the KL-divergence cost function manages
to capture the details of the image slightly better. This can also
be seen when comparing quality measures of both compressed
images for different noise levels and approximation ranks.
The peak SNR (PSNR) and the universal image quality index
(UIQI) [37] are computed for both CPDs. The former is
defined as

PSNR(T , T̂ ) = 10 log10

(
ρ2IJK

‖T − T̂ ‖2F

)
,

Fig. 9a. Original image Fig. 9b. With Poisson noise

Fig. 9c. LS cost function Fig. 9d. KL cost function

Fig. 9. Spectral band 120 of a (80× 80) aerial image perturbed by Poisson
noise with an SNR of 10 dB. The reconstructed images are shown when the
tensor is approximated with a rank-40 CPD computed with a LS cost function
and with a KL divergence cost function.

with ρ the maximal value of the image, which is simply equal
to one in this case. The latter is defined as

UIQI(T , T̂ ) =
1

K

K∑
k=1

4σ2
tk t̂k

µtk
µt̂k(

σ2
tk

+ σ2
t̂k

)(
µ2
tk

+ µ2
t̂k

) ,
with tk = vec (T::k) and t̂k = vec

(
T̂::k

)
. The PSNR is

based on the LS fit of the CPD to the original tensor and is
thus expected to be higher for the solution obtained with the
LS cost function. The UIQI was designed specifically to judge
the quality of compressed images and reflects the luminance
and contrast distortion caused by the compression. The closer
the UIQI is to 1, the better the approximation is.

The results are shown in Table III. First, it can be seen
that for CPDs with relatively low rank and less noise, the LS
solution indeed gives the solution with the highest PSNR. If
the rank of the CPD is high, however, or the amount of noise is
increased, the KL-divergence solution actually has the largest
PSNR. In these cases, the change of cost function allows the
optimization algorithm to escape from the suboptimal solution
that was found with the LS cost function and find a better
local minimum. Second, one can see that the KL-divergence
cost function consistently scores slightly better than the LS
cost function with respect to the UIQI. Because the tensor has
been perturbed with Poisson noise, the KL-divergence cost
function manages to preserve the luminance and contrast of
the original image better than the LS cost function, even when
the latter offers a solution with a higher PSNR.

V. CONCLUSION

A second-order all-at-once CPD algorithm was proposed
that can handle general entry-wise cost functions. By exploit-
ing the low-rank structure of the problem, the computational
cost of the algorithm was significantly limited. The method
was applied to β-divergence cost functions, which are tailored
to data with non-Gaussian noise. The method was shown to
outperform the widely used first-order approaches and to show
fast convergence close to the solution in low-noise cases.
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TABLE III
COMPARISON OF THE PSNR (LEFT) AND THE UIQI (RIGHT) FOR A

HYPERSPECTRAL IMAGE APPROXIMATED BY A CPD WITH EITHER A LS
OR KL-DIVERGENCE COST FUNCTION. DIFFERENT SNRS AND

APPROXIMATION RANKS R ARE CONSIDERED. BEST RESULTS OF FIVE
INITIALIZATIONS ARE SHOWN. THE KL-DIVERGENCE COST FUNCTION

CONSISTENTLY GIVES THE SOLUTION WITH THE HIGHEST UIQI, EVEN IF
THE PSNR OF THE LS SOLUTION IS HIGHER.

PSNR UIQI

SNR R LS KL LS KL

10 dB 10 25.2953 25.3192 0.8777 0.8847
20 25.8925 27.7919 0.9244 0.9402
40 27.1162 30.5213 0.9504 0.9671

20 dB 10 25.4364 25.2722 0.8833 0.8844
20 27.7218 27.6653 0.9337 0.9347
40 27.4485 30.6091 0.9550 0.9672

APPENDIX A
PROOF OF SEC. II-C1

Theorem 1: LetM = JA,B,CK be a CPD of T ∈ RI×J×K
and Z = Diag(vec(D)). Then the nonzero entries G

(1,1)
nz of the

matrix G(1,1) = ((C�B)⊗ II)
T

Z ((C�B)⊗ II) ∈ RI×I
can be computed as follows:

G(1,1)
nz = D(1)

(
(C�T C)� (B�T B)

)
.

Proof: Consider the case R = 1. Then c� b is a vector
holding all products of an entry of c and an entry of b.
The Kronecker product with the identity then replaces every
element cxby of this vector with cxby times the (I×I)-identity
matrix. Thus [(c� b)⊗ II ] looks like this:[

c1b1II · · · c1bJII c2b1II · · · cKbJII
]T
.

The product ((c� b)⊗ II)
T

Z ((c� b)⊗ II) ∈ RI×I can
then be computed block-wise:

((c� b)⊗ II)
T Diag

([
dT
:11, · · · ,dT

:JK

]T)
((c� b)⊗ II)

= c21b
2
1Diag (d:11) + · · ·+ c21b

2
JDiag (d:J1)

+ c22b
2
1Diag (d:12) + · · ·+ c2Kb

2
JDiag (d:JK) .

Note that this is a diagonal matrix. We can compute only the
nonzero values by removing the diagonalization, which gives
us the vector G

(1,1)
nz ∈ RI×1:

G(1,1)
nz = c21b

2
1d:11 + · · ·+ c21b

2
Jd:J1

+ c22b
2
1d:12 + · · ·+ c2Kb

2
Jd:JK

= D(1)

(
c•2 � b•2

)
. (7)

For the general case where R > 1, the matrix ((C�B)⊗ II)
T

is of the form c11b11II · · · c11bJ1II c21b11II · · · cK1bJ1II
...

. . .
...

...
. . .

...
c1Rb1RII · · · c1RbJRII c2Rb1RII · · · cKRbJRII

 .
After computing ((C�B)⊗ II)

T
Z ((C�B)⊗ II), one then

obtains R2 sums of the form:

c1xc1yb1xb1yd:11 + · · ·+ c1xc1ybJxbJyd:J1

+ c2xc2yb1xb1yd:12 + · · ·+ cKxcKybJxbJyd:JK

for x, y ∈ {1, . . . , R}. This means that we now need all entry-
wise products of two columns of C and of two columns of B,
as a generalization of the factors c•2 and b•2 in (7). These are
obtained by computing (C�T C) and (B�T B), respectively.
This leads us to the expression

G(1,1)
nz = D(1)

(
(C�T C)� (B�T B)

)
,

which holds all nonzero values of
((C�B)⊗ II)

T
Z ((C�B)⊗ II).

APPENDIX B
PROOF OF SEC. II-C2

Theorem 2: Let M = JA,B,CK be a CPD of
T ∈ RI×J×K . Also, let Z = Diag(vec(D)) and
W(1,2) be the matrix DT

(3)(C �
T C) ∈ RIJ×R2

reshaped
into an (IR × JR)-matrix. Then the matrix G(1,2) =
((C�B)⊗ II)

T
Z ((C�A)⊗ IJ) ∈ RIR×JR can be com-

puted as follows:

G(1,2) =

a:1b
T
:1 · · · a:RbT

:1
...

. . .
...

a:1b
T
:R · · · a:RbT

:R

 ∗W(1,2).

Proof: Consider the case R = 1, where the goal is
to compute G(1,2) = ((c� b)⊗ II)

T
ZΠ(2)T

((c� a)⊗ IJ).
This product can again be computed block by block, where
the kth block contains all rows of the Jacobians JA and JB

that contain the factor ck and the kth column of DT
(3):

((c�b)⊗ II)
T Diag

([
d(3)

T
:1
,· · ·,d(3)

T
:K

]T)
Π(2)T

((c�a)⊗ IJ)

= c21
(
bT⊗ II

)
Diag

(
dT
(3):1

)
(IJ ⊗a)

+ · · ·+ c2K
(
bT⊗ II

)
Diag

(
dT
(3):K

)
(IJ ⊗a) .

The structure of these terms can then be exploited to obtain:

G(1,2) = c21 unvec
(
dT
(3):1

)
∗
(
abT)

+ · · ·+ c2K unvec
(
dT
(3):K

)
∗
(
abT) .

Computing DT
(3)

(
c•2
)
∈ RIJ×1 and reshaping this matrix

into the (I × J)-matrix W(1,2) then gives:

G(1,2) =
(
abT) ∗W(1,2).

For the general case where R > 1, again, all combinations of
columns can be handled separately. One now needs all entry-
wise products of two columns of C and each of these terms
should be matched with its corresponding outer product of
a column of A and a column of B, thus c:xc:y should be
matched with a:xb

T
:y . The matrix W(1,2) ∈ RIR×JR is then

obtained by reshaping DT
(3)

(
C�T C

)
∈ RIJ×R2

into an (I×
J × R × R)-tensor, permuting its modes to get an (I × R ×
J × R)-tensor and finally reshaping this tensor into W(1,2).
The full (1, 2) off-diagonal block then becomes:

G(1,2) =

a:1b
T
:1 · · · a:RbT

:1
...

. . .
...

a:1b
T
:R · · · a:RbT

:R

 ∗W(1,2).
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(CAMSAP 2017), (Curaçao, Dutch Antilles), 2017.

[32] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer,
“Tensorlab 3.0.” Available online at http://www.tensorlab.net, Mar. 2016.

[33] M. Vandecappelle, N. Vervliet, and Lieven De Lathauwer, “Canonical
polyadic decomposition of large tensors with non-least-squares cost
functions using second-order information.” Internal Report 20-54, ESAT-
STADIUS, KU Leuven (Leuven, Belgium), 2020.

[34] R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system:
implementation and performance,” in Imaging Spectrometry (M. R.
Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds.), vol. 2480,
pp. 258 – 267, International Society for Optics and Photonics, 1995.

[35] X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral
images using the PARAFAC model and statistical performance analysis,”
IEEE Trans. Geosci. Remote. Sens., vol. 50, no. 10, pp. 3717–3724,
2012.

[36] Y. Qian, Y. Shen, M. Ye, and Q. Wang, “3-D nonlocal means filter
with noise estimation for hyperspectral imagery denoising,” in Proc.
2012 IEEE Intern. Geosc. Remote Sens. Symp. (IGARSS 2012), (Munich,
Germany), pp. 1345–1348, 2012.

[37] Zhou Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81–84, 2002.

http://www.tensorlab.net

	Introduction
	Notation

	General cost functions for the CPD
	Gradient
	Hessian approximation
	Computing JTZJ
	Diagonal blocks
	Off-diagonal blocks
	Complexity


	Beta-divergences
	Indefiniteness of the Hessian approximation
	Modifying JDJ
	Tempering beta
	Weighted least-squares
	Shifting


	Experiments
	Optimal value of 
	Handling indefiniteness
	Other beta-divergence CPD algorithms
	GGN compared to GN
	Hyperspectral image compression

	Conclusion
	Appendix A: Proof of Sec. II-C1
	Appendix B: Proof of Sec. II-C2
	References

